]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/kernel/efi.c
d5c7fcdd18610690fe51e116105198736b096f7f
[linux-2.6-omap-h63xx.git] / arch / x86 / kernel / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/spinlock.h>
34 #include <linux/uaccess.h>
35 #include <linux/time.h>
36 #include <linux/io.h>
37 #include <linux/reboot.h>
38 #include <linux/bcd.h>
39
40 #include <asm/setup.h>
41 #include <asm/efi.h>
42 #include <asm/time.h>
43 #include <asm/cacheflush.h>
44 #include <asm/tlbflush.h>
45
46 #define EFI_DEBUG       1
47 #define PFX             "EFI: "
48
49 int efi_enabled;
50 EXPORT_SYMBOL(efi_enabled);
51
52 struct efi efi;
53 EXPORT_SYMBOL(efi);
54
55 struct efi_memory_map memmap;
56
57 static struct efi efi_phys __initdata;
58 static efi_system_table_t efi_systab __initdata;
59
60 static int __init setup_noefi(char *arg)
61 {
62         efi_enabled = 0;
63         return 0;
64 }
65 early_param("noefi", setup_noefi);
66
67 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
68 {
69         return efi_call_virt2(get_time, tm, tc);
70 }
71
72 static efi_status_t virt_efi_set_time(efi_time_t *tm)
73 {
74         return efi_call_virt1(set_time, tm);
75 }
76
77 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
78                                              efi_bool_t *pending,
79                                              efi_time_t *tm)
80 {
81         return efi_call_virt3(get_wakeup_time,
82                               enabled, pending, tm);
83 }
84
85 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
86 {
87         return efi_call_virt2(set_wakeup_time,
88                               enabled, tm);
89 }
90
91 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
92                                           efi_guid_t *vendor,
93                                           u32 *attr,
94                                           unsigned long *data_size,
95                                           void *data)
96 {
97         return efi_call_virt5(get_variable,
98                               name, vendor, attr,
99                               data_size, data);
100 }
101
102 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
103                                                efi_char16_t *name,
104                                                efi_guid_t *vendor)
105 {
106         return efi_call_virt3(get_next_variable,
107                               name_size, name, vendor);
108 }
109
110 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
111                                           efi_guid_t *vendor,
112                                           unsigned long attr,
113                                           unsigned long data_size,
114                                           void *data)
115 {
116         return efi_call_virt5(set_variable,
117                               name, vendor, attr,
118                               data_size, data);
119 }
120
121 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
122 {
123         return efi_call_virt1(get_next_high_mono_count, count);
124 }
125
126 static void virt_efi_reset_system(int reset_type,
127                                   efi_status_t status,
128                                   unsigned long data_size,
129                                   efi_char16_t *data)
130 {
131         efi_call_virt4(reset_system, reset_type, status,
132                        data_size, data);
133 }
134
135 static efi_status_t virt_efi_set_virtual_address_map(
136         unsigned long memory_map_size,
137         unsigned long descriptor_size,
138         u32 descriptor_version,
139         efi_memory_desc_t *virtual_map)
140 {
141         return efi_call_virt4(set_virtual_address_map,
142                               memory_map_size, descriptor_size,
143                               descriptor_version, virtual_map);
144 }
145
146 static efi_status_t __init phys_efi_set_virtual_address_map(
147         unsigned long memory_map_size,
148         unsigned long descriptor_size,
149         u32 descriptor_version,
150         efi_memory_desc_t *virtual_map)
151 {
152         efi_status_t status;
153
154         efi_call_phys_prelog();
155         status = efi_call_phys4(efi_phys.set_virtual_address_map,
156                                 memory_map_size, descriptor_size,
157                                 descriptor_version, virtual_map);
158         efi_call_phys_epilog();
159         return status;
160 }
161
162 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
163                                              efi_time_cap_t *tc)
164 {
165         efi_status_t status;
166
167         efi_call_phys_prelog();
168         status = efi_call_phys2(efi_phys.get_time, tm, tc);
169         efi_call_phys_epilog();
170         return status;
171 }
172
173 int efi_set_rtc_mmss(unsigned long nowtime)
174 {
175         int real_seconds, real_minutes;
176         efi_status_t    status;
177         efi_time_t      eft;
178         efi_time_cap_t  cap;
179
180         status = efi.get_time(&eft, &cap);
181         if (status != EFI_SUCCESS) {
182                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
183                 return -1;
184         }
185
186         real_seconds = nowtime % 60;
187         real_minutes = nowtime / 60;
