]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/mm/init.c
Pull battery into release branch
[linux-2.6-omap-h63xx.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27
28 #include <asm/head.h>
29 #include <asm/system.h>
30 #include <asm/page.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/iommu.h>
35 #include <asm/io.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/dma.h>
40 #include <asm/starfire.h>
41 #include <asm/tlb.h>
42 #include <asm/spitfire.h>
43 #include <asm/sections.h>
44 #include <asm/tsb.h>
45 #include <asm/hypervisor.h>
46 #include <asm/prom.h>
47 #include <asm/sstate.h>
48 #include <asm/mdesc.h>
49
50 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
51 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
52 #define KPTE_BITMAP_BYTES       \
53         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70
71 #define MAX_BANKS       32
72
73 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
74 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
75 static int pavail_ents __initdata;
76 static int pavail_rescan_ents __initdata;
77
78 static int cmp_p64(const void *a, const void *b)
79 {
80         const struct linux_prom64_registers *x = a, *y = b;
81
82         if (x->phys_addr > y->phys_addr)
83                 return 1;
84         if (x->phys_addr < y->phys_addr)
85                 return -1;
86         return 0;
87 }
88
89 static void __init read_obp_memory(const char *property,
90                                    struct linux_prom64_registers *regs,
91                                    int *num_ents)
92 {
93         int node = prom_finddevice("/memory");
94         int prop_size = prom_getproplen(node, property);
95         int ents, ret, i;
96
97         ents = prop_size / sizeof(struct linux_prom64_registers);
98         if (ents > MAX_BANKS) {
99                 prom_printf("The machine has more %s property entries than "
100                             "this kernel can support (%d).\n",
101                             property, MAX_BANKS);
102                 prom_halt();
103         }
104
105         ret = prom_getproperty(node, property, (char *) regs, prop_size);
106         if (ret == -1) {
107                 prom_printf("Couldn't get %s property from /memory.\n");
108                 prom_halt();
109         }
110
111         /* Sanitize what we got from the firmware, by page aligning
112          * everything.
113          */
114         for (i = 0; i < ents; i++) {
115                 unsigned long base, size;
116
117                 base = regs[i].phys_addr;
118                 size = regs[i].reg_size;
119
120                 size &= PAGE_MASK;
121                 if (base & ~PAGE_MASK) {
122                         unsigned long new_base = PAGE_ALIGN(base);
123
124                         size -= new_base - base;
125                         if ((long) size < 0L)
126                                 size = 0UL;
127                         base = new_base;
128                 }
129                 if (size == 0UL) {
130                         /* If it is empty, simply get rid of it.
131                          * This simplifies the logic of the other
132                          * functions that process these arrays.
133                          */
134                         memmove(&regs[i], &regs[i + 1],
135                                 (ents - i - 1) * sizeof(regs[0]));
136                         i--;
137                         ents--;
138                         continue;
139                 }
140                 regs[i].phys_addr = base;
141                 regs[i].reg_size = size;
142         }
143
144         *num_ents = ents;
145
146         sort(regs, ents, sizeof(struct linux_prom64_registers),
147              cmp_p64, NULL);
148 }
149
150 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
151
152 /* Kernel physical address base and size in bytes.  */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
160
161 struct page *mem_map_zero __read_mostly;
162
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
168
169 int bigkernel = 0;
170
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
177
178 inline void flush_dcache_page_impl(struct page *page)
179 {
180         BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182         atomic_inc(&dcpage_flushes);
183 #endif
184
185 #ifdef DCACHE_ALIASING_POSSIBLE
186         __flush_dcache_page(page_address(page),
187                             ((tlb_type == spitfire) &&
188                              page_mapping(page) != NULL));
189 #else
190         if (page_mapping(page) != NULL &&
191             tlb_type == spitfire)
192                 __flush_icache_page(__pa(page_address(page)));
193 #endif
194 }
195
196 #define PG_dcache_dirty         PG_arch_1
197 #define PG_dcache_cpu_shift     32UL
198 #define PG_dcache_cpu_mask      \
199         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200
201 #define dcache_dirty_cpu(page) \
202         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203
204 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
205 {
206         unsigned long mask = this_cpu;
207         unsigned long non_cpu_bits;
208
209         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
212         __asm__ __volatile__("1:\n\t"
213                              "ldx       [%2], %%g7\n\t"
214                              "and       %%g7, %1, %%g1\n\t"
215                              "or        %%g1, %0, %%g1\n\t"
216                              "casx      [%2], %%g7, %%g1\n\t"
217                              "cmp       %%g7, %%g1\n\t"
218                              "membar    #StoreLoad | #StoreStore\n\t"
219                              "bne,pn    %%xcc, 1b\n\t"
220                              " nop"
221                              : /* no outputs */
222                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223                              : "g1", "g7");
224 }
225
226 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 {
228         unsigned long mask = (1UL << PG_dcache_dirty);
229
230         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231                              "1:\n\t"
232                              "ldx       [%2], %%g7\n\t"
233                              "srlx      %%g7, %4, %%g1\n\t"
234                              "and       %%g1, %3, %%g1\n\t"
235                              "cmp       %%g1, %0\n\t"
236                              "bne,pn    %%icc, 2f\n\t"
237                              " andn     %%g7, %1, %%g1\n\t"
238                              "casx      [%2], %%g7, %%g1\n\t"
239                              "cmp       %%g7, %%g1\n\t"
240                              "membar    #StoreLoad | #StoreStore\n\t"
241                              "bne,pn    %%xcc, 1b\n\t"
242                              " nop\n"
243                              "2:"
244                              : /* no outputs */
245                              : "r" (cpu), "r" (mask), "r" (&page->flags),
246                                "i" (PG_dcache_cpu_mask),
247                                "i" (PG_dcache_cpu_shift)
248                              : "g1", "g7");
249 }
250
251 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
252 {
253         unsigned long tsb_addr = (unsigned long) ent;
254
255         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
256                 tsb_addr = __pa(tsb_addr);
257
258         __tsb_insert(tsb_addr, tag, pte);
259 }
260
261 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
262 unsigned long _PAGE_SZBITS __read_mostly;
263
264 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
265 {
266         struct mm_struct *mm;
267         struct tsb *tsb;
268         unsigned long tag, flags;
269         unsigned long tsb_index, tsb_hash_shift;
270
271         if (tlb_type != hypervisor) {
272                 unsigned long pfn = pte_pfn(pte);
273                 unsigned long pg_flags;
274                 struct page *page;
275
276                 if (pfn_valid(pfn) &&
277                     (page = pfn_to_page(pfn), page_mapping(page)) &&
278                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
279                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
280                                    PG_dcache_cpu_mask);
281                         int this_cpu = get_cpu();
282
283                         /* This is just to optimize away some function calls
284                          * in the SMP case.
