]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/acpi/acpica/hwregs.c
ACPICA: Preserve all PM control reserved and ignored bits
[linux-2.6-omap-h63xx.git] / drivers / acpi / acpica / hwregs.c
1
2 /*******************************************************************************
3  *
4  * Module Name: hwregs - Read/write access functions for the various ACPI
5  *                       control and status registers.
6  *
7  ******************************************************************************/
8
9 /*
10  * Copyright (C) 2000 - 2008, Intel Corp.
11  * All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions, and the following disclaimer,
18  *    without modification.
19  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
20  *    substantially similar to the "NO WARRANTY" disclaimer below
21  *    ("Disclaimer") and any redistribution must be conditioned upon
22  *    including a substantially similar Disclaimer requirement for further
23  *    binary redistribution.
24  * 3. Neither the names of the above-listed copyright holders nor the names
25  *    of any contributors may be used to endorse or promote products derived
26  *    from this software without specific prior written permission.
27  *
28  * Alternatively, this software may be distributed under the terms of the
29  * GNU General Public License ("GPL") version 2 as published by the Free
30  * Software Foundation.
31  *
32  * NO WARRANTY
33  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
36  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
42  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
43  * POSSIBILITY OF SUCH DAMAGES.
44  */
45
46 #include <acpi/acpi.h>
47 #include "accommon.h"
48 #include "acnamesp.h"
49 #include "acevents.h"
50
51 #define _COMPONENT          ACPI_HARDWARE
52 ACPI_MODULE_NAME("hwregs")
53
54 /* Local Prototypes */
55 static acpi_status
56 acpi_hw_read_multiple(u32 *value,
57                       struct acpi_generic_address *register_a,
58                       struct acpi_generic_address *register_b);
59
60 static acpi_status
61 acpi_hw_write_multiple(u32 value,
62                        struct acpi_generic_address *register_a,
63                        struct acpi_generic_address *register_b);
64
65 /*******************************************************************************
66  *
67  * FUNCTION:    acpi_hw_clear_acpi_status
68  *
69  * PARAMETERS:  None
70  *
71  * RETURN:      Status
72  *
73  * DESCRIPTION: Clears all fixed and general purpose status bits
74  *
75  ******************************************************************************/
76
77 acpi_status acpi_hw_clear_acpi_status(void)
78 {
79         acpi_status status;
80         acpi_cpu_flags lock_flags = 0;
81
82         ACPI_FUNCTION_TRACE(hw_clear_acpi_status);
83
84         ACPI_DEBUG_PRINT((ACPI_DB_IO, "About to write %04X to %0llX\n",
85                           ACPI_BITMASK_ALL_FIXED_STATUS,
86                           acpi_gbl_xpm1a_status.address));
87
88         lock_flags = acpi_os_acquire_lock(acpi_gbl_hardware_lock);
89
90         /* Clear the fixed events in PM1 A/B */
91
92         status = acpi_hw_register_write(ACPI_REGISTER_PM1_STATUS,
93                                         ACPI_BITMASK_ALL_FIXED_STATUS);
94         if (ACPI_FAILURE(status)) {
95                 goto unlock_and_exit;
96         }
97
98         /* Clear the GPE Bits in all GPE registers in all GPE blocks */
99
100         status = acpi_ev_walk_gpe_list(acpi_hw_clear_gpe_block, NULL);
101
102       unlock_and_exit:
103         acpi_os_release_lock(acpi_gbl_hardware_lock, lock_flags);
104         return_ACPI_STATUS(status);
105 }
106
107 /*******************************************************************************
108  *
109  * FUNCTION:    acpi_hw_get_register_bit_mask
110  *
111  * PARAMETERS:  register_id         - Index of ACPI Register to access
112  *
113  * RETURN:      The bitmask to be used when accessing the register
114  *
115  * DESCRIPTION: Map register_id into a register bitmask.