188         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
189                 real_minutes += 30;
190         real_minutes %= 60;
191         eft.minute = real_minutes;
192         eft.second = real_seconds;
193
194         status = efi.set_time(&eft);
195         if (status != EFI_SUCCESS) {
196                 printk(KERN_ERR "Oops: efitime: can't write time!\n");
197                 return -1;
198         }
199         return 0;
200 }
201
202 unsigned long efi_get_time(void)
203 {
204         efi_status_t status;
205         efi_time_t eft;
206         efi_time_cap_t cap;
207
208         status = efi.get_time(&eft, &cap);
209         if (status != EFI_SUCCESS)
210                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
211
212         return mktime(eft.year, eft.month, eft.day, eft.hour,
213                       eft.minute, eft.second);
214 }
215
216 /*
217  * Tell the kernel about the EFI memory map.  This might include
218  * more than the max 128 entries that can fit in the e820 legacy
219  * (zeropage) memory map.
220  */
221
222 static void __init add_efi_memmap(void)
223 {
224         void *p;
225
226         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
227                 efi_memory_desc_t *md = p;
228                 unsigned long long start = md->phys_addr;
229                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
230                 int e820_type;
231
232                 if (md->attribute & EFI_MEMORY_WB)
233                         e820_type = E820_RAM;
234                 else
235                         e820_type = E820_RESERVED;
236                 add_memory_region(start, size, e820_type);
237         }
238         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
239 }
240
241 void __init efi_reserve_early(void)
242 {
243         unsigned long pmap;
244
245         pmap = boot_params.efi_info.efi_memmap;
246 #ifdef CONFIG_X86_64
247         pmap += (__u64)boot_params.efi_info.efi_memmap_hi << 32;
248 #endif
249         memmap.phys_map = (void *)pmap;
250         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
251                 boot_params.efi_info.efi_memdesc_size;
252         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
253         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
254         reserve_early(pmap, pmap + memmap.nr_map * memmap.desc_size,
255                       "EFI memmap");
256 }
257
258 #if EFI_DEBUG
259 static void __init print_efi_memmap(void)
260 {
261         efi_memory_desc_t *md;
262         void *p;
263         int i;
264
265         for (p = memmap.map, i = 0;
266              p < memmap.map_end;
267              p += memmap.desc_size, i++) {
268                 md = p;
269                 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
270                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
271                         i, md->type, md->attribute, md->phys_addr,
272                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
273                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
274         }
275 }
276 #endif  /*  EFI_DEBUG  */
277
278 void __init efi_init(void)
279 {
280         efi_config_table_t *config_tables;
281         efi_runtime_services_t *runtime;
282         efi_char16_t *c16;
283         char vendor[100] = "unknown";
284         int i = 0;
285         void *tmp;
286
287         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
288 #ifdef CONFIG_X86_64
289         efi_phys.systab = (void *)efi_phys.systab +
290                 ((__u64)boot_params.efi_info.efi_systab_hi<<32);
291 #endif
292
293         efi.systab = early_ioremap((unsigned long)efi_phys.systab,
294                                    sizeof(efi_system_table_t));
295         if (efi.systab == NULL)
296                 printk(KERN_ERR "Couldn't map the EFI system table!\n");
297         memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
298         early_iounmap(efi.systab, sizeof(efi_system_table_t));
299         efi.systab = &efi_systab;
300
301         /*
302          * Verify the EFI Table
303          */
304         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
305                 printk(KERN_ERR "EFI system table signature incorrect!\n");
306         if ((efi.systab->hdr.revision >> 16) == 0)
307                 printk(KERN_ERR "Warning: EFI system table version "
308                        "%d.%02d, expected 1.00 or greater!\n",
309                        efi.systab->hdr.revision >> 16,
310                        efi.systab->hdr.revision & 0xffff);
311
312         /*
313          * Show what we know for posterity
314          */
315         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
316         if (c16) {
317                 for (i = 0; i < sizeof(vendor) && *c16; ++i)
318                         vendor[i] = *c16++;
319                 vendor[i] = '\0';
320         } else
321                 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
322         early_iounmap(tmp, 2);
323
324         printk(KERN_INFO "EFI v%u.%.02u by %s \n",
325                efi.systab->hdr.revision >> 16,
326                efi.systab->hdr.revision & 0xffff, vendor);
327
328         /*
329          * Let's see what config tables the firmware passed to us.