285                          */
286                         if (cpu == this_cpu)
287                                 flush_dcache_page_impl(page);
288                         else
289                                 smp_flush_dcache_page_impl(page, cpu);
290
291                         clear_dcache_dirty_cpu(page, cpu);
292
293                         put_cpu();
294                 }
295         }
296
297         mm = vma->vm_mm;
298
299         tsb_index = MM_TSB_BASE;
300         tsb_hash_shift = PAGE_SHIFT;
301
302         spin_lock_irqsave(&mm->context.lock, flags);
303
304 #ifdef CONFIG_HUGETLB_PAGE
305         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
306                 if ((tlb_type == hypervisor &&
307                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
308                     (tlb_type != hypervisor &&
309                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
310                         tsb_index = MM_TSB_HUGE;
311                         tsb_hash_shift = HPAGE_SHIFT;
312                 }
313         }
314 #endif
315
316         tsb = mm->context.tsb_block[tsb_index].tsb;
317         tsb += ((address >> tsb_hash_shift) &
318                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
319         tag = (address >> 22UL);
320         tsb_insert(tsb, tag, pte_val(pte));
321
322         spin_unlock_irqrestore(&mm->context.lock, flags);
323 }
324
325 void flush_dcache_page(struct page *page)
326 {
327         struct address_space *mapping;
328         int this_cpu;
329
330         if (tlb_type == hypervisor)
331                 return;
332
333         /* Do not bother with the expensive D-cache flush if it
334          * is merely the zero page.  The 'bigcore' testcase in GDB
335          * causes this case to run millions of times.
336          */
337         if (page == ZERO_PAGE(0))
338                 return;
339
340         this_cpu = get_cpu();
341
342         mapping = page_mapping(page);
343         if (mapping && !mapping_mapped(mapping)) {
344                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
345                 if (dirty) {
346                         int dirty_cpu = dcache_dirty_cpu(page);
347
348                         if (dirty_cpu == this_cpu)
349                                 goto out;
350                         smp_flush_dcache_page_impl(page, dirty_cpu);
351                 }
352                 set_dcache_dirty(page, this_cpu);
353         } else {
354                 /* We could delay the flush for the !page_mapping
355                  * case too.  But that case is for exec env/arg
356                  * pages and those are %99 certainly going to get
357                  * faulted into the tlb (and thus flushed) anyways.
358                  */
359                 flush_dcache_page_impl(page);
360         }
361
362 out:
363         put_cpu();
364 }
365
366 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
367 {
368         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
369         if (tlb_type == spitfire) {
370                 unsigned long kaddr;
371
372                 /* This code only runs on Spitfire cpus so this is
373                  * why we can assume _PAGE_PADDR_4U.
374                  */
375                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
376                         unsigned long paddr, mask = _PAGE_PADDR_4U;
377
378                         if (kaddr >= PAGE_OFFSET)
379                                 paddr = kaddr & mask;
380                         else {
381                                 pgd_t *pgdp = pgd_offset_k(kaddr);
382                                 pud_t *pudp = pud_offset(pgdp, kaddr);
383                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
384                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
385
386                                 paddr = pte_val(*ptep) & mask;
387                         }
388                         __flush_icache_page(paddr);
389                 }
390         }
391 }
392
393 void show_mem(void)
394 {
395         unsigned long total = 0, reserved = 0;
396         unsigned long shared = 0, cached = 0;
397         pg_data_t *pgdat;
398
399         printk(KERN_INFO "Mem-info:\n");
400         show_free_areas();
401         printk(KERN_INFO "Free swap:       %6ldkB\n",
402                nr_swap_pages << (PAGE_SHIFT-10));
403         for_each_online_pgdat(pgdat) {
404                 unsigned long i, flags;
405
406                 pgdat_resize_lock(pgdat, &flags);
407                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
408                         struct page *page = pgdat_page_nr(pgdat, i);
409                         total++;
410                         if (PageReserved(page))
411                                 reserved++;
412                         else if (PageSwapCache(page))
413                                 cached++;
414                         else if (page_count(page))
415                                 shared += page_count(page) - 1;
416                 }
417                 pgdat_resize_unlock(pgdat, &flags);
418         }
419
420         printk(KERN_INFO "%lu pages of RAM\n", total);
421         printk(KERN_INFO "%lu reserved pages\n", reserved);
422         printk(KERN_INFO "%lu pages shared\n", shared);
423         printk(KERN_INFO "%lu pages swap cached\n", cached);
424
425         printk(KERN_INFO "%lu pages dirty\n",
426                global_page_state(NR_FILE_DIRTY));
427         printk(KERN_INFO "%lu pages writeback\n",
428                global_page_state(NR_WRITEBACK));
429         printk(KERN_INFO "%lu pages mapped\n",
430                global_page_state(NR_FILE_MAPPED));
431         printk(KERN_INFO "%lu pages slab\n",
432                 global_page_state(NR_SLAB_RECLAIMABLE) +
433                 global_page_state(NR_SLAB_UNRECLAIMABLE));
434         printk(KERN_INFO "%lu pages pagetables\n",
435                global_page_state(NR_PAGETABLE));
436 }
437
438 void mmu_info(struct seq_file *m)
439 {
440         if (tlb_type == cheetah)
441                 seq_printf(m, "MMU Type\t: Cheetah\n");
442         else if (tlb_type == cheetah_plus)
443                 seq_printf(m, "MMU Type\t: Cheetah+\n");
444         else if (tlb_type == spitfire)
445                 seq_printf(m, "MMU Type\t: Spitfire\n");
446         else if (tlb_type == hypervisor)
447                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
448         else
449                 seq_printf(m, "MMU Type\t: ???\n");
450
451 #ifdef CONFIG_DEBUG_DCFLUSH
452         seq_printf(m, "DCPageFlushes\t: %d\n",
453                    atomic_read(&dcpage_flushes));
454 #ifdef CONFIG_SMP
455         seq_printf(m, "DCPageFlushesXC\t: %d\n",
456                    atomic_read(&dcpage_flushes_xcall));
457 #endif /* CONFIG_SMP */
458 #endif /* CONFIG_DEBUG_DCFLUSH */
459 }
460
461 struct linux_prom_translation {
462         unsigned long virt;
463         unsigned long size;
464         unsigned long data;
465 };
466
467 /* Exported for kernel TLB miss handling in ktlb.S */
468 struct linux_prom_translation prom_trans[512] __read_mostly;
469 unsigned int prom_trans_ents __read_mostly;
470
471 /* Exported for SMP bootup purposes. */
472 unsigned long kern_locked_tte_data;
473
474 /* The obp translations are saved based on 8k pagesize, since obp can
475  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
476  * HI_OBP_ADDRESS range are handled in ktlb.S.