116  *
117  ******************************************************************************/
118
119 struct acpi_bit_register_info *acpi_hw_get_bit_register_info(u32 register_id)
120 {
121         ACPI_FUNCTION_ENTRY();
122
123         if (register_id > ACPI_BITREG_MAX) {
124                 ACPI_ERROR((AE_INFO, "Invalid BitRegister ID: %X",
125                             register_id));
126                 return (NULL);
127         }
128
129         return (&acpi_gbl_bit_register_info[register_id]);
130 }
131
132 /******************************************************************************
133  *
134  * FUNCTION:    acpi_hw_write_pm1_control
135  *
136  * PARAMETERS:  pm1a_control        - Value to be written to PM1A control
137  *              pm1b_control        - Value to be written to PM1B control
138  *
139  * RETURN:      Status
140  *
141  * DESCRIPTION: Write the PM1 A/B control registers. These registers are
142  *              different than than the PM1 A/B status and enable registers
143  *              in that different values can be written to the A/B registers.
144  *              Most notably, the SLP_TYP bits can be different, as per the
145  *              values returned from the _Sx predefined methods.
146  *
147  ******************************************************************************/
148
149 acpi_status acpi_hw_write_pm1_control(u32 pm1a_control, u32 pm1b_control)
150 {
151         acpi_status status;
152
153         ACPI_FUNCTION_TRACE(hw_write_pm1_control);
154
155         status = acpi_write(pm1a_control, &acpi_gbl_FADT.xpm1a_control_block);
156         if (ACPI_FAILURE(status)) {
157                 return_ACPI_STATUS(status);
158         }
159
160         if (acpi_gbl_FADT.xpm1b_control_block.address) {
161                 status =
162                     acpi_write(pm1b_control,
163                                &acpi_gbl_FADT.xpm1b_control_block);
164         }
165         return_ACPI_STATUS(status);
166 }
167
168 /******************************************************************************
169  *
170  * FUNCTION:    acpi_hw_register_read
171  *
172  * PARAMETERS:  register_id         - ACPI Register ID
173  *              return_value        - Where the register value is returned
174  *
175  * RETURN:      Status and the value read.
176  *
177  * DESCRIPTION: Read from the specified ACPI register
178  *
179  ******************************************************************************/
180 acpi_status
181 acpi_hw_register_read(u32 register_id, u32 * return_value)
182 {
183         u32 value = 0;
184         acpi_status status;
185
186         ACPI_FUNCTION_TRACE(hw_register_read);
187
188         switch (register_id) {
189         case ACPI_REGISTER_PM1_STATUS:  /* PM1 A/B: 16-bit access each */
190
191                 status = acpi_hw_read_multiple(&value,
192                                                &acpi_gbl_xpm1a_status,
193                                                &acpi_gbl_xpm1b_status);
194                 break;
195
196         case ACPI_REGISTER_PM1_ENABLE:  /* PM1 A/B: 16-bit access each */
197
198                 status = acpi_hw_read_multiple(&value,
199                                                &acpi_gbl_xpm1a_enable,
200                                                &acpi_gbl_xpm1b_enable);
201                 break;
202
203         case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */
204
205                 status = acpi_hw_read_multiple(&value,
206                                                &acpi_gbl_FADT.
207                                                xpm1a_control_block,
208                                                &acpi_gbl_FADT.
