]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - net/ipv4/tcp_ipv4.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/perex/alsa
[linux-2.6-omap-h63xx.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9  *
10  *              IPv4 specific functions
11  *
12  *
13  *              code split from:
14  *              linux/ipv4/tcp.c
15  *              linux/ipv4/tcp_input.c
16  *              linux/ipv4/tcp_output.c
17  *
18  *              See tcp.c for author information
19  *
20  *      This program is free software; you can redistribute it and/or
21  *      modify it under the terms of the GNU General Public License
22  *      as published by the Free Software Foundation; either version
23  *      2 of the License, or (at your option) any later version.
24  */
25
26 /*
27  * Changes:
28  *              David S. Miller :       New socket lookup architecture.
29  *                                      This code is dedicated to John Dyson.
30  *              David S. Miller :       Change semantics of established hash,
31  *                                      half is devoted to TIME_WAIT sockets
32  *                                      and the rest go in the other half.
33  *              Andi Kleen :            Add support for syncookies and fixed
34  *                                      some bugs: ip options weren't passed to
35  *                                      the TCP layer, missed a check for an
36  *                                      ACK bit.
37  *              Andi Kleen :            Implemented fast path mtu discovery.
38  *                                      Fixed many serious bugs in the
39  *                                      request_sock handling and moved
40  *                                      most of it into the af independent code.
41  *                                      Added tail drop and some other bugfixes.
42  *                                      Added new listen semantics.
43  *              Mike McLagan    :       Routing by source
44  *      Juan Jose Ciarlante:            ip_dynaddr bits
45  *              Andi Kleen:             various fixes.
46  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
47  *                                      coma.
48  *      Andi Kleen              :       Fix new listen.
49  *      Andi Kleen              :       Fix accept error reporting.
50  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
51  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
52  *                                      a single port at the same time.
53  */
54
55 #include <linux/config.h>
56
57 #include <linux/types.h>
58 #include <linux/fcntl.h>
59 #include <linux/module.h>
60 #include <linux/random.h>
61 #include <linux/cache.h>
62 #include <linux/jhash.h>
63 #include <linux/init.h>
64 #include <linux/times.h>
65
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80
81 int sysctl_tcp_tw_reuse;
82 int sysctl_tcp_low_latency;
83
84 /* Check TCP sequence numbers in ICMP packets. */
85 #define ICMP_MIN_LENGTH 8
86
87 /* Socket used for sending RSTs */
88 static struct socket *tcp_socket;
89
90 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
91
92 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
93         .lhash_lock     = RW_LOCK_UNLOCKED,
94         .lhash_users    = ATOMIC_INIT(0),
95         .lhash_wait     = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
96 };
97
98 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
99 {
100         return inet_csk_get_port(&tcp_hashinfo, sk, snum,
101                                  inet_csk_bind_conflict);
102 }
103
104 static void tcp_v4_hash(struct sock *sk)
105 {
106         inet_hash(&tcp_hashinfo, sk);
107 }
108
109 void tcp_unhash(struct sock *sk)
110 {
111         inet_unhash(&tcp_hashinfo, sk);
112 }
113
114 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
115 {
116         return secure_tcp_sequence_number(skb->nh.iph->daddr,
117                                           skb->nh.iph->saddr,
118                                           skb->h.th->dest,
119                                           skb->h.th->source);
120 }
121
122 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
123 {
124         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
125         struct tcp_sock *tp = tcp_sk(sk);
126
127         /* With PAWS, it is safe from the viewpoint
128            of data integrity. Even without PAWS it is safe provided sequence
129            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
130
131            Actually, the idea is close to VJ's one, only timestamp cache is
132            held not per host, but per port pair and TW bucket is used as state
133            holder.
134
135            If TW bucket has been already destroyed we fall back to VJ's scheme
136            and use initial timestamp retrieved from peer table.
137          */
138         if (tcptw->tw_ts_recent_stamp &&
139             (twp == NULL || (sysctl_tcp_tw_reuse &&
140                              xtime.tv_sec - tcptw->tw_ts_recent_stamp > 1))) {
141                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
142                 if (tp->write_seq == 0)
143                         tp->write_seq = 1;
144                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
145                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
146                 sock_hold(sktw);
147                 return 1;
148         }
149
150         return 0;
151 }
152
153 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
154
155 /* This will initiate an outgoing connection. */
156 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
157 {
158         struct inet_sock *inet = inet_sk(sk);
159         struct tcp_sock *tp = tcp_sk(sk);
160         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
161         struct rtable *rt;
162         u32 daddr, nexthop;
163         int tmp;
164         int err;
165
166         if (addr_len < sizeof(struct sockaddr_in))
167                 return -EINVAL;
168
169         if (usin->sin_family != AF_INET)
170                 return -EAFNOSUPPORT;
171
172         nexthop = daddr = usin->sin_addr.s_addr;
173         if (inet->opt && inet->opt->srr) {
174                 if (!daddr)
175                         return -EINVAL;
176                 nexthop = inet->opt->faddr;
177         }
178
179         tmp = ip_route_connect(&rt, nexthop, inet->saddr,
180                                RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
181                                IPPROTO_TCP,
182                                inet->sport, usin->sin_port, sk);
183         if (tmp < 0)
184                 return tmp;
185
186         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
187                 ip_rt_put(rt);
188                 return -ENETUNREACH;
189         }
190
191         if (!inet->opt || !inet->opt->srr)
192                 daddr = rt->rt_dst;
193
194         if (!inet->saddr)
195                 inet->saddr = rt->rt_src;
196         inet->rcv_saddr = inet->saddr;
197
198         if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
199                 /* Reset inherited state */
200                 tp->rx_opt.ts_recent       = 0;
201                 tp->rx_opt.ts_recent_stamp = 0;
202                 tp->write_seq              = 0;
203         }
204
205         if (tcp_death_row.sysctl_tw_recycle &&
206             !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
207                 struct inet_peer *peer = rt_get_peer(rt);
208
209                 /* VJ's idea. We save last timestamp seen from
210                  * the destination in peer table, when entering state TIME-WAIT
211                  * and initialize rx_opt.ts_recent from it, when trying new connection.
212                  */
213
214                 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
215                         tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
216                         tp->rx_opt.ts_recent = peer->tcp_ts;
217                 }
218         }
219
220         inet->dport = usin->sin_port;
221         inet->daddr = daddr;
222
223         inet_csk(sk)->icsk_ext_hdr_len = 0;
224         if (inet->opt)
225                 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
226
227         tp->rx_opt.mss_clamp = 536;
228
229         /* Socket identity is still unknown (sport may be zero).
230          * However we set state to SYN-SENT and not releasing socket
231          * lock select source port, enter ourselves into the hash tables and
232          * complete initialization after this.