477  */
478 static inline int in_obp_range(unsigned long vaddr)
479 {
480         return (vaddr >= LOW_OBP_ADDRESS &&
481                 vaddr < HI_OBP_ADDRESS);
482 }
483
484 static int cmp_ptrans(const void *a, const void *b)
485 {
486         const struct linux_prom_translation *x = a, *y = b;
487
488         if (x->virt > y->virt)
489                 return 1;
490         if (x->virt < y->virt)
491                 return -1;
492         return 0;
493 }
494
495 /* Read OBP translations property into 'prom_trans[]'.  */
496 static void __init read_obp_translations(void)
497 {
498         int n, node, ents, first, last, i;
499
500         node = prom_finddevice("/virtual-memory");
501         n = prom_getproplen(node, "translations");
502         if (unlikely(n == 0 || n == -1)) {
503                 prom_printf("prom_mappings: Couldn't get size.\n");
504                 prom_halt();
505         }
506         if (unlikely(n > sizeof(prom_trans))) {
507                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
508                 prom_halt();
509         }
510
511         if ((n = prom_getproperty(node, "translations",
512                                   (char *)&prom_trans[0],
513                                   sizeof(prom_trans))) == -1) {
514                 prom_printf("prom_mappings: Couldn't get property.\n");
515                 prom_halt();
516         }
517
518         n = n / sizeof(struct linux_prom_translation);
519
520         ents = n;
521
522         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
523              cmp_ptrans, NULL);
524
525         /* Now kick out all the non-OBP entries.  */
526         for (i = 0; i < ents; i++) {
527                 if (in_obp_range(prom_trans[i].virt))
528                         break;
529         }
530         first = i;
531         for (; i < ents; i++) {
532                 if (!in_obp_range(prom_trans[i].virt))
533                         break;
534         }
535         last = i;
536
537         for (i = 0; i < (last - first); i++) {
538                 struct linux_prom_translation *src = &prom_trans[i + first];
539                 struct linux_prom_translation *dest = &prom_trans[i];
540
541                 *dest = *src;
542         }
543         for (; i < ents; i++) {
544                 struct linux_prom_translation *dest = &prom_trans[i];
545                 dest->virt = dest->size = dest->data = 0x0UL;
546         }
547
548         prom_trans_ents = last - first;
549
550         if (tlb_type == spitfire) {
551                 /* Clear diag TTE bits. */
552                 for (i = 0; i < prom_trans_ents; i++)
553                         prom_trans[i].data &= ~0x0003fe0000000000UL;
554         }
555 }
556
557 static void __init hypervisor_tlb_lock(unsigned long vaddr,
558                                        unsigned long pte,
559                                        unsigned long mmu)
560 {
561         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
562
563         if (ret != 0) {
564                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
565                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
566                 prom_halt();
567         }
568 }
569
570 static unsigned long kern_large_tte(unsigned long paddr);
571
572 static void __init remap_kernel(void)
573 {
574         unsigned long phys_page, tte_vaddr, tte_data;
575         int tlb_ent = sparc64_highest_locked_tlbent();
576
577         tte_vaddr = (unsigned long) KERNBASE;
578         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
579         tte_data = kern_large_tte(phys_page);
580
581         kern_locked_tte_data = tte_data;
582
583         /* Now lock us into the TLBs via Hypervisor or OBP. */
584         if (tlb_type == hypervisor) {
585                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
586                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
587                 if (bigkernel) {
588                         tte_vaddr += 0x400000;
589                         tte_data += 0x400000;
590                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
591                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
592                 }
593         } else {
594                 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
595                 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
596                 if (bigkernel) {
597                         tlb_ent -= 1;
598                         prom_dtlb_load(tlb_ent,
599                                        tte_data + 0x400000, 
600                                        tte_vaddr + 0x400000);
601                         prom_itlb_load(tlb_ent,
602                                        tte_data + 0x400000, 
603                                        tte_vaddr + 0x400000);
604                 }
605                 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
606         }
607         if (tlb_type == cheetah_plus) {
608                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
609                                             CTX_CHEETAH_PLUS_NUC);
610                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
611                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
612         }
613 }
614
615
616 static void __init inherit_prom_mappings(void)
617 {
618         read_obp_translations();
619
620         /* Now fixup OBP's idea about where we really are mapped. */
621         prom_printf("Remapping the kernel... ");
622         remap_kernel();
623         prom_printf("done.\n");
624 }
625
626 void prom_world(int enter)
627 {
628         if (!enter)
629                 set_fs((mm_segment_t) { get_thread_current_ds() });
630
631         __asm__ __volatile__("flushw");
632 }
633
634 #ifdef DCACHE_ALIASING_POSSIBLE
635 void __flush_dcache_range(unsigned long start, unsigned long end)
636 {
637         unsigned long va;
638
639         if (tlb_type == spitfire) {
640                 int n = 0;
641
642                 for (va = start; va < end; va += 32) {
643                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
644                         if (++n >= 512)
645                                 break;
646                 }
647         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
648                 start = __pa(start);
649                 end = __pa(end);
650                 for (va = start; va < end; va += 32)
651                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
652                                              "membar #Sync"
653                                              : /* no outputs */
654                                              : "r" (va),
655                                                "i" (ASI_DCACHE_INVALIDATE));
656         }
657 }
658 #endif /* DCACHE_ALIASING_POSSIBLE */
659
660 /* get_new_mmu_context() uses "cache + 1".  */
661 DEFINE_SPINLOCK(ctx_alloc_lock);
662 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
663 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
664 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
665 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
666
667 /* Caller does TLB context flushing on local CPU if necessary.
668  * The caller also ensures that CTX_VALID(mm->context) is false.
669  *
670  * We must be careful about boundary cases so that we never
671  * let the user have CTX 0 (nucleus) or we ever use a CTX
672  * version of zero (and thus NO_CONTEXT would not be caught
673  * by version mis-match tests in mmu_context.h).
674  *
675  * Always invoked with interrupts disabled.
676  */
677 void get_new_mmu_context(struct mm_struct *mm)
678 {
679         unsigned long ctx, new_ctx;
680         unsigned long orig_pgsz_bits;
681         unsigned long flags;
682         int new_version;
683
684         spin_lock_irqsave(&ctx_alloc_lock, flags);
685         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
686         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
687         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
688         new_version = 0;
689         if (new_ctx >= (1 << CTX_NR_BITS)) {
690                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
691                 if (new_ctx >= ctx) {
692                         int i;
693                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
694                                 CTX_FIRST_VERSION;
695                         if (new_ctx == 1)
696                                 new_ctx = CTX_FIRST_VERSION;
697
698                         /* Don't call memset, for 16 entries that's just
699                          * plain silly...
700                          */
701                         mmu_context_bmap[0] = 3;
702                         mmu_context_bmap[1] = 0;
703                         mmu_context_bmap[2] = 0;
704                         mmu_context_bmap[3] = 0;
705                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
706                                 mmu_context_bmap[i + 0] = 0;
707                                 mmu_context_bmap[i + 1] = 0;
708                                 mmu_context_bmap[i + 2] = 0;
709                                 mmu_context_bmap[i + 3] = 0;
710                         }
711                         new_version = 1;
712                         goto out;
713                 }
714         }
715         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
716         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
717 out:
718         tlb_context_cache = new_ctx;
719         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
720         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
721
722         if (unlikely(new_version))
723                 smp_new_mmu_context_version();
724 }
725
726 /* Find a free area for the bootmem map, avoiding the kernel image
727  * and the initial ramdisk.