209                                                xpm1b_control_block);
210                 break;
211
212         case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */
213
214                 status = acpi_read(&value, &acpi_gbl_FADT.xpm2_control_block);
215                 break;
216
217         case ACPI_REGISTER_PM_TIMER:    /* 32-bit access */
218
219                 status = acpi_read(&value, &acpi_gbl_FADT.xpm_timer_block);
220                 break;
221
222         case ACPI_REGISTER_SMI_COMMAND_BLOCK:   /* 8-bit access */
223
224                 status =
225                     acpi_os_read_port(acpi_gbl_FADT.smi_command, &value, 8);
226                 break;
227
228         default:
229                 ACPI_ERROR((AE_INFO, "Unknown Register ID: %X", register_id));
230                 status = AE_BAD_PARAMETER;
231                 break;
232         }
233
234         if (ACPI_SUCCESS(status)) {
235                 *return_value = value;
236         }
237
238         return_ACPI_STATUS(status);
239 }
240
241 /******************************************************************************
242  *
243  * FUNCTION:    acpi_hw_register_write
244  *
245  * PARAMETERS:  register_id         - ACPI Register ID
246  *              Value               - The value to write
247  *
248  * RETURN:      Status
249  *
250  * DESCRIPTION: Write to the specified ACPI register
251  *
252  * NOTE: In accordance with the ACPI specification, this function automatically
253  * preserves the value of the following bits, meaning that these bits cannot be
254  * changed via this interface:
255  *
256  * PM1_CONTROL[0] = SCI_EN
257  * PM1_CONTROL[9]
258  * PM1_STATUS[11]
259  *
260  * ACPI References:
261  * 1) Hardware Ignored Bits: When software writes to a register with ignored
262  *      bit fields, it preserves the ignored bit fields
263  * 2) SCI_EN: OSPM always preserves this bit position
264  *
265  ******************************************************************************/
266
267 acpi_status acpi_hw_register_write(u32 register_id, u32 value)
268 {
269         acpi_status status;
270         u32 read_value;
271
272         ACPI_FUNCTION_TRACE(hw_register_write);
273
274         switch (register_id) {
275         case ACPI_REGISTER_PM1_STATUS:  /* PM1 A/B: 16-bit access each */
276                 /*
277                  * Handle the "ignored" bit in PM1 Status. According to the ACPI
278                  * specification, ignored bits are to be preserved when writing.
279                  * Normally, this would mean a read/modify/write sequence. However,
280                  * preserving a bit in the status register is different. Writing a
281                  * one clears the status, and writing a zero preserves the status.
282                  * Therefore, we must always write zero to the ignored bit.
283                  *
284                  * This behavior is clarified in the ACPI 4.0 specification.
285                  */
286                 value &= ~ACPI_PM1_STATUS_PRESERVED_BITS;
287
288                 status = acpi_hw_write_multiple(value,
289                                                 &acpi_gbl_xpm1a_status,
290                                                 &acpi_gbl_xpm1b_status);
291                 break;
292
293         case ACPI_REGISTER_PM1_ENABLE:  /* PM1 A/B: 16-bit access */
294
295                 status = acpi_hw_write_multiple(value,
296                                                 &acpi_gbl_xpm1a_enable,
297                                                 &acpi_gbl_xpm1b_enable);
298                 break;
299
300         case ACPI_REGISTER_PM1_CONTROL: /* PM1 A/B: 16-bit access each */
301
302                 /*
303                  * Perform a read first to preserve certain bits (per ACPI spec)
304                  * Note: This includes SCI_EN, we never want to change this bit
305                  */
306                 status = acpi_hw_read_multiple(&read_value,
307                                                &acpi_gbl_FADT.
308                                                xpm1a_control_block,
309                                                &acpi_gbl_FADT.
310                                                xpm1b_control_block);
311                 if (ACPI_FAILURE(status)) {
312                         goto exit;
313                 }
314
315                 /* Insert the bits to be preserved */
316
317                 ACPI_INSERT_BITS(value, ACPI_PM1_CONTROL_PRESERVED_BITS,
318                                  read_value);
319
320                 /* Now we can write the data */
321
322                 status = acpi_hw_write_multiple(value,
323                                                 &acpi_gbl_FADT.
324                                                 xpm1a_control_block,
325                                                 &acpi_gbl_FADT.
326                                                 xpm1b_control_block);
327                 break;
328
329         case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */
330
331                 /*
332                  * For control registers, all reserved bits must be preserved,
333                  * as per the ACPI spec.