330          */
331         config_tables = early_ioremap(
332                 efi.systab->tables,
333                 efi.systab->nr_tables * sizeof(efi_config_table_t));
334         if (config_tables == NULL)
335                 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
336
337         printk(KERN_INFO);
338         for (i = 0; i < efi.systab->nr_tables; i++) {
339                 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
340                         efi.mps = config_tables[i].table;
341                         printk(" MPS=0x%lx ", config_tables[i].table);
342                 } else if (!efi_guidcmp(config_tables[i].guid,
343                                         ACPI_20_TABLE_GUID)) {
344                         efi.acpi20 = config_tables[i].table;
345                         printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
346                 } else if (!efi_guidcmp(config_tables[i].guid,
347                                         ACPI_TABLE_GUID)) {
348                         efi.acpi = config_tables[i].table;
349                         printk(" ACPI=0x%lx ", config_tables[i].table);
350                 } else if (!efi_guidcmp(config_tables[i].guid,
351                                         SMBIOS_TABLE_GUID)) {
352                         efi.smbios = config_tables[i].table;
353                         printk(" SMBIOS=0x%lx ", config_tables[i].table);
354                 } else if (!efi_guidcmp(config_tables[i].guid,
355                                         HCDP_TABLE_GUID)) {
356                         efi.hcdp = config_tables[i].table;
357                         printk(" HCDP=0x%lx ", config_tables[i].table);
358                 } else if (!efi_guidcmp(config_tables[i].guid,
359                                         UGA_IO_PROTOCOL_GUID)) {
360                         efi.uga = config_tables[i].table;
361                         printk(" UGA=0x%lx ", config_tables[i].table);
362                 }
363         }
364         printk("\n");
365         early_iounmap(config_tables,
366                           efi.systab->nr_tables * sizeof(efi_config_table_t));
367
368         /*
369          * Check out the runtime services table. We need to map
370          * the runtime services table so that we can grab the physical
371          * address of several of the EFI runtime functions, needed to
372          * set the firmware into virtual mode.
373          */
374         runtime = early_ioremap((unsigned long)efi.systab->runtime,
375                                 sizeof(efi_runtime_services_t));
376         if (runtime != NULL) {
377                 /*
378                  * We will only need *early* access to the following
379                  * two EFI runtime services before set_virtual_address_map
380                  * is invoked.
381                  */
382                 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
383                 efi_phys.set_virtual_address_map =
384                         (efi_set_virtual_address_map_t *)
385                         runtime->set_virtual_address_map;
386                 /*
387                  * Make efi_get_time can be called before entering
388                  * virtual mode.
389                  */
390                 efi.get_time = phys_efi_get_time;
391         } else
392                 printk(KERN_ERR "Could not map the EFI runtime service "
393                        "table!\n");
394         early_iounmap(runtime, sizeof(efi_runtime_services_t));
395
396         /* Map the EFI memory map */
397         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
398                                    memmap.nr_map * memmap.desc_size);
399         if (memmap.map == NULL)
400                 printk(KERN_ERR "Could not map the EFI memory map!\n");
401         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
402         if (memmap.desc_size != sizeof(efi_memory_desc_t))
403                 printk(KERN_WARNING "Kernel-defined memdesc"
404                        "doesn't match the one from EFI!\n");
405         add_efi_memmap();
406
407         /* Setup for EFI runtime service */
408         reboot_type = BOOT_EFI;
409
410 #if EFI_DEBUG
411         print_efi_memmap();
412 #endif
413 }
414
415 static void __init runtime_code_page_mkexec(void)
416 {
417         efi_memory_desc_t *md;
418         void *p;
419         u64 addr, npages;
420
421         /* Make EFI runtime service code area executable */
422         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
423                 md = p;
424
425                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
426                         continue;
427
428                 addr = md->virt_addr;
429                 npages = md->num_pages;
430                 memrange_efi_to_native(&addr, &npages);
431                 set_memory_x(addr, npages);
432         }
433 }
434
435 /*
436  * This function will switch the EFI runtime services to virtual mode.
