]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/powerpc/mm/mem.c
page flags: handle PG_uncached like all other flags
[linux-2.6-omap-h63xx.git] / arch / powerpc / mm / mem.c
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/stddef.h>
28 #include <linux/init.h>
29 #include <linux/bootmem.h>
30 #include <linux/highmem.h>
31 #include <linux/initrd.h>
32 #include <linux/pagemap.h>
33 #include <linux/suspend.h>
34 #include <linux/lmb.h>
35
36 #include <asm/pgalloc.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/smp.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
45 #include <asm/tlb.h>
46 #include <asm/sections.h>
47 #include <asm/vdso.h>
48 #include <asm/fixmap.h>
49
50 #include "mmu_decl.h"
51
52 #ifndef CPU_FTR_COHERENT_ICACHE
53 #define CPU_FTR_COHERENT_ICACHE 0       /* XXX for now */
54 #define CPU_FTR_NOEXECUTE       0
55 #endif
56
57 int init_bootmem_done;
58 int mem_init_done;
59 unsigned long memory_limit;
60
61 #ifdef CONFIG_HIGHMEM
62 pte_t *kmap_pte;
63 pgprot_t kmap_prot;
64
65 EXPORT_SYMBOL(kmap_prot);
66 EXPORT_SYMBOL(kmap_pte);
67
68 static inline pte_t *virt_to_kpte(unsigned long vaddr)
69 {
70         return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr),
71                         vaddr), vaddr), vaddr);
72 }
73 #endif
74
75 int page_is_ram(unsigned long pfn)
76 {
77         unsigned long paddr = (pfn << PAGE_SHIFT);
78
79 #ifndef CONFIG_PPC64    /* XXX for now */
80         return paddr < __pa(high_memory);
81 #else
82         int i;
83         for (i=0; i < lmb.memory.cnt; i++) {
84                 unsigned long base;
85
86                 base = lmb.memory.region[i].base;
87
88                 if ((paddr >= base) &&
89                         (paddr < (base + lmb.memory.region[i].size))) {
90                         return 1;
91                 }
92         }
93
94         return 0;
95 #endif
96 }
97
98 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
99                               unsigned long size, pgprot_t vma_prot)
100 {
101         if (ppc_md.phys_mem_access_prot)
102                 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
103
104         if (!page_is_ram(pfn))
105                 vma_prot = __pgprot(pgprot_val(vma_prot)
106                                     | _PAGE_GUARDED | _PAGE_NO_CACHE);
107         return vma_prot;
108 }
109 EXPORT_SYMBOL(phys_mem_access_prot);
110
111 #ifdef CONFIG_MEMORY_HOTPLUG
112
113 #ifdef CONFIG_NUMA
114 int memory_add_physaddr_to_nid(u64 start)
115 {
116         return hot_add_scn_to_nid(start);
117 }
118 #endif
119
120 int arch_add_memory(int nid, u64 start, u64 size)
121 {
122         struct pglist_data *pgdata;
123         struct zone *zone;
124         unsigned long start_pfn = start >> PAGE_SHIFT;
125         unsigned long nr_pages = size >> PAGE_SHIFT;
126
127         pgdata = NODE_DATA(nid);
128
129         start = (unsigned long)__va(start);
130         create_section_mapping(start, start + size);
131
132         /* this should work for most non-highmem platforms */
133         zone = pgdata->node_zones;
134
135         return __add_pages(zone, start_pfn, nr_pages);
136 }
137
138 #ifdef CONFIG_MEMORY_HOTREMOVE
139 int remove_memory(u64 start, u64 size)
140 {
141         unsigned long start_pfn, end_pfn;
142         int ret;
143
144         start_pfn = start >> PAGE_SHIFT;
145         end_pfn = start_pfn + (size >> PAGE_SHIFT);
146         ret = offline_pages(start_pfn, end_pfn, 120 * HZ);
147         if (ret)
148                 goto out;
149         /* Arch-specific calls go here - next patch */
150 out:
151         return ret;
152 }
153 #endif /* CONFIG_MEMORY_HOTREMOVE */
154
155 /*
156  * walk_memory_resource() needs to make sure there is no holes in a given
157  * memory range. On PPC64, since this range comes from /sysfs, the range
158  * is guaranteed to be valid, non-overlapping and can not contain any
159  * holes. By the time we get here (memory add or remove), /proc/device-tree
160  * is updated and correct. Only reason we need to check against device-tree
161  * would be if we allow user-land to specify a memory range through a
162  * system call/ioctl etc. instead of doing offline/online through /sysfs.
