]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/mm/init.c
[SPARC64]: Use ASI_SCRATCHPAD address 0x0 properly.
[linux-2.6-omap-h63xx.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/config.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25
26 #include <asm/head.h>
27 #include <asm/system.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/iommu.h>
33 #include <asm/io.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/dma.h>
38 #include <asm/starfire.h>
39 #include <asm/tlb.h>
40 #include <asm/spitfire.h>
41 #include <asm/sections.h>
42 #include <asm/tsb.h>
43 #include <asm/hypervisor.h>
44
45 extern void device_scan(void);
46
47 #define MAX_BANKS       32
48
49 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
50 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
51 static int pavail_ents __initdata;
52 static int pavail_rescan_ents __initdata;
53
54 static int cmp_p64(const void *a, const void *b)
55 {
56         const struct linux_prom64_registers *x = a, *y = b;
57
58         if (x->phys_addr > y->phys_addr)
59                 return 1;
60         if (x->phys_addr < y->phys_addr)
61                 return -1;
62         return 0;
63 }
64
65 static void __init read_obp_memory(const char *property,
66                                    struct linux_prom64_registers *regs,
67                                    int *num_ents)
68 {
69         int node = prom_finddevice("/memory");
70         int prop_size = prom_getproplen(node, property);
71         int ents, ret, i;
72
73         ents = prop_size / sizeof(struct linux_prom64_registers);
74         if (ents > MAX_BANKS) {
75                 prom_printf("The machine has more %s property entries than "
76                             "this kernel can support (%d).\n",
77                             property, MAX_BANKS);
78                 prom_halt();
79         }
80
81         ret = prom_getproperty(node, property, (char *) regs, prop_size);
82         if (ret == -1) {
83                 prom_printf("Couldn't get %s property from /memory.\n");
84                 prom_halt();
85         }
86
87         *num_ents = ents;
88
89         /* Sanitize what we got from the firmware, by page aligning
90          * everything.
91          */
92         for (i = 0; i < ents; i++) {
93                 unsigned long base, size;
94
95                 base = regs[i].phys_addr;
96                 size = regs[i].reg_size;
97
98                 size &= PAGE_MASK;
99                 if (base & ~PAGE_MASK) {
100                         unsigned long new_base = PAGE_ALIGN(base);
101
102                         size -= new_base - base;
103                         if ((long) size < 0L)
104                                 size = 0UL;
105                         base = new_base;
106                 }
107                 regs[i].phys_addr = base;
108                 regs[i].reg_size = size;
109         }
110         sort(regs, ents, sizeof(struct linux_prom64_registers),
111              cmp_p64, NULL);
112 }
113
114 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
115
116 /* Ugly, but necessary... -DaveM */
117 unsigned long phys_base __read_mostly;
118 unsigned long kern_base __read_mostly;
119 unsigned long kern_size __read_mostly;
120 unsigned long pfn_base __read_mostly;
121
122 /* get_new_mmu_context() uses "cache + 1".  */
123 DEFINE_SPINLOCK(ctx_alloc_lock);
124 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
125 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
126 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
127
128 /* References to special section boundaries */
129 extern char  _start[], _end[];
130
131 /* Initial ramdisk setup */
132 extern unsigned long sparc_ramdisk_image64;
133 extern unsigned int sparc_ramdisk_image;
134 extern unsigned int sparc_ramdisk_size;
135
136 struct page *mem_map_zero __read_mostly;
137
138 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
139
140 unsigned long sparc64_kern_pri_context __read_mostly;
141 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
142 unsigned long sparc64_kern_sec_context __read_mostly;
143
144 int bigkernel = 0;
145
146 kmem_cache_t *pgtable_cache __read_mostly;
147
148 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
149 {
150         clear_page(addr);
151 }
152
153 void pgtable_cache_init(void)
154 {
155         pgtable_cache = kmem_cache_create("pgtable_cache",
156                                           PAGE_SIZE, PAGE_SIZE,
157                                           SLAB_HWCACHE_ALIGN |
158                                           SLAB_MUST_HWCACHE_ALIGN,
159                                           zero_ctor,
160                                           NULL);
161         if (!pgtable_cache) {
162                 prom_printf("pgtable_cache_init(): Could not create!\n");
163                 prom_halt();
164         }
165 }
166
167 #ifdef CONFIG_DEBUG_DCFLUSH
168 atomic_t dcpage_flushes = ATOMIC_INIT(0);
169 #ifdef CONFIG_SMP
170 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
171 #endif
172 #endif
173
174 __inline__ void flush_dcache_page_impl(struct page *page)
175 {
176 #ifdef CONFIG_DEBUG_DCFLUSH
177         atomic_inc(&dcpage_flushes);
178 #endif
179
180 #ifdef DCACHE_ALIASING_POSSIBLE
181         __flush_dcache_page(page_address(page),
182                             ((tlb_type == spitfire) &&
183                              page_mapping(page) != NULL));
184 #else
185         if (page_mapping(page) != NULL &&
186             tlb_type == spitfire)
187                 __flush_icache_page(__pa(page_address(page)));
