]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/acpi/osl.c
Merge branch 'splice' of git://brick.kernel.dk/data/git/linux-2.6-block
[linux-2.6-omap-h63xx.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  *
26  */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/mm.h>
32 #include <linux/pci.h>
33 #include <linux/smp_lock.h>
34 #include <linux/interrupt.h>
35 #include <linux/kmod.h>
36 #include <linux/delay.h>
37 #include <linux/workqueue.h>
38 #include <linux/nmi.h>
39 #include <linux/kthread.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
45
46 #include <linux/efi.h>
47
48 #define _COMPONENT              ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX          "ACPI: "
51 struct acpi_os_dpc {
52         acpi_osd_exec_callback function;
53         void *context;
54 };
55
56 #ifdef CONFIG_ACPI_CUSTOM_DSDT
57 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
58 #endif
59
60 #ifdef ENABLE_DEBUGGER
61 #include <linux/kdb.h>
62
63 /* stuff for debugger support */
64 int acpi_in_debugger;
65 EXPORT_SYMBOL(acpi_in_debugger);
66
67 extern char line_buf[80];
68 #endif                          /*ENABLE_DEBUGGER */
69
70 int acpi_specific_hotkey_enabled = TRUE;
71 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
72
73 static unsigned int acpi_irq_irq;
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77
78 acpi_status acpi_os_initialize(void)
79 {
80         return AE_OK;
81 }
82
83 acpi_status acpi_os_initialize1(void)
84 {
85         /*
86          * Initialize PCI configuration space access, as we'll need to access
87          * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
88          */
89         if (!raw_pci_ops) {
90                 printk(KERN_ERR PREFIX
91                        "Access to PCI configuration space unavailable\n");
92                 return AE_NULL_ENTRY;
93         }
94         kacpid_wq = create_singlethread_workqueue("kacpid");
95         BUG_ON(!kacpid_wq);
96
97         return AE_OK;
98 }
99
100 acpi_status acpi_os_terminate(void)
101 {
102         if (acpi_irq_handler) {
103                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
104                                                  acpi_irq_handler);
105         }
106
107         destroy_workqueue(kacpid_wq);
108
109         return AE_OK;
110 }
111
112 void acpi_os_printf(const char *fmt, ...)
113 {
114         va_list args;
115         va_start(args, fmt);
116         acpi_os_vprintf(fmt, args);
117         va_end(args);
118 }
119
120 EXPORT_SYMBOL(acpi_os_printf);
121
122 void acpi_os_vprintf(const char *fmt, va_list args)
123 {
124         static char buffer[512];
125
126         vsprintf(buffer, fmt, args);
127
128 #ifdef ENABLE_DEBUGGER
129         if (acpi_in_debugger) {
130                 kdb_printf("%s", buffer);
131         } else {
132                 printk("%s", buffer);
133         }
134 #else
135         printk("%s", buffer);
136 #endif
137 }
138
139 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
140 {
141         if (efi_enabled) {
142                 addr->pointer_type = ACPI_PHYSICAL_POINTER;
143                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
144                         addr->pointer.physical = efi.acpi20;
145                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
146                         addr->pointer.physical = efi.acpi;
147                 else {
148                         printk(KERN_ERR PREFIX
149                                "System description tables not found\n");
150                         return AE_NOT_FOUND;
151                 }
152         } else {
153                 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
154                         printk(KERN_ERR PREFIX
155                                "System description tables not found\n");
156                         return AE_NOT_FOUND;
157                 }
158         }
159
160         return AE_OK;
161 }
162
163 acpi_status
164 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
165                    void __iomem ** virt)
166 {
167         if (phys > ULONG_MAX) {
168                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
169                 return AE_BAD_PARAMETER;
170         }
171         /*
172          * ioremap checks to ensure this is in reserved space
173          */
174         *virt = ioremap((unsigned long)phys, size);
175
176         if (!*virt)
177                 return AE_NO_MEMORY;
178
179         return AE_OK;
180 }
181 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
182
183 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
184 {
185         iounmap(virt);
186 }
187 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
188
189 #ifdef ACPI_FUTURE_USAGE
190 acpi_status
191 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
192 {
193         if (!phys || !virt)
194                 return AE_BAD_PARAMETER;
195
196         *phys = virt_to_phys(virt);
197
198         return AE_OK;
199 }
200 #endif
201
202 #define ACPI_MAX_OVERRIDE_LEN 100
203
