]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: Set the accessed bit on non-speculative shadow ptes
[linux-2.6-omap-h63xx.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "mmu.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/types.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/module.h>
29 #include <linux/swap.h>
30 #include <linux/hugetlb.h>
31 #include <linux/compiler.h>
32
33 #include <asm/page.h>
34 #include <asm/cmpxchg.h>
35 #include <asm/io.h>
36
37 /*
38  * When setting this variable to true it enables Two-Dimensional-Paging
39  * where the hardware walks 2 page tables:
40  * 1. the guest-virtual to guest-physical
41  * 2. while doing 1. it walks guest-physical to host-physical
42  * If the hardware supports that we don't need to do shadow paging.
43  */
44 bool tdp_enabled = false;
45
46 #undef MMU_DEBUG
47
48 #undef AUDIT
49
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
55
56 #ifdef MMU_DEBUG
57
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
60
61 #else
62
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
65
66 #endif
67
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 1;
70 #endif
71
72 #ifndef MMU_DEBUG
73 #define ASSERT(x) do { } while (0)
74 #else
75 #define ASSERT(x)                                                       \
76         if (!(x)) {                                                     \
77                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
78                        __FILE__, __LINE__, #x);                         \
79         }
80 #endif
81
82 #define PT64_PT_BITS 9
83 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
84 #define PT32_PT_BITS 10
85 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
86
87 #define PT_WRITABLE_SHIFT 1
88
89 #define PT_PRESENT_MASK (1ULL << 0)
90 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
91 #define PT_USER_MASK (1ULL << 2)
92 #define PT_PWT_MASK (1ULL << 3)
93 #define PT_PCD_MASK (1ULL << 4)
94 #define PT_ACCESSED_MASK (1ULL << 5)
95 #define PT_DIRTY_MASK (1ULL << 6)
96 #define PT_PAGE_SIZE_MASK (1ULL << 7)
97 #define PT_PAT_MASK (1ULL << 7)
98 #define PT_GLOBAL_MASK (1ULL << 8)
99 #define PT64_NX_SHIFT 63
100 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
101
102 #define PT_PAT_SHIFT 7
103 #define PT_DIR_PAT_SHIFT 12
104 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
105
106 #define PT32_DIR_PSE36_SIZE 4
107 #define PT32_DIR_PSE36_SHIFT 13
108 #define PT32_DIR_PSE36_MASK \
109         (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
110
111
112 #define PT_FIRST_AVAIL_BITS_SHIFT 9
113 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
114
115 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
116
117 #define PT64_LEVEL_BITS 9
118
119 #define PT64_LEVEL_SHIFT(level) \
120                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
121
122 #define PT64_LEVEL_MASK(level) \
123                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
124
125 #define PT64_INDEX(address, level)\
126         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
127
128
129 #define PT32_LEVEL_BITS 10
130
131 #define PT32_LEVEL_SHIFT(level) \
132                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
133
134 #define PT32_LEVEL_MASK(level) \
135                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
136
137 #define PT32_INDEX(address, level)\
138         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
139
140
141 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
142 #define PT64_DIR_BASE_ADDR_MASK \
143         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
144
145 #define PT32_BASE_ADDR_MASK PAGE_MASK
146 #define PT32_DIR_BASE_ADDR_MASK \
147         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
148
149 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
150                         | PT64_NX_MASK)
151
152 #define PFERR_PRESENT_MASK (1U << 0)
153 #define PFERR_WRITE_MASK (1U << 1)
154 #define PFERR_USER_MASK (1U << 2)
155 #define PFERR_FETCH_MASK (1U << 4)
156
157 #define PT64_ROOT_LEVEL 4
158 #define PT32_ROOT_LEVEL 2
159 #define PT32E_ROOT_LEVEL 3
160
161 #define PT_DIRECTORY_LEVEL 2
162 #define PT_PAGE_TABLE_LEVEL 1
163
164 #define RMAP_EXT 4
165
166 #define ACC_EXEC_MASK    1
167 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
168 #define ACC_USER_MASK    PT_USER_MASK
169 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
170
171 struct kvm_pv_mmu_op_buffer {
172         void *ptr;
173         unsigned len;
174         unsigned processed;
175         char buf[512] __aligned(sizeof(long));
176 };
177
178 struct kvm_rmap_desc {
179         u64 *shadow_ptes[RMAP_EXT];
180         struct kvm_rmap_desc *more;
181 };
182
183 static struct kmem_cache *pte_chain_cache;
184 static struct kmem_cache *rmap_desc_cache;
185 static struct kmem_cache *mmu_page_header_cache;
186
187 static u64 __read_mostly shadow_trap_nonpresent_pte;
188 static u64 __read_mostly shadow_notrap_nonpresent_pte;
189
190 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
191 {
192         shadow_trap_nonpresent_pte = trap_pte;
193         shadow_notrap_nonpresent_pte = notrap_pte;
194 }
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
196
197 static int is_write_protection(struct kvm_vcpu *vcpu)
198 {
199         return vcpu->arch.cr0 & X86_CR0_WP;
200 }
201
202 static int is_cpuid_PSE36(void)
203 {
204         return 1;
205 }
206
207 static int is_nx(struct kvm_vcpu *vcpu)
208 {
209         return vcpu->arch.shadow_efer & EFER_NX;
210 }
211
212 static int is_present_pte(unsigned long pte)
213 {
214         return pte & PT_PRESENT_MASK;
215 }
216
217 static int is_shadow_present_pte(u64 pte)
218 {
219         return pte != shadow_trap_nonpresent_pte
220                 && pte != shadow_notrap_nonpresent_pte;
221 }
222
223 static int is_large_pte(u64 pte)
224 {
225         return pte & PT_PAGE_SIZE_MASK;
226 }
227
228 static int is_writeble_pte(unsigned long pte)
229 {
230         return pte & PT_WRITABLE_MASK;
231 }
232
233 static int is_dirty_pte(unsigned long pte)
234 {
235         return pte & PT_DIRTY_MASK;
236 }
237
238 static int is_rmap_pte(u64 pte)
239 {
240         return is_shadow_present_pte(pte);
241 }
242
243 static gfn_t pse36_gfn_delta(u32 gpte)
244 {
245         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
246
247         return (gpte & PT32_DIR_PSE36_MASK) << shift;
248 }
249
250 static void set_shadow_pte(u64 *sptep, u64 spte)
251 {
252 #ifdef CONFIG_X86_64
253         set_64bit((unsigned long *)sptep, spte);
254 #else
255         set_64bit((unsigned long long *)sptep, spte);
256 #endif
257 }
258
259 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
260                                   struct kmem_cache *base_cache, int min)
261 {
262         void *obj;
263
264         if (cache->nobjs >= min)
265                 return 0;
266         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
267                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
268                 if (!obj)
269                         return -ENOMEM;
270                 cache->objects[cache->nobjs++] = obj;
271         }
272         return 0;
273 }
274
275 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
276 {
277         while (mc->nobjs)
278                 kfree(mc->objects[--mc->nobjs]);
279 }
280
281 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
282                                        int min)
283 {
284         struct page *page;
285
286         if (cache->nobjs >= min)
287                 return 0;
288         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
289                 page = alloc_page(GFP_KERNEL);
290                 if (!page)
291                         return -ENOMEM;
292                 set_page_private(page, 0);
293                 cache->objects[cache->nobjs++] = page_address(page);
294         }
295         return 0;
296 }
297
298 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
299 {
300         while (mc->nobjs)
301                 free_page((unsigned long)mc->objects[--mc->nobjs]);
302 }
303
304 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
305 {
306         int r;
307
308         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
309                                    pte_chain_cache, 4);
310         if (r)
311                 goto out;
312         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
313                                    rmap_desc_cache, 1);
314         if (r)
315                 goto out;
316         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
317         if (r)
318                 goto out;
319         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
320                                    mmu_page_header_cache, 4);
321 out:
322         return r;
323 }
324
325 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
326 {
327         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
328         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
329         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
330         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
331 }
332
333 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
334                                     size_t size)
335 {
336         void *p;
337
338         BUG_ON(!mc->nobjs);
339         p = mc->objects[--mc->nobjs];
340         memset(p, 0, size);
341         return p;
342 }
343
344 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
345 {
346         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
347                                       sizeof(struct kvm_pte_chain));
348 }
349
350 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
351 {
352         kfree(pc);
353 }
354
355 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
356 {
357         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
358                                       sizeof(struct kvm_rmap_desc));
359 }
360
361 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
362 {
363         kfree(rd);
364 }
365
366 /*
367  * Return the pointer to the largepage write count for a given
368  * gfn, handling slots that are not large page aligned.
