]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: Fix is_rmap_pte() with io ptes
[linux-2.6-omap-h63xx.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30
31 #include <asm/page.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/io.h>
34
35 #undef MMU_DEBUG
36
37 #undef AUDIT
38
39 #ifdef AUDIT
40 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
41 #else
42 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
43 #endif
44
45 #ifdef MMU_DEBUG
46
47 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
48 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
49
50 #else
51
52 #define pgprintk(x...) do { } while (0)
53 #define rmap_printk(x...) do { } while (0)
54
55 #endif
56
57 #if defined(MMU_DEBUG) || defined(AUDIT)
58 static int dbg = 1;
59 #endif
60
61 #ifndef MMU_DEBUG
62 #define ASSERT(x) do { } while (0)
63 #else
64 #define ASSERT(x)                                                       \
65         if (!(x)) {                                                     \
66                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
67                        __FILE__, __LINE__, #x);                         \
68         }
69 #endif
70
71 #define PT64_PT_BITS 9
72 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
73 #define PT32_PT_BITS 10
74 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
75
76 #define PT_WRITABLE_SHIFT 1
77
78 #define PT_PRESENT_MASK (1ULL << 0)
79 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
80 #define PT_USER_MASK (1ULL << 2)
81 #define PT_PWT_MASK (1ULL << 3)
82 #define PT_PCD_MASK (1ULL << 4)
83 #define PT_ACCESSED_MASK (1ULL << 5)
84 #define PT_DIRTY_MASK (1ULL << 6)
85 #define PT_PAGE_SIZE_MASK (1ULL << 7)
86 #define PT_PAT_MASK (1ULL << 7)
87 #define PT_GLOBAL_MASK (1ULL << 8)
88 #define PT64_NX_SHIFT 63
89 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
90
91 #define PT_PAT_SHIFT 7
92 #define PT_DIR_PAT_SHIFT 12
93 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
94
95 #define PT32_DIR_PSE36_SIZE 4
96 #define PT32_DIR_PSE36_SHIFT 13
97 #define PT32_DIR_PSE36_MASK \
98         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
99
100
101 #define PT_FIRST_AVAIL_BITS_SHIFT 9
102 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
103
104 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
105
106 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
107
108 #define PT64_LEVEL_BITS 9
109
110 #define PT64_LEVEL_SHIFT(level) \
111                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
112
113 #define PT64_LEVEL_MASK(level) \
114                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
115
116 #define PT64_INDEX(address, level)\
117         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
118
119
120 #define PT32_LEVEL_BITS 10
121
122 #define PT32_LEVEL_SHIFT(level) \
123                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
124
125 #define PT32_LEVEL_MASK(level) \
126                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
127
128 #define PT32_INDEX(address, level)\
129         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
133 #define PT64_DIR_BASE_ADDR_MASK \
134         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
135
136 #define PT32_BASE_ADDR_MASK PAGE_MASK
137 #define PT32_DIR_BASE_ADDR_MASK \
138         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139
140 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
141                         | PT64_NX_MASK)
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 #define ACC_EXEC_MASK    1
158 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
159 #define ACC_USER_MASK    PT_USER_MASK
160 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
161
162 struct kvm_rmap_desc {
163         u64 *shadow_ptes[RMAP_EXT];
164         struct kvm_rmap_desc *more;
165 };
166
167 static struct kmem_cache *pte_chain_cache;
168 static struct kmem_cache *rmap_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170
171 static u64 __read_mostly shadow_trap_nonpresent_pte;
172 static u64 __read_mostly shadow_notrap_nonpresent_pte;
173
174 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
175 {
176         shadow_trap_nonpresent_pte = trap_pte;
177         shadow_notrap_nonpresent_pte = notrap_pte;
178 }
179 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
180
181 static int is_write_protection(struct kvm_vcpu *vcpu)
182 {
183         return vcpu->arch.cr0 & X86_CR0_WP;
184 }
185
186 static int is_cpuid_PSE36(void)
187 {
188         return 1;
189 }
190
191 static int is_nx(struct kvm_vcpu *vcpu)
192 {
193         return vcpu->arch.shadow_efer & EFER_NX;
194 }
195
196 static int is_present_pte(unsigned long pte)
197 {
198         return pte & PT_PRESENT_MASK;
199 }
200
201 static int is_shadow_present_pte(u64 pte)
202 {
203         pte &= ~PT_SHADOW_IO_MARK;
204         return pte != shadow_trap_nonpresent_pte
205                 && pte != shadow_notrap_nonpresent_pte;
206 }
207
208 static int is_writeble_pte(unsigned long pte)
209 {
210         return pte & PT_WRITABLE_MASK;
211 }
212
213 static int is_dirty_pte(unsigned long pte)
214 {
215         return pte & PT_DIRTY_MASK;
216 }
217
218 static int is_io_pte(unsigned long pte)
219 {
220         return pte & PT_SHADOW_IO_MARK;
221 }
222
223 static int is_rmap_pte(u64 pte)
224 {
225         return is_shadow_present_pte(pte);
226 }
227
228 static gfn_t pse36_gfn_delta(u32 gpte)
229 {
230         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
231
232         return (gpte & PT32_DIR_PSE36_MASK) << shift;
233 }
234
235 static void set_shadow_pte(u64 *sptep, u64 spte)
236 {
237 #ifdef CONFIG_X86_64
238         set_64bit((unsigned long *)sptep, spte);
239 #else
240         set_64bit((unsigned long long *)sptep, spte);
241 #endif
242 }
243
244 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
245                                   struct kmem_cache *base_cache, int min)
246 {
247         void *obj;
248
249         if (cache->nobjs >= min)
250                 return 0;
251         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
252                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
253                 if (!obj)
254                         return -ENOMEM;
255                 cache->objects[cache->nobjs++] = obj;
256         }
257         return 0;
258 }
259
260 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
261 {
262         while (mc->nobjs)
263                 kfree(mc->objects[--mc->nobjs]);
264 }
265
266 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
267                                        int min)
268 {
269         struct page *page;
270
271         if (cache->nobjs >= min)
272                 return 0;
273         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
274                 page = alloc_page(GFP_KERNEL);
275                 if (!page)
276                         return -ENOMEM;
277                 set_page_private(page, 0);
278                 cache->objects[cache->nobjs++] = page_address(page);
279         }
280         return 0;
281 }
282
283 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
284 {
285         while (mc->nobjs)
286                 free_page((unsigned long)mc->objects[--mc->nobjs]);
287 }
288
289 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
290 {
291         int r;
292
293         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
294                                    pte_chain_cache, 4);
295         if (r)
296                 goto out;
297         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
298                                    rmap_desc_cache, 1);
299         if (r)
300                 goto out;
301         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
302         if (r)
303                 goto out;
304         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
305                                    mmu_page_header_cache, 4);
306 out:
307         return r;
308 }
309
310 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
311 {
312         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
313         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
314         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
315         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
316 }
317
318 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
319                                     size_t size)
320 {
321         void *p;
322
323         BUG_ON(!mc->nobjs);
324         p = mc->objects[--mc->nobjs];
325         memset(p, 0, size);
326         return p;
327 }
328
329 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
330 {
331         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
332                                       sizeof(struct kvm_pte_chain));
333 }
334
335 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
336 {
337         kfree(pc);
338 }
339
340 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
341 {
342         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
343                                       sizeof(struct kvm_rmap_desc));
344 }
345
346 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
347 {
348         kfree(rd);
349 }
350
351 /*
352  * Take gfn and return the reverse mapping to it.
