]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/s390/kernel/smp.c
[PATCH] fast vdso implementation for CLOCK_THREAD_CPUTIME_ID
[linux-2.6-omap-h63xx.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999,2007
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/cpu.h>
36 #include <linux/timex.h>
37 #include <linux/bootmem.h>
38 #include <asm/ipl.h>
39 #include <asm/setup.h>
40 #include <asm/sigp.h>
41 #include <asm/pgalloc.h>
42 #include <asm/irq.h>
43 #include <asm/s390_ext.h>
44 #include <asm/cpcmd.h>
45 #include <asm/tlbflush.h>
46 #include <asm/timer.h>
47 #include <asm/lowcore.h>
48 #include <asm/sclp.h>
49 #include <asm/cpu.h>
50 #include <asm/vdso.h>
51 #include "entry.h"
52
53 /*
54  * An array with a pointer the lowcore of every CPU.
55  */
56 struct _lowcore *lowcore_ptr[NR_CPUS];
57 EXPORT_SYMBOL(lowcore_ptr);
58
59 cpumask_t cpu_online_map = CPU_MASK_NONE;
60 EXPORT_SYMBOL(cpu_online_map);
61
62 cpumask_t cpu_possible_map = CPU_MASK_ALL;
63 EXPORT_SYMBOL(cpu_possible_map);
64
65 static struct task_struct *current_set[NR_CPUS];
66
67 static u8 smp_cpu_type;
68 static int smp_use_sigp_detection;
69
70 enum s390_cpu_state {
71         CPU_STATE_STANDBY,
72         CPU_STATE_CONFIGURED,
73 };
74
75 DEFINE_MUTEX(smp_cpu_state_mutex);
76 int smp_cpu_polarization[NR_CPUS];
77 static int smp_cpu_state[NR_CPUS];
78 static int cpu_management;
79
80 static DEFINE_PER_CPU(struct cpu, cpu_devices);
81
82 static void smp_ext_bitcall(int, ec_bit_sig);
83
84 void smp_send_stop(void)
85 {
86         int cpu, rc;
87
88         /* Disable all interrupts/machine checks */
89         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
90
91         /* write magic number to zero page (absolute 0) */
92         lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
93
94         /* stop all processors */
95         for_each_online_cpu(cpu) {
96                 if (cpu == smp_processor_id())
97                         continue;
98                 do {
99                         rc = signal_processor(cpu, sigp_stop);
100                 } while (rc == sigp_busy);
101
102                 while (!smp_cpu_not_running(cpu))
103                         cpu_relax();
104         }
105 }
106
107 /*
108  * This is the main routine where commands issued by other
109  * cpus are handled.
110  */
111
112 static void do_ext_call_interrupt(__u16 code)
113 {
114         unsigned long bits;
115
116         /*
117          * handle bit signal external calls
118          *
119          * For the ec_schedule signal we have to do nothing. All the work
120          * is done automatically when we return from the interrupt.
121          */
122         bits = xchg(&S390_lowcore.ext_call_fast, 0);
123
124         if (test_bit(ec_call_function, &bits))
125                 generic_smp_call_function_interrupt();
126
127         if (test_bit(ec_call_function_single, &bits))
128                 generic_smp_call_function_single_interrupt();
129 }
130
131 /*
132  * Send an external call sigp to another cpu and return without waiting
133  * for its completion.
134  */
135 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
136 {
137         /*
138          * Set signaling bit in lowcore of target cpu and kick it
139          */
140         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
141         while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
142                 udelay(10);
143 }
144
145 void arch_send_call_function_ipi(cpumask_t mask)
146 {
147         int cpu;
148
149         for_each_cpu_mask(cpu, mask)
150                 smp_ext_bitcall(cpu, ec_call_function);
151 }
152
153 void arch_send_call_function_single_ipi(int cpu)
154 {
155         smp_ext_bitcall(cpu, ec_call_function_single);
156 }
157
158 #ifndef CONFIG_64BIT
159 /*
160  * this function sends a 'purge tlb' signal to another CPU.