369  */
370 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
371 {
372         unsigned long idx;
373
374         idx = (gfn / KVM_PAGES_PER_HPAGE) -
375               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
376         return &slot->lpage_info[idx].write_count;
377 }
378
379 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
380 {
381         int *write_count;
382
383         write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
384         *write_count += 1;
385         WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
386 }
387
388 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
389 {
390         int *write_count;
391
392         write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
393         *write_count -= 1;
394         WARN_ON(*write_count < 0);
395 }
396
397 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
398 {
399         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
400         int *largepage_idx;
401
402         if (slot) {
403                 largepage_idx = slot_largepage_idx(gfn, slot);
404                 return *largepage_idx;
405         }
406
407         return 1;
408 }
409
410 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
411 {
412         struct vm_area_struct *vma;
413         unsigned long addr;
414
415         addr = gfn_to_hva(kvm, gfn);
416         if (kvm_is_error_hva(addr))
417                 return 0;
418
419         vma = find_vma(current->mm, addr);
420         if (vma && is_vm_hugetlb_page(vma))
421                 return 1;
422
423         return 0;
424 }
425
426 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
427 {
428         struct kvm_memory_slot *slot;
429
430         if (has_wrprotected_page(vcpu->kvm, large_gfn))
431                 return 0;
432
433         if (!host_largepage_backed(vcpu->kvm, large_gfn))
434                 return 0;
435
436         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
437         if (slot && slot->dirty_bitmap)
438                 return 0;
439
440         return 1;
441 }
442
443 /*
444  * Take gfn and return the reverse mapping to it.
445  * Note: gfn must be unaliased before this function get called
446  */
447
448 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
449 {
450         struct kvm_memory_slot *slot;
451         unsigned long idx;
452
453         slot = gfn_to_memslot(kvm, gfn);
454         if (!lpage)
455                 return &slot->rmap[gfn - slot->base_gfn];
456
457         idx = (gfn / KVM_PAGES_PER_HPAGE) -
458               (slot->base_gfn / KVM_PAGES_PER_HPAGE);
459
460         return &slot->lpage_info[idx].rmap_pde;
461 }
462
463 /*
464  * Reverse mapping data structures:
465  *
466  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
467  * that points to page_address(page).
468  *
469  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
470  * containing more mappings.
471  */
472 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
473 {
474         struct kvm_mmu_page *sp;
475         struct kvm_rmap_desc *desc;
476         unsigned long *rmapp;
477         int i;
478
479         if (!is_rmap_pte(*spte))
480                 return;
481         gfn = unalias_gfn(vcpu->kvm, gfn);
482         sp = page_header(__pa(spte));
483         sp->gfns[spte - sp->spt] = gfn;
484         rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
485         if (!*rmapp) {
486                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
487                 *rmapp = (unsigned long)spte;
488         } else if (!(*rmapp & 1)) {
489                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
490                 desc = mmu_alloc_rmap_desc(vcpu);
491                 desc->shadow_ptes[0] = (u64 *)*rmapp;
492                 desc->shadow_ptes[1] = spte;
493                 *rmapp = (unsigned long)desc | 1;
494         } else {
495                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
496                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
497                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
498                         desc = desc->more;
499                 if (desc->shadow_ptes[RMAP_EXT-1]) {
500                         desc->more = mmu_alloc_rmap_desc(vcpu);
501                         desc = desc->more;
502                 }
503                 for (i = 0; desc->shadow_ptes[i]; ++i)
504                         ;
505                 desc->shadow_ptes[i] = spte;
506         }
507 }
508
509 static void rmap_desc_remove_entry(unsigned long *rmapp,
510                                    struct kvm_rmap_desc *desc,
511                                    int i,
512                                    struct kvm_rmap_desc *prev_desc)
513 {
514         int j;
515
516         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
517                 ;
518         desc->shadow_ptes[i] = desc->shadow_ptes[j];
519         desc->shadow_ptes[j] = NULL;
520         if (j != 0)
521                 return;
522         if (!prev_desc && !desc->more)
523                 *rmapp = (unsigned long)desc->shadow_ptes[0];
524         else
525                 if (prev_desc)
526                         prev_desc->more = desc->more;
527                 else
528                         *rmapp = (unsigned long)desc->more | 1;
529         mmu_free_rmap_desc(desc);
530 }
531
532 static void rmap_remove(struct kvm *kvm, u64 *spte)
533 {
534         struct kvm_rmap_desc *desc;
535         struct kvm_rmap_desc *prev_desc;
536         struct kvm_mmu_page *sp;
537         struct page *page;
538         unsigned long *rmapp;
539         int i;
540
541         if (!is_rmap_pte(*spte))
542                 return;
543         sp = page_header(__pa(spte));
544         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
545         mark_page_accessed(page);
546         if (is_writeble_pte(*spte))
547                 kvm_release_page_dirty(page);
548         else
549                 kvm_release_page_clean(page);
550         rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
551         if (!*rmapp) {
552                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
553                 BUG();
554         } else if (!(*rmapp & 1)) {
555                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
556                 if ((u64 *)*rmapp != spte) {
557                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
558                                spte, *spte);
559                         BUG();
560                 }
561                 *rmapp = 0;
562         } else {
563                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
564                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
565                 prev_desc = NULL;
566                 while (desc) {
567                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
568                                 if (desc->shadow_ptes[i] == spte) {
569                                         rmap_desc_remove_entry(rmapp,
570                                                                desc, i,
571                                                                prev_desc);
572                                         return;
573                                 }
574                         prev_desc = desc;
575                         desc = desc->more;
576                 }
577                 BUG();
578         }
579 }
580
581 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
582 {
583         struct kvm_rmap_desc *desc;
584         struct kvm_rmap_desc *prev_desc;
585         u64 *prev_spte;
586         int i;
587
588         if (!*rmapp)
589                 return NULL;
590         else if (!(*rmapp & 1)) {
591                 if (!spte)
592                         return (u64 *)*rmapp;
593                 return NULL;
594         }
595         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
596         prev_desc = NULL;
597         prev_spte = NULL;
598         while (desc) {
599                 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
600                         if (prev_spte == spte)
601                                 return desc->shadow_ptes[i];
602                         prev_spte = desc->shadow_ptes[i];
603                 }
604                 desc = desc->more;
605         }
606         return NULL;
607 }
608
609 static void rmap_write_protect(struct kvm *kvm, u64 gfn)
610 {
611         unsigned long *rmapp;
612         u64 *spte;
613         int write_protected = 0;
614
615         gfn = unalias_gfn(kvm, gfn);
616         rmapp = gfn_to_rmap(kvm, gfn, 0);
617
618         spte = rmap_next(kvm, rmapp, NULL);
619         while (spte) {
620                 BUG_ON(!spte);
621                 BUG_ON(!(*spte & PT_PRESENT_MASK));
622                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
623                 if (is_writeble_pte(*spte)) {
624                         set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
625                         write_protected = 1;
626                 }
627                 spte = rmap_next(kvm, rmapp, spte);
628         }
629         /* check for huge page mappings */
630         rmapp = gfn_to_rmap(kvm, gfn, 1);
631         spte = rmap_next(kvm, rmapp, NULL);
632         while (spte) {
633                 BUG_ON(!spte);
634                 BUG_ON(!(*spte & PT_PRESENT_MASK));
635                 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
636                 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
637                 if (is_writeble_pte(*spte)) {
638                         rmap_remove(kvm, spte);
639                         --kvm->stat.lpages;
640                         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
641                         write_protected = 1;
642                 }
643                 spte = rmap_next(kvm, rmapp, spte);
644         }
645
646         if (write_protected)
647                 kvm_flush_remote_tlbs(kvm);
648
649         account_shadowed(kvm, gfn);
650 }
651
652 #ifdef MMU_DEBUG
653 static int is_empty_shadow_page(u64 *spt)
654 {
655         u64 *pos;
656         u64 *end;
657
658         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
659                 if (*pos != shadow_trap_nonpresent_pte) {
660                         printk(KERN_ERR "%s: %p %llx\n", __func__,