233          */
234         tcp_set_state(sk, TCP_SYN_SENT);
235         err = inet_hash_connect(&tcp_death_row, sk);
236         if (err)
237                 goto failure;
238
239         err = ip_route_newports(&rt, inet->sport, inet->dport, sk);
240         if (err)
241                 goto failure;
242
243         /* OK, now commit destination to socket.  */
244         sk_setup_caps(sk, &rt->u.dst);
245
246         if (!tp->write_seq)
247                 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
248                                                            inet->daddr,
249                                                            inet->sport,
250                                                            usin->sin_port);
251
252         inet->id = tp->write_seq ^ jiffies;
253
254         err = tcp_connect(sk);
255         rt = NULL;
256         if (err)
257                 goto failure;
258
259         return 0;
260
261 failure:
262         /* This unhashes the socket and releases the local port, if necessary. */
263         tcp_set_state(sk, TCP_CLOSE);
264         ip_rt_put(rt);
265         sk->sk_route_caps = 0;
266         inet->dport = 0;
267         return err;
268 }
269
270 /*
271  * This routine does path mtu discovery as defined in RFC1191.
272  */
273 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
274 {
275         struct dst_entry *dst;
276         struct inet_sock *inet = inet_sk(sk);
277
278         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
279          * send out by Linux are always <576bytes so they should go through
280          * unfragmented).
281          */
282         if (sk->sk_state == TCP_LISTEN)
283                 return;
284
285         /* We don't check in the destentry if pmtu discovery is forbidden
286          * on this route. We just assume that no packet_to_big packets
287          * are send back when pmtu discovery is not active.
288          * There is a small race when the user changes this flag in the
289          * route, but I think that's acceptable.
290          */
291         if ((dst = __sk_dst_check(sk, 0)) == NULL)
292                 return;
293
294         dst->ops->update_pmtu(dst, mtu);
295
296         /* Something is about to be wrong... Remember soft error
297          * for the case, if this connection will not able to recover.
298          */
299         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
300                 sk->sk_err_soft = EMSGSIZE;
301
302         mtu = dst_mtu(dst);
303
304         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
305             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
306                 tcp_sync_mss(sk, mtu);
307
308                 /* Resend the TCP packet because it's
309                  * clear that the old packet has been
310                  * dropped. This is the new "fast" path mtu
311                  * discovery.
312                  */
313                 tcp_simple_retransmit(sk);
314         } /* else let the usual retransmit timer handle it */
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *skb, u32 info)
334 {
335         struct iphdr *iph = (struct iphdr *)skb->data;
336         struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
337         struct tcp_sock *tp;
338         struct inet_sock *inet;
339         int type = skb->h.icmph->type;
340         int code = skb->h.icmph->code;
341         struct sock *sk;
342         __u32 seq;
343         int err;
344
345         if (skb->len < (iph->ihl << 2) + 8) {
346                 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
347                 return;
348         }
349
350         sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
351                          th->source, inet_iif(skb));
352         if (!sk) {
353                 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
354                 return;
355         }
356         if (sk->sk_state == TCP_TIME_WAIT) {
357                 inet_twsk_put((struct inet_timewait_sock *)sk);
358                 return;
359         }
360
361         bh_lock_sock(sk);
362         /* If too many ICMPs get dropped on busy
363          * servers this needs to be solved differently.
364          */
365         if (sock_owned_by_user(sk))
366                 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
367
368         if (sk->sk_state == TCP_CLOSE)
369                 goto out;
370
371         tp = tcp_sk(sk);
372         seq = ntohl(th->seq);
373         if (sk->sk_state != TCP_LISTEN &&
374             !between(seq, tp->snd_una, tp->snd_nxt)) {
375                 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
376                 goto out;
377         }
378
379         switch (type) {
380         case ICMP_SOURCE_QUENCH:
381                 /* Just silently ignore these. */
382                 goto out;
383         case ICMP_PARAMETERPROB:
384                 err = EPROTO;
385                 break;
386         case ICMP_DEST_UNREACH:
387                 if (code > NR_ICMP_UNREACH)
388                         goto out;
389
390                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
391                         if (!sock_owned_by_user(sk))
392                                 do_pmtu_discovery(sk, iph, info);
393                         goto out;
394                 }
395
396                 err = icmp_err_convert[code].errno;
397                 break;
398         case ICMP_TIME_EXCEEDED:
399                 err = EHOSTUNREACH;
400                 break;
401         default:
402                 goto out;
403         }
404
405         switch (sk->sk_state) {
406                 struct request_sock *req, **prev;
407         case TCP_LISTEN:
408                 if (sock_owned_by_user(sk))
409                         goto out;
410
411                 req = inet_csk_search_req(sk, &prev, th->dest,
412                                           iph->daddr, iph->saddr);
413                 if (!req)
414                         goto out;
415
416                 /* ICMPs are not backlogged, hence we cannot get
417                    an established socket here.
418                  */
419                 BUG_TRAP(!req->sk);
420
421                 if (seq != tcp_rsk(req)->snt_isn) {
422                         NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
423                         goto out;
424                 }
425
426                 /*
427                  * Still in SYN_RECV, just remove it silently.
428                  * There is no good way to pass the error to the newly
429                  * created socket, and POSIX does not want network
430                  * errors returned from accept().
431                  */
432                 inet_csk_reqsk_queue_drop(sk, req, prev);
433                 goto out;
434
435         case TCP_SYN_SENT:
436         case TCP_SYN_RECV:  /* Cannot happen.
437                                It can f.e. if SYNs crossed.
438                              */
439                 if (!sock_owned_by_user(sk)) {
440                         TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
441                         sk->sk_err = err;
442
443                         sk->sk_error_report(sk);
444
445                         tcp_done(sk);
446                 } else {
447                         sk->sk_err_soft = err;
448                 }
449                 goto out;
450         }
451
452         /* If we've already connected we will keep trying
453          * until we time out, or the user gives up.
454          *
455          * rfc1122 4.2.3.9 allows to consider as hard errors
456          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
457          * but it is obsoleted by pmtu discovery).
458          *
459          * Note, that in modern internet, where routing is unreliable
460          * and in each dark corner broken firewalls sit, sending random
461          * errors ordered by their masters even this two messages finally lose
462          * their original sense (even Linux sends invalid PORT_UNREACHs)
463          *
464          * Now we are in compliance with RFCs.
465          *                                                      --ANK (980905)
466          */
467
468         inet = inet_sk(sk);
469         if (!sock_owned_by_user(sk) && inet->recverr) {
470                 sk->sk_err = err;
471                 sk->sk_error_report(sk);
472         } else  { /* Only an error on timeout */
473                 sk->sk_err_soft = err;
474         }
475
476 out:
477         bh_unlock_sock(sk);
478         sock_put(sk);
479 }
480
481 /* This routine computes an IPv4 TCP checksum. */
482 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
483 {
484         struct inet_sock *inet = inet_sk(sk);
485         struct tcphdr *th = skb->h.th;
486
487         if (skb->ip_summed == CHECKSUM_HW) {
488                 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
489                 skb->csum = offsetof(struct tcphdr, check);
490         } else {
491                 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
492                                          csum_partial((char *)th,
493                                                       th->doff << 2,
494                                                       skb->csum));
495         }
496 }
497
498 /*
499  *      This routine will send an RST to the other tcp.
500  *
501  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
502  *                    for reset.
503  *      Answer: if a packet caused RST, it is not for a socket
504  *              existing in our system, if it is matched to a socket,
505  *              it is just duplicate segment or bug in other side's TCP.