188 #endif
189 }
190
191 #define PG_dcache_dirty         PG_arch_1
192 #define PG_dcache_cpu_shift     24
193 #define PG_dcache_cpu_mask      (256 - 1)
194
195 #if NR_CPUS > 256
196 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
197 #endif
198
199 #define dcache_dirty_cpu(page) \
200         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
201
202 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
203 {
204         unsigned long mask = this_cpu;
205         unsigned long non_cpu_bits;
206
207         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
208         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
209
210         __asm__ __volatile__("1:\n\t"
211                              "ldx       [%2], %%g7\n\t"
212                              "and       %%g7, %1, %%g1\n\t"
213                              "or        %%g1, %0, %%g1\n\t"
214                              "casx      [%2], %%g7, %%g1\n\t"
215                              "cmp       %%g7, %%g1\n\t"
216                              "membar    #StoreLoad | #StoreStore\n\t"
217                              "bne,pn    %%xcc, 1b\n\t"
218                              " nop"
219                              : /* no outputs */
220                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
221                              : "g1", "g7");
222 }
223
224 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
225 {
226         unsigned long mask = (1UL << PG_dcache_dirty);
227
228         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
229                              "1:\n\t"
230                              "ldx       [%2], %%g7\n\t"
231                              "srlx      %%g7, %4, %%g1\n\t"
232                              "and       %%g1, %3, %%g1\n\t"
233                              "cmp       %%g1, %0\n\t"
234                              "bne,pn    %%icc, 2f\n\t"
235                              " andn     %%g7, %1, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "membar    #StoreLoad | #StoreStore\n\t"
239                              "bne,pn    %%xcc, 1b\n\t"
240                              " nop\n"
241                              "2:"
242                              : /* no outputs */
243                              : "r" (cpu), "r" (mask), "r" (&page->flags),
244                                "i" (PG_dcache_cpu_mask),
245                                "i" (PG_dcache_cpu_shift)
246                              : "g1", "g7");
247 }
248
249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250 {
251         unsigned long tsb_addr = (unsigned long) ent;
252
253         if (tlb_type == cheetah_plus)
254                 tsb_addr = __pa(tsb_addr);
255
256         __tsb_insert(tsb_addr, tag, pte);
257 }
258
259 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
260 {
261         struct mm_struct *mm;
262         struct page *page;
263         unsigned long pfn;
264         unsigned long pg_flags;
265
266         pfn = pte_pfn(pte);
267         if (pfn_valid(pfn) &&
268             (page = pfn_to_page(pfn), page_mapping(page)) &&
269             ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
270                 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
271                            PG_dcache_cpu_mask);
272                 int this_cpu = get_cpu();
273
274                 /* This is just to optimize away some function calls
275                  * in the SMP case.
276                  */
277                 if (cpu == this_cpu)
278                         flush_dcache_page_impl(page);
279                 else
280                         smp_flush_dcache_page_impl(page, cpu);
281
282                 clear_dcache_dirty_cpu(page, cpu);
283
284                 put_cpu();
285         }
286
287         mm = vma->vm_mm;
288         if ((pte_val(pte) & _PAGE_ALL_SZ_BITS) == _PAGE_SZBITS) {
289                 struct tsb *tsb;
290                 unsigned long tag;
291
292                 tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
293                                        (mm->context.tsb_nentries - 1UL)];
294                 tag = (address >> 22UL) | CTX_HWBITS(mm->context) << 48UL;
295                 tsb_insert(tsb, tag, pte_val(pte));
296         }
297 }
298
299 void flush_dcache_page(struct page *page)
300 {
301         struct address_space *mapping;
302         int this_cpu;
303
304         /* Do not bother with the expensive D-cache flush if it
305          * is merely the zero page.  The 'bigcore' testcase in GDB
306          * causes this case to run millions of times.
307          */
308         if (page == ZERO_PAGE(0))
309                 return;
310
311         this_cpu = get_cpu();
312
313         mapping = page_mapping(page);
314         if (mapping && !mapping_mapped(mapping)) {
315                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
316                 if (dirty) {
317                         int dirty_cpu = dcache_dirty_cpu(page);
318
319                         if (dirty_cpu == this_cpu)
320                                 goto out;
321                         smp_flush_dcache_page_impl(page, dirty_cpu);
322                 }
323                 set_dcache_dirty(page, this_cpu);
324         } else {
325                 /* We could delay the flush for the !page_mapping
326                  * case too.  But that case is for exec env/arg
327                  * pages and those are %99 certainly going to get
328                  * faulted into the tlb (and thus flushed) anyways.