437  * Essentially, look through the EFI memmap and map every region that
438  * has the runtime attribute bit set in its memory descriptor and update
439  * that memory descriptor with the virtual address obtained from ioremap().
440  * This enables the runtime services to be called without having to
441  * thunk back into physical mode for every invocation.
442  */
443 void __init efi_enter_virtual_mode(void)
444 {
445         efi_memory_desc_t *md;
446         efi_status_t status;
447         unsigned long size;
448         u64 end, systab, addr, npages;
449         void *p, *va;
450
451         efi.systab = NULL;
452         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
453                 md = p;
454                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
455                         continue;
456
457                 size = md->num_pages << EFI_PAGE_SHIFT;
458                 end = md->phys_addr + size;
459
460                 if (PFN_UP(end) <= max_pfn_mapped)
461                         va = __va(md->phys_addr);
462                 else
463                         va = efi_ioremap(md->phys_addr, size);
464
465                 md->virt_addr = (u64) (unsigned long) va;
466
467                 if (!va) {
468                         printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
469                                (unsigned long long)md->phys_addr);
470                         continue;
471                 }
472
473                 if (!(md->attribute & EFI_MEMORY_WB)) {
474                         addr = md->virt_addr;
475                         npages = md->num_pages;
476                         memrange_efi_to_native(&addr, &npages);
477                         set_memory_uc(addr, npages);
478                 }
479
480                 systab = (u64) (unsigned long) efi_phys.systab;
481                 if (md->phys_addr <= systab && systab < end) {
482                         systab += md->virt_addr - md->phys_addr;
483                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
484                 }
485         }
486
487         BUG_ON(!efi.systab);
488
489         status = phys_efi_set_virtual_address_map(
490                 memmap.desc_size * memmap.nr_map,
491                 memmap.desc_size,
492                 memmap.desc_version,
493                 memmap.phys_map);
494
495         if (status != EFI_SUCCESS) {
496                 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
497                        "(status=%lx)!\n", status);
498                 panic("EFI call to SetVirtualAddressMap() failed!");
499         }
500
501         /*
502          * Now that EFI is in virtual mode, update the function
503          * pointers in the runtime service table to the new virtual addresses.
504          *
505          * Call EFI services through wrapper functions.
506          */
507         efi.get_time = virt_efi_get_time;
508         efi.set_time = virt_efi_set_time;
509         efi.get_wakeup_time = virt_efi_get_wakeup_time;
510         efi.set_wakeup_time = virt_efi_set_wakeup_time;
511         efi.get_variable = virt_efi_get_variable;
512         efi.get_next_variable = virt_efi_get_next_variable;
513         efi.set_variable = virt_efi_set_variable;
514         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
515         efi.reset_system = virt_efi_reset_system;
516         efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
517         if (__supported_pte_mask & _PAGE_NX)
518                 runtime_code_page_mkexec();
519         early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
520         memmap.map = NULL;
521 }
522
523 /*
524  * Convenience functions to obtain memory types and attributes
525  */
526 u32 efi_mem_type(unsigned long phys_addr)
527 {
528         efi_memory_desc_t *md;
529         void *p;
530
531         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
532                 md = p;
533                 if ((md->phys_addr <= phys_addr) &&
534                     (phys_addr < (md->phys_addr +
535                                   (md->num_pages << EFI_PAGE_SHIFT))))
536                         return md->type;
537         }
538         return 0;
539 }
540
541 u64 efi_mem_attributes(unsigned long phys_addr)
542 {
543         efi_memory_desc_t *md;
544         void *p;
545
546         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
547                 md = p;
548                 if ((md->phys_addr <= phys_addr) &&
549                     (phys_addr < (md->phys_addr +
550                                   (md->num_pages << EFI_PAGE_SHIFT))))
551                         return md->attribute;
552         }
553         return 0;
554 }