]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/ia64/kernel/mca.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-omap-h63xx.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  *
52  * 2005-08-12 Keith Owens <kaos@sgi.com>
53  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54  *
55  * 2005-10-07 Keith Owens <kaos@sgi.com>
56  *            Add notify_die() hooks.
57  *
58  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59  *            Add printing support for MCA/INIT.
60  *
61  * 2007-04-27 Russ Anderson <rja@sgi.com>
62  *            Support multiple cpus going through OS_MCA in the same event.
63  */
64 #include <linux/types.h>
65 #include <linux/init.h>
66 #include <linux/sched.h>
67 #include <linux/interrupt.h>
68 #include <linux/irq.h>
69 #include <linux/bootmem.h>
70 #include <linux/acpi.h>
71 #include <linux/timer.h>
72 #include <linux/module.h>
73 #include <linux/kernel.h>
74 #include <linux/smp.h>
75 #include <linux/workqueue.h>
76 #include <linux/cpumask.h>
77 #include <linux/kdebug.h>
78 #include <linux/cpu.h>
79
80 #include <asm/delay.h>
81 #include <asm/machvec.h>
82 #include <asm/meminit.h>
83 #include <asm/page.h>
84 #include <asm/ptrace.h>
85 #include <asm/system.h>
86 #include <asm/sal.h>
87 #include <asm/mca.h>
88 #include <asm/kexec.h>
89
90 #include <asm/irq.h>
91 #include <asm/hw_irq.h>
92
93 #include "mca_drv.h"
94 #include "entry.h"
95
96 #if defined(IA64_MCA_DEBUG_INFO)
97 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
98 #else
99 # define IA64_MCA_DEBUG(fmt...)
100 #endif
101
102 /* Used by mca_asm.S */
103 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
104 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
105 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
106 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
107
108 unsigned long __per_cpu_mca[NR_CPUS];
109
110 /* In mca_asm.S */
111 extern void                     ia64_os_init_dispatch_monarch (void);
112 extern void                     ia64_os_init_dispatch_slave (void);
113
114 static int monarch_cpu = -1;
115
116 static ia64_mc_info_t           ia64_mc_info;
117
118 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
119 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
120 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
121 #define CPE_HISTORY_LENGTH    5
122 #define CMC_HISTORY_LENGTH    5
123
124 #ifdef CONFIG_ACPI
125 static struct timer_list cpe_poll_timer;
126 #endif
127 static struct timer_list cmc_poll_timer;
128 /*
129  * This variable tells whether we are currently in polling mode.
130  * Start with this in the wrong state so we won't play w/ timers
131  * before the system is ready.
132  */
133 static int cmc_polling_enabled = 1;
134
135 /*
136  * Clearing this variable prevents CPE polling from getting activated
137  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
138  * but encounters problems retrieving CPE logs.  This should only be
139  * necessary for debugging.
140  */
141 static int cpe_poll_enabled = 1;
142
143 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
144
145 static int mca_init __initdata;
146
147 /*
148  * limited & delayed printing support for MCA/INIT handler
149  */
150
151 #define mprintk(fmt...) ia64_mca_printk(fmt)
152
153 #define MLOGBUF_SIZE (512+256*NR_CPUS)
154 #define MLOGBUF_MSGMAX 256
155 static char mlogbuf[MLOGBUF_SIZE];
156 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
157 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
158 static unsigned long mlogbuf_start;
159 static unsigned long mlogbuf_end;
160 static unsigned int mlogbuf_finished = 0;
161 static unsigned long mlogbuf_timestamp = 0;
162
163 static int loglevel_save = -1;
164 #define BREAK_LOGLEVEL(__console_loglevel)              \
165         oops_in_progress = 1;                           \
166         if (loglevel_save < 0)                          \
167                 loglevel_save = __console_loglevel;     \
168         __console_loglevel = 15;
169
170 #define RESTORE_LOGLEVEL(__console_loglevel)            \
171         if (loglevel_save >= 0) {                       \
172                 __console_loglevel = loglevel_save;     \
173                 loglevel_save = -1;                     \
174         }                                               \
175         mlogbuf_finished = 0;                           \
176         oops_in_progress = 0;
177
178 /*
179  * Push messages into buffer, print them later if not urgent.
180  */
181 void ia64_mca_printk(const char *fmt, ...)
182 {
183         va_list args;
184         int printed_len;
185         char temp_buf[MLOGBUF_MSGMAX];
186         char *p;
187
188         va_start(args, fmt);
189         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
190         va_end(args);
191
192         /* Copy the output into mlogbuf */
193         if (oops_in_progress) {
194                 /* mlogbuf was abandoned, use printk directly instead. */
195                 printk(temp_buf);
196         } else {
197                 spin_lock(&mlogbuf_wlock);
198                 for (p = temp_buf; *p; p++) {
199                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
200                         if (next != mlogbuf_start) {
201                                 mlogbuf[mlogbuf_end] = *p;
202                                 mlogbuf_end = next;
203                         } else {
204                                 /* buffer full */
205                                 break;
206                         }
207                 }
208                 mlogbuf[mlogbuf_end] = '\0';
209                 spin_unlock(&mlogbuf_wlock);
210         }
211 }
212 EXPORT_SYMBOL(ia64_mca_printk);
213
214 /*
215  * Print buffered messages.
216  *  NOTE: call this after returning normal context. (ex. from salinfod)
217  */
218 void ia64_mlogbuf_dump(void)
219 {
220         char temp_buf[MLOGBUF_MSGMAX];
221         char *p;
222         unsigned long index;
223         unsigned long flags;
224         unsigned int printed_len;
225
226         /* Get output from mlogbuf */
227         while (mlogbuf_start != mlogbuf_end) {
228                 temp_buf[0] = '\0';
229                 p = temp_buf;
230                 printed_len = 0;
231
232                 spin_lock_irqsave(&mlogbuf_rlock, flags);
233
234                 index = mlogbuf_start;
235                 while (index != mlogbuf_end) {
236                         *p = mlogbuf[index];
237                         index = (index + 1) % MLOGBUF_SIZE;
238                         if (!*p)
239                                 break;
240                         p++;
241                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
242                                 break;
243                 }
244                 *p = '\0';
245                 if (temp_buf[0])
246                         printk(temp_buf);
247                 mlogbuf_start = index;
248
249                 mlogbuf_timestamp = 0;
250                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
251         }
252 }
253 EXPORT_SYMBOL(ia64_mlogbuf_dump);
254
255 /*
256  * Call this if system is going to down or if immediate flushing messages to
257  * console is required. (ex. recovery was failed, crash dump is going to be
258  * invoked, long-wait rendezvous etc.)
259  *  NOTE: this should be called from monarch.
260  */
261 static void ia64_mlogbuf_finish(int wait)
262 {
263         BREAK_LOGLEVEL(console_loglevel);
264
265         spin_lock_init(&mlogbuf_rlock);
266         ia64_mlogbuf_dump();
267         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
268                 "MCA/INIT might be dodgy or fail.\n");
269
270         if (!wait)
271                 return;
272
273         /* wait for console */
274         printk("Delaying for 5 seconds...\n");
275         udelay(5*1000000);
276
277         mlogbuf_finished = 1;
278 }
279
280 /*
281  * Print buffered messages from INIT context.