329                  */
330                 flush_dcache_page_impl(page);
331         }
332
333 out:
334         put_cpu();
335 }
336
337 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
338 {
339         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
340         if (tlb_type == spitfire) {
341                 unsigned long kaddr;
342
343                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
344                         __flush_icache_page(__get_phys(kaddr));
345         }
346 }
347
348 unsigned long page_to_pfn(struct page *page)
349 {
350         return (unsigned long) ((page - mem_map) + pfn_base);
351 }
352
353 struct page *pfn_to_page(unsigned long pfn)
354 {
355         return (mem_map + (pfn - pfn_base));
356 }
357
358 void show_mem(void)
359 {
360         printk("Mem-info:\n");
361         show_free_areas();
362         printk("Free swap:       %6ldkB\n",
363                nr_swap_pages << (PAGE_SHIFT-10));
364         printk("%ld pages of RAM\n", num_physpages);
365         printk("%d free pages\n", nr_free_pages());
366 }
367
368 void mmu_info(struct seq_file *m)
369 {
370         if (tlb_type == cheetah)
371                 seq_printf(m, "MMU Type\t: Cheetah\n");
372         else if (tlb_type == cheetah_plus)
373                 seq_printf(m, "MMU Type\t: Cheetah+\n");
374         else if (tlb_type == spitfire)
375                 seq_printf(m, "MMU Type\t: Spitfire\n");
376         else if (tlb_type == hypervisor)
377                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
378         else
379                 seq_printf(m, "MMU Type\t: ???\n");
380
381 #ifdef CONFIG_DEBUG_DCFLUSH
382         seq_printf(m, "DCPageFlushes\t: %d\n",
383                    atomic_read(&dcpage_flushes));
384 #ifdef CONFIG_SMP
385         seq_printf(m, "DCPageFlushesXC\t: %d\n",
386                    atomic_read(&dcpage_flushes_xcall));
387 #endif /* CONFIG_SMP */
388 #endif /* CONFIG_DEBUG_DCFLUSH */
389 }
390
391 struct linux_prom_translation {
392         unsigned long virt;
393         unsigned long size;
394         unsigned long data;
395 };
396
397 /* Exported for kernel TLB miss handling in ktlb.S */
398 struct linux_prom_translation prom_trans[512] __read_mostly;
399 unsigned int prom_trans_ents __read_mostly;
400
401 extern unsigned long prom_boot_page;
402 extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
403 extern int prom_get_mmu_ihandle(void);
404 extern void register_prom_callbacks(void);
405
406 /* Exported for SMP bootup purposes. */
407 unsigned long kern_locked_tte_data;
408
409 /*
410  * Translate PROM's mapping we capture at boot time into physical address.
411  * The second parameter is only set from prom_callback() invocations.
412  */
413 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
414 {
415         int i;
416
417         for (i = 0; i < prom_trans_ents; i++) {
418                 struct linux_prom_translation *p = &prom_trans[i];
419
420                 if (promva >= p->virt &&
421                     promva < (p->virt + p->size)) {
422                         unsigned long base = p->data & _PAGE_PADDR;
423
424                         if (error)
425                                 *error = 0;
426                         return base + (promva & (8192 - 1));
427                 }
428         }
429         if (error)
430                 *error = 1;
431         return 0UL;
432 }
433
434 /* The obp translations are saved based on 8k pagesize, since obp can
435  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
436  * HI_OBP_ADDRESS range are handled in ktlb.S.
437  */
438 static inline int in_obp_range(unsigned long vaddr)
439 {
440         return (vaddr >= LOW_OBP_ADDRESS &&
441                 vaddr < HI_OBP_ADDRESS);
442 }
443
444 static int cmp_ptrans(const void *a, const void *b)
445 {
446         const struct linux_prom_translation *x = a, *y = b;
447
448         if (x->virt > y->virt)
449                 return 1;
450         if (x->virt < y->virt)
451                 return -1;
452         return 0;
453 }
454
455 /* Read OBP translations property into 'prom_trans[]'.  */
456 static void __init read_obp_translations(void)
457 {
458         int n, node, ents, first, last, i;
459
460         node = prom_finddevice("/virtual-memory");
461         n = prom_getproplen(node, "translations");
462         if (unlikely(n == 0 || n == -1)) {
463                 prom_printf("prom_mappings: Couldn't get size.\n");
464                 prom_halt();
465         }
466         if (unlikely(n > sizeof(prom_trans))) {
467                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
468                 prom_halt();
469         }
470
471         if ((n = prom_getproperty(node, "translations",
472                                   (char *)&prom_trans[0],
473                                   sizeof(prom_trans))) == -1) {
474                 prom_printf("prom_mappings: Couldn't get property.\n");
475                 prom_halt();
476         }
477
478         n = n / sizeof(struct linux_prom_translation);
479
480         ents = n;
481
482         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
483              cmp_ptrans, NULL);
484
485         /* Now kick out all the non-OBP entries.  */
486         for (i = 0; i < ents; i++) {
487                 if (in_obp_range(prom_trans[i].virt))
488                         break;
489         }
490         first = i;
491         for (; i < ents; i++) {
492                 if (!in_obp_range(prom_trans[i].virt))
493                         break;
494         }
495         last = i;
496
497         for (i = 0; i < (last - first); i++) {
498                 struct linux_prom_translation *src = &prom_trans[i + first];
499                 struct linux_prom_translation *dest = &prom_trans[i];
500
501                 *dest = *src;
502         }
503         for (; i < ents; i++) {
504                 struct linux_prom_translation *dest = &prom_trans[i];
505                 dest->virt = dest->size = dest->data = 0x0UL;
506         }
507
508         prom_trans_ents = last - first;
509
510         if (tlb_type == spitfire) {
511                 /* Clear diag TTE bits. */
512                 for (i = 0; i < prom_trans_ents; i++)
513                         prom_trans[i].data &= ~0x0003fe0000000000UL;
514         }
515 }
516
517 static void __init hypervisor_tlb_lock(unsigned long vaddr,
518                                        unsigned long pte,