506  *              So that we build reply only basing on parameters
507  *              arrived with segment.
508  *      Exception: precedence violation. We do not implement it in any case.
509  */
510
511 static void tcp_v4_send_reset(struct sk_buff *skb)
512 {
513         struct tcphdr *th = skb->h.th;
514         struct tcphdr rth;
515         struct ip_reply_arg arg;
516
517         /* Never send a reset in response to a reset. */
518         if (th->rst)
519                 return;
520
521         if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
522                 return;
523
524         /* Swap the send and the receive. */
525         memset(&rth, 0, sizeof(struct tcphdr));
526         rth.dest   = th->source;
527         rth.source = th->dest;
528         rth.doff   = sizeof(struct tcphdr) / 4;
529         rth.rst    = 1;
530
531         if (th->ack) {
532                 rth.seq = th->ack_seq;
533         } else {
534                 rth.ack = 1;
535                 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
536                                     skb->len - (th->doff << 2));
537         }
538
539         memset(&arg, 0, sizeof arg);
540         arg.iov[0].iov_base = (unsigned char *)&rth;
541         arg.iov[0].iov_len  = sizeof rth;
542         arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
543                                       skb->nh.iph->saddr, /*XXX*/
544                                       sizeof(struct tcphdr), IPPROTO_TCP, 0);
545         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
546
547         ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
548
549         TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
550         TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
551 }
552
553 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
554    outside socket context is ugly, certainly. What can I do?
555  */
556
557 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
558                             u32 win, u32 ts)
559 {
560         struct tcphdr *th = skb->h.th;
561         struct {
562                 struct tcphdr th;
563                 u32 tsopt[3];
564         } rep;
565         struct ip_reply_arg arg;
566
567         memset(&rep.th, 0, sizeof(struct tcphdr));
568         memset(&arg, 0, sizeof arg);
569
570         arg.iov[0].iov_base = (unsigned char *)&rep;
571         arg.iov[0].iov_len  = sizeof(rep.th);
572         if (ts) {
573                 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
574                                      (TCPOPT_TIMESTAMP << 8) |
575                                      TCPOLEN_TIMESTAMP);
576                 rep.tsopt[1] = htonl(tcp_time_stamp);
577                 rep.tsopt[2] = htonl(ts);
578                 arg.iov[0].iov_len = sizeof(rep);
579         }
580
581         /* Swap the send and the receive. */
582         rep.th.dest    = th->source;
583         rep.th.source  = th->dest;
584         rep.th.doff    = arg.iov[0].iov_len / 4;
585         rep.th.seq     = htonl(seq);
586         rep.th.ack_seq = htonl(ack);
587         rep.th.ack     = 1;
588         rep.th.window  = htons(win);
589
590         arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
591                                       skb->nh.iph->saddr, /*XXX*/
592                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
593         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
594
595         ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
596
597         TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
598 }
599
600 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
601 {
602         struct inet_timewait_sock *tw = inet_twsk(sk);
603         const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
604
605         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
606                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
607
608         inet_twsk_put(tw);
609 }
610
611 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
612 {
613         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
614                         req->ts_recent);
615 }
616
617 /*
618  *      Send a SYN-ACK after having received an ACK.
619  *      This still operates on a request_sock only, not on a big
620  *      socket.
621  */
622 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
623                               struct dst_entry *dst)
624 {
625         const struct inet_request_sock *ireq = inet_rsk(req);
626         int err = -1;
627         struct sk_buff * skb;
628
629         /* First, grab a route. */
630         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
631                 goto out;
632
633         skb = tcp_make_synack(sk, dst, req);
634
635         if (skb) {
636                 struct tcphdr *th = skb->h.th;
637
638                 th->check = tcp_v4_check(th, skb->len,
639                                          ireq->loc_addr,
640                                          ireq->rmt_addr,
641                                          csum_partial((char *)th, skb->len,
642                                                       skb->csum));
643
644                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
645                                             ireq->rmt_addr,
646                                             ireq->opt);
647                 if (err == NET_XMIT_CN)
648                         err = 0;
649         }
650
651 out:
652         dst_release(dst);
653         return err;
654 }
655
656 /*
657  *      IPv4 request_sock destructor.
658  */
659 static void tcp_v4_reqsk_destructor(struct request_sock *req)
660 {
661         kfree(inet_rsk(req)->opt);
662 }
663
664 #ifdef CONFIG_SYN_COOKIES
665 static void syn_flood_warning(struct sk_buff *skb)
666 {
667         static unsigned long warntime;
668
669         if (time_after(jiffies, (warntime + HZ * 60))) {
670                 warntime = jiffies;
671                 printk(KERN_INFO
672                        "possible SYN flooding on port %d. Sending cookies.\n",
673                        ntohs(skb->h.th->dest));
674         }
675 }
676 #endif
677
678 /*
679  * Save and compile IPv4 options into the request_sock if needed.
680  */
681 static struct ip_options *tcp_v4_save_options(struct sock *sk,
682                                               struct sk_buff *skb)
683 {
684         struct ip_options *opt = &(IPCB(skb)->opt);
685         struct ip_options *dopt = NULL;
686
687         if (opt && opt->optlen) {
688                 int opt_size = optlength(opt);
689                 dopt = kmalloc(opt_size, GFP_ATOMIC);
690                 if (dopt) {
691                         if (ip_options_echo(dopt, skb)) {
692                                 kfree(dopt);
693                                 dopt = NULL;
694                         }
695                 }
696         }
697         return dopt;
698 }
699
700 struct request_sock_ops tcp_request_sock_ops = {
701         .family         =       PF_INET,
702         .obj_size       =       sizeof(struct tcp_request_sock),
703         .rtx_syn_ack    =       tcp_v4_send_synack,
704         .send_ack       =       tcp_v4_reqsk_send_ack,
705         .destructor     =       tcp_v4_reqsk_destructor,
706         .send_reset     =       tcp_v4_send_reset,
707 };
708
709 static struct timewait_sock_ops tcp_timewait_sock_ops = {
710         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
711         .twsk_unique    = tcp_twsk_unique,
712 };
713
714 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
715 {
716         struct inet_request_sock *ireq;
717         struct tcp_options_received tmp_opt;
718         struct request_sock *req;
719         __u32 saddr = skb->nh.iph->saddr;
720         __u32 daddr = skb->nh.iph->daddr;
721         __u32 isn = TCP_SKB_CB(skb)->when;
722         struct dst_entry *dst = NULL;
723 #ifdef CONFIG_SYN_COOKIES
724         int want_cookie = 0;
725 #else
726 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
727 #endif
728
729         /* Never answer to SYNs send to broadcast or multicast */
730         if (((struct rtable *)skb->dst)->rt_flags &
731             (RTCF_BROADCAST | RTCF_MULTICAST))
732                 goto drop;
733
734         /* TW buckets are converted to open requests without
735          * limitations, they conserve resources and peer is
736          * evidently real one.
737          */
738         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
739 #ifdef CONFIG_SYN_COOKIES
740                 if (sysctl_tcp_syncookies) {
741                         want_cookie = 1;
742                 } else
743 #endif
744                 goto drop;
745         }
746
747         /* Accept backlog is full. If we have already queued enough
748          * of warm entries in syn queue, drop request. It is better than
749          * clogging syn queue with openreqs with exponentially increasing
750          * timeout.
