/* arch/sparc64/mm/tsb.c * * Copyright (C) 2006 David S. Miller */ #include #include #include #include #include #include #include #include /* We use an 8K TSB for the whole kernel, this allows to * handle about 4MB of modules and vmalloc mappings without * incurring many hash conflicts. */ #define KERNEL_TSB_SIZE_BYTES 8192 #define KERNEL_TSB_NENTRIES \ (KERNEL_TSB_SIZE_BYTES / sizeof(struct tsb)) extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long nentries) { vaddr >>= PAGE_SHIFT; return vaddr & (nentries - 1); } static inline int tag_compare(struct tsb *entry, unsigned long vaddr, unsigned long context) { if (context == ~0UL) return 1; return (entry->tag == ((vaddr >> 22) | (context << 48))); } /* TSB flushes need only occur on the processor initiating the address * space modification, not on each cpu the address space has run on. * Only the TLB flush needs that treatment. */ void flush_tsb_kernel_range(unsigned long start, unsigned long end) { unsigned long v; for (v = start; v < end; v += PAGE_SIZE) { unsigned long hash = tsb_hash(v, KERNEL_TSB_NENTRIES); struct tsb *ent = &swapper_tsb[hash]; if (tag_compare(ent, v, 0)) { ent->tag = 0UL; membar_storeload_storestore(); } } } void flush_tsb_user(struct mmu_gather *mp) { struct mm_struct *mm = mp->mm; struct tsb *tsb = mm->context.tsb; unsigned long ctx = ~0UL; unsigned long nentries = mm->context.tsb_nentries; int i; if (CTX_VALID(mm->context)) ctx = CTX_HWBITS(mm->context); for (i = 0; i < mp->tlb_nr; i++) { unsigned long v = mp->vaddrs[i]; struct tsb *ent; v &= ~0x1UL; ent = &tsb[tsb_hash(v, nentries)]; if (tag_compare(ent, v, ctx)) { ent->tag = 0UL; membar_storeload_storestore(); } } } static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_bytes) { unsigned long tsb_reg, base, tsb_paddr; unsigned long page_sz, tte; mm->context.tsb_nentries = tsb_bytes / sizeof(struct tsb); base = TSBMAP_BASE; tte = (_PAGE_VALID | _PAGE_L | _PAGE_CP | _PAGE_CV | _PAGE_P | _PAGE_W); tsb_paddr = __pa(mm->context.tsb); /* Use the smallest page size that can map the whole TSB * in one TLB entry. */ switch (tsb_bytes) { case 8192 << 0: tsb_reg = 0x0UL; #ifdef DCACHE_ALIASING_POSSIBLE base += (tsb_paddr & 8192); #endif tte |= _PAGE_SZ8K; page_sz = 8192; break; case 8192 << 1: tsb_reg = 0x1UL; tte |= _PAGE_SZ64K; page_sz = 64 * 1024; break; case 8192 << 2: tsb_reg = 0x2UL; tte |= _PAGE_SZ64K; page_sz = 64 * 1024; break; case 8192 << 3: tsb_reg = 0x3UL; tte |= _PAGE_SZ64K; page_sz = 64 * 1024; break; case 8192 << 4: tsb_reg = 0x4UL; tte |= _PAGE_SZ512K; page_sz = 512 * 1024; break; case 8192 << 5: tsb_reg = 0x5UL; tte |= _PAGE_SZ512K; page_sz = 512 * 1024; break; case 8192 << 6: tsb_reg = 0x6UL; tte |= _PAGE_SZ512K; page_sz = 512 * 1024; break; case 8192 << 7: tsb_reg = 0x7UL; tte |= _PAGE_SZ4MB; page_sz = 4 * 1024 * 1024; break; default: BUG(); }; tsb_reg |= base; tsb_reg |= (tsb_paddr & (page_sz - 1UL)); tte |= (tsb_paddr & ~(page_sz - 1UL)); mm->context.tsb_reg_val = tsb_reg; mm->context.tsb_map_vaddr = base; mm->context.tsb_map_pte = tte; } /* The page tables are locked against modifications while this * runs. * * XXX do some prefetching... */ static void copy_tsb(struct tsb *old_tsb, unsigned long old_size, struct tsb *new_tsb, unsigned long new_size) { unsigned long old_nentries = old_size / sizeof(struct tsb); unsigned long new_nentries = new_size / sizeof(struct tsb); unsigned long i; for (i = 0; i < old_nentries; i++) { register unsigned long tag asm("o4"); register unsigned long pte asm("o5"); unsigned long v; unsigned int hash; __asm__ __volatile__( "ldda [%2] %3, %0" : "=r" (tag), "=r" (pte) : "r" (&old_tsb[i]), "i" (ASI_NUCLEUS_QUAD_LDD)); if (!tag || (tag & TSB_TAG_LOCK)) continue; /* We only put base page size PTEs into the