353  * Note: gfn must be unaliased before this function get called
354  */
355
356 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
357 {
358         struct kvm_memory_slot *slot;
359
360         slot = gfn_to_memslot(kvm, gfn);
361         return &slot->rmap[gfn - slot->base_gfn];
362 }
363
364 /*
365  * Reverse mapping data structures:
366  *
367  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
368  * that points to page_address(page).
369  *
370  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
371  * containing more mappings.
372  */
373 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
374 {
375         struct kvm_mmu_page *sp;
376         struct kvm_rmap_desc *desc;
377         unsigned long *rmapp;
378         int i;
379
380         if (!is_rmap_pte(*spte))
381                 return;
382         gfn = unalias_gfn(vcpu->kvm, gfn);
383         sp = page_header(__pa(spte));
384         sp->gfns[spte - sp->spt] = gfn;
385         rmapp = gfn_to_rmap(vcpu->kvm, gfn);
386         if (!*rmapp) {
387                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
388                 *rmapp = (unsigned long)spte;
389         } else if (!(*rmapp & 1)) {
390                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
391                 desc = mmu_alloc_rmap_desc(vcpu);
392                 desc->shadow_ptes[0] = (u64 *)*rmapp;
393                 desc->shadow_ptes[1] = spte;
394                 *rmapp = (unsigned long)desc | 1;
395         } else {
396                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
397                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
398                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
399                         desc = desc->more;
400                 if (desc->shadow_ptes[RMAP_EXT-1]) {
401                         desc->more = mmu_alloc_rmap_desc(vcpu);
402                         desc = desc->more;
403                 }
404                 for (i = 0; desc->shadow_ptes[i]; ++i)
405                         ;
406                 desc->shadow_ptes[i] = spte;
407         }
408 }
409
410 static void rmap_desc_remove_entry(unsigned long *rmapp,
411                                    struct kvm_rmap_desc *desc,
412                                    int i,
413                                    struct kvm_rmap_desc *prev_desc)
414 {
415         int j;
416
417         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
418                 ;
419         desc->shadow_ptes[i] = desc->shadow_ptes[j];
420         desc->shadow_ptes[j] = NULL;
421         if (j != 0)
422                 return;
423         if (!prev_desc && !desc->more)
424                 *rmapp = (unsigned long)desc->shadow_ptes[0];
425         else
426                 if (prev_desc)
427                         prev_desc->more = desc->more;
428                 else
429                         *rmapp = (unsigned long)desc->more | 1;
430         mmu_free_rmap_desc(desc);
431 }
432
433 static void rmap_remove(struct kvm *kvm, u64 *spte)
434 {
435         struct kvm_rmap_desc *desc;
436         struct kvm_rmap_desc *prev_desc;
437         struct kvm_mmu_page *sp;
438         struct page *page;
439         unsigned long *rmapp;
440         int i;
441
442         if (!is_rmap_pte(*spte))
443                 return;
444         sp = page_header(__pa(spte));
445         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
446         mark_page_accessed(page);
447         if (is_writeble_pte(*spte))
448                 kvm_release_page_dirty(page);
449         else
450                 kvm_release_page_clean(page);
451         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
452         if (!*rmapp) {
453                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
454                 BUG();
455         } else if (!(*rmapp & 1)) {
456                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
457                 if ((u64 *)*rmapp != spte) {
458                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
459                                spte, *spte);
460                         BUG();
461                 }
462                 *rmapp = 0;
463         } else {
464                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
465                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
466                 prev_desc = NULL;
467                 while (desc) {
468                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
469                                 if (desc->shadow_ptes[i] == spte) {
470                                         rmap_desc_remove_entry(rmapp,
471                                                                desc, i,
472                                                                prev_desc);
473                                         return;
474                                 }
475                         prev_desc = desc;
476                         desc = desc->more;
477                 }
478                 BUG();
479         }
480 }
481
482 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
483 {
484         struct kvm_rmap_desc *desc;
485         struct kvm_rmap_desc *prev_desc;
486         u64 *prev_spte;
487         int i;
488
489         if (!*rmapp)
490                 return NULL;
491         else if (!(*rmapp & 1)) {
492                 if (!spte)
493                         return (u64 *)*rmapp;
494                 return NULL;
495         }
496         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
497         prev_desc = NULL;
498         prev_spte = NULL;
499         while (desc) {
500                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
501                         if (prev_spte == spte)
502                                 return desc->shadow_ptes[i];
503                         prev_spte = desc->shadow_ptes[i];
504                 }
505                 desc = desc->more;
506         }
507         return NULL;
508 }
509
510 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
511 {
512         unsigned long *rmapp;
513         u64 *spte;
514         int write_protected = 0;
515
516         gfn = unalias_gfn(kvm, gfn);
517         rmapp = gfn_to_rmap(kvm, gfn);
518
519         spte = rmap_next(kvm, rmapp, NULL);
520         while (spte) {
521                 BUG_ON(!spte);
522                 BUG_ON(!(*spte & PT_PRESENT_MASK));
523                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
524                 if (is_writeble_pte(*spte)) {
525                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
526                         write_protected = 1;
527                 }
528                 spte = rmap_next(kvm, rmapp, spte);
529         }
530         if (write_protected)
531                 kvm_flush_remote_tlbs(kvm);
532 }
533
534 #ifdef MMU_DEBUG
535 static int is_empty_shadow_page(u64 *spt)
536 {
537         u64 *pos;
538         u64 *end;
539
540         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
541                 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
542                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
543                                pos, *pos);
544                         return 0;
545                 }
546         return 1;
547 }
548 #endif
549
550 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
551 {
552         ASSERT(is_empty_shadow_page(sp->spt));
553         list_del(&sp->link);
554         __free_page(virt_to_page(sp->spt));
555         __free_page(virt_to_page(sp->gfns));
556         kfree(sp);
557         ++kvm->arch.n_free_mmu_pages;
558 }
559
560 static unsigned kvm_page_table_hashfn(gfn_t gfn)
561 {
562         return gfn;
563 }
564
565 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
566                                                u64 *parent_pte)
567 {
568         struct kvm_mmu_page *sp;
569
570         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
571         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
572         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
573         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
574         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
575         ASSERT(is_empty_shadow_page(sp->spt));
576         sp->slot_bitmap = 0;
