/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include "ctree.h" #include "transaction.h" #include "btrfs_inode.h" #include "extent_io.h" static u64 entry_end(struct btrfs_ordered_extent *entry) { if (entry->file_offset + entry->len < entry->file_offset) return (u64)-1; return entry->file_offset + entry->len; } static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, struct rb_node *node) { struct rb_node ** p = &root->rb_node; struct rb_node * parent = NULL; struct btrfs_ordered_extent *entry; while(*p) { parent = *p; entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); if (file_offset < entry->file_offset) p = &(*p)->rb_left; else if (file_offset >= entry_end(entry)) p = &(*p)->rb_right; else return parent; } rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, struct rb_node **prev_ret) { struct rb_node * n = root->rb_node; struct rb_node *prev = NULL; struct rb_node *test; struct btrfs_ordered_extent *entry; struct btrfs_ordered_extent *prev_entry = NULL; while(n) { entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); prev = n; prev_entry = entry; if (file_offset < entry->file_offset) n = n->rb_left; else if (file_offset >= entry_end(entry)) n = n->rb_right; else return n; } if (!prev_ret) return NULL; while(prev && file_offset >= entry_end(prev_entry)) { test = rb_next(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); if (file_offset < entry_end(prev_entry)) break; prev = test; } if (prev) prev_entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); while(prev && file_offset < entry_end(prev_entry)) { test = rb_prev(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); prev = test; } *prev_ret = prev; return NULL; } static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) { if (file_offset < entry->file_offset || entry->file_offset + entry->len <= file_offset) return 0; return 1; } static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, u64 file_offset) { struct rb_root *root = &tree->tree; struct rb_node *prev; struct rb_node *ret; struct btrfs_ordered_extent *entry; if (tree->last) { entry = rb_entry(tree->last, struct btrfs_ordered_extent, rb_node); if (offset_in_entry(entry, file_offset)) return tree->last; } ret = __tree_search(root, file_offset, &prev); if (!ret) ret = prev; if (ret) tree->last = ret; return ret; } int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, u64 start, u64 len) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry; tree = &BTRFS_I(inode)->ordered_tree; entry = kzalloc(sizeof(*entry), GFP_NOFS); if (!entry) return -ENOMEM; mutex_lock(&tree->mutex); entry->file_offset = file_offset; entry->start = start; entry->len = len; entry->inode = inode; /* one ref for the tree */ atomic_set(&entry->refs, 1); init_waitqueue_head(&entry->wait); INIT_LIST_HEAD(&entry->list); node = tree_insert(&tree->tree, file_offset, &entry->rb_node); if (node) { entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); atomic_inc(&entry->refs); } set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset, entry_end(entry) - 1, GFP_NOFS); set_bit(BTRFS_ORDERED_START, &entry->flags); mutex_unlock(&tree->mutex); BUG_ON(node); return 0; } int btrfs_add_ordered_sum(struct inode *inode, struct btrfs_ordered_sum *sum) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); node = tree_search(tree, sum->file_offset); if (!node) { search_fail: printk("add ordered sum failed to find a node for inode %lu offset %Lu\n", inode->i_ino, sum->file_offset); node = rb_first(&tree->tree); while(node) { entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); printk("entry %Lu %Lu %Lu\n", entry->file_offset, entry->file_offset + entry->len, entry->start); node = rb_next(node); } BUG(); } BUG_ON(!node); entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, sum->file_offset)) { goto search_fail; } list_add_tail(&sum->list, &entry->list); mutex_unlock(&tree->mutex); return 0; } int btrfs_dec_test_ordered_pending(struct inode *inode, u64 file_offset, u64 io_size) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; int ret; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1, GFP_NOFS); node = tree_search(tree, file_offset); if (!node) { ret = 1; goto out; } entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, file_offset)) { ret = 1; goto out; } ret = test_range_bit(io_tree, entry->file_offset, entry->file_offset + entry->len - 1, EXTENT_ORDERED, 0); if (!test_bit(BTRFS_ORDERED_START, &entry->flags)) { printk("inode %lu not ready yet for extent %Lu %Lu\n", inode->i_ino, entry->file_offset, entry_end(entry)); } if (ret == 0) ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); out: mutex_unlock(&tree->mutex); return ret == 0; } int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) { if (atomic_dec_and_test(&entry->refs)) kfree(entry); return 0; } int