334                  */
335                 status =
336                     acpi_read(&read_value, &acpi_gbl_FADT.xpm2_control_block);
337                 if (ACPI_FAILURE(status)) {
338                         goto exit;
339                 }
340
341                 /* Insert the bits to be preserved */
342
343                 ACPI_INSERT_BITS(value, ACPI_PM2_CONTROL_PRESERVED_BITS,
344                                  read_value);
345
346                 status = acpi_write(value, &acpi_gbl_FADT.xpm2_control_block);
347                 break;
348
349         case ACPI_REGISTER_PM_TIMER:    /* 32-bit access */
350
351                 status = acpi_write(value, &acpi_gbl_FADT.xpm_timer_block);
352                 break;
353
354         case ACPI_REGISTER_SMI_COMMAND_BLOCK:   /* 8-bit access */
355
356                 /* SMI_CMD is currently always in IO space */
357
358                 status =
359                     acpi_os_write_port(acpi_gbl_FADT.smi_command, value, 8);
360                 break;
361
362         default:
363                 ACPI_ERROR((AE_INFO, "Unknown Register ID: %X", register_id));
364                 status = AE_BAD_PARAMETER;
365                 break;
366         }
367
368       exit:
369         return_ACPI_STATUS(status);
370 }
371
372 /******************************************************************************
373  *
374  * FUNCTION:    acpi_hw_read_multiple
375  *
376  * PARAMETERS:  Value               - Where the register value is returned
377  *              register_a           - First ACPI register (required)
378  *              register_b           - Second ACPI register (optional)
379  *
380  * RETURN:      Status
381  *
382  * DESCRIPTION: Read from the specified two-part ACPI register (such as PM1 A/B)
383  *
384  ******************************************************************************/
385
386 static acpi_status
387 acpi_hw_read_multiple(u32 *value,
388                       struct acpi_generic_address *register_a,
389                       struct acpi_generic_address *register_b)
390 {
391         u32 value_a = 0;
392         u32 value_b = 0;
393         acpi_status status;
394
395         /* The first register is always required */
396
397         status = acpi_read(&value_a, register_a);
398         if (ACPI_FAILURE(status)) {
399                 return (status);
400         }
401
402         /* Second register is optional */
403
404         if (register_b->address) {
405                 status = acpi_read(&value_b, register_b);
406                 if (ACPI_FAILURE(status)) {
407                         return (status);
408                 }
409         }
410
411         /*
412          * OR the two return values together. No shifting or masking is necessary,
413          * because of how the PM1 registers are defined in the ACPI specification:
414          *
415          * "Although the bits can be split between the two register blocks (each
416          * register block has a unique pointer within the FADT), the bit positions
417          * are maintained. The register block with unimplemented bits (that is,
418          * those implemented in the other register block) always returns zeros,
419          * and writes have no side effects"
420          */
421         *value = (value_a | value_b);
422         return (AE_OK);
423 }
424
425 /******************************************************************************
426  *
427  * FUNCTION:    acpi_hw_write_multiple
428  *
429  * PARAMETERS:  Value               - The value to write
430  *              register_a           - First ACPI register (required)
431  *              register_b           - Second ACPI register (optional)
432  *
433  * RETURN:      Status
434  *
435  * DESCRIPTION: Write to the specified two-part ACPI register (such as PM1 A/B)
436  *
437  ******************************************************************************/
438
439 static acpi_status
440 acpi_hw_write_multiple(u32 value,
441                        struct acpi_generic_address *register_a,
442                        struct acpi_generic_address *register_b)
443 {
444         acpi_status status;
445
446         /* The first register is always required */
447
448         status = acpi_write(value, register_a);
449         if (ACPI_FAILURE(status)) {
450                 return (status);
451         }
452
453         /*
454          * Second register is optional
455          *
456          * No bit shifting or clearing is necessary, because of how the PM1
457          * registers are defined in the ACPI specification:
458          *
459          * "Although the bits can be split between the two register blocks (each
460          * register block has a unique pointer within the FADT), the bit positions
461          * are maintained. The register block with unimplemented bits (that is,
462          * those implemented in the other register block) always returns zeros,
463          * and writes have no side effects"
464          */
465         if (register_b->address) {
466                 status = acpi_write(value, register_b);
467         }
468
469         return (status);
470 }