519                                        unsigned long mmu)
520 {
521         register unsigned long func asm("%o5");
522         register unsigned long arg0 asm("%o0");
523         register unsigned long arg1 asm("%o1");
524         register unsigned long arg2 asm("%o2");
525         register unsigned long arg3 asm("%o3");
526
527         func = HV_FAST_MMU_MAP_PERM_ADDR;
528         arg0 = vaddr;
529         arg1 = 0;
530         arg2 = pte;
531         arg3 = mmu;
532         __asm__ __volatile__("ta        0x80"
533                              : "=&r" (func), "=&r" (arg0),
534                                "=&r" (arg1), "=&r" (arg2),
535                                "=&r" (arg3)
536                              : "0" (func), "1" (arg0), "2" (arg1),
537                                "3" (arg2), "4" (arg3));
538 }
539
540 static void __init remap_kernel(void)
541 {
542         unsigned long phys_page, tte_vaddr, tte_data;
543         int tlb_ent = sparc64_highest_locked_tlbent();
544
545         tte_vaddr = (unsigned long) KERNBASE;
546         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
547         tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
548                                  _PAGE_CP | _PAGE_CV | _PAGE_P |
549                                  _PAGE_L | _PAGE_W));
550
551         kern_locked_tte_data = tte_data;
552
553         /* Now lock us into the TLBs via Hypervisor or OBP. */
554         if (tlb_type == hypervisor) {
555                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
556                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
557                 if (bigkernel) {
558                         tte_vaddr += 0x400000;
559                         tte_data += 0x400000;
560                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
561                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
562                 }
563         } else {
564                 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
565                 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
566                 if (bigkernel) {
567                         tlb_ent -= 1;
568                         prom_dtlb_load(tlb_ent,
569                                        tte_data + 0x400000, 
570                                        tte_vaddr + 0x400000);
571                         prom_itlb_load(tlb_ent,
572                                        tte_data + 0x400000, 
573                                        tte_vaddr + 0x400000);
574                 }
575                 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
576         }
577         if (tlb_type == cheetah_plus) {
578                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
579                                             CTX_CHEETAH_PLUS_NUC);
580                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
581                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
582         }
583 }
584
585
586 static void __init inherit_prom_mappings(void)
587 {
588         read_obp_translations();
589
590         /* Now fixup OBP's idea about where we really are mapped. */
591         prom_printf("Remapping the kernel... ");
592         remap_kernel();
593         prom_printf("done.\n");
594
595         prom_printf("Registering callbacks... ");
596         register_prom_callbacks();
597         prom_printf("done.\n");
598 }
599
600 void prom_world(int enter)
601 {
602         if (!enter)
603                 set_fs((mm_segment_t) { get_thread_current_ds() });
604
605         __asm__ __volatile__("flushw");
606 }
607
608 #ifdef DCACHE_ALIASING_POSSIBLE
609 void __flush_dcache_range(unsigned long start, unsigned long end)
610 {
611         unsigned long va;
612
613         if (tlb_type == spitfire) {
614                 int n = 0;
615
616                 for (va = start; va < end; va += 32) {
617                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
618                         if (++n >= 512)
619                                 break;
620                 }
621         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
622                 start = __pa(start);
623                 end = __pa(end);
624                 for (va = start; va < end; va += 32)
625                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
626                                              "membar #Sync"
627                                              : /* no outputs */
628                                              : "r" (va),
629                                                "i" (ASI_DCACHE_INVALIDATE));
630         }
631 }
632 #endif /* DCACHE_ALIASING_POSSIBLE */
633
634 /* If not locked, zap it. */
635 void __flush_tlb_all(void)
636 {
637         unsigned long pstate;
638         int i;
639
640         __asm__ __volatile__("flushw\n\t"
641                              "rdpr      %%pstate, %0\n\t"
642                              "wrpr      %0, %1, %%pstate"
643                              : "=r" (pstate)
644                              : "i" (PSTATE_IE));
645         if (tlb_type == spitfire) {
646                 for (i = 0; i < 64; i++) {
647                         /* Spitfire Errata #32 workaround */
648                         /* NOTE: Always runs on spitfire, so no
649                          *       cheetah+ page size encodings.
650                          */
651                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
652                                              "flush     %%g6"
653                                              : /* No outputs */
654                                              : "r" (0),
655                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
656
657                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
658                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
659                                                      "membar #Sync"
660                                                      : /* no outputs */
661                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
662                                 spitfire_put_dtlb_data(i, 0x0UL);
663                         }
664
665                         /* Spitfire Errata #32 workaround */
666                         /* NOTE: Always runs on spitfire, so no
667                          *       cheetah+ page size encodings.