282  */
283 static void ia64_mlogbuf_dump_from_init(void)
284 {
285         if (mlogbuf_finished)
286                 return;
287
288         if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
289                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
290                         " and the system seems to be messed up.\n");
291                 ia64_mlogbuf_finish(0);
292                 return;
293         }
294
295         if (!spin_trylock(&mlogbuf_rlock)) {
296                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
297                         "Generated messages other than stack dump will be "
298                         "buffered to mlogbuf and will be printed later.\n");
299                 printk(KERN_ERR "INIT: If messages would not printed after "
300                         "this INIT, wait 30sec and assert INIT again.\n");
301                 if (!mlogbuf_timestamp)
302                         mlogbuf_timestamp = jiffies;
303                 return;
304         }
305         spin_unlock(&mlogbuf_rlock);
306         ia64_mlogbuf_dump();
307 }
308
309 static void inline
310 ia64_mca_spin(const char *func)
311 {
312         if (monarch_cpu == smp_processor_id())
313                 ia64_mlogbuf_finish(0);
314         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
315         while (1)
316                 cpu_relax();
317 }
318 /*
319  * IA64_MCA log support
320  */
321 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
322 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
323
324 typedef struct ia64_state_log_s
325 {
326         spinlock_t      isl_lock;
327         int             isl_index;
328         unsigned long   isl_count;
329         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
330 } ia64_state_log_t;
331
332 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
333
334 #define IA64_LOG_ALLOCATE(it, size) \
335         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
336                 (ia64_err_rec_t *)alloc_bootmem(size); \
337         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
338                 (ia64_err_rec_t *)alloc_bootmem(size);}
339 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
340 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
341 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
342 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
343 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
344 #define IA64_LOG_INDEX_INC(it) \
345     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
346     ia64_state_log[it].isl_count++;}
347 #define IA64_LOG_INDEX_DEC(it) \
348     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
349 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
350 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
351 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
352
353 /*
354  * ia64_log_init
355  *      Reset the OS ia64 log buffer
356  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
357  * Outputs      :       None
358  */
359 static void __init
360 ia64_log_init(int sal_info_type)
361 {
362         u64     max_size = 0;
363
364         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
365         IA64_LOG_LOCK_INIT(sal_info_type);
366
367         // SAL will tell us the maximum size of any error record of this type
368         max_size = ia64_sal_get_state_info_size(sal_info_type);
369         if (!max_size)
370                 /* alloc_bootmem() doesn't like zero-sized allocations! */
371                 return;
372
373         // set up OS data structures to hold error info
374         IA64_LOG_ALLOCATE(sal_info_type, max_size);
375         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
376         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
377 }
378
379 /*
380  * ia64_log_get
381  *
382  *      Get the current MCA log from SAL and copy it into the OS log buffer.
383  *
384  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
385  *              irq_safe    whether you can use printk at this point
386  *  Outputs :   size        (total record length)
387  *              *buffer     (ptr to error record)
388  *
389  */
390 static u64
391 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
392 {
393         sal_log_record_header_t     *log_buffer;
394         u64                         total_len = 0;
395         unsigned long               s;
396
397         IA64_LOG_LOCK(sal_info_type);
398
399         /* Get the process state information */
400         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
401
402         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
403
404         if (total_len) {
405                 IA64_LOG_INDEX_INC(sal_info_type);
406                 IA64_LOG_UNLOCK(sal_info_type);
407                 if (irq_safe) {
408                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
409                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
410                 }
411                 *buffer = (u8 *) log_buffer;
412                 return total_len;
413         } else {
414                 IA64_LOG_UNLOCK(sal_info_type);
415                 return 0;
416         }
417 }
418
419 /*
420  *  ia64_mca_log_sal_error_record
421  *
422  *  This function retrieves a specified error record type from SAL
423  *  and wakes up any processes waiting for error records.
424  *
425  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
426  *              FIXME: remove MCA and irq_safe.
427  */
428 static void
429 ia64_mca_log_sal_error_record(int sal_info_type)
430 {
431         u8 *buffer;
432         sal_log_record_header_t *rh;
433         u64 size;
434         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
435 #ifdef IA64_MCA_DEBUG_INFO
436         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
437 #endif
438
439         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
440         if (!size)
441                 return;
442
443         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
444
445         if (irq_safe)
446                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
447                         smp_processor_id(),
448                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
449
450         /* Clear logs from corrected errors in case there's no user-level logger */
451         rh = (sal_log_record_header_t *)buffer;
452         if (rh->severity == sal_log_severity_corrected)
453                 ia64_sal_clear_state_info(sal_info_type);
454 }
455
456 /*
457  * search_mca_table
458  *  See if the MCA surfaced in an instruction range
459  *  that has been tagged as recoverable.
460  *
461  *  Inputs
462  *      first   First address range to check
463  *      last    Last address range to check
464  *      ip      Instruction pointer, address we are looking for
465  *
466  * Return value:
467  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
468  */
469 int
470 search_mca_table (const struct mca_table_entry *first,
471                 const struct mca_table_entry *last,
472                 unsigned long ip)
473 {
474         const struct mca_table_entry *curr;
475         u64 curr_start, curr_end;
476
477         curr = first;
478         while (curr <= last) {
479                 curr_start = (u64) &curr->start_addr + curr->start_addr;
480                 curr_end = (u64) &curr->end_addr + curr->end_addr;
481
482                 if ((ip >= curr_start) && (ip <= curr_end)) {
483                         return 1;
484                 }
485                 curr++;
486         }
487         return 0;
488 }
489
490 /* Given an address, look for it in the mca tables. */
491 int mca_recover_range(unsigned long addr)
492 {
493         extern struct mca_table_entry __start___mca_table[];
494         extern struct mca_table_entry __stop___mca_table[];
495
496         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
497 }
498 EXPORT_SYMBOL_GPL(mca_recover_range);
499
500 #ifdef CONFIG_ACPI
501
502 int cpe_vector = -1;
503 int ia64_cpe_irq = -1;
504
505 static irqreturn_t
506 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
507 {
508         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
509         static int              index;
510         static DEFINE_SPINLOCK(cpe_history_lock);
511
512         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
513                        __FUNCTION__, cpe_irq, smp_processor_id());
514
515         /* SAL spec states this should run w/ interrupts enabled */
516         local_irq_enable();
517
518         spin_lock(&cpe_history_lock);
519         if (!cpe_poll_enabled && cpe_vector >= 0) {
520
521                 int i, count = 1; /* we know 1 happened now */
522                 unsigned long now = jiffies;
523
524                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
525                         if (now - cpe_history[i] <= HZ)
526                                 count++;
527                 }
528
529                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
530                 if (count >= CPE_HISTORY_LENGTH) {
531
532                         cpe_poll_enabled = 1;
533                         spin_unlock(&cpe_history_lock);
534                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
535
536                         /*
537                          * Corrected errors will still be corrected, but
538                          * make sure there's a log somewhere that indicates
539                          * something is generating more than we can handle.
540                          */
541                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
542
543                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
544
545                         /* lock already released, get out now */
546                         goto out;
547                 } else {
548                         cpe_history[index++] = now;
549                         if (index == CPE_HISTORY_LENGTH)
550                                 index = 0;
551                 }
552         }
553         spin_unlock(&cpe_history_lock);
554 out:
555         /* Get the CPE error record and log it */
556         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
557
558         return IRQ_HANDLED;
559 }
560
561 #endif /* CONFIG_ACPI */
562
563 #ifdef CONFIG_ACPI
564 /*
565  * ia64_mca_register_cpev
566  *
567  *  Register the corrected platform error vector with SAL.