728  */
729 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
730                                                unsigned long end_pfn)
731 {
732         unsigned long avoid_start, avoid_end, bootmap_size;
733         int i;
734
735         bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn);
736         bootmap_size <<= PAGE_SHIFT;
737
738         avoid_start = avoid_end = 0;
739 #ifdef CONFIG_BLK_DEV_INITRD
740         avoid_start = initrd_start;
741         avoid_end = PAGE_ALIGN(initrd_end);
742 #endif
743
744 #ifdef CONFIG_DEBUG_BOOTMEM
745         prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
746                     kern_base, PAGE_ALIGN(kern_base + kern_size),
747                     avoid_start, avoid_end);
748 #endif
749         for (i = 0; i < pavail_ents; i++) {
750                 unsigned long start, end;
751
752                 start = pavail[i].phys_addr;
753                 end = start + pavail[i].reg_size;
754
755                 while (start < end) {
756                         if (start >= kern_base &&
757                             start < PAGE_ALIGN(kern_base + kern_size)) {
758                                 start = PAGE_ALIGN(kern_base + kern_size);
759                                 continue;
760                         }
761                         if (start >= avoid_start && start < avoid_end) {
762                                 start = avoid_end;
763                                 continue;
764                         }
765
766                         if ((end - start) < bootmap_size)
767                                 break;
768
769                         if (start < kern_base &&
770                             (start + bootmap_size) > kern_base) {
771                                 start = PAGE_ALIGN(kern_base + kern_size);
772                                 continue;
773                         }
774
775                         if (start < avoid_start &&
776                             (start + bootmap_size) > avoid_start) {
777                                 start = avoid_end;
778                                 continue;
779                         }
780
781                         /* OK, it doesn't overlap anything, use it.  */
782 #ifdef CONFIG_DEBUG_BOOTMEM
783                         prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
784                                     start >> PAGE_SHIFT, start);
785 #endif
786                         return start >> PAGE_SHIFT;
787                 }
788         }
789
790         prom_printf("Cannot find free area for bootmap, aborting.\n");
791         prom_halt();
792 }
793
794 static void __init trim_pavail(unsigned long *cur_size_p,
795                                unsigned long *end_of_phys_p)
796 {
797         unsigned long to_trim = *cur_size_p - cmdline_memory_size;
798         unsigned long avoid_start, avoid_end;
799         int i;
800
801         to_trim = PAGE_ALIGN(to_trim);
802
803         avoid_start = avoid_end = 0;
804 #ifdef CONFIG_BLK_DEV_INITRD
805         avoid_start = initrd_start;
806         avoid_end = PAGE_ALIGN(initrd_end);
807 #endif
808
809         /* Trim some pavail[] entries in order to satisfy the
810          * requested "mem=xxx" kernel command line specification.
811          *
812          * We must not trim off the kernel image area nor the
813          * initial ramdisk range (if any).  Also, we must not trim
814          * any pavail[] entry down to zero in order to preserve
815          * the invariant that all pavail[] entries have a non-zero
816          * size which is assumed by all of the code in here.
817          */
818         for (i = 0; i < pavail_ents; i++) {
819                 unsigned long start, end, kern_end;
820                 unsigned long trim_low, trim_high, n;
821
822                 kern_end = PAGE_ALIGN(kern_base + kern_size);
823
824                 trim_low = start = pavail[i].phys_addr;
825                 trim_high = end = start + pavail[i].reg_size;
826
827                 if (kern_base >= start &&
828                     kern_base < end) {
829                         trim_low = kern_base;
830                         if (kern_end >= end)
831                                 continue;
832                 }
833                 if (kern_end >= start &&
834                     kern_end < end) {
835                         trim_high = kern_end;
836                 }
837                 if (avoid_start &&
838                     avoid_start >= start &&
839                     avoid_start < end) {
840                         if (trim_low > avoid_start)
841                                 trim_low = avoid_start;
842                         if (avoid_end >= end)
843                                 continue;
844                 }
845                 if (avoid_end &&
846                     avoid_end >= start &&
847                     avoid_end < end) {
848                         if (trim_high < avoid_end)
849                                 trim_high = avoid_end;
850                 }
851
852                 if (trim_high <= trim_low)
853                         continue;
854
855                 if (trim_low == start && trim_high == end) {
856                         /* Whole chunk is available for trimming.
857                          * Trim all except one page, in order to keep
858                          * entry non-empty.
859                          */
860                         n = (end - start) - PAGE_SIZE;
861                         if (n > to_trim)
862                                 n = to_trim;
863
864                         if (n) {
865                                 pavail[i].phys_addr += n;
866                                 pavail[i].reg_size -= n;
867                                 to_trim -= n;
868                         }
869                 } else {
870                         n = (trim_low - start);
871                         if (n > to_trim)
872                                 n = to_trim;
873
874                         if (n) {
875                                 pavail[i].phys_addr += n;
876                                 pavail[i].reg_size -= n;
877                                 to_trim -= n;
878                         }
879                         if (to_trim) {
880                                 n = end - trim_high;
881                                 if (n > to_trim)
882                                         n = to_trim;
883                                 if (n) {
884                                         pavail[i].reg_size -= n;
885                                         to_trim -= n;
886                                 }
887                         }
888                 }
889
890                 if (!to_trim)
891                         break;
892         }
893
894         /* Recalculate.  */
895         *cur_size_p = 0UL;
896         for (i = 0; i < pavail_ents; i++) {
897                 *end_of_phys_p = pavail[i].phys_addr +
898                         pavail[i].reg_size;
899                 *cur_size_p += pavail[i].reg_size;
900         }
901 }
902
903 /* About pages_avail, this is the value we will use to calculate
904  * the zholes_size[] argument given to free_area_init_node().  The
905  * page allocator uses this to calculate nr_kernel_pages,
906  * nr_all_pages and zone->present_pages.  On NUMA it is used
907  * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
908  *
909  * So this number should really be set to what the page allocator
910  * actually ends up with.  This means:
911  * 1) It should include bootmem map pages, we'll release those.
912  * 2) It should not include the kernel image, except for the
913  *    __init sections which we will also release.
914  * 3) It should include the initrd image, since we'll release
915  *    that too.
916  */
917 static unsigned long __init bootmem_init(unsigned long *pages_avail,
918                                          unsigned long phys_base)
919 {
920         unsigned long bootmap_size, end_pfn;
921         unsigned long end_of_phys_memory = 0UL;
922         unsigned long bootmap_pfn, bytes_avail, size;
923         int i;
924
925 #ifdef CONFIG_DEBUG_BOOTMEM
926         prom_printf("bootmem_init: Scan pavail, ");
927 #endif
928
929         bytes_avail = 0UL;
930         for (i = 0; i < pavail_ents; i++) {
931                 end_of_phys_memory = pavail[i].phys_addr +
932                         pavail[i].reg_size;
933                 bytes_avail += pavail[i].reg_size;
934         }
935
936         /* Determine the location of the initial ramdisk before trying
937          * to honor the "mem=xxx" command line argument.  We must know
938          * where the kernel image and the ramdisk image are so that we
939          * do not trim those two areas from the physical memory map.
940          */
941
942 #ifdef CONFIG_BLK_DEV_INITRD
943         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
944         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
945                 unsigned long ramdisk_image = sparc_ramdisk_image ?