668                          */
669                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
670                                              "flush     %%g6"
671                                              : /* No outputs */
672                                              : "r" (0),
673                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
674
675                         if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
676                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
677                                                      "membar #Sync"
678                                                      : /* no outputs */
679                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
680                                 spitfire_put_itlb_data(i, 0x0UL);
681                         }
682                 }
683         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
684                 cheetah_flush_dtlb_all();
685                 cheetah_flush_itlb_all();
686         }
687         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
688                              : : "r" (pstate));
689 }
690
691 /* Caller does TLB context flushing on local CPU if necessary.
692  * The caller also ensures that CTX_VALID(mm->context) is false.
693  *
694  * We must be careful about boundary cases so that we never
695  * let the user have CTX 0 (nucleus) or we ever use a CTX
696  * version of zero (and thus NO_CONTEXT would not be caught
697  * by version mis-match tests in mmu_context.h).
698  */
699 void get_new_mmu_context(struct mm_struct *mm)
700 {
701         unsigned long ctx, new_ctx;
702         unsigned long orig_pgsz_bits;
703         
704
705         spin_lock(&ctx_alloc_lock);
706         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
707         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
708         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
709         if (new_ctx >= (1 << CTX_NR_BITS)) {
710                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
711                 if (new_ctx >= ctx) {
712                         int i;
713                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
714                                 CTX_FIRST_VERSION;
715                         if (new_ctx == 1)
716                                 new_ctx = CTX_FIRST_VERSION;
717
718                         /* Don't call memset, for 16 entries that's just
719                          * plain silly...
720                          */
721                         mmu_context_bmap[0] = 3;
722                         mmu_context_bmap[1] = 0;
723                         mmu_context_bmap[2] = 0;
724                         mmu_context_bmap[3] = 0;
725                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
726                                 mmu_context_bmap[i + 0] = 0;
727                                 mmu_context_bmap[i + 1] = 0;
728                                 mmu_context_bmap[i + 2] = 0;
729                                 mmu_context_bmap[i + 3] = 0;
730                         }
731                         goto out;
732                 }
733         }
734         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
735         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
736 out:
737         tlb_context_cache = new_ctx;
738         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
739         spin_unlock(&ctx_alloc_lock);
740 }
741
742 void sparc_ultra_dump_itlb(void)
743 {
744         int slot;
745
746         if (tlb_type == spitfire) {
747                 printk ("Contents of itlb: ");
748                 for (slot = 0; slot < 14; slot++) printk ("    ");
749                 printk ("%2x:%016lx,%016lx\n",
750                         0,
751                         spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
752                 for (slot = 1; slot < 64; slot+=3) {
753                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
754                                 slot,
755                                 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
756                                 slot+1,
757                                 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
758                                 slot+2,
759                                 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
760                 }
761         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
762                 printk ("Contents of itlb0:\n");
763                 for (slot = 0; slot < 16; slot+=2) {
764                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
765                                 slot,
766                                 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
767                                 slot+1,
768                                 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
769                 }
770                 printk ("Contents of itlb2:\n");
771                 for (slot = 0; slot < 128; slot+=2) {
772                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
773                                 slot,
774                                 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
775                                 slot+1,
776                                 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
777                 }
778         }
779 }
780
781 void sparc_ultra_dump_dtlb(void)
782 {
783         int slot;
784
785         if (tlb_type == spitfire) {
786                 printk ("Contents of dtlb: ");
787                 for (slot = 0; slot < 14; slot++) printk ("    ");
788                 printk ("%2x:%016lx,%016lx\n", 0,
789                         spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
790                 for (slot = 1; slot < 64; slot+=3) {
791                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
792                                 slot,
793                                 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
794                                 slot+1,
795                                 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
796                                 slot+2,
797                                 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
798                 }
799         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
800                 printk ("Contents of dtlb0:\n");
801                 for (slot = 0; slot < 16; slot+=2) {
802                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
803                                 slot,
804                                 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
805                                 slot+1,
806                                 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
807                 }
808                 printk ("Contents of dtlb2:\n");
809                 for (slot = 0; slot < 512; slot+=2) {
810                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
811                                 slot,
812                                 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
813                                 slot+1,
814                                 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
815                 }
816                 if (tlb_type == cheetah_plus) {
817                         printk ("Contents of dtlb3:\n");
818                         for (slot = 0; slot < 512; slot+=2) {
819                                 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
820                                         slot,
821                                         cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
822                                         slot+1,
823                                         cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
824                         }
825                 }
826         }
827 }
828
829 extern unsigned long cmdline_memory_size;
830
831 unsigned long __init bootmem_init(unsigned long *pages_avail)
832 {
833         unsigned long bootmap_size, start_pfn, end_pfn;
834         unsigned long end_of_phys_memory = 0UL;
835         unsigned long bootmap_pfn, bytes_avail, size;
836         int i;
837
838 #ifdef CONFIG_DEBUG_BOOTMEM
839         prom_printf("bootmem_init: Scan pavail, ");
840 #endif
841
842         bytes_avail = 0UL;
843         for (i = 0; i < pavail_ents; i++) {
844                 end_of_phys_memory = pavail[i].phys_addr +
845                         pavail[i].reg_size;
846                 bytes_avail += pavail[i].reg_size;
847                 if (cmdline_memory_size) {
848                         if (bytes_avail > cmdline_memory_size) {
849                                 unsigned long slack = bytes_avail - cmdline_memory_size;
850
851                                 bytes_avail -= slack;
852                                 end_of_phys_memory -= slack;
853
854                                 pavail[i].reg_size -= slack;
855                                 if ((long)pavail[i].reg_size <= 0L) {
856                                         pavail[i].phys_addr = 0xdeadbeefUL;
857                                         pavail[i].reg_size = 0UL;
858                                         pavail_ents = i;
859                                 } else {
860                                         pavail[i+1].reg_size = 0Ul;
861                                         pavail[i+1].phys_addr = 0xdeadbeefUL;
862                                         pavail_ents = i + 1;
863                                 }
864                                 break;
865                         }
866                 }
867         }
868
869         *pages_avail = bytes_avail >> PAGE_SHIFT;
870
871         /* Start with page aligned address of last symbol in kernel
872          * image.  The kernel is hard mapped below PAGE_OFFSET in a
873          * 4MB locked TLB translation.