751          */
752         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
753                 goto drop;
754
755         req = reqsk_alloc(&tcp_request_sock_ops);
756         if (!req)
757                 goto drop;
758
759         tcp_clear_options(&tmp_opt);
760         tmp_opt.mss_clamp = 536;
761         tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
762
763         tcp_parse_options(skb, &tmp_opt, 0);
764
765         if (want_cookie) {
766                 tcp_clear_options(&tmp_opt);
767                 tmp_opt.saw_tstamp = 0;
768         }
769
770         if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
771                 /* Some OSes (unknown ones, but I see them on web server, which
772                  * contains information interesting only for windows'
773                  * users) do not send their stamp in SYN. It is easy case.
774                  * We simply do not advertise TS support.
775                  */
776                 tmp_opt.saw_tstamp = 0;
777                 tmp_opt.tstamp_ok  = 0;
778         }
779         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
780
781         tcp_openreq_init(req, &tmp_opt, skb);
782
783         ireq = inet_rsk(req);
784         ireq->loc_addr = daddr;
785         ireq->rmt_addr = saddr;
786         ireq->opt = tcp_v4_save_options(sk, skb);
787         if (!want_cookie)
788                 TCP_ECN_create_request(req, skb->h.th);
789
790         if (want_cookie) {
791 #ifdef CONFIG_SYN_COOKIES
792                 syn_flood_warning(skb);
793 #endif
794                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
795         } else if (!isn) {
796                 struct inet_peer *peer = NULL;
797
798                 /* VJ's idea. We save last timestamp seen
799                  * from the destination in peer table, when entering
800                  * state TIME-WAIT, and check against it before
801                  * accepting new connection request.
802                  *
803                  * If "isn" is not zero, this request hit alive
804                  * timewait bucket, so that all the necessary checks
805                  * are made in the function processing timewait state.
806                  */
807                 if (tmp_opt.saw_tstamp &&
808                     tcp_death_row.sysctl_tw_recycle &&
809                     (dst = inet_csk_route_req(sk, req)) != NULL &&
810                     (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
811                     peer->v4daddr == saddr) {
812                         if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
813                             (s32)(peer->tcp_ts - req->ts_recent) >
814                                                         TCP_PAWS_WINDOW) {
815                                 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
816                                 dst_release(dst);
817                                 goto drop_and_free;
818                         }
819                 }
820                 /* Kill the following clause, if you dislike this way. */
821                 else if (!sysctl_tcp_syncookies &&
822                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
823                           (sysctl_max_syn_backlog >> 2)) &&
824                          (!peer || !peer->tcp_ts_stamp) &&
825                          (!dst || !dst_metric(dst, RTAX_RTT))) {
826                         /* Without syncookies last quarter of
827                          * backlog is filled with destinations,
828                          * proven to be alive.
829                          * It means that we continue to communicate
830                          * to destinations, already remembered
831                          * to the moment of synflood.
832                          */
833                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
834                                        "request from %u.%u.%u.%u/%u\n",
835                                        NIPQUAD(saddr),
836                                        ntohs(skb->h.th->source));
837                         dst_release(dst);
838                         goto drop_and_free;
839                 }
840
841                 isn = tcp_v4_init_sequence(sk, skb);
842         }
843         tcp_rsk(req)->snt_isn = isn;
844
845         if (tcp_v4_send_synack(sk, req, dst))
846                 goto drop_and_free;
847
848         if (want_cookie) {
849                 reqsk_free(req);
850         } else {
851                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
852         }
853         return 0;
854
855 drop_and_free:
856         reqsk_free(req);
857 drop:
858         TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
859         return 0;
860 }
861
862
863 /*
864  * The three way handshake has completed - we got a valid synack -
865  * now create the new socket.
866  */
867 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
868                                   struct request_sock *req,
869                                   struct dst_entry *dst)
870 {
871         struct inet_request_sock *ireq;
872         struct inet_sock *newinet;
873         struct tcp_sock *newtp;
874         struct sock *newsk;
875
876         if (sk_acceptq_is_full(sk))
877                 goto exit_overflow;
878
879         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
880                 goto exit;
881
882         newsk = tcp_create_openreq_child(sk, req, skb);
883         if (!newsk)
884                 goto exit;
885
886         sk_setup_caps(newsk, dst);
887
888         newtp                 = tcp_sk(newsk);
889         newinet               = inet_sk(newsk);
890         ireq                  = inet_rsk(req);
891         newinet->daddr        = ireq->rmt_addr;
892         newinet->rcv_saddr    = ireq->loc_addr;
893         newinet->saddr        = ireq->loc_addr;
894         newinet->opt          = ireq->opt;
895         ireq->opt             = NULL;
896         newinet->mc_index     = inet_iif(skb);
897         newinet->mc_ttl       = skb->nh.iph->ttl;
898         inet_csk(newsk)->icsk_ext_hdr_len = 0;
899         if (newinet->opt)
900                 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
901         newinet->id = newtp->write_seq ^ jiffies;
902
903         tcp_sync_mss(newsk, dst_mtu(dst));
904         newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
905         tcp_initialize_rcv_mss(newsk);
906
907         __inet_hash(&tcp_hashinfo, newsk, 0);
908         __inet_inherit_port(&tcp_hashinfo, sk, newsk);
909
910         return newsk;
911
912 exit_overflow:
913         NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
914 exit:
915         NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
916         dst_release(dst);
917         return NULL;
918 }
919
920 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
921 {
922         struct tcphdr *th = skb->h.th;
923         struct iphdr *iph = skb->nh.iph;
924         struct sock *nsk;
925         struct request_sock **prev;
926         /* Find possible connection requests. */
927         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
928                                                        iph->saddr, iph->daddr);
929         if (req)
930                 return tcp_check_req(sk, skb, req, prev);
931
932         nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
933                                         th->source, skb->nh.iph->daddr,
934                                         ntohs(th->dest), inet_iif(skb));
935
936         if (nsk) {
937                 if (nsk->sk_state != TCP_TIME_WAIT) {
938                         bh_lock_sock(nsk);
939                         return nsk;
940                 }
941                 inet_twsk_put((struct inet_timewait_sock *)nsk);
942                 return NULL;
943         }
944
945 #ifdef CONFIG_SYN_COOKIES
946         if (!th->rst && !th->syn && th->ack)
947                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
948 #endif
949         return sk;
950 }
951
952 static int tcp_v4_checksum_init(struct sk_buff *skb)
953 {
954         if (skb->ip_summed == CHECKSUM_HW) {
955                 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
956                                   skb->nh.iph->daddr, skb->csum)) {
957                         skb->ip_summed = CHECKSUM_UNNECESSARY;
958                         return 0;
959                 }
960         }
961
962         skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
963                                        skb->len, IPPROTO_TCP, 0);
964
965         if (skb->len <= 76) {
966                 return __skb_checksum_complete(skb);
967         }
968         return 0;
969 }
970
971
972 /* The socket must have it's spinlock held when we get
973  * here.
