2 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
4 * This file contains the lowest level x86-specific interrupt
5 * entry, irq-stacks and irq statistics code. All the remaining
6 * irq logic is done by the generic kernel/irq/ code and
7 * by the x86-specific irq controller code. (e.g. i8259.c and
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
20 #include <asm/uaccess.h>
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
23 EXPORT_PER_CPU_SYMBOL(irq_stat);
25 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
26 EXPORT_PER_CPU_SYMBOL(irq_regs);
29 * 'what should we do if we get a hw irq event on an illegal vector'.
30 * each architecture has to answer this themselves.
32 void ack_bad_irq(unsigned int irq)
34 printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
36 #ifdef CONFIG_X86_LOCAL_APIC
38 * Currently unexpected vectors happen only on SMP and APIC.
39 * We _must_ ack these because every local APIC has only N
40 * irq slots per priority level, and a 'hanging, unacked' IRQ
41 * holds up an irq slot - in excessive cases (when multiple
42 * unexpected vectors occur) that might lock up the APIC
44 * But only ack when the APIC is enabled -AK
51 #ifdef CONFIG_DEBUG_STACKOVERFLOW
52 /* Debugging check for stack overflow: is there less than 1KB free? */
53 static int check_stack_overflow(void)
57 __asm__ __volatile__("andl %%esp,%0" :
58 "=r" (sp) : "0" (THREAD_SIZE - 1));
60 return sp < (sizeof(struct thread_info) + STACK_WARN);
63 static void print_stack_overflow(void)
65 printk(KERN_WARNING "low stack detected by irq handler\n");
70 static inline int check_stack_overflow(void) { return 0; }
71 static inline void print_stack_overflow(void) { }
74 #ifdef CONFIG_4KSTACKS
76 * per-CPU IRQ handling contexts (thread information and stack)
79 struct thread_info tinfo;
80 u32 stack[THREAD_SIZE/sizeof(u32)];
83 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
84 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
86 static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
87 static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
89 static void call_on_stack(void *func, void *stack)
91 asm volatile("xchgl %%ebx,%%esp \n"
97 : "memory", "cc", "edx", "ecx", "eax");
101 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
103 union irq_ctx *curctx, *irqctx;
104 u32 *isp, arg1, arg2;
106 curctx = (union irq_ctx *) current_thread_info();
107 irqctx = hardirq_ctx[smp_processor_id()];
110 * this is where we switch to the IRQ stack. However, if we are
111 * already using the IRQ stack (because we interrupted a hardirq
112 * handler) we can't do that and just have to keep using the
113 * current stack (which is the irq stack already after all)
115 if (unlikely(curctx == irqctx))
118 /* build the stack frame on the IRQ stack */
119 isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
120 irqctx->tinfo.task = curctx->tinfo.task;
121 irqctx->tinfo.previous_esp = current_stack_pointer;
124 * Copy the softirq bits in preempt_count so that the
125 * softirq checks work in the hardirq context.
127 irqctx->tinfo.preempt_count =
128 (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
129 (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
131 if (unlikely(overflow))
132 call_on_stack(print_stack_overflow, isp);
134 asm volatile("xchgl %%ebx,%%esp \n"
136 "movl %%ebx,%%esp \n"
137 : "=a" (arg1), "=d" (arg2), "=b" (isp)
138 : "0" (irq), "1" (desc), "2" (isp),
139 "D" (desc->handle_irq)
140 : "memory", "cc", "ecx");
145 * allocate per-cpu stacks for hardirq and for softirq processing
147 void __cpuinit irq_ctx_init(int cpu)
149 union irq_ctx *irqctx;
151 if (hardirq_ctx[cpu])
154 irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
155 irqctx->tinfo.task = NULL;
156 irqctx->tinfo.exec_domain = NULL;
157 irqctx->tinfo.cpu = cpu;
158 irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
159 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
161 hardirq_ctx[cpu] = irqctx;
163 irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
164 irqctx->tinfo.task = NULL;
165 irqctx->tinfo.exec_domain = NULL;
166 irqctx->tinfo.cpu = cpu;
167 irqctx->tinfo.preempt_count = 0;
168 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
170 softirq_ctx[cpu] = irqctx;
172 printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n",
173 cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
176 void irq_ctx_exit(int cpu)
178 hardirq_ctx[cpu] = NULL;
181 asmlinkage void do_softirq(void)
184 struct thread_info *curctx;
185 union irq_ctx *irqctx;
191 local_irq_save(flags);
193 if (local_softirq_pending()) {
194 curctx = current_thread_info();
195 irqctx = softirq_ctx[smp_processor_id()];
196 irqctx->tinfo.task = curctx->task;
197 irqctx->tinfo.previous_esp = current_stack_pointer;
199 /* build the stack frame on the softirq stack */