161  */
162 static void smp_ptlb_callback(void *info)
163 {
164         __tlb_flush_local();
165 }
166
167 void smp_ptlb_all(void)
168 {
169         on_each_cpu(smp_ptlb_callback, NULL, 1);
170 }
171 EXPORT_SYMBOL(smp_ptlb_all);
172 #endif /* ! CONFIG_64BIT */
173
174 /*
175  * this function sends a 'reschedule' IPI to another CPU.
176  * it goes straight through and wastes no time serializing
177  * anything. Worst case is that we lose a reschedule ...
178  */
179 void smp_send_reschedule(int cpu)
180 {
181         smp_ext_bitcall(cpu, ec_schedule);
182 }
183
184 /*
185  * parameter area for the set/clear control bit callbacks
186  */
187 struct ec_creg_mask_parms {
188         unsigned long orvals[16];
189         unsigned long andvals[16];
190 };
191
192 /*
193  * callback for setting/clearing control bits
194  */
195 static void smp_ctl_bit_callback(void *info)
196 {
197         struct ec_creg_mask_parms *pp = info;
198         unsigned long cregs[16];
199         int i;
200
201         __ctl_store(cregs, 0, 15);
202         for (i = 0; i <= 15; i++)
203                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
204         __ctl_load(cregs, 0, 15);
205 }
206
207 /*
208  * Set a bit in a control register of all cpus
209  */
210 void smp_ctl_set_bit(int cr, int bit)
211 {
212         struct ec_creg_mask_parms parms;
213
214         memset(&parms.orvals, 0, sizeof(parms.orvals));
215         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
216         parms.orvals[cr] = 1 << bit;
217         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
218 }
219 EXPORT_SYMBOL(smp_ctl_set_bit);
220
221 /*
222  * Clear a bit in a control register of all cpus
223  */
224 void smp_ctl_clear_bit(int cr, int bit)
225 {
226         struct ec_creg_mask_parms parms;
227
228         memset(&parms.orvals, 0, sizeof(parms.orvals));
229         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
230         parms.andvals[cr] = ~(1L << bit);
231         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
232 }
233 EXPORT_SYMBOL(smp_ctl_clear_bit);
234
235 /*
236  * In early ipl state a temp. logically cpu number is needed, so the sigp
237  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
238  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
239  */
240 #define CPU_INIT_NO     1
241
242 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
243
244 /*
245  * zfcpdump_prefix_array holds prefix registers for the following scenario:
246  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
247  * save its prefix registers, since they get lost, when switching from 31 bit
248  * to 64 bit.
249  */
250 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
251         __attribute__((__section__(".data")));
252
253 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
254 {
255         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
256                 return;
257         if (cpu >= NR_CPUS) {
258                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
259                            "the dump\n", cpu, NR_CPUS - 1);
260                 return;
261         }
262         zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
263         __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
264         while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
265                sigp_busy)
266                 cpu_relax();
267         memcpy(zfcpdump_save_areas[cpu],
268                (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
269                SAVE_AREA_SIZE);
270 #ifdef CONFIG_64BIT
271         /* copy original prefix register */
272         zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
273 #endif
274 }
275
276 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
277 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
278
279 #else
280
281 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
282
283 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
284
285 static int cpu_stopped(int cpu)
286 {
287         __u32 status;
288
289         /* Check for stopped state */
290         if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
291             sigp_status_stored) {
292                 if (status & 0x40)
293                         return 1;
294         }
295         return 0;
296 }
297
298 static int cpu_known(int cpu_id)
299 {
300         int cpu;
301
302         for_each_present_cpu(cpu) {
303                 if (__cpu_logical_map[cpu] == cpu_id)
304                         return 1;
305         }
306         return 0;
307 }
308
309 static int smp_rescan_cpus_sigp(cpumask_t avail)
310 {
311         int cpu_id, logical_cpu;
312
313         logical_cpu = first_cpu(avail);
314         if (logical_cpu == NR_CPUS)
315                 return 0;