661                                pos, *pos);
662                         return 0;
663                 }
664         return 1;
665 }
666 #endif
667
668 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
669 {
670         ASSERT(is_empty_shadow_page(sp->spt));
671         list_del(&sp->link);
672         __free_page(virt_to_page(sp->spt));
673         __free_page(virt_to_page(sp->gfns));
674         kfree(sp);
675         ++kvm->arch.n_free_mmu_pages;
676 }
677
678 static unsigned kvm_page_table_hashfn(gfn_t gfn)
679 {
680         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
681 }
682
683 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
684                                                u64 *parent_pte)
685 {
686         struct kvm_mmu_page *sp;
687
688         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
689         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
690         sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
691         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
692         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
693         ASSERT(is_empty_shadow_page(sp->spt));
694         sp->slot_bitmap = 0;
695         sp->multimapped = 0;
696         sp->parent_pte = parent_pte;
697         --vcpu->kvm->arch.n_free_mmu_pages;
698         return sp;
699 }
700
701 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
702                                     struct kvm_mmu_page *sp, u64 *parent_pte)
703 {
704         struct kvm_pte_chain *pte_chain;
705         struct hlist_node *node;
706         int i;
707
708         if (!parent_pte)
709                 return;
710         if (!sp->multimapped) {
711                 u64 *old = sp->parent_pte;
712
713                 if (!old) {
714                         sp->parent_pte = parent_pte;
715                         return;
716                 }
717                 sp->multimapped = 1;
718                 pte_chain = mmu_alloc_pte_chain(vcpu);
719                 INIT_HLIST_HEAD(&sp->parent_ptes);
720                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
721                 pte_chain->parent_ptes[0] = old;
722         }
723         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
724                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
725                         continue;
726                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
727                         if (!pte_chain->parent_ptes[i]) {
728                                 pte_chain->parent_ptes[i] = parent_pte;
729                                 return;
730                         }
731         }
732         pte_chain = mmu_alloc_pte_chain(vcpu);
733         BUG_ON(!pte_chain);
734         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
735         pte_chain->parent_ptes[0] = parent_pte;
736 }
737
738 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
739                                        u64 *parent_pte)
740 {
741         struct kvm_pte_chain *pte_chain;
742         struct hlist_node *node;
743         int i;
744
745         if (!sp->multimapped) {
746                 BUG_ON(sp->parent_pte != parent_pte);
747                 sp->parent_pte = NULL;
748                 return;
749         }
750         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
751                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
752                         if (!pte_chain->parent_ptes[i])
753                                 break;
754                         if (pte_chain->parent_ptes[i] != parent_pte)
755                                 continue;
756                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
757                                 && pte_chain->parent_ptes[i + 1]) {
758                                 pte_chain->parent_ptes[i]
759                                         = pte_chain->parent_ptes[i + 1];
760                                 ++i;
761                         }
762                         pte_chain->parent_ptes[i] = NULL;
763                         if (i == 0) {
764                                 hlist_del(&pte_chain->link);
765                                 mmu_free_pte_chain(pte_chain);
766                                 if (hlist_empty(&sp->parent_ptes)) {
767                                         sp->multimapped = 0;
768                                         sp->parent_pte = NULL;
769                                 }
770                         }
771                         return;
772                 }
773         BUG();
774 }
775
776 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
777 {
778         unsigned index;
779         struct hlist_head *bucket;
780         struct kvm_mmu_page *sp;
781         struct hlist_node *node;
782
783         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
784         index = kvm_page_table_hashfn(gfn);
785         bucket = &kvm->arch.mmu_page_hash[index];
786         hlist_for_each_entry(sp, node, bucket, hash_link)
787                 if (sp->gfn == gfn && !sp->role.metaphysical
788                     && !sp->role.invalid) {
789                         pgprintk("%s: found role %x\n",
790                                  __func__, sp->role.word);
791                         return sp;
792                 }
793         return NULL;
794 }
795
796 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
797                                              gfn_t gfn,
798                                              gva_t gaddr,
799                                              unsigned level,
800                                              int metaphysical,
801                                              unsigned access,
802                                              u64 *parent_pte)
803 {
804         union kvm_mmu_page_role role;
805         unsigned index;
806         unsigned quadrant;
807         struct hlist_head *bucket;
808         struct kvm_mmu_page *sp;
809         struct hlist_node *node;
810
811         role.word = 0;
812         role.glevels = vcpu->arch.mmu.root_level;
813         role.level = level;
814         role.metaphysical = metaphysical;
815         role.access = access;
816         if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
817                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
818                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
819                 role.quadrant = quadrant;
820         }
821         pgprintk("%s: looking gfn %lx role %x\n", __func__,
822                  gfn, role.word);
823         index = kvm_page_table_hashfn(gfn);
824         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
825         hlist_for_each_entry(sp, node, bucket, hash_link)
826                 if (sp->gfn == gfn && sp->role.word == role.word) {
827                         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
828                         pgprintk("%s: found\n", __func__);
829                         return sp;
830                 }
831         ++vcpu->kvm->stat.mmu_cache_miss;
832         sp = kvm_mmu_alloc_page(vcpu, parent_pte);
833         if (!sp)
834                 return sp;
835         pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
836         sp->gfn = gfn;
837         sp->role = role;
838         hlist_add_head(&sp->hash_link, bucket);
839         vcpu->arch.mmu.prefetch_page(vcpu, sp);
840         if (!metaphysical)
841                 rmap_write_protect(vcpu->kvm, gfn);
842         return sp;
843 }
844
845 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
846                                          struct kvm_mmu_page *sp)
847 {
848         unsigned i;
849         u64 *pt;
850         u64 ent;
851
852         pt = sp->spt;
853
854         if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
855                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
856                         if (is_shadow_present_pte(pt[i]))
857                                 rmap_remove(kvm, &pt[i]);
858                         pt[i] = shadow_trap_nonpresent_pte;
859                 }
860                 kvm_flush_remote_tlbs(kvm);
861                 return;
862         }
863
864         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
865                 ent = pt[i];
866
867                 if (is_shadow_present_pte(ent)) {
868                         if (!is_large_pte(ent)) {
869                                 ent &= PT64_BASE_ADDR_MASK;
870                                 mmu_page_remove_parent_pte(page_header(ent),
871                                                            &pt[i]);
872                         } else {
873                                 --kvm->stat.lpages;
874                                 rmap_remove(kvm, &pt[i]);
875                         }
876                 }
877                 pt[i] = shadow_trap_nonpresent_pte;
878         }
879         kvm_flush_remote_tlbs(kvm);
880 }
881
882 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
883 {
884         mmu_page_remove_parent_pte(sp, parent_pte);
885 }
886
887 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
888 {
889         int i;
890
891         for (i = 0; i < KVM_MAX_VCPUS; ++i)
892                 if (kvm->vcpus[i])
893                         kvm->vcpus[i]->arch.last_pte_updated = NULL;
894 }
895
896 static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
897 {
898         u64 *parent_pte;
899
900         ++kvm->stat.mmu_shadow_zapped;
901         while (sp->multimapped || sp->parent_pte) {
902                 if (!sp->multimapped)
903                         parent_pte = sp->parent_pte;
904                 else {
905                         struct kvm_pte_chain *chain;
906
907                         chain = container_of(sp->parent_ptes.first,
908                                              struct kvm_pte_chain, link);
909                         parent_pte = chain->parent_ptes[0];
910                 }
911                 BUG_ON(!parent_pte);
912                 kvm_mmu_put_page(sp, parent_pte);
913                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
914         }
915         kvm_mmu_page_unlink_children(kvm, sp);
916         if (!sp->root_count) {
917                 if (!sp->role.metaphysical)
918                         unaccount_shadowed(kvm, sp->gfn);
919                 hlist_del(&sp->hash_link);
