#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "ioctl.h" #include "print-tree.h" static int btrfs_copy_from_user(loff_t pos, int num_pages, int write_bytes, struct page **prepared_pages, const char __user * buf) { long page_fault = 0; int i; int offset = pos & (PAGE_CACHE_SIZE - 1); for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) { size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); struct page *page = prepared_pages[i]; fault_in_pages_readable(buf, count); /* Copy data from userspace to the current page */ kmap(page); page_fault = __copy_from_user(page_address(page) + offset, buf, count); /* Flush processor's dcache for this page */ flush_dcache_page(page); kunmap(page); buf += count; write_bytes -= count; if (page_fault) break; } return page_fault ? -EFAULT : 0; } static void btrfs_drop_pages(struct page **pages, size_t num_pages) { size_t i; for (i = 0; i < num_pages; i++) { if (!pages[i]) break; unlock_page(pages[i]); mark_page_accessed(pages[i]); page_cache_release(pages[i]); } } static int dirty_and_release_pages(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct file *file, struct page **pages, size_t num_pages, loff_t pos, size_t write_bytes) { int i; int offset; int err = 0; int ret; int this_write; struct inode *inode = file->f_path.dentry->d_inode; struct buffer_head *bh; struct btrfs_file_extent_item *ei; for (i = 0; i < num_pages; i++) { offset = pos & (PAGE_CACHE_SIZE -1); this_write = min((size_t)PAGE_CACHE_SIZE - offset, write_bytes); /* FIXME, one block at a time */ mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); btrfs_set_trans_block_group(trans, inode); bh = page_buffers(pages[i]); if (buffer_mapped(bh) && bh->b_blocknr == 0) { struct btrfs_key key; struct btrfs_path *path; char *ptr; u32 datasize; /* create an inline extent, and copy the data in */ path = btrfs_alloc_path(); BUG_ON(!path); key.objectid = inode->i_ino; key.offset = pages[i]->index << PAGE_CACHE_SHIFT; key.flags = 0; btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); BUG_ON(write_bytes >= PAGE_CACHE_SIZE); datasize = offset + btrfs_file_extent_calc_inline_size(write_bytes); ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); BUG_ON(ret); ei = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_generation(ei, trans->transid); btrfs_set_file_extent_type(ei, BTRFS_FILE_EXTENT_INLINE); ptr = btrfs_file_extent_inline_start(ei); btrfs_memcpy(root, path->nodes[0]->b_data, ptr, bh->b_data, offset + write_bytes); mark_buffer_dirty(path->nodes[0]); btrfs_free_path(path); } else if (buffer_mapped(bh)) { /* csum the file data */ btrfs_csum_file_block(trans, root, inode->i_ino, pages[i]->index << PAGE_CACHE_SHIFT, kmap(pages[i]), PAGE_CACHE_SIZE); kunmap(pages[i]); } SetPageChecked(pages[i]); ret = btrfs_end_transaction(trans, root); BUG_ON(ret); mutex_unlock(&root->fs_info->fs_mutex); ret = btrfs_commit_write(file, pages[i], offset, offset + this_write); pos += this_write; if (ret) { err = ret; goto failed; } WARN_ON(this_write > write_bytes); write_bytes -= this_write; } failed: return err; } /* * this is very complex, but the basic idea is to drop all extents * in the range start - end. hint_block is filled in with a block number * that would be a good hint to the block allocator for this file. * * If an extent intersects the range but is not entirely inside the range * it is either truncated or split. Anything entirely inside the range * is deleted from the tree. */ int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 start, u64 end, u64 *hint_block) { int ret; struct btrfs_key