204 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
205
206 acpi_status
207 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
208                             acpi_string * new_val)
209 {
210         if (!init_val || !new_val)
211                 return AE_BAD_PARAMETER;
212
213         *new_val = NULL;
214         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
215                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
216                        acpi_os_name);
217                 *new_val = acpi_os_name;
218         }
219
220         return AE_OK;
221 }
222
223 acpi_status
224 acpi_os_table_override(struct acpi_table_header * existing_table,
225                        struct acpi_table_header ** new_table)
226 {
227         if (!existing_table || !new_table)
228                 return AE_BAD_PARAMETER;
229
230 #ifdef CONFIG_ACPI_CUSTOM_DSDT
231         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
232                 *new_table = (struct acpi_table_header *)AmlCode;
233         else
234                 *new_table = NULL;
235 #else
236         *new_table = NULL;
237 #endif
238         return AE_OK;
239 }
240
241 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
242 {
243         return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
244 }
245
246 acpi_status
247 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
248                                   void *context)
249 {
250         unsigned int irq;
251
252         /*
253          * Ignore the GSI from the core, and use the value in our copy of the
254          * FADT. It may not be the same if an interrupt source override exists
255          * for the SCI.
256          */
257         gsi = acpi_fadt.sci_int;
258         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
259                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
260                        gsi);
261                 return AE_OK;
262         }
263
264         acpi_irq_handler = handler;
265         acpi_irq_context = context;
266         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
267                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
268                 return AE_NOT_ACQUIRED;
269         }
270         acpi_irq_irq = irq;
271
272         return AE_OK;
273 }
274
275 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
276 {
277         if (irq) {
278                 free_irq(irq, acpi_irq);
279                 acpi_irq_handler = NULL;
280                 acpi_irq_irq = 0;
281         }
282
283         return AE_OK;
284 }
285
286 /*
287  * Running in interpreter thread context, safe to sleep
288  */
289
290 void acpi_os_sleep(acpi_integer ms)
291 {
292         schedule_timeout_interruptible(msecs_to_jiffies(ms));
293 }
294
295 EXPORT_SYMBOL(acpi_os_sleep);
296
297 void acpi_os_stall(u32 us)
298 {
299         while (us) {
300                 u32 delay = 1000;
301
302                 if (delay > us)
303                         delay = us;
304                 udelay(delay);
305                 touch_nmi_watchdog();
306                 us -= delay;
307         }
308 }
309
310 EXPORT_SYMBOL(acpi_os_stall);
311
312 /*
313  * Support ACPI 3.0 AML Timer operand
314  * Returns 64-bit free-running, monotonically increasing timer
315  * with 100ns granularity
316  */
317 u64 acpi_os_get_timer(void)
318 {
319         static u64 t;
320
321 #ifdef  CONFIG_HPET
322         /* TBD: use HPET if available */
323 #endif
324
325 #ifdef  CONFIG_X86_PM_TIMER
326         /* TBD: default to PM timer if HPET was not available */
327 #endif
328         if (!t)
329                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
330
331         return ++t;
332 }
333
334 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
335 {
336         u32 dummy;
337
338         if (!value)
339                 value = &dummy;
340
341         switch (width) {
342         case 8:
343                 *(u8 *) value = inb(port);
344                 break;
345         case 16:
346                 *(u16 *) value = inw(port);
347                 break;
348         case 32:
349                 *(u32 *) value = inl(port);
350                 break;
351         default:
352                 BUG();
353         }
354
355         return AE_OK;
356 }
357
358 EXPORT_SYMBOL(acpi_os_read_port);
359
360 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
361 {
362         switch (width) {
363         case 8:
364                 outb(value, port);
365                 break;
366         case 16:
367                 outw(value, port);
368                 break;
369         case 32:
370                 outl(value, port);
371                 break;
372         default:
373                 BUG();
374         }
375
376         return AE_OK;
377 }
378
379 EXPORT_SYMBOL(acpi_os_write_port);
380
381 acpi_status
382 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
383 {
384         u32 dummy;
385         void __iomem *virt_addr;
386
387         virt_addr = ioremap(phys_addr, width);
388         if (!value)