920                 kvm_mmu_free_page(kvm, sp);
921         } else {
922                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
923                 sp->role.invalid = 1;
924                 kvm_reload_remote_mmus(kvm);
925         }
926         kvm_mmu_reset_last_pte_updated(kvm);
927 }
928
929 /*
930  * Changing the number of mmu pages allocated to the vm
931  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
932  */
933 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
934 {
935         /*
936          * If we set the number of mmu pages to be smaller be than the
937          * number of actived pages , we must to free some mmu pages before we
938          * change the value
939          */
940
941         if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
942             kvm_nr_mmu_pages) {
943                 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
944                                        - kvm->arch.n_free_mmu_pages;
945
946                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
947                         struct kvm_mmu_page *page;
948
949                         page = container_of(kvm->arch.active_mmu_pages.prev,
950                                             struct kvm_mmu_page, link);
951                         kvm_mmu_zap_page(kvm, page);
952                         n_used_mmu_pages--;
953                 }
954                 kvm->arch.n_free_mmu_pages = 0;
955         }
956         else
957                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
958                                          - kvm->arch.n_alloc_mmu_pages;
959
960         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
961 }
962
963 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
964 {
965         unsigned index;
966         struct hlist_head *bucket;
967         struct kvm_mmu_page *sp;
968         struct hlist_node *node, *n;
969         int r;
970
971         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
972         r = 0;
973         index = kvm_page_table_hashfn(gfn);
974         bucket = &kvm->arch.mmu_page_hash[index];
975         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
976                 if (sp->gfn == gfn && !sp->role.metaphysical) {
977                         pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
978                                  sp->role.word);
979                         kvm_mmu_zap_page(kvm, sp);
980                         r = 1;
981                 }
982         return r;
983 }
984
985 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
986 {
987         struct kvm_mmu_page *sp;
988
989         while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
990                 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
991                 kvm_mmu_zap_page(kvm, sp);
992         }
993 }
994
995 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
996 {
997         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
998         struct kvm_mmu_page *sp = page_header(__pa(pte));
999
1000         __set_bit(slot, &sp->slot_bitmap);
1001 }
1002
1003 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1004 {
1005         struct page *page;
1006
1007         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1008
1009         if (gpa == UNMAPPED_GVA)
1010                 return NULL;
1011
1012         down_read(&current->mm->mmap_sem);
1013         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1014         up_read(&current->mm->mmap_sem);
1015
1016         return page;
1017 }
1018
1019 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1020                          unsigned pt_access, unsigned pte_access,
1021                          int user_fault, int write_fault, int dirty,
1022                          int *ptwrite, int largepage, gfn_t gfn,
1023                          struct page *page, bool speculative)
1024 {
1025         u64 spte;
1026         int was_rmapped = 0;
1027         int was_writeble = is_writeble_pte(*shadow_pte);
1028         hfn_t host_pfn = (*shadow_pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1029
1030         pgprintk("%s: spte %llx access %x write_fault %d"
1031                  " user_fault %d gfn %lx\n",
1032                  __func__, *shadow_pte, pt_access,
1033                  write_fault, user_fault, gfn);
1034
1035         if (is_rmap_pte(*shadow_pte)) {
1036                 /*
1037                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1038                  * the parent of the now unreachable PTE.
1039                  */
1040                 if (largepage && !is_large_pte(*shadow_pte)) {
1041                         struct kvm_mmu_page *child;
1042                         u64 pte = *shadow_pte;
1043
1044                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1045                         mmu_page_remove_parent_pte(child, shadow_pte);
1046                 } else if (host_pfn != page_to_pfn(page)) {
1047                         pgprintk("hfn old %lx new %lx\n",
1048                                  host_pfn, page_to_pfn(page));
1049                         rmap_remove(vcpu->kvm, shadow_pte);
1050                 } else {
1051                         if (largepage)
1052                                 was_rmapped = is_large_pte(*shadow_pte);
1053                         else
1054                                 was_rmapped = 1;
1055                 }
1056         }
1057
1058         /*
1059          * We don't set the accessed bit, since we sometimes want to see
1060          * whether the guest actually used the pte (in order to detect
1061          * demand paging).
1062          */
1063         spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
1064         if (!speculative)
1065                 pte_access |= PT_ACCESSED_MASK;
1066         if (!dirty)
1067                 pte_access &= ~ACC_WRITE_MASK;
1068         if (!(pte_access & ACC_EXEC_MASK))
1069                 spte |= PT64_NX_MASK;
1070
1071         spte |= PT_PRESENT_MASK;
1072         if (pte_access & ACC_USER_MASK)
1073                 spte |= PT_USER_MASK;
1074         if (largepage)
1075                 spte |= PT_PAGE_SIZE_MASK;
1076
1077         spte |= page_to_phys(page);
1078
1079         if ((pte_access & ACC_WRITE_MASK)
1080             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1081                 struct kvm_mmu_page *shadow;
1082
1083                 spte |= PT_WRITABLE_MASK;
1084                 if (user_fault) {
1085                         mmu_unshadow(vcpu->kvm, gfn);
1086                         goto unshadowed;
1087                 }
1088
1089                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1090                 if (shadow ||
1091                    (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
1092                         pgprintk("%s: found shadow page for %lx, marking ro\n",
1093                                  __func__, gfn);
1094                         pte_access &= ~ACC_WRITE_MASK;
1095                         if (is_writeble_pte(spte)) {
1096                                 spte &= ~PT_WRITABLE_MASK;
1097                                 kvm_x86_ops->tlb_flush(vcpu);
1098                         }
1099                         if (write_fault)
1100                                 *ptwrite = 1;
1101                 }
1102         }
1103
1104 unshadowed:
1105
1106         if (pte_access & ACC_WRITE_MASK)
1107                 mark_page_dirty(vcpu->kvm, gfn);
1108
1109         pgprintk("%s: setting spte %llx\n", __func__, spte);
1110         pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
1111                  (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
1112                  (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
1113         set_shadow_pte(shadow_pte, spte);
1114         if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
1115             && (spte & PT_PRESENT_MASK))
1116                 ++vcpu->kvm->stat.lpages;
1117
1118         page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1119         if (!was_rmapped) {
1120                 rmap_add(vcpu, shadow_pte, gfn, largepage);
1121                 if (!is_rmap_pte(*shadow_pte))
1122                         kvm_release_page_clean(page);
1123         } else {
1124                 if (was_writeble)
1125                         kvm_release_page_dirty(page);
1126                 else
1127                         kvm_release_page_clean(page);
1128         }
1129         if (!ptwrite || !*ptwrite)
1130                 vcpu->arch.last_pte_updated = shadow_pte;
1131 }
1132
1133 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1134 {
1135 }
1136
1137 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1138                            int largepage, gfn_t gfn, struct page *page,
1139                            int level)
1140 {
1141         hpa_t table_addr = vcpu->arch.mmu.root_hpa;
1142         int pt_write = 0;
1143
1144         for (; ; level--) {
1145                 u32 index = PT64_INDEX(v, level);
1146                 u64 *table;
1147
1148                 ASSERT(VALID_PAGE(table_addr));
1149                 table = __va(table_addr);
1150
1151                 if (level == 1) {
1152                         mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1153                                      0, write, 1, &pt_write, 0, gfn, page, false);
1154                         return pt_write;
1155                 }
1156
1157                 if (largepage && level == 2) {
1158                         mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
1159                                      0, write, 1, &pt_write, 1, gfn, page, false);
1160                         return pt_write;
1161                 }
1162
1163                 if (table[index] == shadow_trap_nonpresent_pte) {
1164                         struct kvm_mmu_page *new_table;
1165                         gfn_t pseudo_gfn;
1166
1167                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1168                                 >> PAGE_SHIFT;
1169                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1170                                                      v, level - 1,
1171                                                      1, ACC_ALL, &table[index]);
1172                         if (!new_table) {