577         sp->multimapped = 0;
578         sp->parent_pte = parent_pte;
579         --vcpu->kvm->arch.n_free_mmu_pages;
580         return sp;
581 }
582
583 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
584                                     struct kvm_mmu_page *sp, u64 *parent_pte)
585 {
586         struct kvm_pte_chain *pte_chain;
587         struct hlist_node *node;
588         int i;
589
590         if (!parent_pte)
591                 return;
592         if (!sp->multimapped) {
593                 u64 *old = sp->parent_pte;
594
595                 if (!old) {
596                         sp->parent_pte = parent_pte;
597                         return;
598                 }
599                 sp->multimapped = 1;
600                 pte_chain = mmu_alloc_pte_chain(vcpu);
601                 INIT_HLIST_HEAD(&sp->parent_ptes);
602                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
603                 pte_chain->parent_ptes[0] = old;
604         }
605         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
606                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
607                         continue;
608                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
609                         if (!pte_chain->parent_ptes[i]) {
610                                 pte_chain->parent_ptes[i] = parent_pte;
611                                 return;
612                         }
613         }
614         pte_chain = mmu_alloc_pte_chain(vcpu);
615         BUG_ON(!pte_chain);
616         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
617         pte_chain->parent_ptes[0] = parent_pte;
618 }
619
620 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
621                                        u64 *parent_pte)
622 {
623         struct kvm_pte_chain *pte_chain;
624         struct hlist_node *node;
625         int i;
626
627         if (!sp->multimapped) {
628                 BUG_ON(sp->parent_pte != parent_pte);
629                 sp->parent_pte = NULL;
630                 return;
631         }
632         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
633                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
634                         if (!pte_chain->parent_ptes[i])
635                                 break;
636                         if (pte_chain->parent_ptes[i] != parent_pte)
637                                 continue;
638                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
639                                 && pte_chain->parent_ptes[i + 1]) {
640                                 pte_chain->parent_ptes[i]
641                                         = pte_chain->parent_ptes[i + 1];
642                                 ++i;
643                         }
644                         pte_chain->parent_ptes[i] = NULL;
645                         if (i == 0) {
646                                 hlist_del(&pte_chain->link);
647                                 mmu_free_pte_chain(pte_chain);
648                                 if (hlist_empty(&sp->parent_ptes)) {
649                                         sp->multimapped = 0;
650                                         sp->parent_pte = NULL;
651                                 }
652                         }
653                         return;
654                 }
655         BUG();
656 }
657
658 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
659 {
660         unsigned index;
661         struct hlist_head *bucket;
662         struct kvm_mmu_page *sp;
663         struct hlist_node *node;
664
665         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
666         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
667         bucket = &kvm->arch.mmu_page_hash[index];
668         hlist_for_each_entry(sp, node, bucket, hash_link)
669                 if (sp->gfn == gfn && !sp->role.metaphysical) {
670                         pgprintk("%s: found role %x\n",
671                                  __FUNCTION__, sp->role.word);
672                         return sp;
673                 }
674         return NULL;
675 }
676
677 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
678                                              gfn_t gfn,
679                                              gva_t gaddr,
680                                              unsigned level,
681                                              int metaphysical,
682                                              unsigned access,
683                                              u64 *parent_pte)
684 {
685         union kvm_mmu_page_role role;
686         unsigned index;
687         unsigned quadrant;
688         struct hlist_head *bucket;
689         struct kvm_mmu_page *sp;
690         struct hlist_node *node;
691
692         role.word = 0;
693         role.glevels = vcpu->arch.mmu.root_level;
694         role.level = level;
695         role.metaphysical = metaphysical;
696         role.access = access;
697         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
698                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
699                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
700                 role.quadrant = quadrant;
701         }
702         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
703                  gfn, role.word);
704         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
705         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
706         hlist_for_each_entry(sp, node, bucket, hash_link)
707                 if (sp->gfn == gfn && sp->role.word == role.word) {
708                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
709                         pgprintk("%s: found\n", __FUNCTION__);
710                         return sp;
711                 }
712         ++vcpu->kvm->stat.mmu_cache_miss;
713         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
714         if (!sp)
715                 return sp;
716         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
717         sp->gfn = gfn;
718         sp->role = role;
719         hlist_add_head(&sp->hash_link, bucket);
720         vcpu->arch.mmu.prefetch_page(vcpu, sp);
721         if (!metaphysical)
722                 rmap_write_protect(vcpu->kvm, gfn);
723         return sp;
724 }
725
726 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
727                                          struct kvm_mmu_page *sp)
728 {
729         unsigned i;
730         u64 *pt;
731         u64 ent;
732
733         pt = sp->spt;
734
735         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
736                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
737                         if (is_shadow_present_pte(pt[i]))
738                                 rmap_remove(kvm, &pt[i]);
739                         pt[i] = shadow_trap_nonpresent_pte;
740                 }
741                 kvm_flush_remote_tlbs(kvm);
742                 return;
743         }
744
745         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
746                 ent = pt[i];
747
748                 pt[i] = shadow_trap_nonpresent_pte;
749                 if (!is_shadow_present_pte(ent))
750                         continue;
751                 ent &= PT64_BASE_ADDR_MASK;
752                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
753         }
754         kvm_flush_remote_tlbs(kvm);
755 }
756
757 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
758 {
759         mmu_page_remove_parent_pte(sp, parent_pte);
760 }
761
762 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
763 {
764         int i;
765
766         for (i = 0; i < KVM_MAX_VCPUS; ++i)
767                 if (kvm->vcpus[i])
768                         kvm->vcpus[i]->arch.last_pte_updated = NULL;
769 }
770
771 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
772 {
773         u64 *parent_pte;
774
775         ++kvm->stat.mmu_shadow_zapped;
776         while (sp->multimapped || sp->parent_pte) {
777                 if (!sp->multimapped)
778                         parent_pte = sp->parent_pte;
779                 else {
780                         struct kvm_pte_chain *chain;
781
782                         chain = container_of(sp->parent_ptes.first,
783                                              struct kvm_pte_chain, link);