874          */
875         start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
876
877         bootmap_pfn = start_pfn;
878
879         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
880
881 #ifdef CONFIG_BLK_DEV_INITRD
882         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
883         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
884                 unsigned long ramdisk_image = sparc_ramdisk_image ?
885                         sparc_ramdisk_image : sparc_ramdisk_image64;
886                 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
887                         ramdisk_image -= KERNBASE;
888                 initrd_start = ramdisk_image + phys_base;
889                 initrd_end = initrd_start + sparc_ramdisk_size;
890                 if (initrd_end > end_of_phys_memory) {
891                         printk(KERN_CRIT "initrd extends beyond end of memory "
892                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
893                                initrd_end, end_of_phys_memory);
894                         initrd_start = 0;
895                 }
896                 if (initrd_start) {
897                         if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
898                             initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
899                                 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
900                 }
901         }
902 #endif  
903         /* Initialize the boot-time allocator. */
904         max_pfn = max_low_pfn = end_pfn;
905         min_low_pfn = pfn_base;
906
907 #ifdef CONFIG_DEBUG_BOOTMEM
908         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
909                     min_low_pfn, bootmap_pfn, max_low_pfn);
910 #endif
911         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
912
913         /* Now register the available physical memory with the
914          * allocator.
915          */
916         for (i = 0; i < pavail_ents; i++) {
917 #ifdef CONFIG_DEBUG_BOOTMEM
918                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
919                             i, pavail[i].phys_addr, pavail[i].reg_size);
920 #endif
921                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
922         }
923
924 #ifdef CONFIG_BLK_DEV_INITRD
925         if (initrd_start) {
926                 size = initrd_end - initrd_start;
927
928                 /* Resert the initrd image area. */
929 #ifdef CONFIG_DEBUG_BOOTMEM
930                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
931                         initrd_start, initrd_end);
932 #endif
933                 reserve_bootmem(initrd_start, size);
934                 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
935
936                 initrd_start += PAGE_OFFSET;
937                 initrd_end += PAGE_OFFSET;
938         }
939 #endif
940         /* Reserve the kernel text/data/bss. */
941 #ifdef CONFIG_DEBUG_BOOTMEM
942         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
943 #endif
944         reserve_bootmem(kern_base, kern_size);
945         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
946
947         /* Reserve the bootmem map.   We do not account for it
948          * in pages_avail because we will release that memory
949          * in free_all_bootmem.
950          */
951         size = bootmap_size;
952 #ifdef CONFIG_DEBUG_BOOTMEM
953         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
954                     (bootmap_pfn << PAGE_SHIFT), size);
955 #endif
956         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
957         *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
958
959         return end_pfn;
960 }
961
962 #ifdef CONFIG_DEBUG_PAGEALLOC
963 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
964 {
965         unsigned long vstart = PAGE_OFFSET + pstart;
966         unsigned long vend = PAGE_OFFSET + pend;
967         unsigned long alloc_bytes = 0UL;
968
969         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
970                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
971                             vstart, vend);
972                 prom_halt();
973         }
974
975         while (vstart < vend) {
976                 unsigned long this_end, paddr = __pa(vstart);
977                 pgd_t *pgd = pgd_offset_k(vstart);
978                 pud_t *pud;
979                 pmd_t *pmd;
980                 pte_t *pte;
981
982                 pud = pud_offset(pgd, vstart);
983                 if (pud_none(*pud)) {
984                         pmd_t *new;
985
986                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
987                         alloc_bytes += PAGE_SIZE;
988                         pud_populate(&init_mm, pud, new);
989                 }
990
991                 pmd = pmd_offset(pud, vstart);
992                 if (!pmd_present(*pmd)) {
993                         pte_t *new;
994
995                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
996                         alloc_bytes += PAGE_SIZE;
997                         pmd_populate_kernel(&init_mm, pmd, new);
998                 }
999
1000                 pte = pte_offset_kernel(pmd, vstart);
1001                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1002                 if (this_end > vend)