200 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
202 call_on_stack(__do_softirq, isp);
204 * Shouldnt happen, we returned above if in_interrupt():
206 WARN_ON_ONCE(softirq_count());
209 local_irq_restore(flags);
214 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
218 * do_IRQ handles all normal device IRQ's (the special
219 * SMP cross-CPU interrupts have their own specific
222 unsigned int do_IRQ(struct pt_regs *regs)
224 struct pt_regs *old_regs;
225 /* high bit used in ret_from_ code */
226 int overflow, irq = ~regs->orig_ax;
227 struct irq_desc *desc = irq_desc + irq;
229 if (unlikely((unsigned)irq >= NR_IRQS)) {
230 printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
235 old_regs = set_irq_regs(regs);
238 overflow = check_stack_overflow();
240 if (!execute_on_irq_stack(overflow, desc, irq)) {
241 if (unlikely(overflow))
242 print_stack_overflow();
243 desc->handle_irq(irq, desc);
247 set_irq_regs(old_regs);
252 * Interrupt statistics:
255 atomic_t irq_err_count;
258 * /proc/interrupts printing:
261 int show_interrupts(struct seq_file *p, void *v)
263 int i = *(loff_t *) v, j;
264 struct irqaction * action;
269 for_each_online_cpu(j)
270 seq_printf(p, "CPU%-8d",j);
275 unsigned any_count = 0;
277 spin_lock_irqsave(&irq_desc[i].lock, flags);
279 any_count = kstat_irqs(i);
281 for_each_online_cpu(j)
282 any_count |= kstat_cpu(j).irqs[i];
284 action = irq_desc[i].action;
285 if (!action && !any_count)
287 seq_printf(p, "%3d: ",i);
289 seq_printf(p, "%10u ", kstat_irqs(i));
291 for_each_online_cpu(j)
292 seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
294 seq_printf(p, " %8s", irq_desc[i].chip->name);
295 seq_printf(p, "-%-8s", irq_desc[i].name);
298 seq_printf(p, " %s", action->name);
299 while ((action = action->next) != NULL)
300 seq_printf(p, ", %s", action->name);
305 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
306 } else if (i == NR_IRQS) {
307 seq_printf(p, "NMI: ");
308 for_each_online_cpu(j)
309 seq_printf(p, "%10u ", nmi_count(j));
310 seq_printf(p, " Non-maskable interrupts\n");
311 #ifdef CONFIG_X86_LOCAL_APIC
312 seq_printf(p, "LOC: ");
313 for_each_online_cpu(j)
314 seq_printf(p, "%10u ",
315 per_cpu(irq_stat,j).apic_timer_irqs);
316 seq_printf(p, " Local timer interrupts\n");
319 seq_printf(p, "RES: ");
320 for_each_online_cpu(j)
321 seq_printf(p, "%10u ",
322 per_cpu(irq_stat,j).irq_resched_count);
323 seq_printf(p, " Rescheduling interrupts\n");
324 seq_printf(p, "CAL: ");
325 for_each_online_cpu(j)
326 seq_printf(p, "%10u ",
327 per_cpu(irq_stat,j).irq_call_count);
328 seq_printf(p, " Function call interrupts\n");
329 seq_printf(p, "TLB: ");
330 for_each_online_cpu(j)
331 seq_printf(p, "%10u ",
332 per_cpu(irq_stat,j).irq_tlb_count);
333 seq_printf(p, " TLB shootdowns\n");
335 #ifdef CONFIG_X86_MCE
336 seq_printf(p, "TRM: ");
337 for_each_online_cpu(j)
338 seq_printf(p, "%10u ",
339 per_cpu(irq_stat,j).irq_thermal_count);
340 seq_printf(p, " Thermal event interrupts\n");
342 #ifdef CONFIG_X86_LOCAL_APIC
343 seq_printf(p, "SPU: ");
344 for_each_online_cpu(j)
345 seq_printf(p, "%10u ",
346 per_cpu(irq_stat,j).irq_spurious_count);
347 seq_printf(p, " Spurious interrupts\n");
349 seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
350 #if defined(CONFIG_X86_IO_APIC)
351 seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
360 u64 arch_irq_stat_cpu(unsigned int cpu)
362 u64 sum = nmi_count(cpu);
364 #ifdef CONFIG_X86_LOCAL_APIC
365 sum += per_cpu(irq_stat, cpu).apic_timer_irqs;
368 sum += per_cpu(irq_stat, cpu).irq_resched_count;
369 sum += per_cpu(irq_stat, cpu).irq_call_count;
370 sum += per_cpu(irq_stat, cpu).irq_tlb_count;
372 #ifdef CONFIG_X86_MCE
373 sum += per_cpu(irq_stat, cpu).irq_thermal_count;
375 #ifdef CONFIG_X86_LOCAL_APIC
376 sum += per_cpu(irq_stat, cpu).irq_spurious_count;
381 u64 arch_irq_stat(void)
383 u64 sum = atomic_read(&irq_err_count);
385 #ifdef CONFIG_X86_IO_APIC
386 sum += atomic_read(&irq_mis_count);
391 #ifdef CONFIG_HOTPLUG_CPU
392 #include <mach_apic.h>
394 void fixup_irqs(cpumask_t map)
399 for (irq = 0; irq < NR_IRQS; irq++) {
404 cpus_and(mask, irq_desc[irq].affinity, map);
405 if (any_online_cpu(mask) == NR_CPUS) {
406 printk("Breaking affinity for irq %i\n", irq);
409 if (irq_desc[irq].chip->set_affinity)
410 irq_desc[irq].chip->set_affinity(irq, mask);
411 else if (irq_desc[irq].action && !(warned++))
412 printk("Cannot set affinity for irq %i\n", irq);
417 /* Ingo Molnar says: "after the IO-APIC masks have been redirected
418 [note the nop - the interrupt-enable boundary on x86 is two
419 instructions from sti] - to flush out pending hardirqs and
420 IPIs. After this point nothing is supposed to reach this CPU." */
421 __asm__ __volatile__("sti; nop; cli");
424 /* That doesn't seem sufficient. Give it 1ms. */