784                         parent_pte = chain->parent_ptes[0];
785                 }
786                 BUG_ON(!parent_pte);
787                 kvm_mmu_put_page(sp, parent_pte);
788                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
789         }
790         kvm_mmu_page_unlink_children(kvm, sp);
791         if (!sp->root_count) {
792                 hlist_del(&sp->hash_link);
793                 kvm_mmu_free_page(kvm, sp);
794         } else
795                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
796         kvm_mmu_reset_last_pte_updated(kvm);
797 }
798
799 /*
800  * Changing the number of mmu pages allocated to the vm
801  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
802  */
803 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
804 {
805         /*
806          * If we set the number of mmu pages to be smaller be than the
807          * number of actived pages , we must to free some mmu pages before we
808          * change the value
809          */
810
811         if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
812             kvm_nr_mmu_pages) {
813                 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
814                                        - kvm->arch.n_free_mmu_pages;
815
816                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
817                         struct kvm_mmu_page *page;
818
819                         page = container_of(kvm->arch.active_mmu_pages.prev,
820                                             struct kvm_mmu_page, link);
821                         kvm_mmu_zap_page(kvm, page);
822                         n_used_mmu_pages--;
823                 }
824                 kvm->arch.n_free_mmu_pages = 0;
825         }
826         else
827                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
828                                          - kvm->arch.n_alloc_mmu_pages;
829
830         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
831 }
832
833 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
834 {
835         unsigned index;
836         struct hlist_head *bucket;
837         struct kvm_mmu_page *sp;
838         struct hlist_node *node, *n;
839         int r;
840
841         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
842         r = 0;
843         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
844         bucket = &kvm->arch.mmu_page_hash[index];
845         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
846                 if (sp->gfn == gfn && !sp->role.metaphysical) {
847                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
848                                  sp->role.word);
849                         kvm_mmu_zap_page(kvm, sp);
850                         r = 1;
851                 }
852         return r;
853 }
854
855 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
856 {
857         struct kvm_mmu_page *sp;
858
859         while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
860                 pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
861                 kvm_mmu_zap_page(kvm, sp);
862         }
863 }
864
865 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
866 {
867         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
868         struct kvm_mmu_page *sp = page_header(__pa(pte));
869
870         __set_bit(slot, &sp->slot_bitmap);
871 }
872
873 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
874 {
875         struct page *page;
876
877         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
878
879         if (gpa == UNMAPPED_GVA)
880                 return NULL;
881
882         down_read(&current->mm->mmap_sem);
883         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
884         up_read(&current->mm->mmap_sem);
885
886         return page;
887 }
888
889 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
890                          unsigned pt_access, unsigned pte_access,
891                          int user_fault, int write_fault, int dirty,
892                          int *ptwrite, gfn_t gfn, struct page *page)
893 {
894         u64 spte;
895         int was_rmapped = is_rmap_pte(*shadow_pte);
896         int was_writeble = is_writeble_pte(*shadow_pte);
897
898         pgprintk("%s: spte %llx access %x write_fault %d"
899                  " user_fault %d gfn %lx\n",
900                  __FUNCTION__, *shadow_pte, pt_access,
901                  write_fault, user_fault, gfn);
902
903         /*
904          * We don't set the accessed bit, since we sometimes want to see
905          * whether the guest actually used the pte (in order to detect
906          * demand paging).
907          */
908         spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
909         if (!dirty)
910                 pte_access &= ~ACC_WRITE_MASK;
911         if (!(pte_access & ACC_EXEC_MASK))
912                 spte |= PT64_NX_MASK;
913
914         spte |= PT_PRESENT_MASK;
915         if (pte_access & ACC_USER_MASK)
916                 spte |= PT_USER_MASK;
917
918         if (is_error_page(page)) {
919                 set_shadow_pte(shadow_pte,
920                                shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
921                 kvm_release_page_clean(page);
922                 return;
923         }
924
925         spte |= page_to_phys(page);
926
927         if ((pte_access & ACC_WRITE_MASK)
928             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
929                 struct kvm_mmu_page *shadow;
930
931                 spte |= PT_WRITABLE_MASK;
932                 if (user_fault) {
933                         mmu_unshadow(vcpu->kvm, gfn);
934                         goto unshadowed;
935                 }
936
937                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
938                 if (shadow) {
939                         pgprintk("%s: found shadow page for %lx, marking ro\n",
940                                  __FUNCTION__, gfn);
941                         pte_access &= ~ACC_WRITE_MASK;
942                         if (is_writeble_pte(spte)) {
943                                 spte &= ~PT_WRITABLE_MASK;
944                                 kvm_x86_ops->tlb_flush(vcpu);
945                         }
946                         if (write_fault)
947                                 *ptwrite = 1;
948                 }
949         }
950
951 unshadowed:
952
953         if (pte_access & ACC_WRITE_MASK)
954                 mark_page_dirty(vcpu->kvm, gfn);
955
956         pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
957         set_shadow_pte(shadow_pte, spte);
958         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
959         if (!was_rmapped) {
960                 rmap_add(vcpu, shadow_pte, gfn);
961                 if (!is_rmap_pte(*shadow_pte))
962                         kvm_release_page_clean(page);
963         } else {
964                 if (was_writeble)
965                         kvm_release_page_dirty(page);
966                 else
967                         kvm_release_page_clean(page);
968         }
969         if (!ptwrite || !*ptwrite)
970                 vcpu->arch.last_pte_updated = shadow_pte;
971 }
972
973 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
974 {
975 }
976
977 static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write,
978                            gfn_t gfn, struct page *page)
979 {
980         int level = PT32E_ROOT_LEVEL;
981         hpa_t table_addr = vcpu->arch.mmu.root_hpa;
982         int pt_write = 0;
983
984         for (; ; level--) {
985                 u32 index = PT64_INDEX(v, level);
986                 u64 *table;
987
988                 ASSERT(VALID_PAGE(table_addr));
989                 table = __va(table_addr);
990
991                 if (level == 1) {
992                         mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
993                                      0, write, 1, &pt_write, gfn, page);
994                         return pt_write || is_io_pte(table[index]);
995                 }
996
997                 if (table[index] == shadow_trap_nonpresent_pte) {
998                         struct kvm_mmu_page *new_table;
999                         gfn_t pseudo_gfn;
1000