1173                                 pgprintk("nonpaging_map: ENOMEM\n");
1174                                 kvm_release_page_clean(page);
1175                                 return -ENOMEM;
1176                         }
1177
1178                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1179                                 | PT_WRITABLE_MASK | PT_USER_MASK;
1180                 }
1181                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1182         }
1183 }
1184
1185 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1186 {
1187         int r;
1188         int largepage = 0;
1189
1190         struct page *page;
1191
1192         down_read(&vcpu->kvm->slots_lock);
1193
1194         down_read(&current->mm->mmap_sem);
1195         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1196                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1197                 largepage = 1;
1198         }
1199
1200         page = gfn_to_page(vcpu->kvm, gfn);
1201         up_read(&current->mm->mmap_sem);
1202
1203         /* mmio */
1204         if (is_error_page(page)) {
1205                 kvm_release_page_clean(page);
1206                 up_read(&vcpu->kvm->slots_lock);
1207                 return 1;
1208         }
1209
1210         spin_lock(&vcpu->kvm->mmu_lock);
1211         kvm_mmu_free_some_pages(vcpu);
1212         r = __direct_map(vcpu, v, write, largepage, gfn, page,
1213                          PT32E_ROOT_LEVEL);
1214         spin_unlock(&vcpu->kvm->mmu_lock);
1215
1216         up_read(&vcpu->kvm->slots_lock);
1217
1218         return r;
1219 }
1220
1221
1222 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1223                                     struct kvm_mmu_page *sp)
1224 {
1225         int i;
1226
1227         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1228                 sp->spt[i] = shadow_trap_nonpresent_pte;
1229 }
1230
1231 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1232 {
1233         int i;
1234         struct kvm_mmu_page *sp;
1235
1236         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1237                 return;
1238         spin_lock(&vcpu->kvm->mmu_lock);
1239 #ifdef CONFIG_X86_64
1240         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1241                 hpa_t root = vcpu->arch.mmu.root_hpa;
1242
1243                 sp = page_header(root);
1244                 --sp->root_count;
1245                 if (!sp->root_count && sp->role.invalid)
1246                         kvm_mmu_zap_page(vcpu->kvm, sp);
1247                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1248                 spin_unlock(&vcpu->kvm->mmu_lock);
1249                 return;
1250         }
1251 #endif
1252         for (i = 0; i < 4; ++i) {
1253                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1254
1255                 if (root) {
1256                         root &= PT64_BASE_ADDR_MASK;
1257                         sp = page_header(root);
1258                         --sp->root_count;
1259                         if (!sp->root_count && sp->role.invalid)
1260                                 kvm_mmu_zap_page(vcpu->kvm, sp);
1261                 }
1262                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1263         }
1264         spin_unlock(&vcpu->kvm->mmu_lock);
1265         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1266 }
1267
1268 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1269 {
1270         int i;
1271         gfn_t root_gfn;
1272         struct kvm_mmu_page *sp;
1273         int metaphysical = 0;
1274
1275         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1276
1277 #ifdef CONFIG_X86_64
1278         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1279                 hpa_t root = vcpu->arch.mmu.root_hpa;
1280
1281                 ASSERT(!VALID_PAGE(root));
1282                 if (tdp_enabled)
1283                         metaphysical = 1;
1284                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1285                                       PT64_ROOT_LEVEL, metaphysical,
1286                                       ACC_ALL, NULL);
1287                 root = __pa(sp->spt);
1288                 ++sp->root_count;
1289                 vcpu->arch.mmu.root_hpa = root;
1290                 return;
1291         }
1292 #endif
1293         metaphysical = !is_paging(vcpu);
1294         if (tdp_enabled)
1295                 metaphysical = 1;
1296         for (i = 0; i < 4; ++i) {
1297                 hpa_t root = vcpu->arch.mmu.pae_root[i];
1298
1299                 ASSERT(!VALID_PAGE(root));
1300                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1301                         if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1302                                 vcpu->arch.mmu.pae_root[i] = 0;
1303                                 continue;
1304                         }
1305                         root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1306                 } else if (vcpu->arch.mmu.root_level == 0)
1307                         root_gfn = 0;
1308                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1309                                       PT32_ROOT_LEVEL, metaphysical,
1310                                       ACC_ALL, NULL);
1311                 root = __pa(sp->spt);
1312                 ++sp->root_count;
1313                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1314         }
1315         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1316 }
1317
1318 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1319 {
1320         return vaddr;
1321 }
1322
1323 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1324                                 u32 error_code)
1325 {
1326         gfn_t gfn;
1327         int r;
1328
1329         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
1330         r = mmu_topup_memory_caches(vcpu);
1331         if (r)
1332                 return r;
1333
1334         ASSERT(vcpu);
1335         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1336
1337         gfn = gva >> PAGE_SHIFT;
1338
1339         return nonpaging_map(vcpu, gva & PAGE_MASK,
1340                              error_code & PFERR_WRITE_MASK, gfn);
1341 }
1342
1343 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
1344                                 u32 error_code)
1345 {
1346         struct page *page;
1347         int r;
1348         int largepage = 0;
1349         gfn_t gfn = gpa >> PAGE_SHIFT;
1350
1351         ASSERT(vcpu);
1352         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1353
1354         r = mmu_topup_memory_caches(vcpu);
1355         if (r)
1356                 return r;
1357
1358         down_read(&current->mm->mmap_sem);
1359         if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1360                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1361                 largepage = 1;
1362         }
1363         page = gfn_to_page(vcpu->kvm, gfn);
1364         if (is_error_page(page)) {
1365                 kvm_release_page_clean(page);
1366                 up_read(&current->mm->mmap_sem);
1367                 return 1;
1368         }
1369         spin_lock(&vcpu->kvm->mmu_lock);
1370         kvm_mmu_free_some_pages(vcpu);
1371         r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
1372                          largepage, gfn, page, TDP_ROOT_LEVEL);
1373         spin_unlock(&vcpu->kvm->mmu_lock);
1374         up_read(&current->mm->mmap_sem);
1375
1376         return r;
1377 }
1378
1379 static void nonpaging_free(struct kvm_vcpu *vcpu)
1380 {
1381         mmu_free_roots(vcpu);
1382 }
1383
1384 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1385 {
1386         struct kvm_mmu *context = &vcpu->arch.mmu;
1387
1388         context->new_cr3 = nonpaging_new_cr3;
1389         context->page_fault = nonpaging_page_fault;
1390         context->gva_to_gpa = nonpaging_gva_to_gpa;
1391         context->free = nonpaging_free;
1392         context->prefetch_page = nonpaging_prefetch_page;
1393         context->root_level = 0;
1394         context->shadow_root_level = PT32E_ROOT_LEVEL;
1395         context->root_hpa = INVALID_PAGE;
1396         return 0;
1397 }
1398
1399 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1400 {
1401         ++vcpu->stat.tlb_flush;
1402         kvm_x86_ops->tlb_flush(vcpu);
1403 }
1404
1405 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1406 {
1407         pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
1408         mmu_free_roots(vcpu);
1409 }
1410
1411 static void inject_page_fault(struct kvm_vcpu *vcpu,
1412                               u64 addr,
1413                               u32 err_code)
1414 {
1415         kvm_inject_page_fault(vcpu, addr, err_code);
1416 }
1417
1418 static void paging_free(struct kvm_vcpu *vcpu)
1419 {
1420         nonpaging_free(vcpu);
1421 }
1422
1423 #define PTTYPE 64
1424 #include "paging_tmpl.h"
1425 #undef PTTYPE
1426
1427 #define PTTYPE 32
1428 #include "paging_tmpl.h"
1429 #undef PTTYPE
1430
1431 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1432 {
1433         struct kvm_mmu *context = &vcpu->arch.mmu;
1434
1435         ASSERT(is_pae(vcpu));
1436         context->new_cr3 = paging_new_cr3;
1437         context->page_fault = paging64_page_fault;
1438         context->gva_to_gpa = paging64_gva_to_gpa;
1439         context->prefetch_page = paging64_prefetch_page;
1440         context->free = paging_free;
1441         context->root_level = level;
1442         context->shadow_root_level = level;
1443         context->root_hpa = INVALID_PAGE;
1444         return 0;
1445 }
1446
1447 static int paging64_init_context(struct kvm_vcpu *vcpu)
1448 {
1449         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1450 }
1451
1452 static int paging32_init_context(struct kvm_vcpu *vcpu)
1453 {
1454         struct kvm_mmu *context = &vcpu->arch.mmu;
1455
1456         context->new_cr3 = paging_new_cr3;
1457         context->page_fault = paging32_page_fault;
1458         context->gva_to_gpa = paging32_gva_to_gpa;
1459         context->free = paging_free;
1460         context->prefetch_page = paging32_prefetch_page;
1461         context->root_level = PT32_ROOT_LEVEL;
1462         context->shadow_root_level = PT32E_ROOT_LEVEL;
1463         context->root_hpa = INVALID_PAGE;