389                 value = &dummy;
390
391         switch (width) {
392         case 8:
393                 *(u8 *) value = readb(virt_addr);
394                 break;
395         case 16:
396                 *(u16 *) value = readw(virt_addr);
397                 break;
398         case 32:
399                 *(u32 *) value = readl(virt_addr);
400                 break;
401         default:
402                 BUG();
403         }
404
405         iounmap(virt_addr);
406
407         return AE_OK;
408 }
409
410 acpi_status
411 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
412 {
413         void __iomem *virt_addr;
414
415         virt_addr = ioremap(phys_addr, width);
416
417         switch (width) {
418         case 8:
419                 writeb(value, virt_addr);
420                 break;
421         case 16:
422                 writew(value, virt_addr);
423                 break;
424         case 32:
425                 writel(value, virt_addr);
426                 break;
427         default:
428                 BUG();
429         }
430
431         iounmap(virt_addr);
432
433         return AE_OK;
434 }
435
436 acpi_status
437 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
438                                void *value, u32 width)
439 {
440         int result, size;
441
442         if (!value)
443                 return AE_BAD_PARAMETER;
444
445         switch (width) {
446         case 8:
447                 size = 1;
448                 break;
449         case 16:
450                 size = 2;
451                 break;
452         case 32:
453                 size = 4;
454                 break;
455         default:
456                 return AE_ERROR;
457         }
458
459         BUG_ON(!raw_pci_ops);
460
461         result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
462                                    PCI_DEVFN(pci_id->device, pci_id->function),
463                                    reg, size, value);
464
465         return (result ? AE_ERROR : AE_OK);
466 }
467
468 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
469
470 acpi_status
471 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
472                                 acpi_integer value, u32 width)
473 {
474         int result, size;
475
476         switch (width) {
477         case 8:
478                 size = 1;
479                 break;
480         case 16:
481                 size = 2;
482                 break;
483         case 32:
484                 size = 4;
485                 break;
486         default:
487                 return AE_ERROR;
488         }
489
490         BUG_ON(!raw_pci_ops);
491
492         result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
493                                     PCI_DEVFN(pci_id->device, pci_id->function),
494                                     reg, size, value);
495
496         return (result ? AE_ERROR : AE_OK);
497 }
498
499 /* TODO: Change code to take advantage of driver model more */
500 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,        /* upper bound  */
501                                     acpi_handle chandle,        /* current node */
502                                     struct acpi_pci_id **id,
503                                     int *is_bridge, u8 * bus_number)
504 {
505         acpi_handle handle;
506         struct acpi_pci_id *pci_id = *id;
507         acpi_status status;
508         unsigned long temp;
509         acpi_object_type type;
510         u8 tu8;
511
512         acpi_get_parent(chandle, &handle);
513         if (handle != rhandle) {
514                 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
515                                         bus_number);
516
517                 status = acpi_get_type(handle, &type);
518                 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
519                         return;
520
521                 status =
522                     acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
523                                           &temp);
524                 if (ACPI_SUCCESS(status)) {
525                         pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
526                         pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
527
528                         if (*is_bridge)
529                                 pci_id->bus = *bus_number;
530
531                         /* any nicer way to get bus number of bridge ? */
532                         status =
533                             acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
534                                                            8);
535                         if (ACPI_SUCCESS(status)
536                             && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
537                                 status =
538                                     acpi_os_read_pci_configuration(pci_id, 0x18,
539                                                                    &tu8, 8);
540                                 if (!ACPI_SUCCESS(status)) {