568  *
569  *  Inputs
570  *      cpev        Corrected Platform Error Vector number
571  *
572  *  Outputs
573  *      None
574  */
575 void
576 ia64_mca_register_cpev (int cpev)
577 {
578         /* Register the CPE interrupt vector with SAL */
579         struct ia64_sal_retval isrv;
580
581         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
582         if (isrv.status) {
583                 printk(KERN_ERR "Failed to register Corrected Platform "
584                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
585                 return;
586         }
587
588         IA64_MCA_DEBUG("%s: corrected platform error "
589                        "vector %#x registered\n", __FUNCTION__, cpev);
590 }
591 #endif /* CONFIG_ACPI */
592
593 /*
594  * ia64_mca_cmc_vector_setup
595  *
596  *  Setup the corrected machine check vector register in the processor.
597  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
598  *  This function is invoked on a per-processor basis.
599  *
600  * Inputs
601  *      None
602  *
603  * Outputs
604  *      None
605  */
606 void __cpuinit
607 ia64_mca_cmc_vector_setup (void)
608 {
609         cmcv_reg_t      cmcv;
610
611         cmcv.cmcv_regval        = 0;
612         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
613         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
614         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
615
616         IA64_MCA_DEBUG("%s: CPU %d corrected "
617                        "machine check vector %#x registered.\n",
618                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
619
620         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
621                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
622 }
623
624 /*
625  * ia64_mca_cmc_vector_disable
626  *
627  *  Mask the corrected machine check vector register in the processor.
628  *  This function is invoked on a per-processor basis.
629  *
630  * Inputs
631  *      dummy(unused)
632  *
633  * Outputs
634  *      None
635  */
636 static void
637 ia64_mca_cmc_vector_disable (void *dummy)
638 {
639         cmcv_reg_t      cmcv;
640
641         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
642
643         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
644         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
645
646         IA64_MCA_DEBUG("%s: CPU %d corrected "
647                        "machine check vector %#x disabled.\n",
648                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
649 }
650
651 /*
652  * ia64_mca_cmc_vector_enable
653  *
654  *  Unmask the corrected machine check vector register in the processor.
655  *  This function is invoked on a per-processor basis.
656  *
657  * Inputs
658  *      dummy(unused)
659  *
660  * Outputs
661  *      None
662  */
663 static void
664 ia64_mca_cmc_vector_enable (void *dummy)
665 {
666         cmcv_reg_t      cmcv;
667
668         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
669
670         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
671         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
672
673         IA64_MCA_DEBUG("%s: CPU %d corrected "
674                        "machine check vector %#x enabled.\n",
675                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
676 }
677
678 /*
679  * ia64_mca_cmc_vector_disable_keventd
680  *
681  * Called via keventd (smp_call_function() is not safe in interrupt context) to
682  * disable the cmc interrupt vector.
683  */
684 static void
685 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
686 {
687         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
688 }
689
690 /*
691  * ia64_mca_cmc_vector_enable_keventd
692  *
693  * Called via keventd (smp_call_function() is not safe in interrupt context) to
694  * enable the cmc interrupt vector.
695  */
696 static void
697 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
698 {
699         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
700 }
701
702 /*
703  * ia64_mca_wakeup
704  *
705  *      Send an inter-cpu interrupt to wake-up a particular cpu.
706  *
707  *  Inputs  :   cpuid
708  *  Outputs :   None
709  */
710 static void
711 ia64_mca_wakeup(int cpu)
712 {
713         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
714 }
715
716 /*
717  * ia64_mca_wakeup_all
718  *
719  *      Wakeup all the slave cpus which have rendez'ed previously.
720  *
721  *  Inputs  :   None
722  *  Outputs :   None
723  */
724 static void
725 ia64_mca_wakeup_all(void)
726 {
727         int cpu;
728
729         /* Clear the Rendez checkin flag for all cpus */
730         for_each_online_cpu(cpu) {
731                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
732                         ia64_mca_wakeup(cpu);
733         }
734
735 }
736
737 /*
738  * ia64_mca_rendez_interrupt_handler
739  *
740  *      This is handler used to put slave processors into spinloop
741  *      while the monarch processor does the mca handling and later
742  *      wake each slave up once the monarch is done.  The state
743  *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
744  *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
745  *      the cpu has come out of OS rendezvous.
746  *
747  *  Inputs  :   None
748  *  Outputs :   None
749  */
750 static irqreturn_t
751 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
752 {
753         unsigned long flags;
754         int cpu = smp_processor_id();
755         struct ia64_mca_notify_die nd =
756                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
757
758         /* Mask all interrupts */
759         local_irq_save(flags);
760         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
761                        (long)&nd, 0, 0) == NOTIFY_STOP)
762                 ia64_mca_spin(__FUNCTION__);
763
764         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
765         /* Register with the SAL monarch that the slave has
766          * reached SAL
767          */
768         ia64_sal_mc_rendez();
769
770         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
771                        (long)&nd, 0, 0) == NOTIFY_STOP)
772                 ia64_mca_spin(__FUNCTION__);
773
774         /* Wait for the monarch cpu to exit. */
775         while (monarch_cpu != -1)
776                cpu_relax();     /* spin until monarch leaves */
777
778         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
779                        (long)&nd, 0, 0) == NOTIFY_STOP)
780                 ia64_mca_spin(__FUNCTION__);
781
782         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
783         /* Enable all interrupts */
784         local_irq_restore(flags);
785         return IRQ_HANDLED;
786 }
787
788 /*
789  * ia64_mca_wakeup_int_handler
790  *
791  *      The interrupt handler for processing the inter-cpu interrupt to the
792  *      slave cpu which was spinning in the rendez loop.
793  *      Since this spinning is done by turning off the interrupts and
794  *      polling on the wakeup-interrupt bit in the IRR, there is
795  *      nothing useful to be done in the handler.
796  *
797  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
798  *      arg             (Interrupt handler specific argument)
799  *  Outputs :   None
800  *
801  */
802 static irqreturn_t
803 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
804 {
805         return IRQ_HANDLED;
806 }
807
808 /* Function pointer for extra MCA recovery */
809 int (*ia64_mca_ucmc_extension)
810         (void*,struct ia64_sal_os_state*)
811         = NULL;
812
813 int
814 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
815 {
816         if (ia64_mca_ucmc_extension)
817                 return 1;
818
819         ia64_mca_ucmc_extension = fn;
820         return 0;
821 }
822
823 void
824 ia64_unreg_MCA_extension(void)
825 {
826         if (ia64_mca_ucmc_extension)
827                 ia64_mca_ucmc_extension = NULL;
828 }
829
830 EXPORT_SYMBOL(ia64_reg_MCA_extension);
831 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
832
833
834 static inline void
835 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
836 {
837         u64 fslot, tslot, nat;
838         *tr = *fr;
839         fslot = ((unsigned long)fr >> 3) & 63;
840         tslot = ((unsigned long)tr >> 3) & 63;
841         *tnat &= ~(1UL << tslot);
842         nat = (fnat >> fslot) & 1;
843         *tnat |= (nat << tslot);
844 }
845
846 /* Change the comm field on the MCA/INT task to include the pid that
847  * was interrupted, it makes for easier debugging.  If that pid was 0
848  * (swapper or nested MCA/INIT) then use the start of the previous comm
849  * field suffixed with its cpu.
850  */
851
852 static void
853 ia64_mca_modify_comm(const struct task_struct *previous_current)
854 {
855         char *p, comm[sizeof(current->comm)];
856         if (previous_current->pid)
857                 snprintf(comm, sizeof(comm), "%s %d",
858                         current->comm, previous_current->pid);
859         else {
860                 int l;
861                 if ((p = strchr(previous_current->comm, ' ')))
862                         l = p - previous_current->comm;
863                 else
864                         l = strlen(previous_current->comm);
865                 snprintf(comm, sizeof(comm), "%s %*s %d",
866                         current->comm, l, previous_current->comm,
867                         task_thread_info(previous_current)->cpu);
868         }
869         memcpy(current->comm, comm, sizeof(current->comm));
870 }
871
872 /* On entry to this routine, we are running on the per cpu stack, see
873  * mca_asm.h.  The original stack has not been touched by this event.  Some of
874  * the original stack's registers will be in the RBS on this stack.  This stack
875  * also contains a partial pt_regs and switch_stack, the rest of the data is in
876  * PAL minstate.