316         for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
317                 if (cpu_known(cpu_id))
318                         continue;
319                 __cpu_logical_map[logical_cpu] = cpu_id;
320                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
321                 if (!cpu_stopped(logical_cpu))
322                         continue;
323                 cpu_set(logical_cpu, cpu_present_map);
324                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
325                 logical_cpu = next_cpu(logical_cpu, avail);
326                 if (logical_cpu == NR_CPUS)
327                         break;
328         }
329         return 0;
330 }
331
332 static int smp_rescan_cpus_sclp(cpumask_t avail)
333 {
334         struct sclp_cpu_info *info;
335         int cpu_id, logical_cpu, cpu;
336         int rc;
337
338         logical_cpu = first_cpu(avail);
339         if (logical_cpu == NR_CPUS)
340                 return 0;
341         info = kmalloc(sizeof(*info), GFP_KERNEL);
342         if (!info)
343                 return -ENOMEM;
344         rc = sclp_get_cpu_info(info);
345         if (rc)
346                 goto out;
347         for (cpu = 0; cpu < info->combined; cpu++) {
348                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
349                         continue;
350                 cpu_id = info->cpu[cpu].address;
351                 if (cpu_known(cpu_id))
352                         continue;
353                 __cpu_logical_map[logical_cpu] = cpu_id;
354                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
355                 cpu_set(logical_cpu, cpu_present_map);
356                 if (cpu >= info->configured)
357                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
358                 else
359                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
360                 logical_cpu = next_cpu(logical_cpu, avail);
361                 if (logical_cpu == NR_CPUS)
362                         break;
363         }
364 out:
365         kfree(info);
366         return rc;
367 }
368
369 static int __smp_rescan_cpus(void)
370 {
371         cpumask_t avail;
372
373         cpus_xor(avail, cpu_possible_map, cpu_present_map);
374         if (smp_use_sigp_detection)
375                 return smp_rescan_cpus_sigp(avail);
376         else
377                 return smp_rescan_cpus_sclp(avail);
378 }
379
380 static void __init smp_detect_cpus(void)
381 {
382         unsigned int cpu, c_cpus, s_cpus;
383         struct sclp_cpu_info *info;
384         u16 boot_cpu_addr, cpu_addr;
385
386         c_cpus = 1;
387         s_cpus = 0;
388         boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
389         info = kmalloc(sizeof(*info), GFP_KERNEL);
390         if (!info)
391                 panic("smp_detect_cpus failed to allocate memory\n");
392         /* Use sigp detection algorithm if sclp doesn't work. */
393         if (sclp_get_cpu_info(info)) {
394                 smp_use_sigp_detection = 1;
395                 for (cpu = 0; cpu <= 65535; cpu++) {
396                         if (cpu == boot_cpu_addr)
397                                 continue;
398                         __cpu_logical_map[CPU_INIT_NO] = cpu;
399                         if (!cpu_stopped(CPU_INIT_NO))
400                                 continue;
401                         smp_get_save_area(c_cpus, cpu);
402                         c_cpus++;
403                 }
404                 goto out;
405         }
406
407         if (info->has_cpu_type) {
408                 for (cpu = 0; cpu < info->combined; cpu++) {
409                         if (info->cpu[cpu].address == boot_cpu_addr) {
410                                 smp_cpu_type = info->cpu[cpu].type;
411                                 break;
412                         }
413                 }
414         }
415
416         for (cpu = 0; cpu < info->combined; cpu++) {
417                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
418                         continue;
419                 cpu_addr = info->cpu[cpu].address;
420                 if (cpu_addr == boot_cpu_addr)
421                         continue;
422                 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
423                 if (!cpu_stopped(CPU_INIT_NO)) {
424                         s_cpus++;
425                         continue;
426                 }
427                 smp_get_save_area(c_cpus, cpu_addr);
428                 c_cpus++;
429         }
430 out:
431         kfree(info);
432         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
433         get_online_cpus();
434         __smp_rescan_cpus();
435         put_online_cpus();
436 }
437
438 /*
439  *      Activate a secondary processor.