1001                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1002                                 >> PAGE_SHIFT;
1003                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1004                                                      v, level - 1,
1005                                                      1, ACC_ALL, &table[index]);
1006                         if (!new_table) {
1007                                 pgprintk("nonpaging_map: ENOMEM\n");
1008                                 kvm_release_page_clean(page);
1009                                 return -ENOMEM;
1010                         }
1011
1012                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1013                                 | PT_WRITABLE_MASK | PT_USER_MASK;
1014                 }
1015                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1016         }
1017 }
1018
1019 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1020 {
1021         int r;
1022
1023         struct page *page;
1024
1025         down_read(&vcpu->kvm->slots_lock);
1026
1027         down_read(&current->mm->mmap_sem);
1028         page = gfn_to_page(vcpu->kvm, gfn);
1029         up_read(&current->mm->mmap_sem);
1030
1031         spin_lock(&vcpu->kvm->mmu_lock);
1032         kvm_mmu_free_some_pages(vcpu);
1033         r = __nonpaging_map(vcpu, v, write, gfn, page);
1034         spin_unlock(&vcpu->kvm->mmu_lock);
1035
1036         up_read(&vcpu->kvm->slots_lock);
1037
1038         return r;
1039 }
1040
1041
1042 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1043                                     struct kvm_mmu_page *sp)
1044 {
1045         int i;
1046
1047         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1048                 sp->spt[i] = shadow_trap_nonpresent_pte;
1049 }
1050
1051 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1052 {
1053         int i;
1054         struct kvm_mmu_page *sp;
1055
1056         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1057                 return;
1058         spin_lock(&vcpu->kvm->mmu_lock);
1059 #ifdef CONFIG_X86_64
1060         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1061                 hpa_t root = vcpu->arch.mmu.root_hpa;
1062
1063                 sp = page_header(root);
1064                 --sp->root_count;
1065                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1066                 spin_unlock(&vcpu->kvm->mmu_lock);
1067                 return;
1068         }
1069 #endif
1070         for (i = 0; i < 4; ++i) {
1071                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1072
1073                 if (root) {
1074                         root &= PT64_BASE_ADDR_MASK;
1075                         sp = page_header(root);
1076                         --sp->root_count;
1077                 }
1078                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1079         }
1080         spin_unlock(&vcpu->kvm->mmu_lock);
1081         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1082 }
1083
1084 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1085 {
1086         int i;
1087         gfn_t root_gfn;
1088         struct kvm_mmu_page *sp;
1089
1090         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1091
1092 #ifdef CONFIG_X86_64
1093         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1094                 hpa_t root = vcpu->arch.mmu.root_hpa;
1095
1096                 ASSERT(!VALID_PAGE(root));
1097                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1098                                       PT64_ROOT_LEVEL, 0, ACC_ALL, NULL);
1099                 root = __pa(sp->spt);
1100                 ++sp->root_count;
1101                 vcpu->arch.mmu.root_hpa = root;
1102                 return;
1103         }
1104 #endif
1105         for (i = 0; i < 4; ++i) {
1106                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1107
1108                 ASSERT(!VALID_PAGE(root));
1109                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1110                         if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1111                                 vcpu->arch.mmu.pae_root[i] = 0;
1112                                 continue;
1113                         }
1114                         root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1115                 } else if (vcpu->arch.mmu.root_level == 0)
1116                         root_gfn = 0;
1117                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1118                                       PT32_ROOT_LEVEL, !is_paging(vcpu),
1119                                       ACC_ALL, NULL);
1120                 root = __pa(sp->spt);
1121                 ++sp->root_count;
1122                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1123         }
1124         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1125 }
1126
1127 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1128 {
1129         return vaddr;
1130 }
1131
1132 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1133                                 u32 error_code)
1134 {
1135         gfn_t gfn;
1136         int r;
1137
1138         pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
1139         r = mmu_topup_memory_caches(vcpu);
1140         if (r)
1141                 return r;
1142
1143         ASSERT(vcpu);
1144         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1145
1146         gfn = gva >> PAGE_SHIFT;
1147
1148         return nonpaging_map(vcpu, gva & PAGE_MASK,
1149                              error_code & PFERR_WRITE_MASK, gfn);
1150 }
1151
1152 static void nonpaging_free(struct kvm_vcpu *vcpu)
1153 {
1154         mmu_free_roots(vcpu);
1155 }
1156
1157 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1158 {
1159         struct kvm_mmu *context = &vcpu->arch.mmu;
1160
1161         context->new_cr3 = nonpaging_new_cr3;
1162         context->page_fault = nonpaging_page_fault;
1163         context->gva_to_gpa = nonpaging_gva_to_gpa;
1164         context->free = nonpaging_free;
1165         context->prefetch_page = nonpaging_prefetch_page;
1166         context->root_level = 0;
1167         context->shadow_root_level = PT32E_ROOT_LEVEL;
1168         context->root_hpa = INVALID_PAGE;
1169         return 0;
1170 }
1171
1172 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1173 {
1174         ++vcpu->stat.tlb_flush;
1175         kvm_x86_ops->tlb_flush(vcpu);
1176 }
1177
1178 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1179 {
1180         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->arch.cr3);
1181         mmu_free_roots(vcpu);
1182 }
1183
1184 static void inject_page_fault(struct kvm_vcpu *vcpu,
1185                               u64 addr,
1186                               u32 err_code)
1187 {
1188         kvm_inject_page_fault(vcpu, addr, err_code);
1189 }
1190
1191 static void paging_free(struct kvm_vcpu *vcpu)
1192 {
1193         nonpaging_free(vcpu);
1194 }
1195
1196 #define PTTYPE 64
1197 #include "paging_tmpl.h"
1198 #undef PTTYPE
1199
1200 #define PTTYPE 32
1201 #include "paging_tmpl.h"
1202 #undef PTTYPE
1203
1204 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1205 {
1206         struct kvm_mmu *context = &vcpu->arch.mmu;
1207
1208         ASSERT(is_pae(vcpu));
1209         context->new_cr3 = paging_new_cr3;
1210         context->page_fault = paging64_page_fault;
1211         context->gva_to_gpa = paging64_gva_to_gpa;
1212         context->prefetch_page = paging64_prefetch_page;
1213         context->free = paging_free;
1214         context->root_level = level;
1215         context->shadow_root_level = level;
1216         context->root_hpa = INVALID_PAGE;
1217         return 0;
1218 }
1219
1220 static int paging64_init_context(struct kvm_vcpu *vcpu)
1221 {
1222         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1223 }
1224
1225 static int paging32_init_context(struct kvm_vcpu *vcpu)
1226 {
1227         struct kvm_mmu *context = &vcpu->arch.mmu;
1228
1229         context->new_cr3 = paging_new_cr3;
1230         context->page_fault = paging32_page_fault;
1231         context->gva_to_gpa = paging32_gva_to_gpa;
1232         context->free = paging_free;
1233         context->prefetch_page = paging32_prefetch_page;
1234         context->root_level = PT32_ROOT_LEVEL;