1464         return 0;
1465 }
1466
1467 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1468 {
1469         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1470 }
1471
1472 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
1473 {
1474         struct kvm_mmu *context = &vcpu->arch.mmu;
1475
1476         context->new_cr3 = nonpaging_new_cr3;
1477         context->page_fault = tdp_page_fault;
1478         context->free = nonpaging_free;
1479         context->prefetch_page = nonpaging_prefetch_page;
1480         context->shadow_root_level = TDP_ROOT_LEVEL;
1481         context->root_hpa = INVALID_PAGE;
1482
1483         if (!is_paging(vcpu)) {
1484                 context->gva_to_gpa = nonpaging_gva_to_gpa;
1485                 context->root_level = 0;
1486         } else if (is_long_mode(vcpu)) {
1487                 context->gva_to_gpa = paging64_gva_to_gpa;
1488                 context->root_level = PT64_ROOT_LEVEL;
1489         } else if (is_pae(vcpu)) {
1490                 context->gva_to_gpa = paging64_gva_to_gpa;
1491                 context->root_level = PT32E_ROOT_LEVEL;
1492         } else {
1493                 context->gva_to_gpa = paging32_gva_to_gpa;
1494                 context->root_level = PT32_ROOT_LEVEL;
1495         }
1496
1497         return 0;
1498 }
1499
1500 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
1501 {
1502         ASSERT(vcpu);
1503         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1504
1505         if (!is_paging(vcpu))
1506                 return nonpaging_init_context(vcpu);
1507         else if (is_long_mode(vcpu))
1508                 return paging64_init_context(vcpu);
1509         else if (is_pae(vcpu))
1510                 return paging32E_init_context(vcpu);
1511         else
1512                 return paging32_init_context(vcpu);
1513 }
1514
1515 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1516 {
1517         if (tdp_enabled)
1518                 return init_kvm_tdp_mmu(vcpu);
1519         else
1520                 return init_kvm_softmmu(vcpu);
1521 }
1522
1523 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1524 {
1525         ASSERT(vcpu);
1526         if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1527                 vcpu->arch.mmu.free(vcpu);
1528                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1529         }
1530 }
1531
1532 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1533 {
1534         destroy_kvm_mmu(vcpu);
1535         return init_kvm_mmu(vcpu);
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1538
1539 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1540 {
1541         int r;
1542
1543         r = mmu_topup_memory_caches(vcpu);
1544         if (r)
1545                 goto out;
1546         spin_lock(&vcpu->kvm->mmu_lock);
1547         kvm_mmu_free_some_pages(vcpu);
1548         mmu_alloc_roots(vcpu);
1549         spin_unlock(&vcpu->kvm->mmu_lock);
1550         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1551         kvm_mmu_flush_tlb(vcpu);
1552 out:
1553         return r;
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1556
1557 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1558 {
1559         mmu_free_roots(vcpu);
1560 }
1561
1562 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1563                                   struct kvm_mmu_page *sp,
1564                                   u64 *spte)
1565 {
1566         u64 pte;
1567         struct kvm_mmu_page *child;
1568
1569         pte = *spte;
1570         if (is_shadow_present_pte(pte)) {
1571                 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
1572                     is_large_pte(pte))
1573                         rmap_remove(vcpu->kvm, spte);
1574                 else {
1575                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1576                         mmu_page_remove_parent_pte(child, spte);
1577                 }
1578         }
1579         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1580         if (is_large_pte(pte))
1581                 --vcpu->kvm->stat.lpages;
1582 }
1583
1584 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1585                                   struct kvm_mmu_page *sp,
1586                                   u64 *spte,
1587                                   const void *new)
1588 {
1589         if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
1590             && !vcpu->arch.update_pte.largepage) {
1591                 ++vcpu->kvm->stat.mmu_pde_zapped;
1592                 return;
1593         }
1594
1595         ++vcpu->kvm->stat.mmu_pte_updated;
1596         if (sp->role.glevels == PT32_ROOT_LEVEL)
1597                 paging32_update_pte(vcpu, sp, spte, new);
1598         else
1599                 paging64_update_pte(vcpu, sp, spte, new);
1600 }
1601
1602 static bool need_remote_flush(u64 old, u64 new)
1603 {
1604         if (!is_shadow_present_pte(old))
1605                 return false;
1606         if (!is_shadow_present_pte(new))
1607                 return true;
1608         if ((old ^ new) & PT64_BASE_ADDR_MASK)
1609                 return true;
1610         old ^= PT64_NX_MASK;
1611         new ^= PT64_NX_MASK;
1612         return (old & ~new & PT64_PERM_MASK) != 0;
1613 }
1614
1615 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1616 {
1617         if (need_remote_flush(old, new))
1618                 kvm_flush_remote_tlbs(vcpu->kvm);
1619         else
1620                 kvm_mmu_flush_tlb(vcpu);
1621 }
1622
1623 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1624 {
1625         u64 *spte = vcpu->arch.last_pte_updated;
1626
1627         return !!(spte && (*spte & PT_ACCESSED_MASK));
1628 }
1629
1630 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1631                                           const u8 *new, int bytes)
1632 {
1633         gfn_t gfn;
1634         int r;
1635         u64 gpte = 0;
1636         struct page *page;
1637
1638         vcpu->arch.update_pte.largepage = 0;
1639
1640         if (bytes != 4 && bytes != 8)
1641                 return;
1642
1643         /*
1644          * Assume that the pte write on a page table of the same type
1645          * as the current vcpu paging mode.  This is nearly always true
1646          * (might be false while changing modes).  Note it is verified later
1647          * by update_pte().
1648          */
1649         if (is_pae(vcpu)) {
1650                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
1651                 if ((bytes == 4) && (gpa % 4 == 0)) {
1652                         r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
1653                         if (r)
1654                                 return;
1655                         memcpy((void *)&gpte + (gpa % 8), new, 4);
1656                 } else if ((bytes == 8) && (gpa % 8 == 0)) {
1657                         memcpy((void *)&gpte, new, 8);
1658                 }
1659         } else {
1660                 if ((bytes == 4) && (gpa % 4 == 0))
1661                         memcpy((void *)&gpte, new, 4);
1662         }
1663         if (!is_present_pte(gpte))
1664                 return;
1665         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
1666
1667         down_read(&current->mm->mmap_sem);
1668         if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
1669                 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1670                 vcpu->arch.update_pte.largepage = 1;
1671         }
1672         page = gfn_to_page(vcpu->kvm, gfn);
1673         up_read(&current->mm->mmap_sem);
1674
1675         if (is_error_page(page)) {
1676                 kvm_release_page_clean(page);
1677                 return;
1678         }
1679         vcpu->arch.update_pte.gfn = gfn;
1680         vcpu->arch.update_pte.page = page;
1681 }
1682
1683 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1684                        const u8 *new, int bytes)
1685 {
1686         gfn_t gfn = gpa >> PAGE_SHIFT;
1687         struct kvm_mmu_page *sp;
1688         struct hlist_node *node, *n;
1689         struct hlist_head *bucket;
1690         unsigned index;
1691         u64 entry, gentry;
1692         u64 *spte;
1693         unsigned offset = offset_in_page(gpa);
1694         unsigned pte_size;
1695         unsigned page_offset;
1696         unsigned misaligned;
1697         unsigned quadrant;
1698         int level;
1699         int flooded = 0;
1700         int npte;
1701         int r;
1702
1703         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
1704         mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
1705         spin_lock(&vcpu->kvm->mmu_lock);
1706         kvm_mmu_free_some_pages(vcpu);
1707         ++vcpu->kvm->stat.mmu_pte_write;
1708         kvm_mmu_audit(vcpu, "pre pte write");
1709         if (gfn == vcpu->arch.last_pt_write_gfn
1710             && !last_updated_pte_accessed(vcpu)) {
1711                 ++vcpu->arch.last_pt_write_count;
1712                 if (vcpu->arch.last_pt_write_count >= 3)
1713                         flooded = 1;
1714         } else {
1715                 vcpu->arch.last_pt_write_gfn = gfn;
1716                 vcpu->arch.last_pt_write_count = 1;
1717                 vcpu->arch.last_pte_updated = NULL;
1718         }
1719         index = kvm_page_table_hashfn(gfn);
1720         bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1721         hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1722                 if (sp->gfn != gfn || sp->role.metaphysical)
1723                         continue;
1724                 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1725                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1726                 misaligned |= bytes < 4;
1727                 if (misaligned || flooded) {
1728                         /*
1729                          * Misaligned accesses are too much trouble to fix
1730                          * up; also, they usually indicate a page is not used
1731                          * as a page table.
1732                          *
1733                          * If we're seeing too many writes to a page,
1734                          * it may no longer be a page table, or we may be
1735                          * forking, in which case it is better to unmap the
1736                          * page.