163  */
164 int
165 walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg,
166                         int (*func)(unsigned long, unsigned long, void *))
167 {
168         return  (*func)(start_pfn, nr_pages, arg);
169 }
170
171 #endif /* CONFIG_MEMORY_HOTPLUG */
172
173 void show_mem(void)
174 {
175         unsigned long total = 0, reserved = 0;
176         unsigned long shared = 0, cached = 0;
177         unsigned long highmem = 0;
178         struct page *page;
179         pg_data_t *pgdat;
180         unsigned long i;
181
182         printk("Mem-info:\n");
183         show_free_areas();
184         for_each_online_pgdat(pgdat) {
185                 unsigned long flags;
186                 pgdat_resize_lock(pgdat, &flags);
187                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
188                         if (!pfn_valid(pgdat->node_start_pfn + i))
189                                 continue;
190                         page = pgdat_page_nr(pgdat, i);
191                         total++;
192                         if (PageHighMem(page))
193                                 highmem++;
194                         if (PageReserved(page))
195                                 reserved++;
196                         else if (PageSwapCache(page))
197                                 cached++;
198                         else if (page_count(page))
199                                 shared += page_count(page) - 1;
200                 }
201                 pgdat_resize_unlock(pgdat, &flags);
202         }
203         printk("%ld pages of RAM\n", total);
204 #ifdef CONFIG_HIGHMEM
205         printk("%ld pages of HIGHMEM\n", highmem);
206 #endif
207         printk("%ld reserved pages\n", reserved);
208         printk("%ld pages shared\n", shared);
209         printk("%ld pages swap cached\n", cached);
210 }
211
212 /*
213  * Initialize the bootmem system and give it all the memory we
214  * have available.  If we are using highmem, we only put the
215  * lowmem into the bootmem system.
216  */
217 #ifndef CONFIG_NEED_MULTIPLE_NODES
218 void __init do_init_bootmem(void)
219 {
220         unsigned long i;
221         unsigned long start, bootmap_pages;
222         unsigned long total_pages;
223         int boot_mapsize;
224
225         max_low_pfn = max_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
226         total_pages = (lmb_end_of_DRAM() - memstart_addr) >> PAGE_SHIFT;
227 #ifdef CONFIG_HIGHMEM
228         total_pages = total_lowmem >> PAGE_SHIFT;
229         max_low_pfn = lowmem_end_addr >> PAGE_SHIFT;
230 #endif
231
232         /*
233          * Find an area to use for the bootmem bitmap.  Calculate the size of
234          * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
235          * Add 1 additional page in case the address isn't page-aligned.
236          */
237         bootmap_pages = bootmem_bootmap_pages(total_pages);
238
239         start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
240
241         min_low_pfn = MEMORY_START >> PAGE_SHIFT;
242         boot_mapsize = init_bootmem_node(NODE_DATA(0), start >> PAGE_SHIFT, min_low_pfn, max_low_pfn);
243
244         /* Add active regions with valid PFNs */
245         for (i = 0; i < lmb.memory.cnt; i++) {
246                 unsigned long start_pfn, end_pfn;
247                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
248                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
249                 add_active_range(0, start_pfn, end_pfn);
250         }
251
252         /* Add all physical memory to the bootmem map, mark each area
253          * present.
254          */
255 #ifdef CONFIG_HIGHMEM
256         free_bootmem_with_active_regions(0, lowmem_end_addr >> PAGE_SHIFT);
257
258         /* reserve the sections we're already using */
259         for (i = 0; i < lmb.reserved.cnt; i++) {
260                 unsigned long addr = lmb.reserved.region[i].base +
261                                      lmb_size_bytes(&lmb.reserved, i) - 1;
262                 if (addr < lowmem_end_addr)
263                         reserve_bootmem(lmb.reserved.region[i].base,
264                                         lmb_size_bytes(&lmb.reserved, i),
265                                         BOOTMEM_DEFAULT);
266                 else if (lmb.reserved.region[i].base < lowmem_end_addr) {
267                         unsigned long adjusted_size = lowmem_end_addr -
268                                       lmb.reserved.region[i].base;
269                         reserve_bootmem(lmb.reserved.region[i].base,
270                                         adjusted_size, BOOTMEM_DEFAULT);
271                 }
272         }
273 #else
274         free_bootmem_with_active_regions(0, max_pfn);
275
276         /* reserve the sections we're already using */
277         for (i = 0; i < lmb.reserved.cnt; i++)
278                 reserve_bootmem(lmb.reserved.region[i].base,
279                                 lmb_size_bytes(&lmb.reserved, i),
280                                 BOOTMEM_DEFAULT);
281
282 #endif
283         /* XXX need to clip this if using highmem? */
284         sparse_memory_present_with_active_regions(0);
285
286         init_bootmem_done = 1;
287 }
288
289 /* mark pages that don't exist as nosave */
290 static int __init mark_nonram_nosave(void)
291 {
292         unsigned long lmb_next_region_start_pfn,
293                       lmb_region_max_pfn;
294         int i;
295
296         for (i = 0; i < lmb.memory.cnt - 1; i++) {
297                 lmb_region_max_pfn =
298                         (lmb.memory.region[i].base >> PAGE_SHIFT) +
299                         (lmb.memory.region[i].size >> PAGE_SHIFT);
300                 lmb_next_region_start_pfn =
301                         lmb.memory.region[i+1].base >> PAGE_SHIFT;
302
303                 if (lmb_region_max_pfn < lmb_next_region_start_pfn)
304                         register_nosave_region(lmb_region_max_pfn,
305                                                lmb_next_region_start_pfn);
306         }
307
308         return 0;
309 }
310
311 /*
312  * paging_init() sets up the page tables - in fact we've already done this.