1235         context->shadow_root_level = PT32E_ROOT_LEVEL;
1236         context->root_hpa = INVALID_PAGE;
1237         return 0;
1238 }
1239
1240 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1241 {
1242         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1243 }
1244
1245 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1246 {
1247         ASSERT(vcpu);
1248         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1249
1250         if (!is_paging(vcpu))
1251                 return nonpaging_init_context(vcpu);
1252         else if (is_long_mode(vcpu))
1253                 return paging64_init_context(vcpu);
1254         else if (is_pae(vcpu))
1255                 return paging32E_init_context(vcpu);
1256         else
1257                 return paging32_init_context(vcpu);
1258 }
1259
1260 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1261 {
1262         ASSERT(vcpu);
1263         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1264                 vcpu->arch.mmu.free(vcpu);
1265                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1266         }
1267 }
1268
1269 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1270 {
1271         destroy_kvm_mmu(vcpu);
1272         return init_kvm_mmu(vcpu);
1273 }
1274 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1275
1276 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1277 {
1278         int r;
1279
1280         r = mmu_topup_memory_caches(vcpu);
1281         if (r)
1282                 goto out;
1283         spin_lock(&vcpu->kvm->mmu_lock);
1284         kvm_mmu_free_some_pages(vcpu);
1285         mmu_alloc_roots(vcpu);
1286         spin_unlock(&vcpu->kvm->mmu_lock);
1287         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1288         kvm_mmu_flush_tlb(vcpu);
1289 out:
1290         return r;
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1293
1294 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1295 {
1296         mmu_free_roots(vcpu);
1297 }
1298
1299 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1300                                   struct kvm_mmu_page *sp,
1301                                   u64 *spte)
1302 {
1303         u64 pte;
1304         struct kvm_mmu_page *child;
1305
1306         pte = *spte;
1307         if (is_shadow_present_pte(pte)) {
1308                 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
1309                         rmap_remove(vcpu->kvm, spte);
1310                 else {
1311                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1312                         mmu_page_remove_parent_pte(child, spte);
1313                 }
1314         }
1315         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1316 }
1317
1318 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1319                                   struct kvm_mmu_page *sp,
1320                                   u64 *spte,
1321                                   const void *new, int bytes,
1322                                   int offset_in_pte)
1323 {
1324         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1325                 ++vcpu->kvm->stat.mmu_pde_zapped;
1326                 return;
1327         }
1328
1329         ++vcpu->kvm->stat.mmu_pte_updated;
1330         if (sp->role.glevels == PT32_ROOT_LEVEL)
1331                 paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1332         else
1333                 paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1334 }
1335
1336 static bool need_remote_flush(u64 old, u64 new)
1337 {
1338         if (!is_shadow_present_pte(old))
1339                 return false;
1340         if (!is_shadow_present_pte(new))
1341                 return true;
1342         if ((old ^ new) & PT64_BASE_ADDR_MASK)
1343                 return true;
1344         old ^= PT64_NX_MASK;
1345         new ^= PT64_NX_MASK;
1346         return (old & ~new & PT64_PERM_MASK) != 0;
1347 }
1348
1349 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1350 {
1351         if (need_remote_flush(old, new))
1352                 kvm_flush_remote_tlbs(vcpu->kvm);
1353         else
1354                 kvm_mmu_flush_tlb(vcpu);
1355 }
1356
1357 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1358 {
1359         u64 *spte = vcpu->arch.last_pte_updated;
1360
1361         return !!(spte && (*spte & PT_ACCESSED_MASK));
1362 }
1363
1364 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1365                                           const u8 *new, int bytes)
1366 {
1367         gfn_t gfn;
1368         int r;
1369         u64 gpte = 0;
1370         struct page *page;
1371
1372         if (bytes != 4 && bytes != 8)
1373                 return;
1374
1375         /*
1376          * Assume that the pte write on a page table of the same type
1377          * as the current vcpu paging mode.  This is nearly always true
1378          * (might be false while changing modes).  Note it is verified later
1379          * by update_pte().
1380          */
1381         if (is_pae(vcpu)) {
1382                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1383                 if ((bytes == 4) && (gpa % 4 == 0)) {
1384                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1385                         if (r)
1386                                 return;
1387                         memcpy((void *)&gpte + (gpa % 8), new, 4);
1388                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1389                         memcpy((void *)&gpte, new, 8);
1390                 }
1391         } else {
1392                 if ((bytes == 4) && (gpa % 4 == 0))
1393                         memcpy((void *)&gpte, new, 4);
1394         }
1395         if (!is_present_pte(gpte))
1396                 return;
1397         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1398
1399         down_read(&current->mm->mmap_sem);
1400         page = gfn_to_page(vcpu->kvm, gfn);
1401         up_read(&current->mm->mmap_sem);
1402
1403         vcpu->arch.update_pte.gfn = gfn;
1404         vcpu->arch.update_pte.page = gfn_to_page(vcpu->kvm, gfn);
1405 }
1406
1407 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1408                        const u8 *new, int bytes)
1409 {
1410         gfn_t gfn = gpa >> PAGE_SHIFT;
1411         struct kvm_mmu_page *sp;
1412         struct hlist_node *node, *n;
1413         struct hlist_head *bucket;
1414         unsigned index;
1415         u64 entry;
1416         u64 *spte;
1417         unsigned offset = offset_in_page(gpa);
1418         unsigned pte_size;
1419         unsigned page_offset;
1420         unsigned misaligned;
1421         unsigned quadrant;
1422         int level;
1423         int flooded = 0;
1424         int npte;
1425
1426         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1427         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1428         spin_lock(&vcpu->kvm->mmu_lock);
1429         kvm_mmu_free_some_pages(vcpu);
1430         ++vcpu->kvm->stat.mmu_pte_write;
1431         kvm_mmu_audit(vcpu, "pre pte write");
1432         if (gfn == vcpu->arch.last_pt_write_gfn
1433             && !last_updated_pte_accessed(vcpu)) {
1434                 ++vcpu->arch.last_pt_write_count;
1435                 if (vcpu->arch.last_pt_write_count >= 3)
1436                         flooded = 1;
1437         } else {
1438                 vcpu->arch.last_pt_write_gfn = gfn;
1439                 vcpu->arch.last_pt_write_count = 1;
1440                 vcpu->arch.last_pte_updated = NULL;
1441         }
1442         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1443         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1444         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1445                 if (sp->gfn != gfn || sp->role.metaphysical)
1446                         continue;
1447                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1448                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1449                 misaligned |= bytes < 4;
1450                 if (misaligned || flooded) {
1451                         /*
1452                          * Misaligned accesses are too much trouble to fix
1453                          * up; also, they usually indicate a page is not used
1454                          * as a page table.