1737                          */
1738                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1739                                  gpa, bytes, sp->role.word);
1740                         kvm_mmu_zap_page(vcpu->kvm, sp);
1741                         ++vcpu->kvm->stat.mmu_flooded;
1742                         continue;
1743                 }
1744                 page_offset = offset;
1745                 level = sp->role.level;
1746                 npte = 1;
1747                 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1748                         page_offset <<= 1;      /* 32->64 */
1749                         /*
1750                          * A 32-bit pde maps 4MB while the shadow pdes map
1751                          * only 2MB.  So we need to double the offset again
1752                          * and zap two pdes instead of one.
1753                          */
1754                         if (level == PT32_ROOT_LEVEL) {
1755                                 page_offset &= ~7; /* kill rounding error */
1756                                 page_offset <<= 1;
1757                                 npte = 2;
1758                         }
1759                         quadrant = page_offset >> PAGE_SHIFT;
1760                         page_offset &= ~PAGE_MASK;
1761                         if (quadrant != sp->role.quadrant)
1762                                 continue;
1763                 }
1764                 spte = &sp->spt[page_offset / sizeof(*spte)];
1765                 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
1766                         gentry = 0;
1767                         r = kvm_read_guest_atomic(vcpu->kvm,
1768                                                   gpa & ~(u64)(pte_size - 1),
1769                                                   &gentry, pte_size);
1770                         new = (const void *)&gentry;
1771                         if (r < 0)
1772                                 new = NULL;
1773                 }
1774                 while (npte--) {
1775                         entry = *spte;
1776                         mmu_pte_write_zap_pte(vcpu, sp, spte);
1777                         if (new)
1778                                 mmu_pte_write_new_pte(vcpu, sp, spte, new);
1779                         mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1780                         ++spte;
1781                 }
1782         }
1783         kvm_mmu_audit(vcpu, "post pte write");
1784         spin_unlock(&vcpu->kvm->mmu_lock);
1785         if (vcpu->arch.update_pte.page) {
1786                 kvm_release_page_clean(vcpu->arch.update_pte.page);
1787                 vcpu->arch.update_pte.page = NULL;
1788         }
1789 }
1790
1791 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1792 {
1793         gpa_t gpa;
1794         int r;
1795
1796         down_read(&vcpu->kvm->slots_lock);
1797         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1798         up_read(&vcpu->kvm->slots_lock);
1799
1800         spin_lock(&vcpu->kvm->mmu_lock);
1801         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1802         spin_unlock(&vcpu->kvm->mmu_lock);
1803         return r;
1804 }
1805
1806 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1807 {
1808         while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1809                 struct kvm_mmu_page *sp;
1810
1811                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1812                                   struct kvm_mmu_page, link);
1813                 kvm_mmu_zap_page(vcpu->kvm, sp);
1814                 ++vcpu->kvm->stat.mmu_recycled;
1815         }
1816 }
1817
1818 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1819 {
1820         int r;
1821         enum emulation_result er;
1822
1823         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1824         if (r < 0)
1825                 goto out;
1826
1827         if (!r) {
1828                 r = 1;
1829                 goto out;
1830         }
1831
1832         r = mmu_topup_memory_caches(vcpu);
1833         if (r)
1834                 goto out;
1835
1836         er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1837
1838         switch (er) {
1839         case EMULATE_DONE:
1840                 return 1;
1841         case EMULATE_DO_MMIO:
1842                 ++vcpu->stat.mmio_exits;
1843                 return 0;
1844         case EMULATE_FAIL:
1845                 kvm_report_emulation_failure(vcpu, "pagetable");
1846                 return 1;
1847         default:
1848                 BUG();
1849         }
1850 out:
1851         return r;
1852 }
1853 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1854
1855 void kvm_enable_tdp(void)
1856 {
1857         tdp_enabled = true;
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
1860
1861 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1862 {
1863         struct kvm_mmu_page *sp;
1864
1865         while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1866                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1867                                   struct kvm_mmu_page, link);
1868                 kvm_mmu_zap_page(vcpu->kvm, sp);
1869         }
1870         free_page((unsigned long)vcpu->arch.mmu.pae_root);
1871 }
1872
1873 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1874 {
1875         struct page *page;
1876         int i;
1877
1878         ASSERT(vcpu);
1879
1880         if (vcpu->kvm->arch.n_requested_mmu_pages)
1881                 vcpu->kvm->arch.n_free_mmu_pages =
1882                                         vcpu->kvm->arch.n_requested_mmu_pages;
1883         else
1884                 vcpu->kvm->arch.n_free_mmu_pages =
1885                                         vcpu->kvm->arch.n_alloc_mmu_pages;
1886         /*
1887          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1888          * Therefore we need to allocate shadow page tables in the first
1889          * 4GB of memory, which happens to fit the DMA32 zone.
1890          */
1891         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1892         if (!page)
1893                 goto error_1;
1894         vcpu->arch.mmu.pae_root = page_address(page);
1895         for (i = 0; i < 4; ++i)
1896                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1897
1898         return 0;
1899
1900 error_1:
1901         free_mmu_pages(vcpu);
1902         return -ENOMEM;
1903 }
1904
1905 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1906 {
1907         ASSERT(vcpu);
1908         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1909
1910         return alloc_mmu_pages(vcpu);
1911 }
1912
1913 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1914 {
1915         ASSERT(vcpu);
1916         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1917
1918         return init_kvm_mmu(vcpu);
1919 }
1920
1921 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1922 {
1923         ASSERT(vcpu);
1924
1925         destroy_kvm_mmu(vcpu);
1926         free_mmu_pages(vcpu);
1927         mmu_free_memory_caches(vcpu);
1928 }
1929
1930 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1931 {
1932         struct kvm_mmu_page *sp;
1933
1934         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1935                 int i;
1936                 u64 *pt;
1937
1938                 if (!test_bit(slot, &sp->slot_bitmap))
1939                         continue;
1940
1941                 pt = sp->spt;
1942                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1943                         /* avoid RMW */
1944                         if (pt[i] & PT_WRITABLE_MASK)
1945                                 pt[i] &= ~PT_WRITABLE_MASK;
1946         }
1947 }
1948
1949 void kvm_mmu_zap_all(struct kvm *kvm)
1950 {
1951         struct kvm_mmu_page *sp, *node;
1952
1953         spin_lock(&kvm->mmu_lock);
1954         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1955                 kvm_mmu_zap_page(kvm, sp);
1956         spin_unlock(&kvm->mmu_lock);
1957
1958         kvm_flush_remote_tlbs(kvm);
1959 }
1960
1961 void kvm_mmu_module_exit(void)
1962 {
1963         if (pte_chain_cache)
1964                 kmem_cache_destroy(pte_chain_cache);
1965         if (rmap_desc_cache)
1966                 kmem_cache_destroy(rmap_desc_cache);
1967         if (mmu_page_header_cache)
1968                 kmem_cache_destroy(mmu_page_header_cache);
1969 }
1970
1971 int kvm_mmu_module_init(void)
1972 {
1973         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1974                                             sizeof(struct kvm_pte_chain),
1975                                             0, 0, NULL);
1976         if (!pte_chain_cache)
1977                 goto nomem;
1978         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1979                                             sizeof(struct kvm_rmap_desc),
1980                                             0, 0, NULL);
1981         if (!rmap_desc_cache)
1982                 goto nomem;
1983
1984         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1985                                                   sizeof(struct kvm_mmu_page),
1986                                                   0, 0, NULL);
1987         if (!mmu_page_header_cache)
1988                 goto nomem;
1989
1990         return 0;
1991
1992 nomem:
1993         kvm_mmu_module_exit();
1994         return -ENOMEM;
1995 }
1996
1997 /*
1998  * Caculate mmu pages needed for kvm.