946                         sparc_ramdisk_image : sparc_ramdisk_image64;
947                 ramdisk_image -= KERNBASE;
948                 initrd_start = ramdisk_image + phys_base;
949                 initrd_end = initrd_start + sparc_ramdisk_size;
950                 if (initrd_end > end_of_phys_memory) {
951                         printk(KERN_CRIT "initrd extends beyond end of memory "
952                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
953                                initrd_end, end_of_phys_memory);
954                         initrd_start = 0;
955                         initrd_end = 0;
956                 }
957         }
958 #endif  
959
960         if (cmdline_memory_size &&
961             bytes_avail > cmdline_memory_size)
962                 trim_pavail(&bytes_avail,
963                             &end_of_phys_memory);
964
965         *pages_avail = bytes_avail >> PAGE_SHIFT;
966
967         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
968
969         /* Initialize the boot-time allocator. */
970         max_pfn = max_low_pfn = end_pfn;
971         min_low_pfn = (phys_base >> PAGE_SHIFT);
972
973         bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
974
975 #ifdef CONFIG_DEBUG_BOOTMEM
976         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
977                     min_low_pfn, bootmap_pfn, max_low_pfn);
978 #endif
979         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
980                                          min_low_pfn, end_pfn);
981
982         /* Now register the available physical memory with the
983          * allocator.
984          */
985         for (i = 0; i < pavail_ents; i++) {
986 #ifdef CONFIG_DEBUG_BOOTMEM
987                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
988                             i, pavail[i].phys_addr, pavail[i].reg_size);
989 #endif
990                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
991         }
992
993 #ifdef CONFIG_BLK_DEV_INITRD
994         if (initrd_start) {
995                 size = initrd_end - initrd_start;
996
997                 /* Reserve the initrd image area. */
998 #ifdef CONFIG_DEBUG_BOOTMEM
999                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
1000                         initrd_start, initrd_end);
1001 #endif
1002                 reserve_bootmem(initrd_start, size);
1003
1004                 initrd_start += PAGE_OFFSET;
1005                 initrd_end += PAGE_OFFSET;
1006         }
1007 #endif
1008         /* Reserve the kernel text/data/bss. */
1009 #ifdef CONFIG_DEBUG_BOOTMEM
1010         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
1011 #endif
1012         reserve_bootmem(kern_base, kern_size);
1013         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
1014
1015         /* Add back in the initmem pages. */
1016         size = ((unsigned long)(__init_end) & PAGE_MASK) -
1017                 PAGE_ALIGN((unsigned long)__init_begin);
1018         *pages_avail += size >> PAGE_SHIFT;
1019
1020         /* Reserve the bootmem map.   We do not account for it
1021          * in pages_avail because we will release that memory
1022          * in free_all_bootmem.
1023          */
1024         size = bootmap_size;
1025 #ifdef CONFIG_DEBUG_BOOTMEM
1026         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
1027                     (bootmap_pfn << PAGE_SHIFT), size);
1028 #endif
1029         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
1030
1031         for (i = 0; i < pavail_ents; i++) {
1032                 unsigned long start_pfn, end_pfn;
1033
1034                 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
1035                 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
1036 #ifdef CONFIG_DEBUG_BOOTMEM
1037                 prom_printf("memory_present(0, %lx, %lx)\n",
1038                             start_pfn, end_pfn);
1039 #endif
1040                 memory_present(0, start_pfn, end_pfn);
1041         }
1042
1043         sparse_init();
1044
1045         return end_pfn;
1046 }
1047
1048 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1049 static int pall_ents __initdata;
1050
1051 #ifdef CONFIG_DEBUG_PAGEALLOC
1052 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
1053 {
1054         unsigned long vstart = PAGE_OFFSET + pstart;
1055         unsigned long vend = PAGE_OFFSET + pend;
1056         unsigned long alloc_bytes = 0UL;
1057
1058         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1059                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1060                             vstart, vend);
1061                 prom_halt();
1062         }
1063
1064         while (vstart < vend) {
1065                 unsigned long this_end, paddr = __pa(vstart);
1066                 pgd_t *pgd = pgd_offset_k(vstart);
1067                 pud_t *pud;
1068                 pmd_t *pmd;
1069                 pte_t *pte;
1070
1071                 pud = pud_offset(pgd, vstart);
1072                 if (pud_none(*pud)) {
1073                         pmd_t *new;
1074
1075                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1076                         alloc_bytes += PAGE_SIZE;
1077                         pud_populate(&init_mm, pud, new);
1078                 }
1079
1080                 pmd = pmd_offset(pud, vstart);
1081                 if (!pmd_present(*pmd)) {
1082                         pte_t *new;
1083
1084                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1085                         alloc_bytes += PAGE_SIZE;
1086                         pmd_populate_kernel(&init_mm, pmd, new);
1087                 }
1088
1089                 pte = pte_offset_kernel(pmd, vstart);
1090                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1091                 if (this_end > vend)
1092                         this_end = vend;
1093
1094                 while (vstart < this_end) {
1095                         pte_val(*pte) = (paddr | pgprot_val(prot));
1096
1097                         vstart += PAGE_SIZE;
1098                         paddr += PAGE_SIZE;
1099                         pte++;
1100                 }
1101         }
1102
1103         return alloc_bytes;
1104 }
1105
1106 extern unsigned int kvmap_linear_patch[1];
1107 #endif /* CONFIG_DEBUG_PAGEALLOC */
1108
1109 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1110 {
1111         const unsigned long shift_256MB = 28;
1112         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1113         const unsigned long size_256MB = (1UL << shift_256MB);
1114
1115         while (start < end) {
1116                 long remains;
1117
1118                 remains = end - start;
1119                 if (remains < size_256MB)
1120                         break;
1121
1122                 if (start & mask_256MB) {
1123                         start = (start + size_256MB) & ~mask_256MB;
1124                         continue;
1125                 }
1126
1127                 while (remains >= size_256MB) {
1128                         unsigned long index = start >> shift_256MB;
1129
1130                         __set_bit(index, kpte_linear_bitmap);
1131
1132                         start += size_256MB;
1133                         remains -= size_256MB;
1134                 }
1135         }
1136 }
1137
1138 static void __init kernel_physical_mapping_init(void)
1139 {
1140         unsigned long i;
1141 #ifdef CONFIG_DEBUG_PAGEALLOC
1142         unsigned long mem_alloced = 0UL;
1143 #endif
1144
1145         read_obp_memory("reg", &pall[0], &pall_ents);
1146
1147         for (i = 0; i < pall_ents; i++) {
1148                 unsigned long phys_start, phys_end;
1149
1150                 phys_start = pall[i].phys_addr;
1151                 phys_end = phys_start + pall[i].reg_size;
1152
1153                 mark_kpte_bitmap(phys_start, phys_end);
1154
1155 #ifdef CONFIG_DEBUG_PAGEALLOC
1156                 mem_alloced += kernel_map_range(phys_start, phys_end,
1157                                                 PAGE_KERNEL);
1158 #endif
1159         }
1160
1161 #ifdef CONFIG_DEBUG_PAGEALLOC
1162         printk("Allocated %ld bytes for kernel page tables.\n",
1163                mem_alloced);
1164
1165         kvmap_linear_patch[0] = 0x01000000; /* nop */
1166         flushi(&kvmap_linear_patch[0]);
1167
1168         __flush_tlb_all();
1169 #endif
1170 }
1171
1172 #ifdef CONFIG_DEBUG_PAGEALLOC
1173 void kernel_map_pages(struct page *page, int numpages, int enable)
1174 {
1175         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1176         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1177
1178         kernel_map_range(phys_start, phys_end,
1179                          (enable ? PAGE_KERNEL : __pgprot(0)));
1180
1181         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1182                                PAGE_OFFSET + phys_end);
1183
1184         /* we should perform an IPI and flush all tlbs,
1185          * but that can deadlock->flush only current cpu.