1455                          *
1456                          * If we're seeing too many writes to a page,
1457                          * it may no longer be a page table, or we may be
1458                          * forking, in which case it is better to unmap the
1459                          * page.
1460                          */
1461                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1462                                  gpa, bytes, sp->role.word);
1463                         kvm_mmu_zap_page(vcpu->kvm, sp);
1464                         ++vcpu->kvm->stat.mmu_flooded;
1465                         continue;
1466                 }
1467                 page_offset = offset;
1468                 level = sp->role.level;
1469                 npte = 1;
1470                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1471                         page_offset <<= 1;      /* 32->64 */
1472                         /*
1473                          * A 32-bit pde maps 4MB while the shadow pdes map
1474                          * only 2MB.  So we need to double the offset again
1475                          * and zap two pdes instead of one.
1476                          */
1477                         if (level == PT32_ROOT_LEVEL) {
1478                                 page_offset &= ~7; /* kill rounding error */
1479                                 page_offset <<= 1;
1480                                 npte = 2;
1481                         }
1482                         quadrant = page_offset >> PAGE_SHIFT;
1483                         page_offset &= ~PAGE_MASK;
1484                         if (quadrant != sp->role.quadrant)
1485                                 continue;
1486                 }
1487                 spte = &sp->spt[page_offset / sizeof(*spte)];
1488                 while (npte--) {
1489                         entry = *spte;
1490                         mmu_pte_write_zap_pte(vcpu, sp, spte);
1491                         mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
1492                                               page_offset & (pte_size - 1));
1493                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1494                         ++spte;
1495                 }
1496         }
1497         kvm_mmu_audit(vcpu, "post pte write");
1498         spin_unlock(&vcpu->kvm->mmu_lock);
1499         if (vcpu->arch.update_pte.page) {
1500                 kvm_release_page_clean(vcpu->arch.update_pte.page);
1501                 vcpu->arch.update_pte.page = NULL;
1502         }
1503 }
1504
1505 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1506 {
1507         gpa_t gpa;
1508         int r;
1509
1510         down_read(&vcpu->kvm->slots_lock);
1511         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1512         up_read(&vcpu->kvm->slots_lock);
1513
1514         spin_lock(&vcpu->kvm->mmu_lock);
1515         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1516         spin_unlock(&vcpu->kvm->mmu_lock);
1517         return r;
1518 }
1519
1520 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1521 {
1522         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1523                 struct kvm_mmu_page *sp;
1524
1525                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1526                                   struct kvm_mmu_page, link);
1527                 kvm_mmu_zap_page(vcpu->kvm, sp);
1528                 ++vcpu->kvm->stat.mmu_recycled;
1529         }
1530 }
1531
1532 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1533 {
1534         int r;
1535         enum emulation_result er;
1536
1537         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1538         if (r < 0)
1539                 goto out;
1540
1541         if (!r) {
1542                 r = 1;
1543                 goto out;
1544         }
1545
1546         r = mmu_topup_memory_caches(vcpu);
1547         if (r)
1548                 goto out;
1549
1550         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1551
1552         switch (er) {
1553         case EMULATE_DONE:
1554                 return 1;
1555         case EMULATE_DO_MMIO:
1556                 ++vcpu->stat.mmio_exits;
1557                 return 0;
1558         case EMULATE_FAIL:
1559                 kvm_report_emulation_failure(vcpu, "pagetable");
1560                 return 1;
1561         default:
1562                 BUG();
1563         }
1564 out:
1565         return r;
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1568
1569 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1570 {
1571         struct kvm_mmu_page *sp;
1572
1573         while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1574                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1575                                   struct kvm_mmu_page, link);
1576                 kvm_mmu_zap_page(vcpu->kvm, sp);
1577         }
1578         free_page((unsigned long)vcpu->arch.mmu.pae_root);
1579 }
1580
1581 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1582 {
1583         struct page *page;
1584         int i;
1585
1586         ASSERT(vcpu);
1587
1588         if (vcpu->kvm->arch.n_requested_mmu_pages)
1589                 vcpu->kvm->arch.n_free_mmu_pages =
1590                                         vcpu->kvm->arch.n_requested_mmu_pages;
1591         else
1592                 vcpu->kvm->arch.n_free_mmu_pages =
1593                                         vcpu->kvm->arch.n_alloc_mmu_pages;
1594         /*
1595          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1596          * Therefore we need to allocate shadow page tables in the first
1597          * 4GB of memory, which happens to fit the DMA32 zone.
1598          */
1599         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1600         if (!page)
1601                 goto error_1;
1602         vcpu->arch.mmu.pae_root = page_address(page);
1603         for (i = 0; i < 4; ++i)
1604                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1605
1606         return 0;
1607
1608 error_1:
1609         free_mmu_pages(vcpu);
1610         return -ENOMEM;
1611 }
1612
1613 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1614 {
1615         ASSERT(vcpu);
1616         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1617
1618         return alloc_mmu_pages(vcpu);
1619 }
1620
1621 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1622 {
1623         ASSERT(vcpu);
1624         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1625
1626         return init_kvm_mmu(vcpu);
1627 }
1628
1629 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1630 {
1631         ASSERT(vcpu);
1632
1633         destroy_kvm_mmu(vcpu);
1634         free_mmu_pages(vcpu);
1635         mmu_free_memory_caches(vcpu);
1636 }
1637
1638 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1639 {
1640         struct kvm_mmu_page *sp;
1641
1642         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1643                 int i;
1644                 u64 *pt;
1645
1646                 if (!test_bit(slot, &sp->slot_bitmap))
1647                         continue;
1648
1649                 pt = sp->spt;
1650                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1651                         /* avoid RMW */
1652                         if (pt[i] & PT_WRITABLE_MASK)
1653                                 pt[i] &= ~PT_WRITABLE_MASK;
1654         }
1655 }
1656
1657 void kvm_mmu_zap_all(struct kvm *kvm)
1658 {
1659         struct kvm_mmu_page *sp, *node;
1660
1661         spin_lock(&kvm->mmu_lock);
1662         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1663                 kvm_mmu_zap_page(kvm, sp);
1664         spin_unlock(&kvm->mmu_lock);
1665
1666         kvm_flush_remote_tlbs(kvm);
1667 }
1668
1669 void kvm_mmu_module_exit(void)
1670 {
1671         if (pte_chain_cache)
1672                 kmem_cache_destroy(pte_chain_cache);
1673         if (rmap_desc_cache)
1674                 kmem_cache_destroy(rmap_desc_cache);
1675         if (mmu_page_header_cache)
1676                 kmem_cache_destroy(mmu_page_header_cache);
1677 }
1678
1679 int kvm_mmu_module_init(void)
1680 {
1681         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1682                                             sizeof(struct kvm_pte_chain),
1683                                             0, 0, NULL);
1684         if (!pte_chain_cache)
1685                 goto nomem;
1686         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1687                                             sizeof(struct kvm_rmap_desc),
1688                                             0, 0, NULL);
1689         if (!rmap_desc_cache)
1690                 goto nomem;
1691
1692         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1693                                                   sizeof(struct kvm_mmu_page),
1694                                                   0, 0, NULL);
1695         if (!mmu_page_header_cache)
1696                 goto nomem;
1697
1698         return 0;
1699
1700 nomem:
1701         kvm_mmu_module_exit();
1702         return -ENOMEM;
1703 }
1704
1705 /*
1706  * Caculate mmu pages needed for kvm.