877  *
878  * The first thing to do is modify the original stack to look like a blocked
879  * task so we can run backtrace on the original task.  Also mark the per cpu
880  * stack as current to ensure that we use the correct task state, it also means
881  * that we can do backtrace on the MCA/INIT handler code itself.
882  */
883
884 static struct task_struct *
885 ia64_mca_modify_original_stack(struct pt_regs *regs,
886                 const struct switch_stack *sw,
887                 struct ia64_sal_os_state *sos,
888                 const char *type)
889 {
890         char *p;
891         ia64_va va;
892         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
893         const pal_min_state_area_t *ms = sos->pal_min_state;
894         struct task_struct *previous_current;
895         struct pt_regs *old_regs;
896         struct switch_stack *old_sw;
897         unsigned size = sizeof(struct pt_regs) +
898                         sizeof(struct switch_stack) + 16;
899         u64 *old_bspstore, *old_bsp;
900         u64 *new_bspstore, *new_bsp;
901         u64 old_unat, old_rnat, new_rnat, nat;
902         u64 slots, loadrs = regs->loadrs;
903         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
904         u64 ar_bspstore = regs->ar_bspstore;
905         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
906         const u64 *bank;
907         const char *msg;
908         int cpu = smp_processor_id();
909
910         previous_current = curr_task(cpu);
911         set_curr_task(cpu, current);
912         if ((p = strchr(current->comm, ' ')))
913                 *p = '\0';
914
915         /* Best effort attempt to cope with MCA/INIT delivered while in
916          * physical mode.
917          */
918         regs->cr_ipsr = ms->pmsa_ipsr;
919         if (ia64_psr(regs)->dt == 0) {
920                 va.l = r12;
921                 if (va.f.reg == 0) {
922                         va.f.reg = 7;
923                         r12 = va.l;
924                 }
925                 va.l = r13;
926                 if (va.f.reg == 0) {
927                         va.f.reg = 7;
928                         r13 = va.l;
929                 }
930         }
931         if (ia64_psr(regs)->rt == 0) {
932                 va.l = ar_bspstore;
933                 if (va.f.reg == 0) {
934                         va.f.reg = 7;
935                         ar_bspstore = va.l;
936                 }
937                 va.l = ar_bsp;
938                 if (va.f.reg == 0) {
939                         va.f.reg = 7;
940                         ar_bsp = va.l;
941                 }
942         }
943
944         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
945          * have been copied to the old stack, the old stack may fail the
946          * validation tests below.  So ia64_old_stack() must restore the dirty
947          * registers from the new stack.  The old and new bspstore probably
948          * have different alignments, so loadrs calculated on the old bsp
949          * cannot be used to restore from the new bsp.  Calculate a suitable
950          * loadrs for the new stack and save it in the new pt_regs, where
951          * ia64_old_stack() can get it.
952          */
953         old_bspstore = (u64 *)ar_bspstore;
954         old_bsp = (u64 *)ar_bsp;
955         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
956         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
957         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
958         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
959
960         /* Verify the previous stack state before we change it */
961         if (user_mode(regs)) {
962                 msg = "occurred in user space";
963                 /* previous_current is guaranteed to be valid when the task was
964                  * in user space, so ...
965                  */
966                 ia64_mca_modify_comm(previous_current);
967                 goto no_mod;
968         }
969
970         if (r13 != sos->prev_IA64_KR_CURRENT) {
971                 msg = "inconsistent previous current and r13";
972                 goto no_mod;
973         }
974
975         if (!mca_recover_range(ms->pmsa_iip)) {
976                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
977                         msg = "inconsistent r12 and r13";
978                         goto no_mod;
979                 }
980                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
981                         msg = "inconsistent ar.bspstore and r13";
982                         goto no_mod;
983                 }
984                 va.p = old_bspstore;
985                 if (va.f.reg < 5) {
986                         msg = "old_bspstore is in the wrong region";
987                         goto no_mod;
988                 }
989                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
990                         msg = "inconsistent ar.bsp and r13";
991                         goto no_mod;
992                 }
993                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
994                 if (ar_bspstore + size > r12) {
995                         msg = "no room for blocked state";
996                         goto no_mod;
997                 }
998         }
999
1000         ia64_mca_modify_comm(previous_current);
1001
1002         /* Make the original task look blocked.  First stack a struct pt_regs,
1003          * describing the state at the time of interrupt.  mca_asm.S built a
1004          * partial pt_regs, copy it and fill in the blanks using minstate.
1005          */
1006         p = (char *)r12 - sizeof(*regs);
1007         old_regs = (struct pt_regs *)p;
1008         memcpy(old_regs, regs, sizeof(*regs));
1009         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1010          * pmsa_{xip,xpsr,xfs}
1011          */
1012         if (ia64_psr(regs)->ic) {
1013                 old_regs->cr_iip = ms->pmsa_iip;
1014                 old_regs->cr_ipsr = ms->pmsa_ipsr;
1015                 old_regs->cr_ifs = ms->pmsa_ifs;
1016         } else {
1017                 old_regs->cr_iip = ms->pmsa_xip;
1018                 old_regs->cr_ipsr = ms->pmsa_xpsr;
1019                 old_regs->cr_ifs = ms->pmsa_xfs;
1020         }
1021         old_regs->pr = ms->pmsa_pr;
1022         old_regs->b0 = ms->pmsa_br0;
1023         old_regs->loadrs = loadrs;
1024         old_regs->ar_rsc = ms->pmsa_rsc;
1025         old_unat = old_regs->ar_unat;
1026         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1027         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1028         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1029         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1030         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1031         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1032         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1033         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1034         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1035         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1036         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1037         if (ia64_psr(old_regs)->bn)
1038                 bank = ms->pmsa_bank1_gr;
1039         else
1040                 bank = ms->pmsa_bank0_gr;
1041         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1042         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1043         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1044         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1045         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1046         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1047         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1048         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1049         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1050         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1051         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1052         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1053         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1054         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1055         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1056         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1057
1058         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1059          * switch_stack, copy it and fill in the blanks using pt_regs and
1060          * minstate.
1061          *
1062          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1063          * ar.pfs is set to 0.
1064          *
1065          * unwind.c::unw_unwind() does special processing for interrupt frames.
1066          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1067          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1068          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1069          * switch_stack on the original stack so it will unwind correctly when
1070          * unwind.c reads pt_regs.
1071          *
1072          * thread.ksp is updated to point to the synthesized switch_stack.
1073          */
1074         p -= sizeof(struct switch_stack);
1075         old_sw = (struct switch_stack *)p;
1076         memcpy(old_sw, sw, sizeof(*sw));
1077         old_sw->caller_unat = old_unat;
1078         old_sw->ar_fpsr = old_regs->ar_fpsr;
1079         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1080         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1081         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1082         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1083         old_sw->b0 = (u64)ia64_leave_kernel;
1084         old_sw->b1 = ms->pmsa_br1;
1085         old_sw->ar_pfs = 0;
1086         old_sw->ar_unat = old_unat;
1087         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1088         previous_current->thread.ksp = (u64)p - 16;
1089
1090         /* Finally copy the original stack's registers back to its RBS.
1091          * Registers from ar.bspstore through ar.bsp at the time of the event
1092          * are in the current RBS, copy them back to the original stack.  The
1093          * copy must be done register by register because the original bspstore
1094          * and the current one have different alignments, so the saved RNAT
1095          * data occurs at different places.