440  */
441 int __cpuinit start_secondary(void *cpuvoid)
442 {
443         /* Setup the cpu */
444         cpu_init();
445         preempt_disable();
446         /* Enable TOD clock interrupts on the secondary cpu. */
447         init_cpu_timer();
448         /* Enable cpu timer interrupts on the secondary cpu. */
449         init_cpu_vtimer();
450         /* Enable pfault pseudo page faults on this cpu. */
451         pfault_init();
452
453         /* call cpu notifiers */
454         notify_cpu_starting(smp_processor_id());
455         /* Mark this cpu as online */
456         ipi_call_lock();
457         cpu_set(smp_processor_id(), cpu_online_map);
458         ipi_call_unlock();
459         /* Switch on interrupts */
460         local_irq_enable();
461         /* Print info about this processor */
462         print_cpu_info(&S390_lowcore.cpu_data);
463         /* cpu_idle will call schedule for us */
464         cpu_idle();
465         return 0;
466 }
467
468 static void __init smp_create_idle(unsigned int cpu)
469 {
470         struct task_struct *p;
471
472         /*
473          *  don't care about the psw and regs settings since we'll never
474          *  reschedule the forked task.
475          */
476         p = fork_idle(cpu);
477         if (IS_ERR(p))
478                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
479         current_set[cpu] = p;
480 }
481
482 static int __cpuinit smp_alloc_lowcore(int cpu)
483 {
484         unsigned long async_stack, panic_stack;
485         struct _lowcore *lowcore;
486         int lc_order;
487
488         lc_order = sizeof(long) == 8 ? 1 : 0;
489         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
490         if (!lowcore)
491                 return -ENOMEM;
492         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
493         panic_stack = __get_free_page(GFP_KERNEL);
494         if (!panic_stack || !async_stack)
495                 goto out;
496         memcpy(lowcore, &S390_lowcore, 512);
497         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
498         lowcore->async_stack = async_stack + ASYNC_SIZE;
499         lowcore->panic_stack = panic_stack + PAGE_SIZE;
500
501 #ifndef CONFIG_64BIT
502         if (MACHINE_HAS_IEEE) {
503                 unsigned long save_area;
504
505                 save_area = get_zeroed_page(GFP_KERNEL);
506                 if (!save_area)
507                         goto out;
508                 lowcore->extended_save_area_addr = (u32) save_area;
509         }
510 #else
511         if (vdso_alloc_per_cpu(cpu, lowcore))
512                 goto out;
513 #endif
514         lowcore_ptr[cpu] = lowcore;
515         return 0;
516
517 out:
518         free_page(panic_stack);
519         free_pages(async_stack, ASYNC_ORDER);
520         free_pages((unsigned long) lowcore, lc_order);
521         return -ENOMEM;
522 }
523
524 #ifdef CONFIG_HOTPLUG_CPU
525 static void smp_free_lowcore(int cpu)
526 {
527         struct _lowcore *lowcore;
528         int lc_order;
529
530         lc_order = sizeof(long) == 8 ? 1 : 0;
531         lowcore = lowcore_ptr[cpu];
532 #ifndef CONFIG_64BIT
533         if (MACHINE_HAS_IEEE)
534                 free_page((unsigned long) lowcore->extended_save_area_addr);
535 #else
536         vdso_free_per_cpu(cpu, lowcore);
537 #endif
538         free_page(lowcore->panic_stack - PAGE_SIZE);
539         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
540         free_pages((unsigned long) lowcore, lc_order);
541         lowcore_ptr[cpu] = NULL;
542 }
543 #endif /* CONFIG_HOTPLUG_CPU */
544
545 /* Upping and downing of CPUs */
546 int __cpuinit __cpu_up(unsigned int cpu)
547 {
548         struct task_struct *idle;
549         struct _lowcore *cpu_lowcore;
550         struct stack_frame *sf;
551         sigp_ccode ccode;
552
553         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
554                 return -EIO;
555         if (smp_alloc_lowcore(cpu))
556                 return -ENOMEM;
557
558         ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
559                                    cpu, sigp_set_prefix);
560         if (ccode)
561                 return -EIO;
562
563         idle = current_set[cpu];