541                                         /* Certainly broken...  FIX ME */
542                                         return;
543                                 }
544                                 *is_bridge = 1;
545                                 pci_id->bus = tu8;
546                                 status =
547                                     acpi_os_read_pci_configuration(pci_id, 0x19,
548                                                                    &tu8, 8);
549                                 if (ACPI_SUCCESS(status)) {
550                                         *bus_number = tu8;
551                                 }
552                         } else
553                                 *is_bridge = 0;
554                 }
555         }
556 }
557
558 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound  */
559                            acpi_handle chandle, /* current node */
560                            struct acpi_pci_id **id)
561 {
562         int is_bridge = 1;
563         u8 bus_number = (*id)->bus;
564
565         acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
566 }
567
568 static void acpi_os_execute_deferred(void *context)
569 {
570         struct acpi_os_dpc *dpc = NULL;
571
572
573         dpc = (struct acpi_os_dpc *)context;
574         if (!dpc) {
575                 printk(KERN_ERR PREFIX "Invalid (NULL) context\n");
576                 return;
577         }
578
579         dpc->function(dpc->context);
580
581         kfree(dpc);
582
583         return;
584 }
585
586 static int acpi_os_execute_thread(void *context)
587 {
588         struct acpi_os_dpc *dpc = (struct acpi_os_dpc *)context;
589         if (dpc) {
590                 dpc->function(dpc->context);
591                 kfree(dpc);
592         }
593         do_exit(0);
594 }
595
596 /*******************************************************************************
597  *
598  * FUNCTION:    acpi_os_execute
599  *
600  * PARAMETERS:  Type               - Type of the callback
601  *              Function           - Function to be executed
602  *              Context            - Function parameters
603  *
604  * RETURN:      Status
605  *
606  * DESCRIPTION: Depending on type, either queues function for deferred execution or
607  *              immediately executes function on a separate thread.
608  *
609  ******************************************************************************/
610
611 acpi_status acpi_os_execute(acpi_execute_type type,
612                             acpi_osd_exec_callback function, void *context)
613 {
614         acpi_status status = AE_OK;
615         struct acpi_os_dpc *dpc;
616         struct work_struct *task;
617         struct task_struct *p;
618
619         if (!function)
620                 return AE_BAD_PARAMETER;
621         /*
622          * Allocate/initialize DPC structure.  Note that this memory will be
623          * freed by the callee.  The kernel handles the tq_struct list  in a
624          * way that allows us to also free its memory inside the callee.
625          * Because we may want to schedule several tasks with different
626          * parameters we can't use the approach some kernel code uses of
627          * having a static tq_struct.
628          * We can save time and code by allocating the DPC and tq_structs
629          * from the same memory.
630          */
631         if (type == OSL_NOTIFY_HANDLER) {
632                 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_KERNEL);
633         } else {
634                 dpc = kmalloc(sizeof(struct acpi_os_dpc) +
635                                 sizeof(struct work_struct), GFP_ATOMIC);
636         }
637         if (!dpc)
638                 return AE_NO_MEMORY;
639         dpc->function = function;
640         dpc->context = context;
641
642         if (type == OSL_NOTIFY_HANDLER) {
643                 p = kthread_create(acpi_os_execute_thread, dpc, "kacpid_notify");
644                 if (!IS_ERR(p)) {
645                         wake_up_process(p);
646                 } else {
647                         status = AE_NO_MEMORY;
648                         kfree(dpc);
649                 }
650         } else {
651                 task = (void *)(dpc + 1);
652                 INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
653                 if (!queue_work(kacpid_wq, task)) {
654                         status = AE_ERROR;
655                         kfree(dpc);
656                 }
657         }
658         return status;
659 }
660
661 EXPORT_SYMBOL(acpi_os_execute);
662
663 void acpi_os_wait_events_complete(void *context)
664 {
665         flush_workqueue(kacpid_wq);
666 }
667
668 EXPORT_SYMBOL(acpi_os_wait_events_complete);
669
670 /*
671  * Allocate the memory for a spinlock and initialize it.
672  */
673 acpi_status acpi_os_create_lock(acpi_spinlock * handle)
674 {
675         spin_lock_init(*handle);
676
677         return AE_OK;
678 }
679
680 /*
681  * Deallocate the memory for a spinlock.