1096          *
1097          * mca_asm does cover, so the old_bsp already includes all registers at
1098          * the time of MCA/INIT.  It also does flushrs, so all registers before
1099          * this function have been written to backing store on the MCA/INIT
1100          * stack.
1101          */
1102         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1103         old_rnat = regs->ar_rnat;
1104         while (slots--) {
1105                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1106                         new_rnat = ia64_get_rnat(new_bspstore++);
1107                 }
1108                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1109                         *old_bspstore++ = old_rnat;
1110                         old_rnat = 0;
1111                 }
1112                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1113                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1114                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1115                 *old_bspstore++ = *new_bspstore++;
1116         }
1117         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1118         old_sw->ar_rnat = old_rnat;
1119
1120         sos->prev_task = previous_current;
1121         return previous_current;
1122
1123 no_mod:
1124         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1125                         smp_processor_id(), type, msg);
1126         return previous_current;
1127 }
1128
1129 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1130  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1131  * not entered rendezvous yet then wait a bit.  The assumption is that any
1132  * slave that has not rendezvoused after a reasonable time is never going to do
1133  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1134  * interrupt, as well as cpus that receive the INIT slave event.
1135  */
1136
1137 static void
1138 ia64_wait_for_slaves(int monarch, const char *type)
1139 {
1140         int c, i , wait;
1141
1142         /*
1143          * wait 5 seconds total for slaves (arbitrary)
1144          */
1145         for (i = 0; i < 5000; i++) {
1146                 wait = 0;
1147                 for_each_online_cpu(c) {
1148                         if (c == monarch)
1149                                 continue;
1150                         if (ia64_mc_info.imi_rendez_checkin[c]
1151                                         == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1152                                 udelay(1000);           /* short wait */
1153                                 wait = 1;
1154                                 break;
1155                         }
1156                 }
1157                 if (!wait)
1158                         goto all_in;
1159         }
1160
1161         /*
1162          * Maybe slave(s) dead. Print buffered messages immediately.
1163          */
1164         ia64_mlogbuf_finish(0);
1165         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1166         for_each_online_cpu(c) {
1167                 if (c == monarch)
1168                         continue;
1169                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1170                         mprintk(" %d", c);
1171         }
1172         mprintk("\n");
1173         return;
1174
1175 all_in:
1176         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1177         return;
1178 }
1179
1180 /*
1181  * ia64_mca_handler
1182  *
1183  *      This is uncorrectable machine check handler called from OS_MCA
1184  *      dispatch code which is in turn called from SAL_CHECK().
1185  *      This is the place where the core of OS MCA handling is done.
1186  *      Right now the logs are extracted and displayed in a well-defined
1187  *      format. This handler code is supposed to be run only on the
1188  *      monarch processor. Once the monarch is done with MCA handling
1189  *      further MCA logging is enabled by clearing logs.
1190  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1191  *      slave processors out of rendezvous spinloop.
1192  *
1193  *      If multiple processors call into OS_MCA, the first will become
1194  *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1195  *      bitmask.  After the first monarch has processed its MCA, it
1196  *      will wake up the next cpu in the mca_cpu bitmask and then go
1197  *      into the rendezvous loop.  When all processors have serviced
1198  *      their MCA, the last monarch frees up the rest of the processors.
1199  */
1200 void
1201 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1202                  struct ia64_sal_os_state *sos)
1203 {
1204         int recover, cpu = smp_processor_id();
1205         struct task_struct *previous_current;
1206         struct ia64_mca_notify_die nd =
1207                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1208         static atomic_t mca_count;
1209         static cpumask_t mca_cpu;
1210
1211         if (atomic_add_return(1, &mca_count) == 1) {
1212                 monarch_cpu = cpu;
1213                 sos->monarch = 1;
1214         } else {
1215                 cpu_set(cpu, mca_cpu);
1216                 sos->monarch = 0;
1217         }
1218         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1219                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1220
1221         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1222
1223         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1224                         == NOTIFY_STOP)
1225                 ia64_mca_spin(__FUNCTION__);
1226
1227         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1228         if (sos->monarch) {
1229                 ia64_wait_for_slaves(cpu, "MCA");
1230
1231                 /* Wakeup all the processors which are spinning in the
1232                  * rendezvous loop.  They will leave SAL, then spin in the OS
1233                  * with interrupts disabled until this monarch cpu leaves the
1234                  * MCA handler.  That gets control back to the OS so we can
1235                  * backtrace the other cpus, backtrace when spinning in SAL
1236                  * does not work.
1237                  */
1238                 ia64_mca_wakeup_all();
1239                 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1240                                 == NOTIFY_STOP)
1241                         ia64_mca_spin(__FUNCTION__);
1242         } else {
1243                 while (cpu_isset(cpu, mca_cpu))
1244                         cpu_relax();    /* spin until monarch wakes us */
1245         }
1246
1247         /* Get the MCA error record and log it */
1248         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1249
1250         /* MCA error recovery */
1251         recover = (ia64_mca_ucmc_extension
1252                 && ia64_mca_ucmc_extension(
1253                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1254                         sos));
1255
1256         if (recover) {
1257                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1258                 rh->severity = sal_log_severity_corrected;
1259                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1260                 sos->os_status = IA64_MCA_CORRECTED;
1261         } else {
1262                 /* Dump buffered message to console */
1263                 ia64_mlogbuf_finish(1);
1264 #ifdef CONFIG_KEXEC
1265                 atomic_set(&kdump_in_progress, 1);
1266                 monarch_cpu = -1;
1267 #endif
1268         }
1269         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1270                         == NOTIFY_STOP)
1271                 ia64_mca_spin(__FUNCTION__);
1272
1273
1274         if (atomic_dec_return(&mca_count) > 0) {
1275                 int i;
1276
1277                 /* wake up the next monarch cpu,
1278                  * and put this cpu in the rendez loop.
1279                  */
1280                 for_each_online_cpu(i) {
1281                         if (cpu_isset(i, mca_cpu)) {
1282                                 monarch_cpu = i;
1283                                 cpu_clear(i, mca_cpu);  /* wake next cpu */
1284                                 while (monarch_cpu != -1)
1285                                         cpu_relax();    /* spin until last cpu leaves */
1286                                 set_curr_task(cpu, previous_current);
1287                                 ia64_mc_info.imi_rendez_checkin[cpu]
1288                                                 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1289                                 return;
1290                         }
1291                 }
1292         }
1293         set_curr_task(cpu, previous_current);
1294         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1295         monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1296 }
1297
1298 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1299 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1300
1301 /*
1302  * ia64_mca_cmc_int_handler
1303  *
1304  *  This is corrected machine check interrupt handler.
1305  *      Right now the logs are extracted and displayed in a well-defined
1306  *      format.
1307  *
1308  * Inputs
1309  *      interrupt number
1310  *      client data arg ptr
1311  *
1312  * Outputs
1313  *      None
1314  */
1315 static irqreturn_t
1316 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1317 {
1318         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1319         static int              index;
1320         static DEFINE_SPINLOCK(cmc_history_lock);
1321
1322         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1323                        __FUNCTION__, cmc_irq, smp_processor_id());
1324
1325         /* SAL spec states this should run w/ interrupts enabled */
1326         local_irq_enable();
1327
1328         spin_lock(&cmc_history_lock);
1329         if (!cmc_polling_enabled) {
1330                 int i, count = 1; /* we know 1 happened now */
1331                 unsigned long now = jiffies;
1332
1333                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1334                         if (now - cmc_history[i] <= HZ)
1335                                 count++;
1336                 }
1337
1338                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1339                 if (count >= CMC_HISTORY_LENGTH) {
1340
1341                         cmc_polling_enabled = 1;
1342                         spin_unlock(&cmc_history_lock);
1343                         /* If we're being hit with CMC interrupts, we won't
1344                          * ever execute the schedule_work() below.  Need to
1345                          * disable CMC interrupts on this processor now.