1003                         this_end = vend;
1004
1005                 while (vstart < this_end) {
1006                         pte_val(*pte) = (paddr | pgprot_val(prot));
1007
1008                         vstart += PAGE_SIZE;
1009                         paddr += PAGE_SIZE;
1010                         pte++;
1011                 }
1012         }
1013
1014         return alloc_bytes;
1015 }
1016
1017 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1018 static int pall_ents __initdata;
1019
1020 extern unsigned int kvmap_linear_patch[1];
1021
1022 static void __init kernel_physical_mapping_init(void)
1023 {
1024         unsigned long i, mem_alloced = 0UL;
1025
1026         read_obp_memory("reg", &pall[0], &pall_ents);
1027
1028         for (i = 0; i < pall_ents; i++) {
1029                 unsigned long phys_start, phys_end;
1030
1031                 phys_start = pall[i].phys_addr;
1032                 phys_end = phys_start + pall[i].reg_size;
1033                 mem_alloced += kernel_map_range(phys_start, phys_end,
1034                                                 PAGE_KERNEL);
1035         }
1036
1037         printk("Allocated %ld bytes for kernel page tables.\n",
1038                mem_alloced);
1039
1040         kvmap_linear_patch[0] = 0x01000000; /* nop */
1041         flushi(&kvmap_linear_patch[0]);
1042
1043         __flush_tlb_all();
1044 }
1045
1046 void kernel_map_pages(struct page *page, int numpages, int enable)
1047 {
1048         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1049         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1050
1051         kernel_map_range(phys_start, phys_end,
1052                          (enable ? PAGE_KERNEL : __pgprot(0)));
1053
1054         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1055                                PAGE_OFFSET + phys_end);
1056
1057         /* we should perform an IPI and flush all tlbs,
1058          * but that can deadlock->flush only current cpu.
1059          */
1060         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1061                                  PAGE_OFFSET + phys_end);
1062 }
1063 #endif
1064
1065 unsigned long __init find_ecache_flush_span(unsigned long size)
1066 {
1067         int i;
1068
1069         for (i = 0; i < pavail_ents; i++) {
1070                 if (pavail[i].reg_size >= size)
1071                         return pavail[i].phys_addr;
1072         }
1073
1074         return ~0UL;
1075 }
1076
1077 static void __init tsb_phys_patch(void)
1078 {
1079         struct tsb_ldquad_phys_patch_entry *pquad;
1080         struct tsb_phys_patch_entry *p;
1081
1082         pquad = &__tsb_ldquad_phys_patch;
1083         while (pquad < &__tsb_ldquad_phys_patch_end) {
1084                 unsigned long addr = pquad->addr;
1085
1086                 if (tlb_type == hypervisor)
1087                         *(unsigned int *) addr = pquad->sun4v_insn;
1088                 else
1089                         *(unsigned int *) addr = pquad->sun4u_insn;
1090                 wmb();
1091                 __asm__ __volatile__("flush     %0"
1092                                      : /* no outputs */
1093                                      : "r" (addr));
1094
1095                 pquad++;
1096         }
1097
1098         p = &__tsb_phys_patch;
1099         while (p < &__tsb_phys_patch_end) {
1100                 unsigned long addr = p->addr;
1101
1102                 *(unsigned int *) addr = p->insn;
1103                 wmb();
1104                 __asm__ __volatile__("flush     %0"
1105                                      : /* no outputs */
1106                                      : "r" (addr));
1107
1108                 p++;
1109         }
1110 }
1111
1112 /* paging_init() sets up the page tables */
1113
1114 extern void cheetah_ecache_flush_init(void);
1115 extern void sun4v_patch_tlb_handlers(void);
1116
1117 static unsigned long last_valid_pfn;
1118 pgd_t swapper_pg_dir[2048];
1119
1120 void __init paging_init(void)
1121 {
1122         unsigned long end_pfn, pages_avail, shift;
1123         unsigned long real_end, i;
1124
1125         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1126         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1127
1128         if (tlb_type == cheetah_plus ||
1129             tlb_type == hypervisor)
1130                 tsb_phys_patch();
1131
1132         if (tlb_type == hypervisor)
1133                 sun4v_patch_tlb_handlers();
1134
1135         /* Find available physical memory... */
1136         read_obp_memory("available", &pavail[0], &pavail_ents);
1137
1138         phys_base = 0xffffffffffffffffUL;
1139         for (i = 0; i < pavail_ents; i++)
1140                 phys_base = min(phys_base, pavail[i].phys_addr);
1141
1142         pfn_base = phys_base >> PAGE_SHIFT;
1143
1144         set_bit(0, mmu_context_bmap);
1145
1146         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1147
1148         real_end = (unsigned long)_end;
1149         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1150                 bigkernel = 1;
1151         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1152                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1153                 prom_halt();
1154         }
1155
1156         /* Set kernel pgd to upper alias so physical page computations
1157          * work.