TSB, * but that might change in the future. This code * would need to be changed if we start putting larger * page size PTEs into there. */ WARN_ON((pte & _PAGE_ALL_SZ_BITS) != _PAGE_SZBITS); /* The tag holds bits 22 to 63 of the virtual address * and the context. Clear out the context, and shift * up to make a virtual address. */ v = (tag & ((1UL << 42UL) - 1UL)) << 22UL; /* The implied bits of the tag (bits 13 to 21) are * determined by the TSB entry index, so fill that in. */ v |= (i & (512UL - 1UL)) << 13UL; hash = tsb_hash(v, new_nentries); new_tsb[hash].tag = tag; new_tsb[hash].pte = pte; } } /* When the RSS of an address space exceeds mm->context.tsb_rss_limit, * update_mmu_cache() invokes this routine to try and grow the TSB. * When we reach the maximum TSB size supported, we stick ~0UL into * mm->context.tsb_rss_limit so the grow checks in update_mmu_cache() * will not trigger any longer. * * The TSB can be anywhere from 8K to 1MB in size, in increasing powers * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB * must be 512K aligned. * * The idea here is to grow the TSB when the RSS of the process approaches * the number of entries that the current TSB can hold at once. Currently, * we trigger when the RSS hits 3/4 of the TSB capacity. */ void tsb_grow(struct mm_struct *mm, unsigned long rss, gfp_t gfp_flags) { unsigned long max_tsb_size = 1 * 1024 * 1024; unsigned long size, old_size; struct page *page; struct tsb *old_tsb; if (max_tsb_size > (PAGE_SIZE << MAX_ORDER)) max_tsb_size = (PAGE_SIZE << MAX_ORDER); for (size = PAGE_SIZE; size < max_tsb_size; size <<= 1UL) { unsigned long n_entries = size / sizeof(struct tsb); n_entries = (n_entries * 3) / 4; if (n_entries > rss) break; } page = alloc_pages(gfp_flags | __GFP_ZERO, get_order(size)); if (unlikely(!page)) return; if (size == max_tsb_size) mm->context.tsb_rss_limit = ~0UL; else mm->context.tsb_rss_limit = ((size / sizeof(struct tsb)) * 3) / 4; old_tsb = mm->context.tsb; old_size = mm->context.tsb_nentries * sizeof(struct tsb); if (old_tsb) copy_tsb(old_tsb, old_size, page_address(page), size); mm->context.tsb = page_address(page); setup_tsb_params(mm, size); /* If old_tsb is NULL, we're being invoked for the first time * from init_new_context(). */ if (old_tsb) { /* Now force all other processors to reload the new * TSB state. */ smp_tsb_sync(mm); /* Finally reload it on the local cpu. No further * references will remain to the old TSB and we can * thus free it up. */ tsb_context_switch(mm); free_pages((unsigned long) old_tsb, get_order(old_size)); } } int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { unsigned long initial_rss; mm->context.sparc64_ctx_val = 0UL; /* copy_mm() copies over the parent's mm_struct before calling * us, so we need to zero out the TSB pointer or else tsb_grow() * will be confused and think there is an older TSB to free up. */ mm->context.tsb = NULL; /* If this is fork, inherit the parent's TSB size. We would * grow it to that size on the first page fault anyways. */ initial_rss = mm->context.tsb_nentries; if (initial_rss) initial_rss -= 1; tsb_grow(mm, initial_rss, GFP_KERNEL); if (unlikely(!mm->context.tsb)) return -ENOMEM; return 0; } void destroy_context(struct mm_struct *mm) { unsigned long size = mm->context.tsb_nentries * sizeof(struct tsb); free_pages((unsigned long) mm->context.tsb, get_order(size)); /* We can remove these later, but for now it's useful * to catch any bogus post-destroy_context() references * to the TSB. */ mm->context.tsb = NULL; mm->context.tsb_reg_val = 0UL; spin_lock(&ctx_alloc_lock); if (CTX_VALID(mm->context)) { unsigned long nr = CTX_NRBITS(mm->context); mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63)); } spin_unlock(&ctx_alloc_lock); }