btrfs_remove_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); node = &entry->rb_node; rb_erase(node, &tree->tree); tree->last = NULL; set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); mutex_unlock(&tree->mutex); wake_up(&entry->wait); return 0; } void btrfs_wait_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry) { u64 start = entry->file_offset; u64 end = start + entry->len - 1; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) do_sync_file_range(file, start, end, SYNC_FILE_RANGE_WRITE); #else do_sync_mapping_range(inode->i_mapping, start, end, SYNC_FILE_RANGE_WRITE); #endif wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); } static void btrfs_start_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry, int wait) { u64 start = entry->file_offset; u64 end = start + entry->len - 1; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) do_sync_file_range(file, start, end, SYNC_FILE_RANGE_WRITE); #else do_sync_mapping_range(inode->i_mapping, start, end, SYNC_FILE_RANGE_WRITE); #endif if (wait) wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); } void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) { u64 end; struct btrfs_ordered_extent *ordered; int found; int should_wait = 0; again: if (start + len < start) end = (u64)-1; else end = start + len - 1; found = 0; while(1) { ordered = btrfs_lookup_first_ordered_extent(inode, end); if (!ordered) { break; } if (ordered->file_offset >= start + len) { btrfs_put_ordered_extent(ordered); break; } if (ordered->file_offset + ordered->len < start) { btrfs_put_ordered_extent(ordered); break; } btrfs_start_ordered_extent(inode, ordered, should_wait); found++; end = ordered->file_offset; btrfs_put_ordered_extent(ordered); if (end == 0) break; end--; } if (should_wait && found) { should_wait = 0; goto again; } } int btrfs_add_ordered_pending(struct inode *inode, struct btrfs_ordered_extent *ordered, u64 start, u64 len) { WARN_ON(1); return 0; #if 0 int ret; struct btrfs_ordered_inode_tree *tree; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) { ret = -EAGAIN; goto out; } set_extent_ordered(io_tree, start, start + len - 1, GFP_NOFS); ret = 0; out: mutex_unlock(&tree->mutex); return ret; #endif } struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, file_offset)) entry = NULL; if (entry) atomic_inc(&entry->refs); out: mutex_unlock(&tree->mutex); return entry; } struct btrfs_ordered_extent * btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); atomic_inc(&entry->refs); out: mutex_unlock(&tree->mutex); return entry; } int btrfs_ordered_update_i_size(struct inode *inode, struct btrfs_ordered_extent *ordered) { struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; u64 disk_i_size; u64 new_i_size; u64 i_size_test; struct rb_node *node; struct btrfs_ordered_extent *test; mutex_lock(&tree->mutex); disk_i_size = BTRFS_I(inode)->disk_i_size; /* * if the disk i_size is already at the inode->i_size, or * this ordered extent is inside the disk i_size, we're done */ if (disk_i_size >= inode->i_size || ordered->file_offset + ordered->len <= disk_i_size) { goto out; } /* * we can't update the disk_isize if there are delalloc bytes * between disk_i_size and this ordered extent */ if (test_range_bit(io_tree, disk_i_size, ordered->file_offset + ordered->len - 1, EXTENT_DELALLOC, 0)) { goto out; } /* * walk backward from this ordered extent to disk_i_size. * if we find an ordered extent then we can't update disk i_size * yet */ while(1) { node = rb_prev(&ordered->rb_node); if (!node) break; test = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (test->file_offset + test->len <= disk_i_size) break; if (test->file_offset >= inode->i_size) break; if (test->file_offset >= disk_i_size) goto out; } new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); /* * at this point, we know we can safely update i_size to at least * the offset from this ordered extent. But, we need to * walk forward and see if ios from higher up in the file have * finished. */ node = rb_next(&ordered->rb_node); i_size_test = 0; if (node) { /* * do we have an area where IO might have finished * between our ordered extent and the next one. */ test = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (test->file_offset > entry_end(ordered)) { i_size_test = test->file_offset - 1; } } else { i_size_test = i_size_read(inode); } /* * i_size_test is the end of a region after this ordered * extent where there are no ordered extents. As long as there * are no delalloc bytes in this area, it is safe to update * disk_i_size to the end of the region. */ if (i_size_test > entry_end(ordered) && !test_range_bit(io_tree, entry_end(ordered), i_size_test, EXTENT_DELALLOC, 0)) { new_i_size = min_t(u64, i_size_test, i_size_read(inode)); } BTRFS_I(inode)->disk_i_size = new_i_size; out: mutex_unlock(&tree->mutex); return 0; }