1186          */
1187         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1188                                  PAGE_OFFSET + phys_end);
1189 }
1190 #endif
1191
1192 unsigned long __init find_ecache_flush_span(unsigned long size)
1193 {
1194         int i;
1195
1196         for (i = 0; i < pavail_ents; i++) {
1197                 if (pavail[i].reg_size >= size)
1198                         return pavail[i].phys_addr;
1199         }
1200
1201         return ~0UL;
1202 }
1203
1204 static void __init tsb_phys_patch(void)
1205 {
1206         struct tsb_ldquad_phys_patch_entry *pquad;
1207         struct tsb_phys_patch_entry *p;
1208
1209         pquad = &__tsb_ldquad_phys_patch;
1210         while (pquad < &__tsb_ldquad_phys_patch_end) {
1211                 unsigned long addr = pquad->addr;
1212
1213                 if (tlb_type == hypervisor)
1214                         *(unsigned int *) addr = pquad->sun4v_insn;
1215                 else
1216                         *(unsigned int *) addr = pquad->sun4u_insn;
1217                 wmb();
1218                 __asm__ __volatile__("flush     %0"
1219                                      : /* no outputs */
1220                                      : "r" (addr));
1221
1222                 pquad++;
1223         }
1224
1225         p = &__tsb_phys_patch;
1226         while (p < &__tsb_phys_patch_end) {
1227                 unsigned long addr = p->addr;
1228
1229                 *(unsigned int *) addr = p->insn;
1230                 wmb();
1231                 __asm__ __volatile__("flush     %0"
1232                                      : /* no outputs */
1233                                      : "r" (addr));
1234
1235                 p++;
1236         }
1237 }
1238
1239 /* Don't mark as init, we give this to the Hypervisor.  */
1240 #ifndef CONFIG_DEBUG_PAGEALLOC
1241 #define NUM_KTSB_DESCR  2
1242 #else
1243 #define NUM_KTSB_DESCR  1
1244 #endif
1245 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1246 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1247
1248 static void __init sun4v_ktsb_init(void)
1249 {
1250         unsigned long ktsb_pa;
1251
1252         /* First KTSB for PAGE_SIZE mappings.  */
1253         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1254
1255         switch (PAGE_SIZE) {
1256         case 8 * 1024:
1257         default:
1258                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1259                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1260                 break;
1261
1262         case 64 * 1024:
1263                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1264                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1265                 break;
1266
1267         case 512 * 1024:
1268                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1269                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1270                 break;
1271
1272         case 4 * 1024 * 1024:
1273                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1274                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1275                 break;
1276         };
1277
1278         ktsb_descr[0].assoc = 1;
1279         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1280         ktsb_descr[0].ctx_idx = 0;
1281         ktsb_descr[0].tsb_base = ktsb_pa;
1282         ktsb_descr[0].resv = 0;
1283
1284 #ifndef CONFIG_DEBUG_PAGEALLOC
1285         /* Second KTSB for 4MB/256MB mappings.  */
1286         ktsb_pa = (kern_base +
1287                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1288
1289         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1290         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1291                                    HV_PGSZ_MASK_256MB);
1292         ktsb_descr[1].assoc = 1;
1293         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1294         ktsb_descr[1].ctx_idx = 0;
1295         ktsb_descr[1].tsb_base = ktsb_pa;
1296         ktsb_descr[1].resv = 0;
1297 #endif
1298 }
1299
1300 void __cpuinit sun4v_ktsb_register(void)
1301 {
1302         unsigned long pa, ret;
1303
1304         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1305
1306         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1307         if (ret != 0) {
1308                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1309                             "errors with %lx\n", pa, ret);
1310                 prom_halt();
1311         }
1312 }
1313
1314 /* paging_init() sets up the page tables */
1315
1316 extern void cheetah_ecache_flush_init(void);
1317 extern void sun4v_patch_tlb_handlers(void);
1318
1319 extern void cpu_probe(void);
1320 extern void central_probe(void);
1321
1322 static unsigned long last_valid_pfn;
1323 pgd_t swapper_pg_dir[2048];
1324
1325 static void sun4u_pgprot_init(void);
1326 static void sun4v_pgprot_init(void);
1327
1328 void __init paging_init(void)
1329 {
1330         unsigned long end_pfn, pages_avail, shift, phys_base;
1331         unsigned long real_end, i;
1332
1333         /* These build time checkes make sure that the dcache_dirty_cpu()
1334          * page->flags usage will work.
1335          *
1336          * When a page gets marked as dcache-dirty, we store the
1337          * cpu number starting at bit 32 in the page->flags.  Also,
1338          * functions like clear_dcache_dirty_cpu use the cpu mask
1339          * in 13-bit signed-immediate instruction fields.
1340          */
1341         BUILD_BUG_ON(FLAGS_RESERVED != 32);
1342         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1343                      ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED);
1344         BUILD_BUG_ON(NR_CPUS > 4096);
1345
1346         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1347         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1348
1349         sstate_booting();
1350
1351         /* Invalidate both kernel TSBs.  */
1352         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1353 #ifndef CONFIG_DEBUG_PAGEALLOC
1354         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1355 #endif
1356
1357         if (tlb_type == hypervisor)
1358                 sun4v_pgprot_init();
1359         else
1360                 sun4u_pgprot_init();
1361
1362         if (tlb_type == cheetah_plus ||
1363             tlb_type == hypervisor)
1364                 tsb_phys_patch();
1365
1366         if (tlb_type == hypervisor) {
1367                 sun4v_patch_tlb_handlers();
1368                 sun4v_ktsb_init();
1369         }
1370
1371         /* Find available physical memory... */
1372         read_obp_memory("available", &pavail[0], &pavail_ents);
1373
1374         phys_base = 0xffffffffffffffffUL;
1375         for (i = 0; i < pavail_ents; i++)
1376                 phys_base = min(phys_base, pavail[i].phys_addr);
1377
1378         set_bit(0, mmu_context_bmap);
1379
1380         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1381
1382         real_end = (unsigned long)_end;
1383         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1384                 bigkernel = 1;
1385         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1386                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1387                 prom_halt();
1388         }
1389
1390         /* Set kernel pgd to upper alias so physical page computations
1391          * work.