1346                          */
1347                         ia64_mca_cmc_vector_disable(NULL);
1348                         schedule_work(&cmc_disable_work);
1349
1350                         /*
1351                          * Corrected errors will still be corrected, but
1352                          * make sure there's a log somewhere that indicates
1353                          * something is generating more than we can handle.
1354                          */
1355                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1356
1357                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1358
1359                         /* lock already released, get out now */
1360                         goto out;
1361                 } else {
1362                         cmc_history[index++] = now;
1363                         if (index == CMC_HISTORY_LENGTH)
1364                                 index = 0;
1365                 }
1366         }
1367         spin_unlock(&cmc_history_lock);
1368 out:
1369         /* Get the CMC error record and log it */
1370         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1371
1372         return IRQ_HANDLED;
1373 }
1374
1375 /*
1376  *  ia64_mca_cmc_int_caller
1377  *
1378  *      Triggered by sw interrupt from CMC polling routine.  Calls
1379  *      real interrupt handler and either triggers a sw interrupt
1380  *      on the next cpu or does cleanup at the end.
1381  *
1382  * Inputs
1383  *      interrupt number
1384  *      client data arg ptr
1385  * Outputs
1386  *      handled
1387  */
1388 static irqreturn_t
1389 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1390 {
1391         static int start_count = -1;
1392         unsigned int cpuid;
1393
1394         cpuid = smp_processor_id();
1395
1396         /* If first cpu, update count */
1397         if (start_count == -1)
1398                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1399
1400         ia64_mca_cmc_int_handler(cmc_irq, arg);
1401
1402         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1403
1404         if (cpuid < NR_CPUS) {
1405                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1406         } else {
1407                 /* If no log record, switch out of polling mode */
1408                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1409
1410                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1411                         schedule_work(&cmc_enable_work);
1412                         cmc_polling_enabled = 0;
1413
1414                 } else {
1415
1416                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1417                 }
1418
1419                 start_count = -1;
1420         }
1421
1422         return IRQ_HANDLED;
1423 }
1424
1425 /*
1426  *  ia64_mca_cmc_poll
1427  *
1428  *      Poll for Corrected Machine Checks (CMCs)
1429  *
1430  * Inputs   :   dummy(unused)
1431  * Outputs  :   None
1432  *
1433  */
1434 static void
1435 ia64_mca_cmc_poll (unsigned long dummy)
1436 {
1437         /* Trigger a CMC interrupt cascade  */
1438         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1439 }
1440
1441 /*
1442  *  ia64_mca_cpe_int_caller
1443  *
1444  *      Triggered by sw interrupt from CPE polling routine.  Calls
1445  *      real interrupt handler and either triggers a sw interrupt
1446  *      on the next cpu or does cleanup at the end.
1447  *
1448  * Inputs
1449  *      interrupt number
1450  *      client data arg ptr
1451  * Outputs
1452  *      handled
1453  */
1454 #ifdef CONFIG_ACPI
1455
1456 static irqreturn_t
1457 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1458 {
1459         static int start_count = -1;
1460         static int poll_time = MIN_CPE_POLL_INTERVAL;
1461         unsigned int cpuid;
1462
1463         cpuid = smp_processor_id();
1464
1465         /* If first cpu, update count */
1466         if (start_count == -1)
1467                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1468
1469         ia64_mca_cpe_int_handler(cpe_irq, arg);
1470
1471         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1472
1473         if (cpuid < NR_CPUS) {
1474                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1475         } else {
1476                 /*
1477                  * If a log was recorded, increase our polling frequency,
1478                  * otherwise, backoff or return to interrupt mode.
1479                  */
1480                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1481                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1482                 } else if (cpe_vector < 0) {
1483                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1484                 } else {
1485                         poll_time = MIN_CPE_POLL_INTERVAL;
1486
1487                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1488                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1489                         cpe_poll_enabled = 0;
1490                 }
1491
1492                 if (cpe_poll_enabled)
1493                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1494                 start_count = -1;
1495         }
1496
1497         return IRQ_HANDLED;
1498 }
1499
1500 /*
1501  *  ia64_mca_cpe_poll
1502  *
1503  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1504  *      on first cpu, from there it will trickle through all the cpus.
1505  *
1506  * Inputs   :   dummy(unused)
1507  * Outputs  :   None
1508  *
1509  */
1510 static void
1511 ia64_mca_cpe_poll (unsigned long dummy)
1512 {
1513         /* Trigger a CPE interrupt cascade  */
1514         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1515 }
1516
1517 #endif /* CONFIG_ACPI */
1518
1519 static int
1520 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1521 {
1522         int c;
1523         struct task_struct *g, *t;
1524         if (val != DIE_INIT_MONARCH_PROCESS)
1525                 return NOTIFY_DONE;
1526 #ifdef CONFIG_KEXEC
1527         if (atomic_read(&kdump_in_progress))
1528                 return NOTIFY_DONE;
1529 #endif
1530
1531         /*
1532          * FIXME: mlogbuf will brim over with INIT stack dumps.
1533          * To enable show_stack from INIT, we use oops_in_progress which should
1534          * be used in real oops. This would cause something wrong after INIT.
1535          */
1536         BREAK_LOGLEVEL(console_loglevel);
1537         ia64_mlogbuf_dump_from_init();
1538
1539         printk(KERN_ERR "Processes interrupted by INIT -");
1540         for_each_online_cpu(c) {
1541                 struct ia64_sal_os_state *s;
1542                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1543                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1544                 g = s->prev_task;
1545                 if (g) {
1546                         if (g->pid)
1547                                 printk(" %d", g->pid);
1548                         else
1549                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1550                 }
1551         }
1552         printk("\n\n");
1553         if (read_trylock(&tasklist_lock)) {
1554                 do_each_thread (g, t) {
1555                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1556                         show_stack(t, NULL);
1557                 } while_each_thread (g, t);
1558                 read_unlock(&tasklist_lock);
1559         }
1560         /* FIXME: This will not restore zapped printk locks. */
1561         RESTORE_LOGLEVEL(console_loglevel);
1562         return NOTIFY_DONE;
1563 }
1564
1565 /*
1566  * C portion of the OS INIT handler
1567  *
1568  * Called from ia64_os_init_dispatch
1569  *
1570  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1571  * this event.  This code is used for both monarch and slave INIT events, see
1572  * sos->monarch.
1573  *
1574  * All INIT events switch to the INIT stack and change the previous process to
1575  * blocked status.  If one of the INIT events is the monarch then we are
1576  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1577  * the processes.  The slave INIT events all spin until the monarch cpu
1578  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1579  * process is the monarch.
1580  */
1581
1582 void
1583 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1584                   struct ia64_sal_os_state *sos)
1585 {
1586         static atomic_t slaves;
1587         static atomic_t monarchs;
1588         struct task_struct *previous_current;
1589         int cpu = smp_processor_id();
1590         struct ia64_mca_notify_die nd =
1591                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1592
1593         (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1594
1595         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1596                 sos->proc_state_param, cpu, sos->monarch);
1597         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1598
1599         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1600         sos->os_status = IA64_INIT_RESUME;
1601
1602         /* FIXME: Workaround for broken proms that drive all INIT events as
1603          * slaves.  The last slave that enters is promoted to be a monarch.
