]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/acpi/processor_idle.c
ACPI: Enable C3 even when PM2_control is zero
[linux-2.6-omap-h63xx.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43
44 /*
45  * Include the apic definitions for x86 to have the APIC timer related defines
46  * available also for UP (on SMP it gets magically included via linux/smp.h).
47  * asm/acpi.h is not an option, as it would require more include magic. Also
48  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49  */
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
53
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56
57 #include <acpi/acpi_bus.h>
58 #include <acpi/processor.h>
59
60 #define ACPI_PROCESSOR_COMPONENT        0x01000000
61 #define ACPI_PROCESSOR_CLASS            "processor"
62 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
63 ACPI_MODULE_NAME("processor_idle");
64 #define ACPI_PROCESSOR_FILE_POWER       "power"
65 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
67 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
68 static void (*pm_idle_save) (void) __read_mostly;
69 module_param(max_cstate, uint, 0644);
70
71 static unsigned int nocst __read_mostly;
72 module_param(nocst, uint, 0000);
73
74 /*
75  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
76  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
77  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
78  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
79  * reduce history for more aggressive entry into C3
80  */
81 static unsigned int bm_history __read_mostly =
82     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
83 module_param(bm_history, uint, 0644);
84 /* --------------------------------------------------------------------------
85                                 Power Management
86    -------------------------------------------------------------------------- */
87
88 /*
89  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
90  * For now disable this. Probably a bug somewhere else.
91  *
92  * To skip this limit, boot/load with a large max_cstate limit.
93  */
94 static int set_max_cstate(struct dmi_system_id *id)
95 {
96         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
97                 return 0;
98
99         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
100                " Override with \"processor.max_cstate=%d\"\n", id->ident,
101                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
102
103         max_cstate = (long)id->driver_data;
104
105         return 0;
106 }
107
108 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
109    callers to only run once -AK */
110 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
111         { set_max_cstate, "IBM ThinkPad R40e", {
112           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
113           DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
114         { set_max_cstate, "IBM ThinkPad R40e", {
115           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
116           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
117         { set_max_cstate, "IBM ThinkPad R40e", {
118           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
119           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
120         { set_max_cstate, "IBM ThinkPad R40e", {
121           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
122           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
123         { set_max_cstate, "IBM ThinkPad R40e", {
124           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
125           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
126         { set_max_cstate, "IBM ThinkPad R40e", {
127           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
129         { set_max_cstate, "IBM ThinkPad R40e", {
130           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
132         { set_max_cstate, "IBM ThinkPad R40e", {
133           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
135         { set_max_cstate, "IBM ThinkPad R40e", {
136           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
138         { set_max_cstate, "IBM ThinkPad R40e", {
139           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
141         { set_max_cstate, "IBM ThinkPad R40e", {
142           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
144         { set_max_cstate, "IBM ThinkPad R40e", {
145           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
147         { set_max_cstate, "IBM ThinkPad R40e", {
148           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
150         { set_max_cstate, "IBM ThinkPad R40e", {
151           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
153         { set_max_cstate, "IBM ThinkPad R40e", {
154           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
156         { set_max_cstate, "IBM ThinkPad R40e", {
157           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
159         { set_max_cstate, "Medion 41700", {
160           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
161           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
162         { set_max_cstate, "Clevo 5600D", {
163           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
164           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
165          (void *)2},
166         {},
167 };
168
169 static inline u32 ticks_elapsed(u32 t1, u32 t2)
170 {
171         if (t2 >= t1)
172                 return (t2 - t1);
173         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
174                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
175         else
176                 return ((0xFFFFFFFF - t1) + t2);
177 }
178
179 static void
180 acpi_processor_power_activate(struct acpi_processor *pr,
181                               struct acpi_processor_cx *new)
182 {
183         struct acpi_processor_cx *old;
184
185         if (!pr || !new)
186                 return;
187
188         old = pr->power.state;
189
190         if (old)
191                 old->promotion.count = 0;
192         new->demotion.count = 0;
193
194         /* Cleanup from old state. */
195         if (old) {
196                 switch (old->type) {
197                 case ACPI_STATE_C3:
198                         /* Disable bus master reload */
199                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
200                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
201                         break;
202                 }
203         }
204
205         /* Prepare to use new state. */
206         switch (new->type) {
207         case ACPI_STATE_C3:
208                 /* Enable bus master reload */
209                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
210                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
211                 break;
212         }
213
214         pr->power.state = new;
215
216         return;
217 }
218
219 static void acpi_safe_halt(void)
220 {
221         current_thread_info()->status &= ~TS_POLLING;
222         /*
223          * TS_POLLING-cleared state must be visible before we
224          * test NEED_RESCHED:
225          */
226         smp_mb();
227         if (!need_resched())
228                 safe_halt();
229         current_thread_info()->status |= TS_POLLING;
230 }
231
232 static atomic_t c3_cpu_count;
233
234 /* Common C-state entry for C2, C3, .. */
235 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
236 {
237         if (cstate->space_id == ACPI_CSTATE_FFH) {
238                 /* Call into architectural FFH based C-state */
239                 acpi_processor_ffh_cstate_enter(cstate);
240         } else {
241                 int unused;
242                 /* IO port based C-state */
243                 inb(cstate->address);
244                 /* Dummy wait op - must do something useless after P_LVL2 read
245                    because chipsets cannot guarantee that STPCLK# signal
246                    gets asserted in time to freeze execution properly. */
247                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
248         }
249 }
250
251 #ifdef ARCH_APICTIMER_STOPS_ON_C3
252
253 /*
254  * Some BIOS implementations switch to C3 in the published C2 state.