974  *
975  * We have a potential double-lock case here, so even when
976  * doing backlog processing we use the BH locking scheme.
977  * This is because we cannot sleep with the original spinlock
978  * held.
979  */
980 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
981 {
982         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
983                 TCP_CHECK_TIMER(sk);
984                 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
985                         goto reset;
986                 TCP_CHECK_TIMER(sk);
987                 return 0;
988         }
989
990         if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
991                 goto csum_err;
992
993         if (sk->sk_state == TCP_LISTEN) {
994                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
995                 if (!nsk)
996                         goto discard;
997
998                 if (nsk != sk) {
999                         if (tcp_child_process(sk, nsk, skb))
1000                                 goto reset;
1001                         return 0;
1002                 }
1003         }
1004
1005         TCP_CHECK_TIMER(sk);
1006         if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1007                 goto reset;
1008         TCP_CHECK_TIMER(sk);
1009         return 0;
1010
1011 reset:
1012         tcp_v4_send_reset(skb);
1013 discard:
1014         kfree_skb(skb);
1015         /* Be careful here. If this function gets more complicated and
1016          * gcc suffers from register pressure on the x86, sk (in %ebx)
1017          * might be destroyed here. This current version compiles correctly,
1018          * but you have been warned.
1019          */
1020         return 0;
1021
1022 csum_err:
1023         TCP_INC_STATS_BH(TCP_MIB_INERRS);
1024         goto discard;
1025 }
1026
1027 /*
1028  *      From tcp_input.c
1029  */
1030
1031 int tcp_v4_rcv(struct sk_buff *skb)
1032 {
1033         struct tcphdr *th;
1034         struct sock *sk;
1035         int ret;
1036
1037         if (skb->pkt_type != PACKET_HOST)
1038                 goto discard_it;
1039
1040         /* Count it even if it's bad */
1041         TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1042
1043         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1044                 goto discard_it;
1045
1046         th = skb->h.th;
1047
1048         if (th->doff < sizeof(struct tcphdr) / 4)
1049                 goto bad_packet;
1050         if (!pskb_may_pull(skb, th->doff * 4))
1051                 goto discard_it;
1052
1053         /* An explanation is required here, I think.
1054          * Packet length and doff are validated by header prediction,
1055          * provided case of th->doff==0 is eliminated.
1056          * So, we defer the checks. */
1057         if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1058              tcp_v4_checksum_init(skb)))
1059                 goto bad_packet;
1060
1061         th = skb->h.th;
1062         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1063         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1064                                     skb->len - th->doff * 4);
1065         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1066         TCP_SKB_CB(skb)->when    = 0;
1067         TCP_SKB_CB(skb)->flags   = skb->nh.iph->tos;
1068         TCP_SKB_CB(skb)->sacked  = 0;
1069
1070         sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1071                            skb->nh.iph->daddr, ntohs(th->dest),
1072                            inet_iif(skb));
1073
1074         if (!sk)
1075                 goto no_tcp_socket;
1076
1077 process:
1078         if (sk->sk_state == TCP_TIME_WAIT)
1079                 goto do_time_wait;
1080
1081         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1082                 goto discard_and_relse;
1083
1084         if (sk_filter(sk, skb, 0))
1085                 goto discard_and_relse;
1086
1087         skb->dev = NULL;
1088
1089         bh_lock_sock(sk);
1090         ret = 0;
1091         if (!sock_owned_by_user(sk)) {
1092                 if (!tcp_prequeue(sk, skb))
1093                         ret = tcp_v4_do_rcv(sk, skb);
1094         } else
1095                 sk_add_backlog(sk, skb);
1096         bh_unlock_sock(sk);
1097
1098         sock_put(sk);
1099
1100         return ret;
1101
1102 no_tcp_socket:
1103         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1104                 goto discard_it;
1105
1106         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1107 bad_packet:
1108                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1109         } else {
1110                 tcp_v4_send_reset(skb);
1111         }
1112
1113 discard_it:
1114         /* Discard frame. */
1115         kfree_skb(skb);
1116         return 0;
1117
1118 discard_and_relse:
1119         sock_put(sk);
1120         goto discard_it;
1121
1122 do_time_wait:
1123         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1124                 inet_twsk_put((struct inet_timewait_sock *) sk);
1125                 goto discard_it;
1126         }
1127
1128         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1129                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1130                 inet_twsk_put((struct inet_timewait_sock *) sk);
1131                 goto discard_it;
1132         }
1133         switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1134                                            skb, th)) {
1135         case TCP_TW_SYN: {
1136                 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1137                                                         skb->nh.iph->daddr,
1138                                                         ntohs(th->dest),
1139                                                         inet_iif(skb));
1140                 if (sk2) {
1141                         inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1142                                              &tcp_death_row);
1143                         inet_twsk_put((struct inet_timewait_sock *)sk);
1144                         sk = sk2;
1145                         goto process;
1146                 }
1147                 /* Fall through to ACK */
1148         }
1149         case TCP_TW_ACK:
1150                 tcp_v4_timewait_ack(sk, skb);
1151                 break;
1152         case TCP_TW_RST:
1153                 goto no_tcp_socket;
1154         case TCP_TW_SUCCESS:;
1155         }
1156         goto discard_it;
1157 }
1158
1159 /* VJ's idea. Save last timestamp seen from this destination
1160  * and hold it at least for normal timewait interval to use for duplicate
1161  * segment detection in subsequent connections, before they enter synchronized
1162  * state.
1163  */
1164
1165 int tcp_v4_remember_stamp(struct sock *sk)
1166 {
1167         struct inet_sock *inet = inet_sk(sk);
1168         struct tcp_sock *tp = tcp_sk(sk);
1169         struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1170         struct inet_peer *peer = NULL;
1171         int release_it = 0;
1172
1173         if (!rt || rt->rt_dst != inet->daddr) {
1174                 peer = inet_getpeer(inet->daddr, 1);
1175                 release_it = 1;
1176         } else {
1177                 if (!rt->peer)
1178                         rt_bind_peer(rt, 1);
1179                 peer = rt->peer;
1180         }
1181
1182         if (peer) {
1183                 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1184                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1185                      peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1186                         peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1187                         peer->tcp_ts = tp->rx_opt.ts_recent;
1188                 }
1189                 if (release_it)
1190                         inet_putpeer(peer);
1191                 return 1;
1192         }
1193
1194         return 0;
1195 }
1196
1197 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1198 {
1199         struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1200
1201         if (peer) {
1202                 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1203
1204                 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1205                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1206                      peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1207                         peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1208                         peer->tcp_ts       = tcptw->tw_ts_recent;
1209                 }
1210                 inet_putpeer(peer);
1211                 return 1;
1212         }
1213
1214         return 0;
1215 }
1216
1217 struct inet_connection_sock_af_ops ipv4_specific = {
1218         .queue_xmit     =       ip_queue_xmit,
1219         .send_check     =       tcp_v4_send_check,
1220         .rebuild_header =       inet_sk_rebuild_header,
1221         .conn_request   =       tcp_v4_conn_request,
1222         .syn_recv_sock  =       tcp_v4_syn_recv_sock,
1223         .remember_stamp =       tcp_v4_remember_stamp,
1224         .net_header_len =       sizeof(struct iphdr),
1225         .setsockopt     =       ip_setsockopt,
1226         .getsockopt     =       ip_getsockopt,
1227         .addr2sockaddr  =       inet_csk_addr2sockaddr,
1228         .sockaddr_len   =       sizeof(struct sockaddr_in),
1229 };
1230
1231 /* NOTE: A lot of things set to zero explicitly by call to
1232  *       sk_alloc() so need not be done here.