1604          * Remove this code in September 2006, that gives platforms a year to
1605          * fix their proms and get their customers updated.
1606          */
1607         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1608                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1609                        __FUNCTION__, cpu);
1610                 atomic_dec(&slaves);
1611                 sos->monarch = 1;
1612         }
1613
1614         /* FIXME: Workaround for broken proms that drive all INIT events as
1615          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1616          * Remove this code in September 2006, that gives platforms a year to
1617          * fix their proms and get their customers updated.
1618          */
1619         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1620                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1621                                __FUNCTION__, cpu);
1622                 atomic_dec(&monarchs);
1623                 sos->monarch = 0;
1624         }
1625
1626         if (!sos->monarch) {
1627                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1628                 while (monarch_cpu == -1)
1629                        cpu_relax();     /* spin until monarch enters */
1630                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1631                                 == NOTIFY_STOP)
1632                         ia64_mca_spin(__FUNCTION__);
1633                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1634                                 == NOTIFY_STOP)
1635                         ia64_mca_spin(__FUNCTION__);
1636                 while (monarch_cpu != -1)
1637                        cpu_relax();     /* spin until monarch leaves */
1638                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1639                                 == NOTIFY_STOP)
1640                         ia64_mca_spin(__FUNCTION__);
1641                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1642                 set_curr_task(cpu, previous_current);
1643                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1644                 atomic_dec(&slaves);
1645                 return;
1646         }
1647
1648         monarch_cpu = cpu;
1649         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1650                         == NOTIFY_STOP)
1651                 ia64_mca_spin(__FUNCTION__);
1652
1653         /*
1654          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1655          * generated via the BMC's command-line interface, but since the console is on the
1656          * same serial line, the user will need some time to switch out of the BMC before
1657          * the dump begins.
1658          */
1659         mprintk("Delaying for 5 seconds...\n");
1660         udelay(5*1000000);
1661         ia64_wait_for_slaves(cpu, "INIT");
1662         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1663          * to default_monarch_init_process() above and just print all the
1664          * tasks.
1665          */
1666         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1667                         == NOTIFY_STOP)
1668                 ia64_mca_spin(__FUNCTION__);
1669         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1670                         == NOTIFY_STOP)
1671                 ia64_mca_spin(__FUNCTION__);
1672         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1673         atomic_dec(&monarchs);
1674         set_curr_task(cpu, previous_current);
1675         monarch_cpu = -1;
1676         return;
1677 }
1678
1679 static int __init
1680 ia64_mca_disable_cpe_polling(char *str)
1681 {
1682         cpe_poll_enabled = 0;
1683         return 1;
1684 }
1685
1686 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1687
1688 static struct irqaction cmci_irqaction = {
1689         .handler =      ia64_mca_cmc_int_handler,
1690         .flags =        IRQF_DISABLED,
1691         .name =         "cmc_hndlr"
1692 };
1693
1694 static struct irqaction cmcp_irqaction = {
1695         .handler =      ia64_mca_cmc_int_caller,
1696         .flags =        IRQF_DISABLED,
1697         .name =         "cmc_poll"
1698 };
1699
1700 static struct irqaction mca_rdzv_irqaction = {
1701         .handler =      ia64_mca_rendez_int_handler,
1702         .flags =        IRQF_DISABLED,
1703         .name =         "mca_rdzv"
1704 };
1705
1706 static struct irqaction mca_wkup_irqaction = {
1707         .handler =      ia64_mca_wakeup_int_handler,
1708         .flags =        IRQF_DISABLED,
1709         .name =         "mca_wkup"
1710 };
1711
1712 #ifdef CONFIG_ACPI
1713 static struct irqaction mca_cpe_irqaction = {
1714         .handler =      ia64_mca_cpe_int_handler,
1715         .flags =        IRQF_DISABLED,
1716         .name =         "cpe_hndlr"
1717 };
1718
1719 static struct irqaction mca_cpep_irqaction = {
1720         .handler =      ia64_mca_cpe_int_caller,
1721         .flags =        IRQF_DISABLED,
1722         .name =         "cpe_poll"
1723 };
1724 #endif /* CONFIG_ACPI */
1725
1726 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1727  * these stacks can never sleep, they cannot return from the kernel to user
1728  * space, they do not appear in a normal ps listing.  So there is no need to
1729  * format most of the fields.
1730  */
1731
1732 static void __cpuinit
1733 format_mca_init_stack(void *mca_data, unsigned long offset,
1734                 const char *type, int cpu)
1735 {
1736         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1737         struct thread_info *ti;
1738         memset(p, 0, KERNEL_STACK_SIZE);
1739         ti = task_thread_info(p);
1740         ti->flags = _TIF_MCA_INIT;
1741         ti->preempt_count = 1;
1742         ti->task = p;
1743         ti->cpu = cpu;
1744         p->stack = ti;
1745         p->state = TASK_UNINTERRUPTIBLE;
1746         cpu_set(cpu, p->cpus_allowed);
1747         INIT_LIST_HEAD(&p->tasks);
1748         p->parent = p->real_parent = p->group_leader = p;
1749         INIT_LIST_HEAD(&p->children);
1750         INIT_LIST_HEAD(&p->sibling);
1751         strncpy(p->comm, type, sizeof(p->comm)-1);
1752 }
1753
1754 /* Caller prevents this from being called after init */
1755 static void * __init_refok mca_bootmem(void)
1756 {
1757         void *p;
1758
1759         p = alloc_bootmem(sizeof(struct ia64_mca_cpu) * NR_CPUS +
1760                           KERNEL_STACK_SIZE);
1761         return (void *)ALIGN((unsigned long)p, KERNEL_STACK_SIZE);
1762 }
1763
1764 /* Do per-CPU MCA-related initialization.  */
1765 void __cpuinit
1766 ia64_mca_cpu_init(void *cpu_data)
1767 {
1768         void *pal_vaddr;
1769         static int first_time = 1;
1770
1771         if (first_time) {
1772                 void *mca_data;
1773                 int cpu;
1774
1775                 first_time = 0;
1776                 mca_data = mca_bootmem();
1777                 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1778                         format_mca_init_stack(mca_data,
1779                                         offsetof(struct ia64_mca_cpu, mca_stack),
1780                                         "MCA", cpu);
1781                         format_mca_init_stack(mca_data,
1782                                         offsetof(struct ia64_mca_cpu, init_stack),
1783                                         "INIT", cpu);
1784                         __per_cpu_mca[cpu] = __pa(mca_data);
1785                         mca_data += sizeof(struct ia64_mca_cpu);
1786                 }
1787         }
1788
1789         /*
1790          * The MCA info structure was allocated earlier and its
1791          * physical address saved in __per_cpu_mca[cpu].  Copy that
1792          * address * to ia64_mca_data so we can access it as a per-CPU
1793          * variable.
1794          */
1795         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1796
1797         /*
1798          * Stash away a copy of the PTE needed to map the per-CPU page.
1799          * We may need it during MCA recovery.
1800          */
1801         __get_cpu_var(ia64_mca_per_cpu_pte) =
1802                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1803
1804         /*
1805          * Also, stash away a copy of the PAL address and the PTE
1806          * needed to map it.
