--- /dev/null
+/*
+ * Virtual Memory Map support
+ *
+ * (C) 2007 sgi. Christoph Lameter <clameter@sgi.com>.
+ *
+ * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
+ * virt_to_page, page_address() to be implemented as a base offset
+ * calculation without memory access.
+ *
+ * However, virtual mappings need a page table and TLBs. Many Linux
+ * architectures already map their physical space using 1-1 mappings
+ * via TLBs. For those arches the virtual memmory map is essentially
+ * for free if we use the same page size as the 1-1 mappings. In that
+ * case the overhead consists of a few additional pages that are
+ * allocated to create a view of memory for vmemmap.
+ *
+ * Special Kconfig settings:
+ *
+ * CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP
+ *
+ *     The architecture has its own functions to populate the memory
+ *     map and provides a vmemmap_populate function.
+ *
+ * CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP_PMD
+ *
+ *     The architecture provides functions to populate the pmd level
+ *     of the vmemmap mappings.  Allowing mappings using large pages
+ *     where available.
+ *
+ *     If neither are set then PAGE_SIZE mappings are generated which
+ *     require one PTE/TLB per PAGE_SIZE chunk of the virtual memory map.
+ */
+#include <linux/mm.h>
+#include <linux/mmzone.h>
+#include <linux/bootmem.h>
+#include <linux/highmem.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/vmalloc.h>
+#include <asm/dma.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+
+/*
+ * Allocate a block of memory to be used to back the virtual memory map
+ * or to back the page tables that are used to create the mapping.
+ * Uses the main allocators if they are available, else bootmem.
+ */
+void * __meminit vmemmap_alloc_block(unsigned long size, int node)
+{
+       /* If the main allocator is up use that, fallback to bootmem. */
+       if (slab_is_available()) {
+               struct page *page = alloc_pages_node(node,
+                               GFP_KERNEL | __GFP_ZERO, get_order(size));
+               if (page)
+                       return page_address(page);
+               return NULL;
+       } else
+               return __alloc_bootmem_node(NODE_DATA(node), size, size,
+                               __pa(MAX_DMA_ADDRESS));
+}
+
+#ifndef CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP
+void __meminit vmemmap_verify(pte_t *pte, int node,
+                               unsigned long start, unsigned long end)
+{
+       unsigned long pfn = pte_pfn(*pte);
+       int actual_node = early_pfn_to_nid(pfn);
+
+       if (actual_node != node)
+               printk(KERN_WARNING "[%lx-%lx] potential offnode "
+                       "page_structs\n", start, end - 1);
+}
+
+#ifndef CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP_PMD
+static int __meminit vmemmap_populate_pte(pmd_t *pmd, unsigned long addr,
+                                       unsigned long end, int node)
+{
+       pte_t *pte;
+
+       for (pte = pte_offset_kernel(pmd, addr); addr < end;
+                                               pte++, addr += PAGE_SIZE)
+               if (pte_none(*pte)) {
+                       pte_t entry;
+                       void *p = vmemmap_alloc_block(PAGE_SIZE, node);
+                       if (!p)
+                               return -ENOMEM;
+
+                       entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
+                       set_pte(pte, entry);
+
+               } else
+                       vmemmap_verify(pte, node, addr + PAGE_SIZE, end);
+
+       return 0;
+}
+
+int __meminit vmemmap_populate_pmd(pud_t *pud, unsigned long addr,
+                                               unsigned long end, int node)
+{
+       pmd_t *pmd;
+       int error = 0;
+       unsigned long next;
+
+       for (pmd = pmd_offset(pud, addr); addr < end && !error;
+                                               pmd++, addr = next) {
+               if (pmd_none(*pmd)) {
+                       void *p = vmemmap_alloc_block(PAGE_SIZE, node);
+                       if (!p)
+                               return -ENOMEM;
+
+                       pmd_populate_kernel(&init_mm, pmd, p);
+               } else
+                       vmemmap_verify((pte_t *)pmd, node,
+                                       pmd_addr_end(addr, end), end);
+               next = pmd_addr_end(addr, end);
+               error = vmemmap_populate_pte(pmd, addr, next, node);
+       }
+       return error;
+}
+#endif /* CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP_PMD */
+
+static int __meminit vmemmap_populate_pud(pgd_t *pgd, unsigned long addr,
+                                               unsigned long end, int node)
+{
+       pud_t *pud;
+       int error = 0;
+       unsigned long next;
+
+       for (pud = pud_offset(pgd, addr); addr < end && !error;
+                                               pud++, addr = next) {
+               if (pud_none(*pud)) {
+                       void *p = vmemmap_alloc_block(PAGE_SIZE, node);
+                       if (!p)
+                               return -ENOMEM;
+
+                       pud_populate(&init_mm, pud, p);
+               }
+               next = pud_addr_end(addr, end);
+               error = vmemmap_populate_pmd(pud, addr, next, node);
+       }
+       return error;
+}
+
+int __meminit vmemmap_populate(struct page *start_page,
+                                               unsigned long nr, int node)
+{
+       pgd_t *pgd;
+       unsigned long addr = (unsigned long)start_page;
+       unsigned long end = (unsigned long)(start_page + nr);
+       unsigned long next;
+       int error = 0;
+
+       printk(KERN_DEBUG "[%lx-%lx] Virtual memory section"
+               " (%ld pages) node %d\n", addr, end - 1, nr, node);
+
+       for (pgd = pgd_offset_k(addr); addr < end && !error;
+                                       pgd++, addr = next) {
+               if (pgd_none(*pgd)) {
+                       void *p = vmemmap_alloc_block(PAGE_SIZE, node);
+                       if (!p)
+                               return -ENOMEM;
+
+                       pgd_populate(&init_mm, pgd, p);
+               }
+               next = pgd_addr_end(addr,end);
+               error = vmemmap_populate_pud(pgd, addr, next, node);
+       }
+       return error;
+}
+#endif /* !CONFIG_ARCH_POPULATES_SPARSEMEM_VMEMMAP */
+
+struct page __init *sparse_early_mem_map_populate(unsigned long pnum, int nid)
+{
+       struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
+       int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
+       if (error)
+               return NULL;
+
+       return map;
+}
 
 #include <linux/spinlock.h>
 #include <linux/vmalloc.h>
 #include <asm/dma.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
 
 /*
  * Permanent SPARSEMEM data:
        return NULL;
 }
 
-static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
+#ifndef CONFIG_SPARSEMEM_VMEMMAP
+struct page __init *sparse_early_mem_map_populate(unsigned long pnum, int nid)
 {
        struct page *map;
-       struct mem_section *ms = __nr_to_section(pnum);
-       int nid = sparse_early_nid(ms);
 
        map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
        if (map)
 
        map = alloc_bootmem_node(NODE_DATA(nid),
                        sizeof(struct page) * PAGES_PER_SECTION);
+       return map;
+}
+#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
+
+struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
+{
+       struct page *map;
+       struct mem_section *ms = __nr_to_section(pnum);
+       int nid = sparse_early_nid(ms);
+
+       map = sparse_early_mem_map_populate(pnum, nid);
        if (map)
                return map;
 
-       printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
+       printk(KERN_ERR "%s: sparsemem memory map backing failed "
+                       "some memory will not be available.\n", __FUNCTION__);
        ms->section_mem_map = 0;
        return NULL;
 }