564         cpu_lowcore = lowcore_ptr[cpu];
565         cpu_lowcore->kernel_stack = (unsigned long)
566                 task_stack_page(idle) + THREAD_SIZE;
567         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
568         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
569                                      - sizeof(struct pt_regs)
570                                      - sizeof(struct stack_frame));
571         memset(sf, 0, sizeof(struct stack_frame));
572         sf->gprs[9] = (unsigned long) sf;
573         cpu_lowcore->save_area[15] = (unsigned long) sf;
574         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
575         asm volatile(
576                 "       stam    0,15,0(%0)"
577                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
578         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
579         cpu_lowcore->current_task = (unsigned long) idle;
580         cpu_lowcore->cpu_data.cpu_nr = cpu;
581         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
582         cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
583         eieio();
584
585         while (signal_processor(cpu, sigp_restart) == sigp_busy)
586                 udelay(10);
587
588         while (!cpu_online(cpu))
589                 cpu_relax();
590         return 0;
591 }
592
593 static int __init setup_possible_cpus(char *s)
594 {
595         int pcpus, cpu;
596
597         pcpus = simple_strtoul(s, NULL, 0);
598         cpu_possible_map = cpumask_of_cpu(0);
599         for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
600                 cpu_set(cpu, cpu_possible_map);
601         return 0;
602 }
603 early_param("possible_cpus", setup_possible_cpus);
604
605 #ifdef CONFIG_HOTPLUG_CPU
606
607 int __cpu_disable(void)
608 {
609         struct ec_creg_mask_parms cr_parms;
610         int cpu = smp_processor_id();
611
612         cpu_clear(cpu, cpu_online_map);
613
614         /* Disable pfault pseudo page faults on this cpu. */
615         pfault_fini();
616
617         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
618         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
619
620         /* disable all external interrupts */
621         cr_parms.orvals[0] = 0;
622         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
623                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
624         /* disable all I/O interrupts */
625         cr_parms.orvals[6] = 0;
626         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
627                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
628         /* disable most machine checks */
629         cr_parms.orvals[14] = 0;
630         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
631                                  1 << 25 | 1 << 24);
632
633         smp_ctl_bit_callback(&cr_parms);
634
635         return 0;
636 }
637
638 void __cpu_die(unsigned int cpu)
639 {
640         /* Wait until target cpu is down */
641         while (!smp_cpu_not_running(cpu))
642                 cpu_relax();
643         smp_free_lowcore(cpu);
644         pr_info("Processor %d stopped\n", cpu);
645 }
646
647 void cpu_die(void)
648 {
649         idle_task_exit();
650         signal_processor(smp_processor_id(), sigp_stop);
651         BUG();
652         for (;;);
653 }
654
655 #endif /* CONFIG_HOTPLUG_CPU */
656
657 void __init smp_prepare_cpus(unsigned int max_cpus)
658 {
659 #ifndef CONFIG_64BIT
660         unsigned long save_area = 0;
661 #endif
662         unsigned long async_stack, panic_stack;
663         struct _lowcore *lowcore;
664         unsigned int cpu;
665         int lc_order;
666
667         smp_detect_cpus();
668
669         /* request the 0x1201 emergency signal external interrupt */
670         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
671                 panic("Couldn't request external interrupt 0x1201");
672         print_cpu_info(&S390_lowcore.cpu_data);
673
674         /* Reallocate current lowcore, but keep its contents. */
675         lc_order = sizeof(long) == 8 ? 1 : 0;
676         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
677         panic_stack = __get_free_page(GFP_KERNEL);
678         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