1233  */
1234 static int tcp_v4_init_sock(struct sock *sk)
1235 {
1236         struct inet_connection_sock *icsk = inet_csk(sk);
1237         struct tcp_sock *tp = tcp_sk(sk);
1238
1239         skb_queue_head_init(&tp->out_of_order_queue);
1240         tcp_init_xmit_timers(sk);
1241         tcp_prequeue_init(tp);
1242
1243         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1244         tp->mdev = TCP_TIMEOUT_INIT;
1245
1246         /* So many TCP implementations out there (incorrectly) count the
1247          * initial SYN frame in their delayed-ACK and congestion control
1248          * algorithms that we must have the following bandaid to talk
1249          * efficiently to them.  -DaveM
1250          */
1251         tp->snd_cwnd = 2;
1252
1253         /* See draft-stevens-tcpca-spec-01 for discussion of the
1254          * initialization of these values.
1255          */
1256         tp->snd_ssthresh = 0x7fffffff;  /* Infinity */
1257         tp->snd_cwnd_clamp = ~0;
1258         tp->mss_cache = 536;
1259
1260         tp->reordering = sysctl_tcp_reordering;
1261         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1262
1263         sk->sk_state = TCP_CLOSE;
1264
1265         sk->sk_write_space = sk_stream_write_space;
1266         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1267
1268         icsk->icsk_af_ops = &ipv4_specific;
1269         icsk->icsk_sync_mss = tcp_sync_mss;
1270
1271         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1272         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1273
1274         atomic_inc(&tcp_sockets_allocated);
1275
1276         return 0;
1277 }
1278
1279 int tcp_v4_destroy_sock(struct sock *sk)
1280 {
1281         struct tcp_sock *tp = tcp_sk(sk);
1282
1283         tcp_clear_xmit_timers(sk);
1284
1285         tcp_cleanup_congestion_control(sk);
1286
1287         /* Cleanup up the write buffer. */
1288         sk_stream_writequeue_purge(sk);
1289
1290         /* Cleans up our, hopefully empty, out_of_order_queue. */
1291         __skb_queue_purge(&tp->out_of_order_queue);
1292
1293         /* Clean prequeue, it must be empty really */
1294         __skb_queue_purge(&tp->ucopy.prequeue);
1295
1296         /* Clean up a referenced TCP bind bucket. */
1297         if (inet_csk(sk)->icsk_bind_hash)
1298                 inet_put_port(&tcp_hashinfo, sk);
1299
1300         /*
1301          * If sendmsg cached page exists, toss it.
1302          */
1303         if (sk->sk_sndmsg_page) {
1304                 __free_page(sk->sk_sndmsg_page);
1305                 sk->sk_sndmsg_page = NULL;
1306         }
1307
1308         atomic_dec(&tcp_sockets_allocated);
1309
1310         return 0;
1311 }
1312
1313 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1314
1315 #ifdef CONFIG_PROC_FS
1316 /* Proc filesystem TCP sock list dumping. */
1317
1318 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1319 {
1320         return hlist_empty(head) ? NULL :
1321                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1322 }
1323
1324 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1325 {
1326         return tw->tw_node.next ?
1327                 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1328 }
1329
1330 static void *listening_get_next(struct seq_file *seq, void *cur)
1331 {
1332         struct inet_connection_sock *icsk;
1333         struct hlist_node *node;
1334         struct sock *sk = cur;
1335         struct tcp_iter_state* st = seq->private;
1336
1337         if (!sk) {
1338                 st->bucket = 0;
1339                 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1340                 goto get_sk;
1341         }
1342
1343         ++st->num;
1344
1345         if (st->state == TCP_SEQ_STATE_OPENREQ) {
1346                 struct request_sock *req = cur;
1347
1348                 icsk = inet_csk(st->syn_wait_sk);
1349                 req = req->dl_next;
1350                 while (1) {
1351                         while (req) {
1352                                 if (req->rsk_ops->family == st->family) {
1353                                         cur = req;
1354                                         goto out;
1355                                 }
1356                                 req = req->dl_next;
1357                         }
1358                         if (++st->sbucket >= TCP_SYNQ_HSIZE)
1359                                 break;
1360 get_req:
1361                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1362                 }
1363                 sk        = sk_next(st->syn_wait_sk);
1364                 st->state = TCP_SEQ_STATE_LISTENING;
1365                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1366         } else {
1367                 icsk = inet_csk(sk);
1368                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1369                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1370                         goto start_req;
1371                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1372                 sk = sk_next(sk);
1373         }
1374 get_sk:
1375         sk_for_each_from(sk, node) {
1376                 if (sk->sk_family == st->family) {
1377                         cur = sk;
1378                         goto out;
1379                 }
1380                 icsk = inet_csk(sk);
1381                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1382                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1383 start_req:
1384                         st->uid         = sock_i_uid(sk);
1385                         st->syn_wait_sk = sk;
1386                         st->state       = TCP_SEQ_STATE_OPENREQ;
1387                         st->sbucket     = 0;
1388                         goto get_req;
1389                 }
1390                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1391         }
1392         if (++st->bucket < INET_LHTABLE_SIZE) {
1393                 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1394                 goto get_sk;
1395         }
1396         cur = NULL;
1397 out:
1398         return cur;
1399 }
1400
1401 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1402 {
1403         void *rc = listening_get_next(seq, NULL);
1404
1405         while (rc && *pos) {
1406                 rc = listening_get_next(seq, rc);
1407                 --*pos;
1408         }
1409         return rc;
1410 }
1411
1412 static void *established_get_first(struct seq_file *seq)
1413 {
1414         struct tcp_iter_state* st = seq->private;
1415         void *rc = NULL;
1416
1417         for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1418                 struct sock *sk;
1419                 struct hlist_node *node;
1420                 struct inet_timewait_sock *tw;
1421
1422                 /* We can reschedule _before_ having picked the target: */
1423                 cond_resched_softirq();
1424
1425                 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1426                 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1427                         if (sk->sk_family != st->family) {
1428                                 continue;
1429                         }
1430                         rc = sk;
1431                         goto out;
1432                 }
1433                 st->state = TCP_SEQ_STATE_TIME_WAIT;
1434                 inet_twsk_for_each(tw, node,
1435                                    &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1436                         if (tw->tw_family != st->family) {
1437                                 continue;
1438                         }
1439                         rc = tw;
1440                         goto out;
1441                 }