key; struct btrfs_leaf *leaf; int slot; struct btrfs_file_extent_item *extent; u64 extent_end = 0; int keep; struct btrfs_file_extent_item old; struct btrfs_path *path; u64 search_start = start; int bookend; int found_type; int found_extent; int found_inline; path = btrfs_alloc_path(); if (!path) return -ENOMEM; while(1) { btrfs_release_path(root, path); ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, search_start, -1); if (ret < 0) goto out; if (ret > 0) { if (path->slots[0] == 0) { ret = 0; goto out; } path->slots[0]--; } keep = 0; bookend = 0; found_extent = 0; found_inline = 0; extent = NULL; leaf = btrfs_buffer_leaf(path->nodes[0]); slot = path->slots[0]; btrfs_disk_key_to_cpu(&key, &leaf->items[slot].key); if (key.offset >= end || key.objectid != inode->i_ino) { ret = 0; goto out; } if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) { ret = 0; goto out; } extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); found_type = btrfs_file_extent_type(extent); if (found_type == BTRFS_FILE_EXTENT_REG) { extent_end = key.offset + (btrfs_file_extent_num_blocks(extent) << inode->i_blkbits); found_extent = 1; } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { found_inline = 1; extent_end = key.offset + btrfs_file_extent_inline_len(leaf->items + slot); } /* we found nothing we can drop */ if (!found_extent && !found_inline) { ret = 0; goto out; } /* we found nothing inside the range */ if (search_start >= extent_end) { ret = 0; goto out; } /* FIXME, there's only one inline extent allowed right now */ if (found_inline) { u64 mask = root->blocksize - 1; search_start = (extent_end + mask) & ~mask; } else search_start = extent_end; if (end < extent_end && end >= key.offset) { if (found_extent) { u64 disk_blocknr = btrfs_file_extent_disk_blocknr(extent); u64 disk_num_blocks = btrfs_file_extent_disk_num_blocks(extent); memcpy(&old, extent, sizeof(old)); if (disk_blocknr != 0) { ret = btrfs_inc_extent_ref(trans, root, disk_blocknr, disk_num_blocks); BUG_ON(ret); } } WARN_ON(found_inline); bookend = 1; } /* truncate existing extent */ if (start > key.offset) { u64 new_num; u64 old_num; keep = 1; WARN_ON(start & (root->blocksize - 1)); if (found_extent) { new_num = (start - key.offset) >> inode->i_blkbits; old_num = btrfs_file_extent_num_blocks(extent); *hint_block = btrfs_file_extent_disk_blocknr(extent); if (btrfs_file_extent_disk_blocknr(extent)) { inode->i_blocks -= (old_num - new_num) << 3; } btrfs_set_file_extent_num_blocks(extent, new_num); mark_buffer_dirty(path->nodes[0]); } else { WARN_ON(1); } } /* delete the entire extent */ if (!keep) { u64 disk_blocknr = 0; u64 disk_num_blocks = 0; u64 extent_num_blocks = 0; if (found_extent) { disk_blocknr = btrfs_file_extent_disk_blocknr(extent); disk_num_blocks = btrfs_file_extent_disk_num_blocks(extent); extent_num_blocks = btrfs_file_extent_num_blocks(extent); *hint_block = btrfs_file_extent_disk_blocknr(extent); } ret = btrfs_del_item(trans, root, path); BUG_ON(ret); btrfs_release_path(root, path); extent = NULL; if (found_extent && disk_blocknr != 0) { inode->i_blocks -= extent_num_blocks << 3; ret = btrfs_free_extent(trans, root, disk_blocknr, disk_num_blocks, 0); } BUG_ON(ret); if (!bookend && search_start >= end) { ret = 0; goto out; } if (!bookend) continue; } /* create bookend, splitting the extent in two */ if (bookend && found_extent) { struct btrfs_key ins; ins.objectid = inode->i_ino; ins.offset = end; ins.flags = 0; btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY); btrfs_release_path(root, path); ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*extent)); BUG_ON(ret); extent = btrfs_item_ptr( btrfs_buffer_leaf(path->nodes[0]), path->slots[0], struct btrfs_file_extent_item); btrfs_set_file_extent_disk_blocknr(extent, btrfs_file_extent_disk_blocknr(&old)); btrfs_set_file_extent_disk_num_blocks(extent, btrfs_file_extent_disk_num_blocks(&old)); btrfs_set_file_extent_offset(extent, btrfs_file_extent_offset(&old) + ((end - key.offset) >> inode->i_blkbits)); WARN_ON(btrfs_file_extent_num_blocks(&old) < (extent_end - end) >> inode->i_blkbits); btrfs_set_file_extent_num_blocks(extent, (extent_end - end) >> inode->i_blkbits); btrfs_set_file_extent_type(extent, BTRFS_FILE_EXTENT_REG); btrfs_set_file_extent_generation(extent, btrfs_file_extent_generation(&old)); btrfs_mark_buffer_dirty(path->nodes[0]); if (btrfs_file_extent_disk_blocknr(&old) != 0) { inode->i_blocks += btrfs_file_extent_num_blocks(extent) << 3; } ret = 0; goto out; } } out: btrfs_free_path(path); return ret; } /* * this gets pages into the page cache and locks them down */ static int prepare_pages(struct btrfs_root *root, struct file *file, struct page **pages, size_t num_pages, loff_t pos, unsigned long first_index, unsigned long last_index, size_t write_bytes, u64 alloc_extent_start) { int i; unsigned long index = pos >> PAGE_CACHE_SHIFT; struct inode *inode = file->f_path.dentry->d_inode; int offset; int err = 0; int this_write; struct buffer_head *bh; struct buffer_head *head; loff_t isize = i_size_read(inode); memset(pages, 0, num_pages * sizeof(struct page *)); for (i = 0; i < num_pages; i++) { pages[i] = grab_cache_page(inode->i_mapping, index + i); if (!pages[i]) { err = -ENOMEM; goto failed_release; } cancel_dirty_page(pages[i], PAGE_CACHE_SIZE); wait_on_page_writeback(pages[i]); offset = pos & (PAGE_CACHE_SIZE -1); this_write = min((size_t)PAGE_CACHE_SIZE - offset, write_bytes); if (!page_has_buffers(pages[i])) { create_empty_buffers(pages[i], root->fs_info->sb->s_blocksize, (1 << BH_Uptodate)); } head = page_buffers(pages[i]); bh = head; do { err = btrfs_map_bh_to_logical(root, bh, alloc_extent_start); BUG_ON(err); if (err) goto failed_truncate; bh = bh->b_this_page; if (alloc_extent_start) alloc_extent_start++; } while (bh != head); pos += this_write; WARN_ON(this_write > write_bytes); write_bytes -= this_write; } return 0; failed_release: btrfs_drop_pages(pages, num_pages); return err; failed_truncate: btrfs_drop_pages(pages, num_pages); if (pos > isize) vmtruncate(inode, isize); return err; } static ssize_t btrfs_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { loff_t pos; size_t num_written = 0; int err = 0; int ret = 0; struct inode *inode = file->f_path.dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct page *pages[8]; struct page *pinned[2]; unsigned long first_index; unsigned long last_index; u64 start_pos; u64 num_blocks; u64 alloc_extent_start; u64 hint_block; struct btrfs_trans_handle *trans; struct btrfs_key ins; pinned[0] = NULL; pinned[1] = NULL; if (file->f_flags & O_DIRECT) return -EINVAL; pos = *ppos; vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); current->backing_dev_info = inode->i_mapping->backing_dev_info; err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); if (err) goto out; if (count == 0) goto out; err = remove_suid(file->f_path.dentry); if (err) goto out; file_update_time(file); start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); num_blocks = (count + pos - start_pos + root->blocksize - 1) >> inode->i_blkbits; mutex_lock(&inode->i_mutex); first_index = pos >> PAGE_CACHE_SHIFT; last_index = (pos + count) >> PAGE_CACHE_SHIFT; /* * there are lots of better ways to do this, but this code * makes sure the first and last page in the file range are * up to date and ready for cow */ if ((pos & (PAGE_CACHE_SIZE - 1))) { pinned[0] = grab_cache_page(inode->i_mapping, first_index); if (!PageUptodate(pinned[0])) { ret = mpage_readpage(pinned[0], btrfs_get_block); BUG_ON(ret); wait_on_page_locked(pinned[0]); } else { unlock_page(pinned[0]); } } if ((pos + count) & (PAGE_CACHE_SIZE - 1)) { pinned[1] = grab_cache_page(inode->i_mapping, last_index); if (!PageUptodate(pinned[1])) { ret = mpage_readpage(pinned[1], btrfs_get_block); BUG_ON(ret); wait_on_page_locked(pinned[1]); } else { unlock_page(pinned[1]); } } mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); if (!trans) { err = -ENOMEM; mutex_unlock(&root->fs_info->fs_mutex); goto out_unlock; } btrfs_set_trans_block_group(trans, inode); /* FIXME blocksize != 4096 */ inode->i_blocks += num_blocks << 3; hint_block = 0; /* FIXME...EIEIO, ENOSPC and more */ /* step one, delete the existing extents in this range */ if (start_pos < inode->i_size) { /* FIXME blocksize != pagesize */ ret = btrfs_drop_extents(trans, root, inode, start_pos, (pos + count + root->blocksize -1) & ~((u64)root->blocksize - 1), &hint_block); BUG_ON(ret); } /* insert any holes we need to create */ if (inode->i_size < start_pos) { u64 last_pos_in_file; u64 hole_size; u64 mask = root->blocksize - 1; last_pos_in_file = (inode->i_size + mask) & ~mask; hole_size = (start_pos - last_pos_in_file + mask) & ~mask; hole_size >>= inode->i_blkbits; if (last_pos_in_file < start_pos) { ret = btrfs_insert_file_extent(trans, root, inode->i_ino, last_pos_in_file, 0, 0, hole_size); } BUG_ON(ret); } /* * either allocate an extent for the new bytes or setup the key * to show we are doing inline data in the extent */ if (inode->i_size >= PAGE_CACHE_SIZE || pos + count < inode->i_size || pos + count - start_pos > BTRFS_MAX_INLINE_DATA_SIZE(root)) { ret = btrfs_alloc_extent(trans, root, inode->i_ino, num_blocks, hint_block, (u64)-1, &ins, 1); BUG_ON(ret); ret = btrfs_insert_file_extent(trans, root, inode->i_ino, start_pos, ins.objectid, ins.offset, ins.offset); BUG_ON(ret); } else { ins.offset = 0; ins.objectid = 0; } BUG_ON(ret); alloc_extent_start = ins.objectid; ret = btrfs_end_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); while(count > 0) { size_t offset = pos & (PAGE_CACHE_SIZE - 1); size_t write_bytes = min(count, (size_t)PAGE_CACHE_SIZE - offset); size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; memset(pages, 0, sizeof(pages)); ret = prepare_pages(root, file, pages, num_pages, pos, first_index, last_index, write_bytes, alloc_extent_start); BUG_ON(ret); /* FIXME blocks != pagesize */ if (alloc_extent_start) alloc_extent_start += num_pages; ret = btrfs_copy_from_user(pos, num_pages, write_bytes, pages, buf); BUG_ON(ret); ret = dirty_and_release_pages(NULL, root, file, pages, num_pages, pos, write_bytes); BUG_ON(ret); btrfs_drop_pages(pages, num_pages); buf += write_bytes; count -= write_bytes; pos += write_bytes; num_written += write_bytes; balance_dirty_pages_ratelimited(inode->i_mapping); btrfs_btree_balance_dirty(root); cond_resched(); } out_unlock: mutex_unlock(&inode->i_mutex); out: if (pinned[0]) page_cache_release(pinned[0]); if (pinned[1]) page_cache_release(pinned[1]); *ppos = pos; current->backing_dev_info = NULL; mark_inode_dirty(inode); return num_written ? num_written : err; } /* * FIXME, do this by stuffing the csum we want in the info hanging off * page->private. For now, verify file csums on read */ static int btrfs_read_actor(read_descriptor_t *desc, struct page *page, unsigned long offset, unsigned long size) { char *kaddr; unsigned long left, count = desc->count; struct inode *inode = page->mapping->host; if (size > count) size = count; if (!PageChecked(page)) { /* FIXME, do it per block */ struct btrfs_root *root = BTRFS_I(inode)->root; int ret; struct buffer_head *bh; if (page_has_buffers(page)) { bh = page_buffers(page); if (!buffer_mapped(bh)) { SetPageChecked(page); goto checked; } } ret = btrfs_csum_verify_file_block(root, page->mapping->host->i_ino, page->index << PAGE_CACHE_SHIFT, kmap(page), PAGE_CACHE_SIZE); if (ret) { if (ret != -ENOENT) { printk("failed to verify ino %lu page %lu ret %d\n", page->mapping->host->i_ino, page->index, ret); memset(page_address(page), 1, PAGE_CACHE_SIZE); flush_dcache_page(page); } } SetPageChecked(page); kunmap(page); } checked: /* * Faults on the destination of a read are common, so do it before * taking the kmap. */ if (!fault_in_pages_writeable(desc->arg.buf, size)) { kaddr = kmap_atomic(page, KM_USER0); left = __copy_to_user_inatomic(desc->arg.buf, kaddr + offset, size); kunmap_atomic(kaddr, KM_USER0); if (left == 0) goto success; } /* Do it the slow way */ kaddr = kmap(page); left = __copy_to_user(desc->arg.buf, kaddr + offset, size); kunmap(page); if (left) { size -= left; desc->error = -EFAULT; } success: desc->count = count - size; desc->written += size; desc->arg.buf += size; return size; } /** * btrfs_file_aio_read - filesystem read routine, with a mod to csum verify * @iocb: kernel I/O control block * @iov: io vector request * @nr_segs: number of segments in the iovec * @pos: current file position */ static ssize_t btrfs_file_aio_read(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { struct file *filp = iocb->ki_filp; ssize_t retval; unsigned long seg; size_t count; loff_t *ppos = &iocb->ki_pos; count = 0; for (seg = 0; seg < nr_segs; seg++) { const struct iovec *iv = &iov[seg]; /* * If any segment has a negative length, or the cumulative * length ever wraps negative then return -EINVAL. */ count += iv->iov_len; if (unlikely((ssize_t)(count|iv->iov_len) < 0)) return -EINVAL; if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) continue; if (seg == 0) return -EFAULT; nr_segs = seg; count -= iv->iov_len; /* This segment is no good */ break; } retval = 0; if (count) { for (seg = 0; seg < nr_segs; seg++) { read_descriptor_t desc; desc.written = 0; desc.arg.buf = iov[seg].iov_base; desc.count = iov[seg].iov_len; if (desc.count == 0) continue; desc.error = 0; do_generic_file_read(filp, ppos, &desc, btrfs_read_actor); retval += desc.written; if (desc.error) { retval = retval ?: desc.error; break; } } } return retval; } static int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync) { struct inode *inode = dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; int ret; struct btrfs_trans_handle *trans; /* * FIXME, use inode generation number to check if we can skip the * commit */ mutex_lock(&root->fs_info->fs_mutex); trans = btrfs_start_transaction(root, 1); if (!trans) { ret = -ENOMEM; goto out; } ret = btrfs_commit_transaction(trans, root); mutex_unlock(&root->fs_info->fs_mutex); out: return ret > 0 ? EIO : ret; } struct file_operations btrfs_file_operations = { .llseek = generic_file_llseek, .read = do_sync_read, .aio_read = btrfs_file_aio_read, .write = btrfs_file_write, .mmap = generic_file_mmap, .open = generic_file_open, .ioctl = btrfs_ioctl, .fsync = btrfs_sync_file, #ifdef CONFIG_COMPAT .compat_ioctl = btrfs_compat_ioctl, #endif };