679         BUG_ON(!lowcore || !panic_stack || !async_stack);
680 #ifndef CONFIG_64BIT
681         if (MACHINE_HAS_IEEE)
682                 save_area = get_zeroed_page(GFP_KERNEL);
683 #endif
684         local_irq_disable();
685         local_mcck_disable();
686         lowcore_ptr[smp_processor_id()] = lowcore;
687         *lowcore = S390_lowcore;
688         lowcore->panic_stack = panic_stack + PAGE_SIZE;
689         lowcore->async_stack = async_stack + ASYNC_SIZE;
690 #ifndef CONFIG_64BIT
691         if (MACHINE_HAS_IEEE)
692                 lowcore->extended_save_area_addr = (u32) save_area;
693 #else
694         BUG_ON(vdso_alloc_per_cpu(smp_processor_id(), lowcore));
695 #endif
696         set_prefix((u32)(unsigned long) lowcore);
697         local_mcck_enable();
698         local_irq_enable();
699         for_each_possible_cpu(cpu)
700                 if (cpu != smp_processor_id())
701                         smp_create_idle(cpu);
702 }
703
704 void __init smp_prepare_boot_cpu(void)
705 {
706         BUG_ON(smp_processor_id() != 0);
707
708         current_thread_info()->cpu = 0;
709         cpu_set(0, cpu_present_map);
710         cpu_set(0, cpu_online_map);
711         S390_lowcore.percpu_offset = __per_cpu_offset[0];
712         current_set[0] = current;
713         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
714         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
715 }
716
717 void __init smp_cpus_done(unsigned int max_cpus)
718 {
719 }
720
721 /*
722  * the frequency of the profiling timer can be changed
723  * by writing a multiplier value into /proc/profile.
724  *
725  * usually you want to run this on all CPUs ;)
726  */
727 int setup_profiling_timer(unsigned int multiplier)
728 {
729         return 0;
730 }
731
732 #ifdef CONFIG_HOTPLUG_CPU
733 static ssize_t cpu_configure_show(struct sys_device *dev,
734                                 struct sysdev_attribute *attr, char *buf)
735 {
736         ssize_t count;
737
738         mutex_lock(&smp_cpu_state_mutex);
739         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
740         mutex_unlock(&smp_cpu_state_mutex);
741         return count;
742 }
743
744 static ssize_t cpu_configure_store(struct sys_device *dev,
745                                   struct sysdev_attribute *attr,
746                                   const char *buf, size_t count)
747 {
748         int cpu = dev->id;
749         int val, rc;
750         char delim;
751
752         if (sscanf(buf, "%d %c", &val, &delim) != 1)
753                 return -EINVAL;
754         if (val != 0 && val != 1)
755                 return -EINVAL;
756
757         get_online_cpus();
758         mutex_lock(&smp_cpu_state_mutex);
759         rc = -EBUSY;
760         if (cpu_online(cpu))
761                 goto out;
762         rc = 0;
763         switch (val) {
764         case 0:
765                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
766                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
767                         if (!rc) {
768                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
769                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
770                         }
771                 }
772                 break;
773         case 1:
774                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
775                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
776                         if (!rc) {
777                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
778                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
779                         }
780                 }
781                 break;
782         default:
783                 break;
784         }
785 out:
786         mutex_unlock(&smp_cpu_state_mutex);
787         put_online_cpus();
788         return rc ? rc : count;
789 }
790 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
791 #endif /* CONFIG_HOTPLUG_CPU */
792
793 static ssize_t cpu_polarization_show(struct sys_device *dev,
794                                      struct sysdev_attribute *attr, char *buf)
795 {
796         int cpu = dev->id;
797         ssize_t count;
798