1392          */
1393         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1394         
1395         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1396
1397         /* Now can init the kernel/bad page tables. */
1398         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1399                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1400         
1401         inherit_prom_mappings();
1402         
1403         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1404         setup_tba();
1405
1406         __flush_tlb_all();
1407
1408         if (tlb_type == hypervisor)
1409                 sun4v_ktsb_register();
1410
1411         /* Setup bootmem... */
1412         pages_avail = 0;
1413         last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1414
1415         max_mapnr = last_valid_pfn;
1416
1417         kernel_physical_mapping_init();
1418
1419         real_setup_per_cpu_areas();
1420
1421         prom_build_devicetree();
1422
1423         if (tlb_type == hypervisor)
1424                 sun4v_mdesc_init();
1425
1426         {
1427                 unsigned long zones_size[MAX_NR_ZONES];
1428                 unsigned long zholes_size[MAX_NR_ZONES];
1429                 int znum;
1430
1431                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1432                         zones_size[znum] = zholes_size[znum] = 0;
1433
1434                 zones_size[ZONE_NORMAL] = end_pfn;
1435                 zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1436
1437                 free_area_init_node(0, &contig_page_data, zones_size,
1438                                     __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1439                                     zholes_size);
1440         }
1441
1442         prom_printf("Booting Linux...\n");
1443
1444         central_probe();
1445         cpu_probe();
1446 }
1447
1448 static void __init taint_real_pages(void)
1449 {
1450         int i;
1451
1452         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1453
1454         /* Find changes discovered in the physmem available rescan and
1455          * reserve the lost portions in the bootmem maps.
1456          */
1457         for (i = 0; i < pavail_ents; i++) {
1458                 unsigned long old_start, old_end;
1459
1460                 old_start = pavail[i].phys_addr;
1461                 old_end = old_start +
1462                         pavail[i].reg_size;
1463                 while (old_start < old_end) {
1464                         int n;
1465
1466                         for (n = 0; n < pavail_rescan_ents; n++) {
1467                                 unsigned long new_start, new_end;
1468
1469                                 new_start = pavail_rescan[n].phys_addr;
1470                                 new_end = new_start +
1471                                         pavail_rescan[n].reg_size;
1472
1473                                 if (new_start <= old_start &&
1474                                     new_end >= (old_start + PAGE_SIZE)) {
1475                                         set_bit(old_start >> 22,
1476                                                 sparc64_valid_addr_bitmap);
1477                                         goto do_next_page;
1478                                 }
1479                         }
1480                         reserve_bootmem(old_start, PAGE_SIZE);
1481
1482                 do_next_page:
1483                         old_start += PAGE_SIZE;
1484                 }
1485         }
1486 }
1487
1488 int __init page_in_phys_avail(unsigned long paddr)
1489 {
1490         int i;
1491
1492         paddr &= PAGE_MASK;
1493
1494         for (i = 0; i < pavail_rescan_ents; i++) {
1495                 unsigned long start, end;
1496
1497                 start = pavail_rescan[i].phys_addr;
1498                 end = start + pavail_rescan[i].reg_size;
1499
1500                 if (paddr >= start && paddr < end)
1501                         return 1;
1502         }
1503         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1504                 return 1;
1505 #ifdef CONFIG_BLK_DEV_INITRD
1506         if (paddr >= __pa(initrd_start) &&
1507             paddr < __pa(PAGE_ALIGN(initrd_end)))
1508                 return 1;
1509 #endif
1510
1511         return 0;
1512 }
1513
1514 void __init mem_init(void)
1515 {
1516         unsigned long codepages, datapages, initpages;
1517         unsigned long addr, last;
1518         int i;
1519
1520         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1521         i += 1;
1522         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1523         if (sparc64_valid_addr_bitmap == NULL) {
1524                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1525                 prom_halt();
1526         }
1527         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1528
1529         addr = PAGE_OFFSET + kern_base;
1530         last = PAGE_ALIGN(kern_size) + addr;
1531         while (addr < last) {
1532                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1533                 addr += PAGE_SIZE;
1534         }
1535
1536         taint_real_pages();
1537
1538         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1539
1540 #ifdef CONFIG_DEBUG_BOOTMEM
1541         prom_printf("mem_init: Calling free_all_bootmem().\n");
1542 #endif
1543
1544         /* We subtract one to account for the mem_map_zero page
1545          * allocated below.
1546          */
1547         totalram_pages = num_physpages = free_all_bootmem() - 1;
1548
1549         /*
1550          * Set up the zero page, mark it reserved, so that page count
1551          * is not manipulated when freeing the page from user ptes.
1552          */
1553         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1554         if (mem_map_zero == NULL) {
1555                 prom_printf("paging_init: Cannot alloc zero page.\n");
1556                 prom_halt();
1557         }
1558         SetPageReserved(mem_map_zero);
1559
1560         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1561         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1562         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1563         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1564         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1565         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1566
1567         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1568                nr_free_pages() << (PAGE_SHIFT-10),
1569                codepages << (PAGE_SHIFT-10),
1570                datapages << (PAGE_SHIFT-10), 
1571                initpages << (PAGE_SHIFT-10), 
1572                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1573
1574         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1575                 cheetah_ecache_flush_init();
1576 }
1577
1578 void free_initmem(void)
1579 {
1580         unsigned long addr, initend;
1581
1582         /*
1583          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1584          */
1585         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1586         initend = (unsigned long)(__init_end) & PAGE_MASK;
1587         for (; addr < initend; addr += PAGE_SIZE) {
1588                 unsigned long page;
1589                 struct page *p;
1590
1591                 page = (addr +
1592                         ((unsigned long) __va(kern_base)) -
1593                         ((unsigned long) KERNBASE));
1594                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1595                 p = virt_to_page(page);
1596
1597                 ClearPageReserved(p);
1598                 init_page_count(p);
1599                 __free_page(p);
1600                 num_physpages++;
1601                 totalram_pages++;
1602         }
1603 }
1604
1605 #ifdef CONFIG_BLK_DEV_INITRD
1606 void free_initrd_mem(unsigned long start, unsigned long end)
1607 {
1608         if (start < end)
1609                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1610         for (; start < end; start += PAGE_SIZE) {
1611                 struct page *p = virt_to_page(start);
1612
1613                 ClearPageReserved(p);
1614                 init_page_count(p);
1615                 __free_page(p);
1616                 num_physpages++;
1617                 totalram_pages++;
1618         }
1619 }
1620 #endif
1621
1622 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1623 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1624 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1625 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1626 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1627 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1628
1629 pgprot_t PAGE_KERNEL __read_mostly;
1630 EXPORT_SYMBOL(PAGE_KERNEL);
1631
1632 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1633 pgprot_t PAGE_COPY __read_mostly;
1634
1635 pgprot_t PAGE_SHARED __read_mostly;
1636 EXPORT_SYMBOL(PAGE_SHARED);
1637
1638 pgprot_t PAGE_EXEC __read_mostly;
1639 unsigned long pg_iobits __read_mostly;
1640
1641 unsigned long _PAGE_IE __read_mostly;
1642 EXPORT_SYMBOL(_PAGE_IE);
1643
1644 unsigned long _PAGE_E __read_mostly;
1645 EXPORT_SYMBOL(_PAGE_E);
1646
1647 unsigned long _PAGE_CACHE __read_mostly;
1648 EXPORT_SYMBOL(_PAGE_CACHE);
1649
1650 static void prot_init_common(unsigned long page_none,
1651                              unsigned long page_shared,
1652                              unsigned long page_copy,
1653                              unsigned long page_readonly,
1654                              unsigned long page_exec_bit)
1655 {
1656         PAGE_COPY = __pgprot(page_copy);
1657         PAGE_SHARED = __pgprot(page_shared);
1658
1659         protection_map[0x0] = __pgprot(page_none);
1660         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1661         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1662         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1663         protection_map[0x4] = __pgprot(page_readonly);
1664         protection_map[0x5] = __pgprot(page_readonly);
1665         protection_map[0x6] = __pgprot(page_copy);
1666         protection_map[0x7] = __pgprot(page_copy);
1667         protection_map[0x8] = __pgprot(page_none);
1668         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1669         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1670         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1671         protection_map[0xc] = __pgprot(page_readonly);
1672         protection_map[0xd] = __pgprot(page_readonly);