1807          */
1808         pal_vaddr = efi_get_pal_addr();
1809         if (!pal_vaddr)
1810                 return;
1811         __get_cpu_var(ia64_mca_pal_base) =
1812                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1813         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1814                                                               PAGE_KERNEL));
1815 }
1816
1817 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1818 {
1819         unsigned long flags;
1820
1821         local_irq_save(flags);
1822         if (!cmc_polling_enabled)
1823                 ia64_mca_cmc_vector_enable(NULL);
1824         local_irq_restore(flags);
1825 }
1826
1827 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1828                                       unsigned long action,
1829                                       void *hcpu)
1830 {
1831         int hotcpu = (unsigned long) hcpu;
1832
1833         switch (action) {
1834         case CPU_ONLINE:
1835         case CPU_ONLINE_FROZEN:
1836                 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1837                                          NULL, 1, 0);
1838                 break;
1839         }
1840         return NOTIFY_OK;
1841 }
1842
1843 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1844         .notifier_call = mca_cpu_callback
1845 };
1846
1847 /*
1848  * ia64_mca_init
1849  *
1850  *  Do all the system level mca specific initialization.
1851  *
1852  *      1. Register spinloop and wakeup request interrupt vectors
1853  *
1854  *      2. Register OS_MCA handler entry point
1855  *
1856  *      3. Register OS_INIT handler entry point
1857  *
1858  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1859  *
1860  *  Note that this initialization is done very early before some kernel
1861  *  services are available.
1862  *
1863  *  Inputs  :   None
1864  *
1865  *  Outputs :   None
1866  */
1867 void __init
1868 ia64_mca_init(void)
1869 {
1870         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1871         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1872         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1873         int i;
1874         s64 rc;
1875         struct ia64_sal_retval isrv;
1876         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1877         static struct notifier_block default_init_monarch_nb = {
1878                 .notifier_call = default_monarch_init_process,
1879                 .priority = 0/* we need to notified last */
1880         };
1881
1882         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1883
1884         /* Clear the Rendez checkin flag for all cpus */
1885         for(i = 0 ; i < NR_CPUS; i++)
1886                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1887
1888         /*
1889          * Register the rendezvous spinloop and wakeup mechanism with SAL
1890          */
1891
1892         /* Register the rendezvous interrupt vector with SAL */
1893         while (1) {
1894                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1895                                               SAL_MC_PARAM_MECHANISM_INT,
1896                                               IA64_MCA_RENDEZ_VECTOR,
1897                                               timeout,
1898                                               SAL_MC_PARAM_RZ_ALWAYS);
1899                 rc = isrv.status;
1900                 if (rc == 0)
1901                         break;
1902                 if (rc == -2) {
1903                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1904                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1905                         timeout = isrv.v0;
1906                         (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1907                         continue;
1908                 }
1909                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1910                        "with SAL (status %ld)\n", rc);
1911                 return;
1912         }
1913
1914         /* Register the wakeup interrupt vector with SAL */
1915         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1916                                       SAL_MC_PARAM_MECHANISM_INT,
1917                                       IA64_MCA_WAKEUP_VECTOR,
1918                                       0, 0);
1919         rc = isrv.status;
1920         if (rc) {
1921                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1922                        "(status %ld)\n", rc);
1923                 return;
1924         }
1925
1926         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1927
1928         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1929         /*
1930          * XXX - disable SAL checksum by setting size to 0; should be
1931          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1932          */
1933         ia64_mc_info.imi_mca_handler_size       = 0;
1934
1935         /* Register the os mca handler with SAL */
1936         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1937                                        ia64_mc_info.imi_mca_handler,
1938                                        ia64_tpa(mca_hldlr_ptr->gp),
1939                                        ia64_mc_info.imi_mca_handler_size,
1940                                        0, 0, 0)))
1941         {
1942                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1943                        "(status %ld)\n", rc);
1944                 return;
1945         }
1946
1947         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1948                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1949
1950         /*
1951          * XXX - disable SAL checksum by setting size to 0, should be
1952          * size of the actual init handler in mca_asm.S.
1953          */
1954         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1955         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1956         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1957         ia64_mc_info.imi_slave_init_handler_size        = 0;
1958
1959         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1960                        ia64_mc_info.imi_monarch_init_handler);
1961
1962         /* Register the os init handler with SAL */
1963         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1964                                        ia64_mc_info.imi_monarch_init_handler,
1965                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1966                                        ia64_mc_info.imi_monarch_init_handler_size,
1967                                        ia64_mc_info.imi_slave_init_handler,
1968                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1969                                        ia64_mc_info.imi_slave_init_handler_size)))
1970         {
1971                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1972                        "(status %ld)\n", rc);
1973                 return;
1974         }
1975         if (register_die_notifier(&default_init_monarch_nb)) {
1976                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1977                 return;
1978         }
1979
1980         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1981
1982         /*
1983          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1984          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1985          */
1986         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1987         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1988         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
1989
1990         /* Setup the MCA rendezvous interrupt vector */
1991         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1992
1993         /* Setup the MCA wakeup interrupt vector */
1994         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1995
1996 #ifdef CONFIG_ACPI
1997         /* Setup the CPEI/P handler */
1998         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1999 #endif
2000
2001         /* Initialize the areas set aside by the OS to buffer the
2002          * platform/processor error states for MCA/INIT/CMC
2003          * handling.
2004          */
2005         ia64_log_init(SAL_INFO_TYPE_MCA);
2006         ia64_log_init(SAL_INFO_TYPE_INIT);
2007         ia64_log_init(SAL_INFO_TYPE_CMC);
2008         ia64_log_init(SAL_INFO_TYPE_CPE);
2009
2010         mca_init = 1;
2011         printk(KERN_INFO "MCA related initialization done\n");
2012 }
2013
2014 /*
2015  * ia64_mca_late_init
2016  *
2017  *      Opportunity to setup things that require initialization later
2018  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2019  *      platform doesn't support an interrupt driven mechanism.
2020  *
2021  *  Inputs  :   None
2022  *  Outputs :   Status
2023  */
2024 static int __init
2025 ia64_mca_late_init(void)
2026 {
2027         if (!mca_init)
2028                 return 0;
2029
2030         register_hotcpu_notifier(&mca_cpu_notifier);
2031
2032         /* Setup the CMCI/P vector and handler */
2033         init_timer(&cmc_poll_timer);
2034         cmc_poll_timer.function = ia64_mca_cmc_poll;
2035
2036         /* Unmask/enable the vector */
2037         cmc_polling_enabled = 0;
2038         schedule_work(&cmc_enable_work);
2039
2040         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
2041
2042 #ifdef CONFIG_ACPI
2043         /* Setup the CPEI/P vector and handler */
2044         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2045         init_timer(&cpe_poll_timer);
2046         cpe_poll_timer.function = ia64_mca_cpe_poll;
2047
2048         {
2049                 irq_desc_t *desc;
2050                 unsigned int irq;
2051
2052                 if (cpe_vector >= 0) {
2053                         /* If platform supports CPEI, enable the irq. */
2054                         irq = local_vector_to_irq(cpe_vector);
2055                         if (irq > 0) {
2056                                 cpe_poll_enabled = 0;
2057                                 desc = irq_desc + irq;
2058                                 desc->status |= IRQ_PER_CPU;
2059                                 setup_irq(irq, &mca_cpe_irqaction);
2060                                 ia64_cpe_irq = irq;
2061                                 ia64_mca_register_cpev(cpe_vector);
2062                                 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2063                                         __FUNCTION__);
2064                                 return 0;
2065                         }
2066                         printk(KERN_ERR "%s: Failed to find irq for CPE "
2067                                         "interrupt handler, vector %d\n",
2068                                         __FUNCTION__, cpe_vector);
2069                 }
2070                 /* If platform doesn't support CPEI, get the timer going. */
2071                 if (cpe_poll_enabled) {
2072                         ia64_mca_cpe_poll(0UL);
2073                         IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
2074                 }
2075         }
2076 #endif
2077
2078         return 0;
2079 }
2080
2081 device_initcall(ia64_mca_late_init);