313  */
314 void __init paging_init(void)
315 {
316         unsigned long total_ram = lmb_phys_mem_size();
317         unsigned long top_of_ram = lmb_end_of_DRAM();
318         unsigned long max_zone_pfns[MAX_NR_ZONES];
319
320 #ifdef CONFIG_PPC32
321         unsigned long v = __fix_to_virt(__end_of_fixed_addresses - 1);
322         unsigned long end = __fix_to_virt(FIX_HOLE);
323
324         for (; v < end; v += PAGE_SIZE)
325                 map_page(v, 0, 0); /* XXX gross */
326 #endif
327
328 #ifdef CONFIG_HIGHMEM
329         map_page(PKMAP_BASE, 0, 0);     /* XXX gross */
330         pkmap_page_table = virt_to_kpte(PKMAP_BASE);
331
332         kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
333         kmap_prot = PAGE_KERNEL;
334 #endif /* CONFIG_HIGHMEM */
335
336         printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
337                top_of_ram, total_ram);
338         printk(KERN_DEBUG "Memory hole size: %ldMB\n",
339                (top_of_ram - total_ram) >> 20);
340         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
341 #ifdef CONFIG_HIGHMEM
342         max_zone_pfns[ZONE_DMA] = lowmem_end_addr >> PAGE_SHIFT;
343         max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
344 #else
345         max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
346 #endif
347         free_area_init_nodes(max_zone_pfns);
348
349         mark_nonram_nosave();
350 }
351 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
352
353 void __init mem_init(void)
354 {
355 #ifdef CONFIG_NEED_MULTIPLE_NODES
356         int nid;
357 #endif
358         pg_data_t *pgdat;
359         unsigned long i;
360         struct page *page;
361         unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
362
363         num_physpages = lmb.memory.size >> PAGE_SHIFT;
364         high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
365
366 #ifdef CONFIG_NEED_MULTIPLE_NODES
367         for_each_online_node(nid) {
368                 if (NODE_DATA(nid)->node_spanned_pages != 0) {
369                         printk("freeing bootmem node %d\n", nid);
370                         totalram_pages +=
371                                 free_all_bootmem_node(NODE_DATA(nid));
372                 }
373         }
374 #else
375         max_mapnr = max_pfn;
376         totalram_pages += free_all_bootmem();
377 #endif
378         for_each_online_pgdat(pgdat) {
379                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
380                         if (!pfn_valid(pgdat->node_start_pfn + i))
381                                 continue;
382                         page = pgdat_page_nr(pgdat, i);
383                         if (PageReserved(page))
384                                 reservedpages++;
385                 }
386         }
387
388         codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
389         datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
390         initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
391         bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
392
393 #ifdef CONFIG_HIGHMEM
394         {
395                 unsigned long pfn, highmem_mapnr;
396
397                 highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT;
398                 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
399                         struct page *page = pfn_to_page(pfn);
400                         if (lmb_is_reserved(pfn << PAGE_SHIFT))
401                                 continue;
402                         ClearPageReserved(page);
403                         init_page_count(page);
404                         __free_page(page);
405                         totalhigh_pages++;
406                         reservedpages--;
407                 }
408                 totalram_pages += totalhigh_pages;
409                 printk(KERN_DEBUG "High memory: %luk\n",
410                        totalhigh_pages << (PAGE_SHIFT-10));
411         }
412 #endif /* CONFIG_HIGHMEM */
413
414         printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
415                "%luk reserved, %luk data, %luk bss, %luk init)\n",
416                 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
417                 num_physpages << (PAGE_SHIFT-10),
418                 codesize >> 10,
419                 reservedpages << (PAGE_SHIFT-10),
420                 datasize >> 10,
421                 bsssize >> 10,
422                 initsize >> 10);
423
424         mem_init_done = 1;
425 }
426
427 /*
428  * This is called when a page has been modified by the kernel.