1673         protection_map[0xe] = __pgprot(page_shared);
1674         protection_map[0xf] = __pgprot(page_shared);
1675 }
1676
1677 static void __init sun4u_pgprot_init(void)
1678 {
1679         unsigned long page_none, page_shared, page_copy, page_readonly;
1680         unsigned long page_exec_bit;
1681
1682         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1683                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1684                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1685                                 _PAGE_EXEC_4U);
1686         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1687                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1688                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1689                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1690         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1691
1692         _PAGE_IE = _PAGE_IE_4U;
1693         _PAGE_E = _PAGE_E_4U;
1694         _PAGE_CACHE = _PAGE_CACHE_4U;
1695
1696         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1697                      __ACCESS_BITS_4U | _PAGE_E_4U);
1698
1699 #ifdef CONFIG_DEBUG_PAGEALLOC
1700         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1701                 0xfffff80000000000;
1702 #else
1703         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1704                 0xfffff80000000000;
1705 #endif
1706         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1707                                    _PAGE_P_4U | _PAGE_W_4U);
1708
1709         /* XXX Should use 256MB on Panther. XXX */
1710         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1711
1712         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1713         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1714                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1715                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1716
1717
1718         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1719         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1720                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1721         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1722                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1723         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1724                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1725
1726         page_exec_bit = _PAGE_EXEC_4U;
1727
1728         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1729                          page_exec_bit);
1730 }
1731
1732 static void __init sun4v_pgprot_init(void)
1733 {
1734         unsigned long page_none, page_shared, page_copy, page_readonly;
1735         unsigned long page_exec_bit;
1736
1737         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1738                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1739                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1740                                 _PAGE_EXEC_4V);
1741         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1742         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1743
1744         _PAGE_IE = _PAGE_IE_4V;
1745         _PAGE_E = _PAGE_E_4V;
1746         _PAGE_CACHE = _PAGE_CACHE_4V;
1747
1748 #ifdef CONFIG_DEBUG_PAGEALLOC
1749         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1750                 0xfffff80000000000;
1751 #else
1752         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1753                 0xfffff80000000000;
1754 #endif
1755         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1756                                    _PAGE_P_4V | _PAGE_W_4V);
1757
1758 #ifdef CONFIG_DEBUG_PAGEALLOC
1759         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1760                 0xfffff80000000000;
1761 #else
1762         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1763                 0xfffff80000000000;
1764 #endif
1765         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1766                                    _PAGE_P_4V | _PAGE_W_4V);
1767
1768         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1769                      __ACCESS_BITS_4V | _PAGE_E_4V);
1770
1771         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1772         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1773                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1774                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1775                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1776
1777         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1778         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1779                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1780         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1781                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1782         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1783                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1784
1785         page_exec_bit = _PAGE_EXEC_4V;
1786
1787         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1788                          page_exec_bit);
1789 }
1790
1791 unsigned long pte_sz_bits(unsigned long sz)
1792 {
1793         if (tlb_type == hypervisor) {
1794                 switch (sz) {
1795                 case 8 * 1024:
1796                 default:
1797                         return _PAGE_SZ8K_4V;
1798                 case 64 * 1024:
1799                         return _PAGE_SZ64K_4V;
1800                 case 512 * 1024:
1801                         return _PAGE_SZ512K_4V;
1802                 case 4 * 1024 * 1024:
1803                         return _PAGE_SZ4MB_4V;
1804                 };
1805         } else {
1806                 switch (sz) {
1807                 case 8 * 1024:
1808                 default:
1809                         return _PAGE_SZ8K_4U;
1810                 case 64 * 1024:
1811                         return _PAGE_SZ64K_4U;
1812                 case 512 * 1024:
1813                         return _PAGE_SZ512K_4U;
1814                 case 4 * 1024 * 1024:
1815                         return _PAGE_SZ4MB_4U;
1816                 };
1817         }
1818 }
1819
1820 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1821 {
1822         pte_t pte;
1823
1824         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1825         pte_val(pte) |= (((unsigned long)space) << 32);
1826         pte_val(pte) |= pte_sz_bits(page_size);
1827
1828         return pte;
1829 }
1830
1831 static unsigned long kern_large_tte(unsigned long paddr)
1832 {
1833         unsigned long val;
1834
1835         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1836                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1837                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1838         if (tlb_type == hypervisor)
1839                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1840                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1841                        _PAGE_EXEC_4V | _PAGE_W_4V);
1842
1843         return val | paddr;
1844 }
1845
1846 /* If not locked, zap it. */
1847 void __flush_tlb_all(void)
1848 {
1849         unsigned long pstate;
1850         int i;
1851
1852         __asm__ __volatile__("flushw\n\t"
1853                              "rdpr      %%pstate, %0\n\t"
1854                              "wrpr      %0, %1, %%pstate"
1855                              : "=r" (pstate)
1856                              : "i" (PSTATE_IE));
1857         if (tlb_type == spitfire) {
1858                 for (i = 0; i < 64; i++) {
1859                         /* Spitfire Errata #32 workaround */
1860                         /* NOTE: Always runs on spitfire, so no
1861                          *       cheetah+ page size encodings.
1862                          */
1863                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1864                                              "flush     %%g6"
1865                                              : /* No outputs */
1866                                              : "r" (0),
1867                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1868
1869                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1870                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1871                                                      "membar #Sync"
1872                                                      : /* no outputs */
1873                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1874                                 spitfire_put_dtlb_data(i, 0x0UL);
1875                         }
1876
1877                         /* Spitfire Errata #32 workaround */
1878                         /* NOTE: Always runs on spitfire, so no
1879                          *       cheetah+ page size encodings.
1880                          */
1881                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1882                                              "flush     %%g6"
1883                                              : /* No outputs */
1884                                              : "r" (0),
1885                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1886
1887                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1888                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1889                                                      "membar #Sync"
1890                                                      : /* no outputs */
1891                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1892                                 spitfire_put_itlb_data(i, 0x0UL);
1893                         }
1894                 }
1895         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1896                 cheetah_flush_dtlb_all();
1897                 cheetah_flush_itlb_all();
1898         }
1899         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1900                              : : "r" (pstate));
1901 }
1902
1903 #ifdef CONFIG_MEMORY_HOTPLUG
1904
1905 void online_page(struct page *page)
1906 {
1907         ClearPageReserved(page);
1908         init_page_count(page);
1909         __free_page(page);
1910         totalram_pages++;
1911         num_physpages++;
1912 }
1913
1914 int remove_memory(u64 start, u64 size)
1915 {
1916         return -EINVAL;
1917 }
1918
1919 #endif /* CONFIG_MEMORY_HOTPLUG */