1442                 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1443                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1444         }
1445 out:
1446         return rc;
1447 }
1448
1449 static void *established_get_next(struct seq_file *seq, void *cur)
1450 {
1451         struct sock *sk = cur;
1452         struct inet_timewait_sock *tw;
1453         struct hlist_node *node;
1454         struct tcp_iter_state* st = seq->private;
1455
1456         ++st->num;
1457
1458         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1459                 tw = cur;
1460                 tw = tw_next(tw);
1461 get_tw:
1462                 while (tw && tw->tw_family != st->family) {
1463                         tw = tw_next(tw);
1464                 }
1465                 if (tw) {
1466                         cur = tw;
1467                         goto out;
1468                 }
1469                 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1470                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1471
1472                 /* We can reschedule between buckets: */
1473                 cond_resched_softirq();
1474
1475                 if (++st->bucket < tcp_hashinfo.ehash_size) {
1476                         read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1477                         sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1478                 } else {
1479                         cur = NULL;
1480                         goto out;
1481                 }
1482         } else
1483                 sk = sk_next(sk);
1484
1485         sk_for_each_from(sk, node) {
1486                 if (sk->sk_family == st->family)
1487                         goto found;
1488         }
1489
1490         st->state = TCP_SEQ_STATE_TIME_WAIT;
1491         tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1492         goto get_tw;
1493 found:
1494         cur = sk;
1495 out:
1496         return cur;
1497 }
1498
1499 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1500 {
1501         void *rc = established_get_first(seq);
1502
1503         while (rc && pos) {
1504                 rc = established_get_next(seq, rc);
1505                 --pos;
1506         }               
1507         return rc;
1508 }
1509
1510 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1511 {
1512         void *rc;
1513         struct tcp_iter_state* st = seq->private;
1514
1515         inet_listen_lock(&tcp_hashinfo);
1516         st->state = TCP_SEQ_STATE_LISTENING;
1517         rc        = listening_get_idx(seq, &pos);
1518
1519         if (!rc) {
1520                 inet_listen_unlock(&tcp_hashinfo);
1521                 local_bh_disable();
1522                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1523                 rc        = established_get_idx(seq, pos);
1524         }
1525
1526         return rc;
1527 }
1528
1529 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1530 {
1531         struct tcp_iter_state* st = seq->private;
1532         st->state = TCP_SEQ_STATE_LISTENING;
1533         st->num = 0;
1534         return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1535 }
1536
1537 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1538 {
1539         void *rc = NULL;
1540         struct tcp_iter_state* st;
1541
1542         if (v == SEQ_START_TOKEN) {
1543                 rc = tcp_get_idx(seq, 0);
1544                 goto out;
1545         }
1546         st = seq->private;
1547
1548         switch (st->state) {
1549         case TCP_SEQ_STATE_OPENREQ:
1550         case TCP_SEQ_STATE_LISTENING:
1551                 rc = listening_get_next(seq, v);
1552                 if (!rc) {
1553                         inet_listen_unlock(&tcp_hashinfo);
1554                         local_bh_disable();
1555                         st->state = TCP_SEQ_STATE_ESTABLISHED;
1556                         rc        = established_get_first(seq);
1557                 }
1558                 break;
1559         case TCP_SEQ_STATE_ESTABLISHED:
1560         case TCP_SEQ_STATE_TIME_WAIT:
1561                 rc = established_get_next(seq, v);
1562                 break;
1563         }
1564 out:
1565         ++*pos;
1566         return rc;
1567 }
1568
1569 static void tcp_seq_stop(struct seq_file *seq, void *v)
1570 {
1571         struct tcp_iter_state* st = seq->private;
1572
1573         switch (st->state) {
1574         case TCP_SEQ_STATE_OPENREQ:
1575                 if (v) {
1576                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1577                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1578                 }
1579         case TCP_SEQ_STATE_LISTENING:
1580                 if (v != SEQ_START_TOKEN)
1581                         inet_listen_unlock(&tcp_hashinfo);
1582                 break;
1583         case TCP_SEQ_STATE_TIME_WAIT:
1584         case TCP_SEQ_STATE_ESTABLISHED:
1585                 if (v)
1586                         read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1587                 local_bh_enable();
1588                 break;
1589         }
1590 }
1591
1592 static int tcp_seq_open(struct inode *inode, struct file *file)
1593 {
1594         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1595         struct seq_file *seq;
1596         struct tcp_iter_state *s;
1597         int rc;
1598
1599         if (unlikely(afinfo == NULL))
1600                 return -EINVAL;
1601
1602         s = kmalloc(sizeof(*s), GFP_KERNEL);
1603         if (!s)
1604                 return -ENOMEM;
1605         memset(s, 0, sizeof(*s));
1606         s->family               = afinfo->family;
1607         s->seq_ops.start        = tcp_seq_start;
1608         s->seq_ops.next         = tcp_seq_next;
1609         s->seq_ops.show         = afinfo->seq_show;
1610         s->seq_ops.stop         = tcp_seq_stop;
1611
1612         rc = seq_open(file, &s->seq_ops);
1613         if (rc)
1614                 goto out_kfree;
1615         seq          = file->private_data;
1616         seq->private = s;
1617 out:
1618         return rc;
1619 out_kfree:
1620         kfree(s);
1621         goto out;
1622 }
1623
1624 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1625 {
1626         int rc = 0;
1627         struct proc_dir_entry *p;
1628
1629         if (!afinfo)
1630                 return -EINVAL;
1631         afinfo->seq_fops->owner         = afinfo->owner;
1632         afinfo->seq_fops->open          = tcp_seq_open;
1633         afinfo->seq_fops->read          = seq_read;
1634         afinfo->seq_fops->llseek        = seq_lseek;
1635         afinfo->seq_fops->release       = seq_release_private;
1636         
1637         p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1638         if (p)
1639                 p->data = afinfo;
1640         else
1641                 rc = -ENOMEM;
1642         return rc;
1643 }
1644
1645 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1646 {
1647         if (!afinfo)
1648                 return;
1649         proc_net_remove(afinfo->name);
1650         memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops)); 
1651 }
1652
1653 static void get_openreq4(struct sock *sk, struct request_sock *req,
1654                          char *tmpbuf, int i, int uid)
1655 {
1656         const struct inet_request_sock *ireq = inet_rsk(req);
1657         int ttd = req->expires - jiffies;
1658
1659         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1660                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1661                 i,
1662                 ireq->loc_addr,
1663                 ntohs(inet_sk(sk)->sport),
1664                 ireq->rmt_addr,
1665                 ntohs(ireq->rmt_port),
1666                 TCP_SYN_RECV,
1667                 0, 0, /* could print option size, but that is af dependent. */
1668                 1,    /* timers active (only the expire timer) */