1707  */
1708 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1709 {
1710         int i;
1711         unsigned int nr_mmu_pages;
1712         unsigned int  nr_pages = 0;
1713
1714         for (i = 0; i < kvm->nmemslots; i++)
1715                 nr_pages += kvm->memslots[i].npages;
1716
1717         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
1718         nr_mmu_pages = max(nr_mmu_pages,
1719                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
1720
1721         return nr_mmu_pages;
1722 }
1723
1724 #ifdef AUDIT
1725
1726 static const char *audit_msg;
1727
1728 static gva_t canonicalize(gva_t gva)
1729 {
1730 #ifdef CONFIG_X86_64
1731         gva = (long long)(gva << 16) >> 16;
1732 #endif
1733         return gva;
1734 }
1735
1736 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1737                                 gva_t va, int level)
1738 {
1739         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1740         int i;
1741         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1742
1743         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1744                 u64 ent = pt[i];
1745
1746                 if (ent == shadow_trap_nonpresent_pte)
1747                         continue;
1748
1749                 va = canonicalize(va);
1750                 if (level > 1) {
1751                         if (ent == shadow_notrap_nonpresent_pte)
1752                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
1753                                        " in nonleaf level: levels %d gva %lx"
1754                                        " level %d pte %llx\n", audit_msg,
1755                                        vcpu->arch.mmu.root_level, va, level, ent);
1756
1757                         audit_mappings_page(vcpu, ent, va, level - 1);
1758                 } else {
1759                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
1760                         struct page *page = gpa_to_page(vcpu, gpa);
1761                         hpa_t hpa = page_to_phys(page);
1762
1763                         if (is_shadow_present_pte(ent)
1764                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1765                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
1766                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1767                                        audit_msg, vcpu->arch.mmu.root_level,
1768                                        va, gpa, hpa, ent,
1769                                        is_shadow_present_pte(ent));
1770                         else if (ent == shadow_notrap_nonpresent_pte
1771                                  && !is_error_hpa(hpa))
1772                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
1773                                        " valid guest gva %lx\n", audit_msg, va);
1774                         kvm_release_page_clean(page);
1775
1776                 }
1777         }
1778 }
1779
1780 static void audit_mappings(struct kvm_vcpu *vcpu)
1781 {
1782         unsigned i;
1783
1784         if (vcpu->arch.mmu.root_level == 4)
1785                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
1786         else
1787                 for (i = 0; i < 4; ++i)
1788                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
1789                                 audit_mappings_page(vcpu,
1790                                                     vcpu->arch.mmu.pae_root[i],
1791                                                     i << 30,
1792                                                     2);
1793 }
1794
1795 static int count_rmaps(struct kvm_vcpu *vcpu)
1796 {
1797         int nmaps = 0;
1798         int i, j, k;
1799
1800         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1801                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1802                 struct kvm_rmap_desc *d;
1803
1804                 for (j = 0; j < m->npages; ++j) {
1805                         unsigned long *rmapp = &m->rmap[j];
1806
1807                         if (!*rmapp)
1808                                 continue;
1809                         if (!(*rmapp & 1)) {
1810                                 ++nmaps;
1811                                 continue;
1812                         }
1813                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1814                         while (d) {
1815                                 for (k = 0; k < RMAP_EXT; ++k)
1816                                         if (d->shadow_ptes[k])
1817                                                 ++nmaps;
1818                                         else
1819                                                 break;
1820                                 d = d->more;
1821                         }
1822                 }
1823         }
1824         return nmaps;
1825 }
1826
1827 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1828 {
1829         int nmaps = 0;
1830         struct kvm_mmu_page *sp;
1831         int i;
1832
1833         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1834                 u64 *pt = sp->spt;
1835
1836                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
1837                         continue;
1838
1839                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1840                         u64 ent = pt[i];
1841
1842                         if (!(ent & PT_PRESENT_MASK))
1843                                 continue;
1844                         if (!(ent & PT_WRITABLE_MASK))
1845                                 continue;
1846                         ++nmaps;
1847                 }
1848         }
1849         return nmaps;
1850 }
1851
1852 static void audit_rmap(struct kvm_vcpu *vcpu)
1853 {
1854         int n_rmap = count_rmaps(vcpu);
1855         int n_actual = count_writable_mappings(vcpu);
1856
1857         if (n_rmap != n_actual)
1858                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1859                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1860 }
1861
1862 static void audit_write_protection(struct kvm_vcpu *vcpu)
1863 {
1864         struct kvm_mmu_page *sp;
1865         struct kvm_memory_slot *slot;
1866         unsigned long *rmapp;
1867         gfn_t gfn;
1868
1869         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1870                 if (sp->role.metaphysical)
1871                         continue;
1872
1873                 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
1874                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
1875                 rmapp = &slot->rmap[gfn - slot->base_gfn];
1876                 if (*rmapp)
1877                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1878                                " mappings: gfn %lx role %x\n",
1879                                __FUNCTION__, audit_msg, sp->gfn,
1880                                sp->role.word);
1881         }
1882 }
1883
1884 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1885 {
1886         int olddbg = dbg;
1887
1888         dbg = 0;
1889         audit_msg = msg;
1890         audit_rmap(vcpu);
1891         audit_write_protection(vcpu);
1892         audit_mappings(vcpu);
1893         dbg = olddbg;
1894 }
1895
1896 #endif