429  * It just marks the page as not i-cache clean.  We do the i-cache
430  * flush later when the page is given to a user process, if necessary.
431  */
432 void flush_dcache_page(struct page *page)
433 {
434         if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
435                 return;
436         /* avoid an atomic op if possible */
437         if (test_bit(PG_arch_1, &page->flags))
438                 clear_bit(PG_arch_1, &page->flags);
439 }
440 EXPORT_SYMBOL(flush_dcache_page);
441
442 void flush_dcache_icache_page(struct page *page)
443 {
444 #ifdef CONFIG_BOOKE
445         void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
446         __flush_dcache_icache(start);
447         kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
448 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
449         /* On 8xx there is no need to kmap since highmem is not supported */
450         __flush_dcache_icache(page_address(page)); 
451 #else
452         __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
453 #endif
454
455 }
456 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
457 {
458         clear_page(page);
459
460         /*
461          * We shouldnt have to do this, but some versions of glibc
462          * require it (ld.so assumes zero filled pages are icache clean)
463          * - Anton
464          */
465         flush_dcache_page(pg);
466 }
467 EXPORT_SYMBOL(clear_user_page);
468
469 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
470                     struct page *pg)
471 {
472         copy_page(vto, vfrom);
473
474         /*
475          * We should be able to use the following optimisation, however
476          * there are two problems.
477          * Firstly a bug in some versions of binutils meant PLT sections
478          * were not marked executable.
479          * Secondly the first word in the GOT section is blrl, used
480          * to establish the GOT address. Until recently the GOT was
481          * not marked executable.
482          * - Anton
483          */
484 #if 0
485         if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
486                 return;
487 #endif
488
489         flush_dcache_page(pg);
490 }
491
492 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
493                              unsigned long addr, int len)
494 {
495         unsigned long maddr;
496
497         maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
498         flush_icache_range(maddr, maddr + len);
499         kunmap(page);
500 }
501 EXPORT_SYMBOL(flush_icache_user_range);
502
503 /*
504  * This is called at the end of handling a user page fault, when the
505  * fault has been handled by updating a PTE in the linux page tables.
506  * We use it to preload an HPTE into the hash table corresponding to
507  * the updated linux PTE.
508  * 
509  * This must always be called with the pte lock held.
510  */
511 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
512                       pte_t pte)
513 {
514 #ifdef CONFIG_PPC_STD_MMU
515         unsigned long access = 0, trap;
516 #endif
517         unsigned long pfn = pte_pfn(pte);
518
519         /* handle i-cache coherency */
520         if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
521             !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
522             pfn_valid(pfn)) {
523                 struct page *page = pfn_to_page(pfn);
524 #ifdef CONFIG_8xx
525                 /* On 8xx, cache control instructions (particularly
526                  * "dcbst" from flush_dcache_icache) fault as write
527                  * operation if there is an unpopulated TLB entry
528                  * for the address in question. To workaround that,
529                  * we invalidate the TLB here, thus avoiding dcbst
530                  * misbehaviour.
531                  */
532                 _tlbie(address, 0 /* 8xx doesn't care about PID */);
533 #endif
534                 /* The _PAGE_USER test should really be _PAGE_EXEC, but
535                  * older glibc versions execute some code from no-exec
536                  * pages, which for now we are supporting.  If exec-only
537                  * pages are ever implemented, this will have to change.
538                  */
539                 if (!PageReserved(page) && (pte_val(pte) & _PAGE_USER)
540                     && !test_bit(PG_arch_1, &page->flags)) {
541                         if (vma->vm_mm == current->active_mm) {
542                                 __flush_dcache_icache((void *) address);
543                         } else
544                                 flush_dcache_icache_page(page);
545                         set_bit(PG_arch_1, &page->flags);
546                 }
547         }
548
549 #ifdef CONFIG_PPC_STD_MMU
550         /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
551         if (!pte_young(pte) || address >= TASK_SIZE)
552                 return;
553
554         /* We try to figure out if we are coming from an instruction
555          * access fault and pass that down to __hash_page so we avoid
556          * double-faulting on execution of fresh text. We have to test
557          * for regs NULL since init will get here first thing at boot
558          *
559          * We also avoid filling the hash if not coming from a fault
560          */
561         if (current->thread.regs == NULL)
562                 return;
563         trap = TRAP(current->thread.regs);
564         if (trap == 0x400)
565                 access |= _PAGE_EXEC;
566         else if (trap != 0x300)
567                 return;
568         hash_preload(vma->vm_mm, address, access, trap);
569 #endif /* CONFIG_PPC_STD_MMU */
570 }