1669                 jiffies_to_clock_t(ttd),
1670                 req->retrans,
1671                 uid,
1672                 0,  /* non standard timer */
1673                 0, /* open_requests have no inode */
1674                 atomic_read(&sk->sk_refcnt),
1675                 req);
1676 }
1677
1678 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1679 {
1680         int timer_active;
1681         unsigned long timer_expires;
1682         struct tcp_sock *tp = tcp_sk(sp);
1683         const struct inet_connection_sock *icsk = inet_csk(sp);
1684         struct inet_sock *inet = inet_sk(sp);
1685         unsigned int dest = inet->daddr;
1686         unsigned int src = inet->rcv_saddr;
1687         __u16 destp = ntohs(inet->dport);
1688         __u16 srcp = ntohs(inet->sport);
1689
1690         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1691                 timer_active    = 1;
1692                 timer_expires   = icsk->icsk_timeout;
1693         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1694                 timer_active    = 4;
1695                 timer_expires   = icsk->icsk_timeout;
1696         } else if (timer_pending(&sp->sk_timer)) {
1697                 timer_active    = 2;
1698                 timer_expires   = sp->sk_timer.expires;
1699         } else {
1700                 timer_active    = 0;
1701                 timer_expires = jiffies;
1702         }
1703
1704         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1705                         "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1706                 i, src, srcp, dest, destp, sp->sk_state,
1707                 tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq,
1708                 timer_active,
1709                 jiffies_to_clock_t(timer_expires - jiffies),
1710                 icsk->icsk_retransmits,
1711                 sock_i_uid(sp),
1712                 icsk->icsk_probes_out,
1713                 sock_i_ino(sp),
1714                 atomic_read(&sp->sk_refcnt), sp,
1715                 icsk->icsk_rto,
1716                 icsk->icsk_ack.ato,
1717                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1718                 tp->snd_cwnd,
1719                 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1720 }
1721
1722 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1723 {
1724         unsigned int dest, src;
1725         __u16 destp, srcp;
1726         int ttd = tw->tw_ttd - jiffies;
1727
1728         if (ttd < 0)
1729                 ttd = 0;
1730
1731         dest  = tw->tw_daddr;
1732         src   = tw->tw_rcv_saddr;
1733         destp = ntohs(tw->tw_dport);
1734         srcp  = ntohs(tw->tw_sport);
1735
1736         sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1737                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1738                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1739                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1740                 atomic_read(&tw->tw_refcnt), tw);
1741 }
1742
1743 #define TMPSZ 150
1744
1745 static int tcp4_seq_show(struct seq_file *seq, void *v)
1746 {
1747         struct tcp_iter_state* st;
1748         char tmpbuf[TMPSZ + 1];
1749
1750         if (v == SEQ_START_TOKEN) {
1751                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
1752                            "  sl  local_address rem_address   st tx_queue "
1753                            "rx_queue tr tm->when retrnsmt   uid  timeout "
1754                            "inode");
1755                 goto out;
1756         }
1757         st = seq->private;
1758
1759         switch (st->state) {
1760         case TCP_SEQ_STATE_LISTENING:
1761         case TCP_SEQ_STATE_ESTABLISHED:
1762                 get_tcp4_sock(v, tmpbuf, st->num);
1763                 break;
1764         case TCP_SEQ_STATE_OPENREQ:
1765                 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1766                 break;
1767         case TCP_SEQ_STATE_TIME_WAIT:
1768                 get_timewait4_sock(v, tmpbuf, st->num);
1769                 break;
1770         }
1771         seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1772 out:
1773         return 0;
1774 }
1775
1776 static struct file_operations tcp4_seq_fops;
1777 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1778         .owner          = THIS_MODULE,
1779         .name           = "tcp",
1780         .family         = AF_INET,
1781         .seq_show       = tcp4_seq_show,
1782         .seq_fops       = &tcp4_seq_fops,
1783 };
1784
1785 int __init tcp4_proc_init(void)
1786 {
1787         return tcp_proc_register(&tcp4_seq_afinfo);
1788 }
1789
1790 void tcp4_proc_exit(void)
1791 {
1792         tcp_proc_unregister(&tcp4_seq_afinfo);
1793 }
1794 #endif /* CONFIG_PROC_FS */
1795
1796 struct proto tcp_prot = {
1797         .name                   = "TCP",
1798         .owner                  = THIS_MODULE,
1799         .close                  = tcp_close,
1800         .connect                = tcp_v4_connect,
1801         .disconnect             = tcp_disconnect,
1802         .accept                 = inet_csk_accept,
1803         .ioctl                  = tcp_ioctl,
1804         .init                   = tcp_v4_init_sock,
1805         .destroy                = tcp_v4_destroy_sock,
1806         .shutdown               = tcp_shutdown,
1807         .setsockopt             = tcp_setsockopt,
1808         .getsockopt             = tcp_getsockopt,
1809         .sendmsg                = tcp_sendmsg,
1810         .recvmsg                = tcp_recvmsg,
1811         .backlog_rcv            = tcp_v4_do_rcv,
1812         .hash                   = tcp_v4_hash,
1813         .unhash                 = tcp_unhash,
1814         .get_port               = tcp_v4_get_port,
1815         .enter_memory_pressure  = tcp_enter_memory_pressure,
1816         .sockets_allocated      = &tcp_sockets_allocated,
1817         .orphan_count           = &tcp_orphan_count,
1818         .memory_allocated       = &tcp_memory_allocated,
1819         .memory_pressure        = &tcp_memory_pressure,
1820         .sysctl_mem             = sysctl_tcp_mem,
1821         .sysctl_wmem            = sysctl_tcp_wmem,
1822         .sysctl_rmem            = sysctl_tcp_rmem,
1823         .max_header             = MAX_TCP_HEADER,
1824         .obj_size               = sizeof(struct tcp_sock),
1825         .twsk_prot              = &tcp_timewait_sock_ops,
1826         .rsk_prot               = &tcp_request_sock_ops,
1827 };
1828
1829
1830
1831 void __init tcp_v4_init(struct net_proto_family *ops)
1832 {
1833         int err = sock_create_kern(PF_INET, SOCK_RAW, IPPROTO_TCP, &tcp_socket);
1834         if (err < 0)
1835                 panic("Failed to create the TCP control socket.\n");
1836         tcp_socket->sk->sk_allocation   = GFP_ATOMIC;
1837         inet_sk(tcp_socket->sk)->uc_ttl = -1;
1838
1839         /* Unhash it so that IP input processing does not even
1840          * see it, we do not wish this socket to see incoming
1841          * packets.
1842          */
1843         tcp_socket->sk->sk_prot->unhash(tcp_socket->sk);
1844 }
1845
1846 EXPORT_SYMBOL(ipv4_specific);
1847 EXPORT_SYMBOL(inet_bind_bucket_create);
1848 EXPORT_SYMBOL(tcp_hashinfo);
1849 EXPORT_SYMBOL(tcp_prot);
1850 EXPORT_SYMBOL(tcp_unhash);
1851 EXPORT_SYMBOL(tcp_v4_conn_request);
1852 EXPORT_SYMBOL(tcp_v4_connect);
1853 EXPORT_SYMBOL(tcp_v4_do_rcv);
1854 EXPORT_SYMBOL(tcp_v4_remember_stamp);
1855 EXPORT_SYMBOL(tcp_v4_send_check);
1856 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1857
1858 #ifdef CONFIG_PROC_FS
1859 EXPORT_SYMBOL(tcp_proc_register);
1860 EXPORT_SYMBOL(tcp_proc_unregister);
1861 #endif
1862 EXPORT_SYMBOL(sysctl_local_port_range);
1863 EXPORT_SYMBOL(sysctl_tcp_low_latency);
1864 EXPORT_SYMBOL(sysctl_tcp_tw_reuse);
1865