682  */
683 void acpi_os_delete_lock(acpi_spinlock handle)
684 {
685         return;
686 }
687
688 acpi_status
689 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
690 {
691         struct semaphore *sem = NULL;
692
693
694         sem = acpi_os_allocate(sizeof(struct semaphore));
695         if (!sem)
696                 return AE_NO_MEMORY;
697         memset(sem, 0, sizeof(struct semaphore));
698
699         sema_init(sem, initial_units);
700
701         *handle = (acpi_handle *) sem;
702
703         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
704                           *handle, initial_units));
705
706         return AE_OK;
707 }
708
709 EXPORT_SYMBOL(acpi_os_create_semaphore);
710
711 /*
712  * TODO: A better way to delete semaphores?  Linux doesn't have a
713  * 'delete_semaphore()' function -- may result in an invalid
714  * pointer dereference for non-synchronized consumers.  Should
715  * we at least check for blocked threads and signal/cancel them?
716  */
717
718 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
719 {
720         struct semaphore *sem = (struct semaphore *)handle;
721
722
723         if (!sem)
724                 return AE_BAD_PARAMETER;
725
726         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
727
728         kfree(sem);
729         sem = NULL;
730
731         return AE_OK;
732 }
733
734 EXPORT_SYMBOL(acpi_os_delete_semaphore);
735
736 /*
737  * TODO: The kernel doesn't have a 'down_timeout' function -- had to
738  * improvise.  The process is to sleep for one scheduler quantum
739  * until the semaphore becomes available.  Downside is that this
740  * may result in starvation for timeout-based waits when there's
741  * lots of semaphore activity.
742  *
743  * TODO: Support for units > 1?
744  */
745 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
746 {
747         acpi_status status = AE_OK;
748         struct semaphore *sem = (struct semaphore *)handle;
749         int ret = 0;
750
751
752         if (!sem || (units < 1))
753                 return AE_BAD_PARAMETER;
754
755         if (units > 1)
756                 return AE_SUPPORT;
757
758         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
759                           handle, units, timeout));
760
761         switch (timeout) {
762                 /*
763                  * No Wait:
764                  * --------
765                  * A zero timeout value indicates that we shouldn't wait - just
766                  * acquire the semaphore if available otherwise return AE_TIME
767                  * (a.k.a. 'would block').
768                  */
769         case 0:
770                 if (down_trylock(sem))
771                         status = AE_TIME;
772                 break;
773
774                 /*
775                  * Wait Indefinitely:
776                  * ------------------
777                  */
778         case ACPI_WAIT_FOREVER:
779                 down(sem);
780                 break;
781
782                 /*
783                  * Wait w/ Timeout:
784                  * ----------------
785                  */
786         default:
787                 // TODO: A better timeout algorithm?
788                 {
789                         int i = 0;
790                         static const int quantum_ms = 1000 / HZ;
791
792                         ret = down_trylock(sem);
793                         for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
794                                 schedule_timeout_interruptible(1);
795                                 ret = down_trylock(sem);
796                         }
797
798                         if (ret != 0)
799                                 status = AE_TIME;
800                 }
801                 break;
802         }
803
804         if (ACPI_FAILURE(status)) {
805                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
806                                   "Failed to acquire semaphore[%p|%d|%d], %s",
807                                   handle, units, timeout,
808                                   acpi_format_exception(status)));
809         } else {
810                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
811                                   "Acquired semaphore[%p|%d|%d]", handle,
812                                   units, timeout));
813         }
814
815         return status;
816 }
817
818 EXPORT_SYMBOL(acpi_os_wait_semaphore);
819
820 /*
821  * TODO: Support for units > 1?