1158          */
1159         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1160         
1161         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1162
1163         /* Now can init the kernel/bad page tables. */
1164         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1165                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1166         
1167         inherit_prom_mappings();
1168         
1169         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1170         setup_tba();
1171
1172         __flush_tlb_all();
1173
1174         /* Setup bootmem... */
1175         pages_avail = 0;
1176         last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
1177
1178 #ifdef CONFIG_DEBUG_PAGEALLOC
1179         kernel_physical_mapping_init();
1180 #endif
1181
1182         {
1183                 unsigned long zones_size[MAX_NR_ZONES];
1184                 unsigned long zholes_size[MAX_NR_ZONES];
1185                 unsigned long npages;
1186                 int znum;
1187
1188                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1189                         zones_size[znum] = zholes_size[znum] = 0;
1190
1191                 npages = end_pfn - pfn_base;
1192                 zones_size[ZONE_DMA] = npages;
1193                 zholes_size[ZONE_DMA] = npages - pages_avail;
1194
1195                 free_area_init_node(0, &contig_page_data, zones_size,
1196                                     phys_base >> PAGE_SHIFT, zholes_size);
1197         }
1198
1199         device_scan();
1200 }
1201
1202 static void __init taint_real_pages(void)
1203 {
1204         int i;
1205
1206         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1207
1208         /* Find changes discovered in the physmem available rescan and
1209          * reserve the lost portions in the bootmem maps.
1210          */
1211         for (i = 0; i < pavail_ents; i++) {
1212                 unsigned long old_start, old_end;
1213
1214                 old_start = pavail[i].phys_addr;
1215                 old_end = old_start +
1216                         pavail[i].reg_size;
1217                 while (old_start < old_end) {
1218                         int n;
1219
1220                         for (n = 0; pavail_rescan_ents; n++) {
1221                                 unsigned long new_start, new_end;
1222
1223                                 new_start = pavail_rescan[n].phys_addr;
1224                                 new_end = new_start +
1225                                         pavail_rescan[n].reg_size;
1226
1227                                 if (new_start <= old_start &&
1228                                     new_end >= (old_start + PAGE_SIZE)) {
1229                                         set_bit(old_start >> 22,
1230                                                 sparc64_valid_addr_bitmap);
1231                                         goto do_next_page;
1232                                 }
1233                         }
1234                         reserve_bootmem(old_start, PAGE_SIZE);
1235
1236                 do_next_page:
1237                         old_start += PAGE_SIZE;
1238                 }
1239         }
1240 }
1241
1242 void __init mem_init(void)
1243 {
1244         unsigned long codepages, datapages, initpages;
1245         unsigned long addr, last;
1246         int i;
1247
1248         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1249         i += 1;
1250         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1251         if (sparc64_valid_addr_bitmap == NULL) {
1252                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1253                 prom_halt();
1254         }
1255         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1256
1257         addr = PAGE_OFFSET + kern_base;
1258         last = PAGE_ALIGN(kern_size) + addr;
1259         while (addr < last) {
1260                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1261                 addr += PAGE_SIZE;
1262         }
1263
1264         taint_real_pages();
1265
1266         max_mapnr = last_valid_pfn - pfn_base;
1267         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1268
1269 #ifdef CONFIG_DEBUG_BOOTMEM
1270         prom_printf("mem_init: Calling free_all_bootmem().\n");
1271 #endif
1272         totalram_pages = num_physpages = free_all_bootmem() - 1;
1273
1274         /*
1275          * Set up the zero page, mark it reserved, so that page count
1276          * is not manipulated when freeing the page from user ptes.
1277          */
1278         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1279         if (mem_map_zero == NULL) {
1280                 prom_printf("paging_init: Cannot alloc zero page.\n");
1281                 prom_halt();
1282         }
1283         SetPageReserved(mem_map_zero);
1284
1285         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1286         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1287         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1288         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1289         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1290         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1291
1292         printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1293                nr_free_pages() << (PAGE_SHIFT-10),
1294                codepages << (PAGE_SHIFT-10),
1295                datapages << (PAGE_SHIFT-10), 
1296                initpages << (PAGE_SHIFT-10), 
1297                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1298
1299         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1300                 cheetah_ecache_flush_init();
1301 }
1302
1303 void free_initmem(void)
1304 {
1305         unsigned long addr, initend;
1306
1307         /*
1308          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1309          */
1310         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1311         initend = (unsigned long)(__init_end) & PAGE_MASK;
1312         for (; addr < initend; addr += PAGE_SIZE) {
1313                 unsigned long page;
1314                 struct page *p;
1315
1316                 page = (addr +
1317                         ((unsigned long) __va(kern_base)) -
1318                         ((unsigned long) KERNBASE));
1319                 memset((void *)addr, 0xcc, PAGE_SIZE);
1320                 p = virt_to_page(page);
1321
1322                 ClearPageReserved(p);
1323                 set_page_count(p, 1);
1324                 __free_page(p);
1325                 num_physpages++;
1326                 totalram_pages++;
1327         }
1328 }
1329
1330 #ifdef CONFIG_BLK_DEV_INITRD
1331 void free_initrd_mem(unsigned long start, unsigned long end)
1332 {
1333         if (start < end)
1334                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1335         for (; start < end; start += PAGE_SIZE) {
1336                 struct page *p = virt_to_page(start);
1337
1338                 ClearPageReserved(p);
1339                 set_page_count(p, 1);
1340                 __free_page(p);
1341                 num_physpages++;
1342                 totalram_pages++;
1343         }
1344 }
1345 #endif