X-Git-Url: http://pilppa.org/gitweb/?a=blobdiff_plain;f=Documentation%2Fhwmon%2Ff71805f;h=f0d55976740adfeabfb7258d4109a7d4c930c6ac;hb=82219fceeb654789a9dd7cd3c6cce12dbf659342;hp=2ca69df669c3a615601aec996fb8f977aa485180;hpb=71fa0a849b384f066dea6a2351c722c19846f4ac;p=linux-2.6-omap-h63xx.git diff --git a/Documentation/hwmon/f71805f b/Documentation/hwmon/f71805f index 2ca69df669c..f0d55976740 100644 --- a/Documentation/hwmon/f71805f +++ b/Documentation/hwmon/f71805f @@ -5,7 +5,15 @@ Supported chips: * Fintek F71805F/FG Prefix: 'f71805f' Addresses scanned: none, address read from Super I/O config space - Datasheet: Provided by Fintek on request + Datasheet: Available from the Fintek website + * Fintek F71806F/FG + Prefix: 'f71872f' + Addresses scanned: none, address read from Super I/O config space + Datasheet: Available from the Fintek website + * Fintek F71872F/FG + Prefix: 'f71872f' + Addresses scanned: none, address read from Super I/O config space + Datasheet: Available from the Fintek website Author: Jean Delvare @@ -13,8 +21,8 @@ Thanks to Denis Kieft from Barracuda Networks for the donation of a test system (custom Jetway K8M8MS motherboard, with CPU and RAM) and for providing initial documentation. -Thanks to Kris Chen from Fintek for answering technical questions and -providing additional documentation. +Thanks to Kris Chen and Aaron Huang from Fintek for answering technical +questions and providing additional documentation. Thanks to Chris Lin from Jetway for providing wiring schematics and answering technical questions. @@ -28,8 +36,14 @@ capabilities. It can monitor up to 9 voltages (counting its own power source), 3 fans and 3 temperature sensors. This chip also has fan controlling features, using either DC or PWM, in -three different modes (one manual, two automatic). The driver doesn't -support these features yet. +three different modes (one manual, two automatic). + +The Fintek F71872F/FG Super I/O chip is almost the same, with two +additional internal voltages monitored (VSB and battery). It also features +6 VID inputs. The VID inputs are not yet supported by this driver. + +The Fintek F71806F/FG Super-I/O chip is essentially the same as the +F71872F/FG, and is undistinguishable therefrom. The driver assumes that no more than one chip is present, which seems reasonable. @@ -42,7 +56,8 @@ Voltages are sampled by an 8-bit ADC with a LSB of 8 mV. The supported range is thus from 0 to 2.040 V. Voltage values outside of this range need external resistors. An exception is in0, which is used to monitor the chip's own power source (+3.3V), and is divided internally by a -factor 2. +factor 2. For the F71872F/FG, in9 (VSB) and in10 (battery) are also +divided internally by a factor 2. The two LSB of the voltage limit registers are not used (always 0), so you can only set the limits in steps of 32 mV (before scaling). @@ -61,9 +76,12 @@ in5 VIN5 +12V 200K 20K 11.00 1.05 V in6 VIN6 VCC1.5V 10K - 1.00 1.50 V in7 VIN7 VCORE 10K - 1.00 ~1.40 V (1) in8 VIN8 VSB5V 200K 47K 1.00 0.95 V +in10 VSB VSB3.3V int. int. 2.00 1.65 V (3) +in9 VBAT VBATTERY int. int. 2.00 1.50 V (3) (1) Depends on your hardware setup. (2) Obviously not correct, swapping R1 and R2 would make more sense. +(3) F71872F/FG only. These values can be used as hints at best, as motherboard manufacturers are free to use a completely different setup. As a matter of fact, the @@ -103,3 +121,47 @@ sensor. Each channel can be used for connecting either a thermal diode or a thermistor. The driver reports the currently selected mode, but doesn't allow changing it. In theory, the BIOS should have configured everything properly. + + +Fan Control +----------- + +Both PWM (pulse-width modulation) and DC fan speed control methods are +supported. The right one to use depends on external circuitry on the +motherboard, so the driver assumes that the BIOS set the method +properly. The driver will report the method, but won't let you change +it. + +When the PWM method is used, you can select the operating frequency, +from 187.5 kHz (default) to 31 Hz. The best frequency depends on the +fan model. As a rule of thumb, lower frequencies seem to give better +control, but may generate annoying high-pitch noise. So a frequency just +above the audible range, such as 25 kHz, may be a good choice; if this +doesn't give you good linear control, try reducing it. Fintek recommends +not going below 1 kHz, as the fan tachometers get confused by lower +frequencies as well. + +When the DC method is used, Fintek recommends not going below 5 V, which +corresponds to a pwm value of 106 for the driver. The driver doesn't +enforce this limit though. + +Three different fan control modes are supported; the mode number is written +to the pwm_enable file. + +* 1: Manual mode + You ask for a specific PWM duty cycle or DC voltage by writing to the + pwm file. + +* 2: Temperature mode + You define 3 temperature/fan speed trip points using the + pwm_auto_point_temp and _fan files. These define a staircase + relationship between temperature and fan speed with two additional points + interpolated between the values that you define. When the temperature + is below auto_point1_temp the fan is switched off. + +* 3: Fan speed mode + You ask for a specific fan speed by writing to the fan_target file. + +Both of the automatic modes require that pwm1 corresponds to fan1, pwm2 to +fan2 and pwm3 to fan3. Temperature mode also requires that temp1 corresponds +to pwm1 and fan1, etc.