799         mutex_lock(&smp_cpu_state_mutex);
800         switch (smp_cpu_polarization[cpu]) {
801         case POLARIZATION_HRZ:
802                 count = sprintf(buf, "horizontal\n");
803                 break;
804         case POLARIZATION_VL:
805                 count = sprintf(buf, "vertical:low\n");
806                 break;
807         case POLARIZATION_VM:
808                 count = sprintf(buf, "vertical:medium\n");
809                 break;
810         case POLARIZATION_VH:
811                 count = sprintf(buf, "vertical:high\n");
812                 break;
813         default:
814                 count = sprintf(buf, "unknown\n");
815                 break;
816         }
817         mutex_unlock(&smp_cpu_state_mutex);
818         return count;
819 }
820 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
821
822 static ssize_t show_cpu_address(struct sys_device *dev,
823                                 struct sysdev_attribute *attr, char *buf)
824 {
825         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
826 }
827 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
828
829
830 static struct attribute *cpu_common_attrs[] = {
831 #ifdef CONFIG_HOTPLUG_CPU
832         &attr_configure.attr,
833 #endif
834         &attr_address.attr,
835         &attr_polarization.attr,
836         NULL,
837 };
838
839 static struct attribute_group cpu_common_attr_group = {
840         .attrs = cpu_common_attrs,
841 };
842
843 static ssize_t show_capability(struct sys_device *dev,
844                                 struct sysdev_attribute *attr, char *buf)
845 {
846         unsigned int capability;
847         int rc;
848
849         rc = get_cpu_capability(&capability);
850         if (rc)
851                 return rc;
852         return sprintf(buf, "%u\n", capability);
853 }
854 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
855
856 static ssize_t show_idle_count(struct sys_device *dev,
857                                 struct sysdev_attribute *attr, char *buf)
858 {
859         struct s390_idle_data *idle;
860         unsigned long long idle_count;
861
862         idle = &per_cpu(s390_idle, dev->id);
863         spin_lock(&idle->lock);
864         idle_count = idle->idle_count;
865         if (idle->idle_enter)
866                 idle_count++;
867         spin_unlock(&idle->lock);
868         return sprintf(buf, "%llu\n", idle_count);
869 }
870 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
871
872 static ssize_t show_idle_time(struct sys_device *dev,
873                                 struct sysdev_attribute *attr, char *buf)
874 {
875         struct s390_idle_data *idle;
876         unsigned long long now, idle_time, idle_enter;
877
878         idle = &per_cpu(s390_idle, dev->id);
879         spin_lock(&idle->lock);
880         now = get_clock();
881         idle_time = idle->idle_time;
882         idle_enter = idle->idle_enter;
883         if (idle_enter != 0ULL && idle_enter < now)
884                 idle_time += now - idle_enter;
885         spin_unlock(&idle->lock);
886         return sprintf(buf, "%llu\n", idle_time >> 12);
887 }
888 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
889
890 static struct attribute *cpu_online_attrs[] = {
891         &attr_capability.attr,
892         &attr_idle_count.attr,
893         &attr_idle_time_us.attr,
894         NULL,
895 };
896
897 static struct attribute_group cpu_online_attr_group = {
898         .attrs = cpu_online_attrs,
899 };
900
901 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
902                                     unsigned long action, void *hcpu)
903 {
904         unsigned int cpu = (unsigned int)(long)hcpu;
905         struct cpu *c = &per_cpu(cpu_devices, cpu);
906         struct sys_device *s = &c->sysdev;
907         struct s390_idle_data *idle;
908
909         switch (action) {
910         case CPU_ONLINE:
911         case CPU_ONLINE_FROZEN:
912                 idle = &per_cpu(s390_idle, cpu);
913                 spin_lock_irq(&idle->lock);
914                 idle->idle_enter = 0;
915                 idle->idle_time = 0;
916                 idle->idle_count = 0;
917                 spin_unlock_irq(&idle->lock);
918                 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