822  */
823 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
824 {
825         struct semaphore *sem = (struct semaphore *)handle;
826
827
828         if (!sem || (units < 1))
829                 return AE_BAD_PARAMETER;
830
831         if (units > 1)
832                 return AE_SUPPORT;
833
834         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
835                           units));
836
837         up(sem);
838
839         return AE_OK;
840 }
841
842 EXPORT_SYMBOL(acpi_os_signal_semaphore);
843
844 #ifdef ACPI_FUTURE_USAGE
845 u32 acpi_os_get_line(char *buffer)
846 {
847
848 #ifdef ENABLE_DEBUGGER
849         if (acpi_in_debugger) {
850                 u32 chars;
851
852                 kdb_read(buffer, sizeof(line_buf));
853
854                 /* remove the CR kdb includes */
855                 chars = strlen(buffer) - 1;
856                 buffer[chars] = '\0';
857         }
858 #endif
859
860         return 0;
861 }
862 #endif                          /*  ACPI_FUTURE_USAGE  */
863
864 /* Assumes no unreadable holes inbetween */
865 u8 acpi_os_readable(void *ptr, acpi_size len)
866 {
867 #if defined(__i386__) || defined(__x86_64__)
868         char tmp;
869         return !__get_user(tmp, (char __user *)ptr)
870             && !__get_user(tmp, (char __user *)ptr + len - 1);
871 #endif
872         return 1;
873 }
874
875 #ifdef ACPI_FUTURE_USAGE
876 u8 acpi_os_writable(void *ptr, acpi_size len)
877 {
878         /* could do dummy write (racy) or a kernel page table lookup.
879            The later may be difficult at early boot when kmap doesn't work yet. */
880         return 1;
881 }
882 #endif
883
884 acpi_status acpi_os_signal(u32 function, void *info)
885 {
886         switch (function) {
887         case ACPI_SIGNAL_FATAL:
888                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
889                 break;
890         case ACPI_SIGNAL_BREAKPOINT:
891                 /*
892                  * AML Breakpoint
893                  * ACPI spec. says to treat it as a NOP unless
894                  * you are debugging.  So if/when we integrate
895                  * AML debugger into the kernel debugger its
896                  * hook will go here.  But until then it is
897                  * not useful to print anything on breakpoints.
898                  */
899                 break;
900         default:
901                 break;
902         }
903
904         return AE_OK;
905 }
906
907 EXPORT_SYMBOL(acpi_os_signal);
908
909 static int __init acpi_os_name_setup(char *str)
910 {
911         char *p = acpi_os_name;
912         int count = ACPI_MAX_OVERRIDE_LEN - 1;
913
914         if (!str || !*str)
915                 return 0;
916
917         for (; count-- && str && *str; str++) {
918                 if (isalnum(*str) || *str == ' ' || *str == ':')
919                         *p++ = *str;
920                 else if (*str == '\'' || *str == '"')
921                         continue;
922                 else
923                         break;
924         }
925         *p = 0;
926
927         return 1;
928
929 }
930
931 __setup("acpi_os_name=", acpi_os_name_setup);
932
933 /*
934  * _OSI control
935  * empty string disables _OSI
936  * TBD additional string adds to _OSI
937  */
938 static int __init acpi_osi_setup(char *str)
939 {
940         if (str == NULL || *str == '\0') {
941                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
942                 acpi_gbl_create_osi_method = FALSE;
943         } else {
944                 /* TBD */
945                 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
946                        str);
947         }
948
949         return 1;
950 }
951
952 __setup("acpi_osi=", acpi_osi_setup);
953
954 /* enable serialization to combat AE_ALREADY_EXISTS errors */
955 static int __init acpi_serialize_setup(char *str)
956 {
957         printk(KERN_INFO PREFIX "serialize enabled\n");
958
959         acpi_gbl_all_methods_serialized = TRUE;
960
961         return 1;
962 }
963
964 __setup("acpi_serialize", acpi_serialize_setup);
965
966 /*
967  * Wake and Run-Time GPES are expected to be separate.
968  * We disable wake-GPEs at run-time to prevent spurious
969  * interrupts.
970  *
971  * However, if a system exists that shares Wake and
972  * Run-time events on the same GPE this flag is available
973  * to tell Linux to keep the wake-time GPEs enabled at run-time.
974  */
975 static int __init acpi_wake_gpes_always_on_setup(char *str)
976 {
977         printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
978
979         acpi_gbl_leave_wake_gpes_disabled = FALSE;
980
981         return 1;
982 }
983
984 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
985
986 static int __init acpi_hotkey_setup(char *str)
987 {
988         acpi_specific_hotkey_enabled = FALSE;
989         return 1;
990 }
991
992 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
993
994 /*
995  * max_cstate is defined in the base kernel so modules can
996  * change it w/o depending on the state of the processor module.