1999  */
2000 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2001 {
2002         int i;
2003         unsigned int nr_mmu_pages;
2004         unsigned int  nr_pages = 0;
2005
2006         for (i = 0; i < kvm->nmemslots; i++)
2007                 nr_pages += kvm->memslots[i].npages;
2008
2009         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2010         nr_mmu_pages = max(nr_mmu_pages,
2011                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2012
2013         return nr_mmu_pages;
2014 }
2015
2016 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2017                                 unsigned len)
2018 {
2019         if (len > buffer->len)
2020                 return NULL;
2021         return buffer->ptr;
2022 }
2023
2024 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2025                                 unsigned len)
2026 {
2027         void *ret;
2028
2029         ret = pv_mmu_peek_buffer(buffer, len);
2030         if (!ret)
2031                 return ret;
2032         buffer->ptr += len;
2033         buffer->len -= len;
2034         buffer->processed += len;
2035         return ret;
2036 }
2037
2038 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2039                              gpa_t addr, gpa_t value)
2040 {
2041         int bytes = 8;
2042         int r;
2043
2044         if (!is_long_mode(vcpu) && !is_pae(vcpu))
2045                 bytes = 4;
2046
2047         r = mmu_topup_memory_caches(vcpu);
2048         if (r)
2049                 return r;
2050
2051         if (!__emulator_write_phys(vcpu, addr, &value, bytes))
2052                 return -EFAULT;
2053
2054         return 1;
2055 }
2056
2057 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2058 {
2059         kvm_x86_ops->tlb_flush(vcpu);
2060         return 1;
2061 }
2062
2063 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2064 {
2065         spin_lock(&vcpu->kvm->mmu_lock);
2066         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2067         spin_unlock(&vcpu->kvm->mmu_lock);
2068         return 1;
2069 }
2070
2071 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2072                              struct kvm_pv_mmu_op_buffer *buffer)
2073 {
2074         struct kvm_mmu_op_header *header;
2075
2076         header = pv_mmu_peek_buffer(buffer, sizeof *header);
2077         if (!header)
2078                 return 0;
2079         switch (header->op) {
2080         case KVM_MMU_OP_WRITE_PTE: {
2081                 struct kvm_mmu_op_write_pte *wpte;
2082
2083                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2084                 if (!wpte)
2085                         return 0;
2086                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2087                                         wpte->pte_val);
2088         }
2089         case KVM_MMU_OP_FLUSH_TLB: {
2090                 struct kvm_mmu_op_flush_tlb *ftlb;
2091
2092                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2093                 if (!ftlb)
2094                         return 0;
2095                 return kvm_pv_mmu_flush_tlb(vcpu);
2096         }
2097         case KVM_MMU_OP_RELEASE_PT: {
2098                 struct kvm_mmu_op_release_pt *rpt;
2099
2100                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2101                 if (!rpt)
2102                         return 0;
2103                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2104         }
2105         default: return 0;
2106         }
2107 }
2108
2109 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2110                   gpa_t addr, unsigned long *ret)
2111 {
2112         int r;
2113         struct kvm_pv_mmu_op_buffer buffer;
2114
2115         down_read(&vcpu->kvm->slots_lock);
2116         down_read(&current->mm->mmap_sem);
2117
2118         buffer.ptr = buffer.buf;
2119         buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
2120         buffer.processed = 0;
2121
2122         r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
2123         if (r)
2124                 goto out;
2125
2126         while (buffer.len) {
2127                 r = kvm_pv_mmu_op_one(vcpu, &buffer);
2128                 if (r < 0)
2129                         goto out;
2130                 if (r == 0)
2131                         break;
2132         }
2133
2134         r = 1;
2135 out:
2136         *ret = buffer.processed;
2137         up_read(&current->mm->mmap_sem);
2138         up_read(&vcpu->kvm->slots_lock);
2139         return r;
2140 }
2141
2142 #ifdef AUDIT
2143
2144 static const char *audit_msg;
2145
2146 static gva_t canonicalize(gva_t gva)
2147 {
2148 #ifdef CONFIG_X86_64
2149         gva = (long long)(gva << 16) >> 16;
2150 #endif
2151         return gva;
2152 }
2153
2154 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
2155                                 gva_t va, int level)
2156 {
2157         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
2158         int i;
2159         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
2160
2161         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
2162                 u64 ent = pt[i];
2163
2164                 if (ent == shadow_trap_nonpresent_pte)
2165                         continue;
2166
2167                 va = canonicalize(va);
2168                 if (level > 1) {
2169                         if (ent == shadow_notrap_nonpresent_pte)
2170                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
2171                                        " in nonleaf level: levels %d gva %lx"
2172                                        " level %d pte %llx\n", audit_msg,
2173                                        vcpu->arch.mmu.root_level, va, level, ent);
2174
2175                         audit_mappings_page(vcpu, ent, va, level - 1);
2176                 } else {
2177                         gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
2178                         struct page *page = gpa_to_page(vcpu, gpa);
2179                         hpa_t hpa = page_to_phys(page);
2180
2181                         if (is_shadow_present_pte(ent)
2182                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
2183                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
2184                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
2185                                        audit_msg, vcpu->arch.mmu.root_level,
2186                                        va, gpa, hpa, ent,
2187                                        is_shadow_present_pte(ent));
2188                         else if (ent == shadow_notrap_nonpresent_pte
2189                                  && !is_error_hpa(hpa))
2190                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
2191                                        " valid guest gva %lx\n", audit_msg, va);
2192                         kvm_release_page_clean(page);
2193
2194                 }
2195         }
2196 }
2197
2198 static void audit_mappings(struct kvm_vcpu *vcpu)
2199 {
2200         unsigned i;
2201
2202         if (vcpu->arch.mmu.root_level == 4)
2203                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
2204         else
2205                 for (i = 0; i < 4; ++i)
2206                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
2207                                 audit_mappings_page(vcpu,
2208                                                     vcpu->arch.mmu.pae_root[i],
2209                                                     i << 30,
2210                                                     2);
2211 }
2212
2213 static int count_rmaps(struct kvm_vcpu *vcpu)
2214 {
2215         int nmaps = 0;
2216         int i, j, k;
2217
2218         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
2219                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
2220                 struct kvm_rmap_desc *d;
2221
2222                 for (j = 0; j < m->npages; ++j) {
2223                         unsigned long *rmapp = &m->rmap[j];
2224
2225                         if (!*rmapp)
2226                                 continue;
2227                         if (!(*rmapp & 1)) {
2228                                 ++nmaps;
2229                                 continue;
2230                         }
2231                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
2232                         while (d) {
2233                                 for (k = 0; k < RMAP_EXT; ++k)
2234                                         if (d->shadow_ptes[k])
2235                                                 ++nmaps;
2236                                         else
2237                                                 break;
2238                                 d = d->more;
2239                         }
2240                 }
2241         }
2242         return nmaps;
2243 }
2244
2245 static int count_writable_mappings(struct kvm_vcpu *vcpu)
2246 {
2247         int nmaps = 0;
2248         struct kvm_mmu_page *sp;
2249         int i;
2250
2251         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2252                 u64 *pt = sp->spt;
2253
2254                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
2255                         continue;
2256
2257                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
2258                         u64 ent = pt[i];
2259
2260                         if (!(ent & PT_PRESENT_MASK))
2261                                 continue;
2262                         if (!(ent & PT_WRITABLE_MASK))
2263                                 continue;
2264                         ++nmaps;
2265                 }
2266         }
2267         return nmaps;
2268 }
2269
2270 static void audit_rmap(struct kvm_vcpu *vcpu)
2271 {
2272         int n_rmap = count_rmaps(vcpu);
2273         int n_actual = count_writable_mappings(vcpu);
2274
2275         if (n_rmap != n_actual)
2276                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
2277                        __func__, audit_msg, n_rmap, n_actual);
2278 }
2279
2280 static void audit_write_protection(struct kvm_vcpu *vcpu)
2281 {
2282         struct kvm_mmu_page *sp;
2283         struct kvm_memory_slot *slot;
2284         unsigned long *rmapp;
2285         gfn_t gfn;
2286
2287         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
2288                 if (sp->role.metaphysical)
2289                         continue;
2290
2291                 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
2292                 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
2293                 rmapp = &slot->rmap[gfn - slot->base_gfn];
2294                 if (*rmapp)
2295                         printk(KERN_ERR "%s: (%s) shadow page has writable"
2296                                " mappings: gfn %lx role %x\n",
2297                                __func__, audit_msg, sp->gfn,
2298                                sp->role.word);
2299         }
2300 }
2301
2302 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
2303 {
2304         int olddbg = dbg;
2305
2306         dbg = 0;
2307         audit_msg = msg;
2308         audit_rmap(vcpu);
2309         audit_write_protection(vcpu);
2310         audit_mappings(vcpu);
2311         dbg = olddbg;
2312 }
2313
2314 #endif