919                         return NOTIFY_BAD;
920                 break;
921         case CPU_DEAD:
922         case CPU_DEAD_FROZEN:
923                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
924                 break;
925         }
926         return NOTIFY_OK;
927 }
928
929 static struct notifier_block __cpuinitdata smp_cpu_nb = {
930         .notifier_call = smp_cpu_notify,
931 };
932
933 static int __devinit smp_add_present_cpu(int cpu)
934 {
935         struct cpu *c = &per_cpu(cpu_devices, cpu);
936         struct sys_device *s = &c->sysdev;
937         int rc;
938
939         c->hotpluggable = 1;
940         rc = register_cpu(c, cpu);
941         if (rc)
942                 goto out;
943         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
944         if (rc)
945                 goto out_cpu;
946         if (!cpu_online(cpu))
947                 goto out;
948         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
949         if (!rc)
950                 return 0;
951         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
952 out_cpu:
953 #ifdef CONFIG_HOTPLUG_CPU
954         unregister_cpu(c);
955 #endif
956 out:
957         return rc;
958 }
959
960 #ifdef CONFIG_HOTPLUG_CPU
961
962 int __ref smp_rescan_cpus(void)
963 {
964         cpumask_t newcpus;
965         int cpu;
966         int rc;
967
968         get_online_cpus();
969         mutex_lock(&smp_cpu_state_mutex);
970         newcpus = cpu_present_map;
971         rc = __smp_rescan_cpus();
972         if (rc)
973                 goto out;
974         cpus_andnot(newcpus, cpu_present_map, newcpus);
975         for_each_cpu_mask(cpu, newcpus) {
976                 rc = smp_add_present_cpu(cpu);
977                 if (rc)
978                         cpu_clear(cpu, cpu_present_map);
979         }
980         rc = 0;
981 out:
982         mutex_unlock(&smp_cpu_state_mutex);
983         put_online_cpus();
984         if (!cpus_empty(newcpus))
985                 topology_schedule_update();
986         return rc;
987 }
988
989 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
990                                   size_t count)
991 {
992         int rc;
993
994         rc = smp_rescan_cpus();
995         return rc ? rc : count;
996 }
997 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
998 #endif /* CONFIG_HOTPLUG_CPU */
999
1000 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1001 {
1002         ssize_t count;
1003
1004         mutex_lock(&smp_cpu_state_mutex);
1005         count = sprintf(buf, "%d\n", cpu_management);
1006         mutex_unlock(&smp_cpu_state_mutex);
1007         return count;
1008 }
1009
1010 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1011                                  size_t count)
1012 {
1013         int val, rc;
1014         char delim;
1015
1016         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1017                 return -EINVAL;
1018         if (val != 0 && val != 1)
1019                 return -EINVAL;
1020         rc = 0;
1021         get_online_cpus();
1022         mutex_lock(&smp_cpu_state_mutex);
1023         if (cpu_management == val)
1024                 goto out;
1025         rc = topology_set_cpu_management(val);
1026         if (!rc)
1027                 cpu_management = val;
1028 out:
1029         mutex_unlock(&smp_cpu_state_mutex);
1030         put_online_cpus();
1031         return rc ? rc : count;
1032 }
1033 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1034                          dispatching_store);
1035
1036 static int __init topology_init(void)
1037 {
1038         int cpu;
1039         int rc;
1040
1041         register_cpu_notifier(&smp_cpu_nb);
1042
1043 #ifdef CONFIG_HOTPLUG_CPU
1044         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1045         if (rc)
1046                 return rc;
1047 #endif
1048         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1049         if (rc)
1050                 return rc;
1051         for_each_present_cpu(cpu) {
1052                 rc = smp_add_present_cpu(cpu);
1053                 if (rc)
1054                         return rc;
1055         }
1056         return 0;
1057 }
1058 subsys_initcall(topology_init);