997  */
998 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
999
1000 EXPORT_SYMBOL(max_cstate);
1001
1002 /*
1003  * Acquire a spinlock.
1004  *
1005  * handle is a pointer to the spinlock_t.
1006  */
1007
1008 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1009 {
1010         acpi_cpu_flags flags;
1011         spin_lock_irqsave(lockp, flags);
1012         return flags;
1013 }
1014
1015 /*
1016  * Release a spinlock. See above.
1017  */
1018
1019 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1020 {
1021         spin_unlock_irqrestore(lockp, flags);
1022 }
1023
1024 #ifndef ACPI_USE_LOCAL_CACHE
1025
1026 /*******************************************************************************
1027  *
1028  * FUNCTION:    acpi_os_create_cache
1029  *
1030  * PARAMETERS:  name      - Ascii name for the cache
1031  *              size      - Size of each cached object
1032  *              depth     - Maximum depth of the cache (in objects) <ignored>
1033  *              cache     - Where the new cache object is returned
1034  *
1035  * RETURN:      status
1036  *
1037  * DESCRIPTION: Create a cache object
1038  *
1039  ******************************************************************************/
1040
1041 acpi_status
1042 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1043 {
1044         *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1045         if (cache == NULL)
1046                 return AE_ERROR;
1047         else
1048                 return AE_OK;
1049 }
1050
1051 /*******************************************************************************
1052  *
1053  * FUNCTION:    acpi_os_purge_cache
1054  *
1055  * PARAMETERS:  Cache           - Handle to cache object
1056  *
1057  * RETURN:      Status
1058  *
1059  * DESCRIPTION: Free all objects within the requested cache.
1060  *
1061  ******************************************************************************/
1062
1063 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1064 {
1065         (void)kmem_cache_shrink(cache);
1066         return (AE_OK);
1067 }
1068
1069 /*******************************************************************************
1070  *
1071  * FUNCTION:    acpi_os_delete_cache
1072  *
1073  * PARAMETERS:  Cache           - Handle to cache object
1074  *
1075  * RETURN:      Status
1076  *
1077  * DESCRIPTION: Free all objects within the requested cache and delete the
1078  *              cache object.
1079  *
1080  ******************************************************************************/
1081
1082 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1083 {
1084         (void)kmem_cache_destroy(cache);
1085         return (AE_OK);
1086 }
1087
1088 /*******************************************************************************
1089  *
1090  * FUNCTION:    acpi_os_release_object
1091  *
1092  * PARAMETERS:  Cache       - Handle to cache object
1093  *              Object      - The object to be released
1094  *
1095  * RETURN:      None
1096  *
1097  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1098  *              the object is deleted.
1099  *
1100  ******************************************************************************/
1101
1102 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1103 {
1104         kmem_cache_free(cache, object);
1105         return (AE_OK);
1106 }
1107
1108 /******************************************************************************
1109  *
1110  * FUNCTION:    acpi_os_validate_interface
1111  *
1112  * PARAMETERS:  interface           - Requested interface to be validated
1113  *
1114  * RETURN:      AE_OK if interface is supported, AE_SUPPORT otherwise
1115  *
1116  * DESCRIPTION: Match an interface string to the interfaces supported by the
1117  *              host. Strings originate from an AML call to the _OSI method.
1118  *
1119  *****************************************************************************/
1120
1121 acpi_status
1122 acpi_os_validate_interface (char *interface)
1123 {
1124
1125     return AE_SUPPORT;
1126 }
1127
1128
1129 /******************************************************************************
1130  *
1131  * FUNCTION:    acpi_os_validate_address
1132  *
1133  * PARAMETERS:  space_id             - ACPI space ID
1134  *              address             - Physical address
1135  *              length              - Address length
1136  *
1137  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1138  *              should return AE_AML_ILLEGAL_ADDRESS.
1139  *
1140  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1141  *              the addresses accessed by AML operation regions.
1142  *
1143  *****************************************************************************/
1144
1145 acpi_status
1146 acpi_os_validate_address (
1147     u8                   space_id,
1148     acpi_physical_address   address,
1149     acpi_size               length)
1150 {
1151
1152     return AE_OK;
1153 }
1154
1155
1156 #endif