255  * This seems to be a common problem on AMD boxen, but other vendors
256  * are affected too. We pick the most conservative approach: we assume
257  * that the local APIC stops in both C2 and C3.
258  */
259 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
260                                    struct acpi_processor_cx *cx)
261 {
262         struct acpi_processor_power *pwr = &pr->power;
263         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
264
265         /*
266          * Check, if one of the previous states already marked the lapic
267          * unstable
268          */
269         if (pwr->timer_broadcast_on_state < state)
270                 return;
271
272         if (cx->type >= type)
273                 pr->power.timer_broadcast_on_state = state;
274 }
275
276 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
277 {
278 #ifdef CONFIG_GENERIC_CLOCKEVENTS
279         unsigned long reason;
280
281         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
282                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
283
284         clockevents_notify(reason, &pr->id);
285 #else
286         cpumask_t mask = cpumask_of_cpu(pr->id);
287
288         if (pr->power.timer_broadcast_on_state < INT_MAX)
289                 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
290         else
291                 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
292 #endif
293 }
294
295 /* Power(C) State timer broadcast control */
296 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
297                                        struct acpi_processor_cx *cx,
298                                        int broadcast)
299 {
300 #ifdef CONFIG_GENERIC_CLOCKEVENTS
301
302         int state = cx - pr->power.states;
303
304         if (state >= pr->power.timer_broadcast_on_state) {
305                 unsigned long reason;
306
307                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
308                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
309                 clockevents_notify(reason, &pr->id);
310         }
311 #endif
312 }
313
314 #else
315
316 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
317                                    struct acpi_processor_cx *cstate) { }
318 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
319 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
320                                        struct acpi_processor_cx *cx,
321                                        int broadcast)
322 {
323 }
324
325 #endif
326
327 static void acpi_processor_idle(void)
328 {
329         struct acpi_processor *pr = NULL;
330         struct acpi_processor_cx *cx = NULL;
331         struct acpi_processor_cx *next_state = NULL;
332         int sleep_ticks = 0;
333         u32 t1, t2 = 0;
334
335         pr = processors[smp_processor_id()];
336         if (!pr)
337                 return;
338
339         /*
340          * Interrupts must be disabled during bus mastering calculations and
341          * for C2/C3 transitions.
342          */
343         local_irq_disable();
344
345         /*
346          * Check whether we truly need to go idle, or should
347          * reschedule:
348          */
349         if (unlikely(need_resched())) {
350                 local_irq_enable();
351                 return;
352         }
353
354         cx = pr->power.state;
355         if (!cx) {
356                 if (pm_idle_save)
357                         pm_idle_save();
358                 else
359                         acpi_safe_halt();
360                 return;
361         }
362
363         /*
364          * Check BM Activity
365          * -----------------
366          * Check for bus mastering activity (if required), record, and check
367          * for demotion.
368          */
369         if (pr->flags.bm_check) {
370                 u32 bm_status = 0;
371                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
372
373                 if (diff > 31)
374                         diff = 31;
375
376                 pr->power.bm_activity <<= diff;
377
378                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
379                 if (bm_status) {
380                         pr->power.bm_activity |= 0x1;
381                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
382                 }
383                 /*
384                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
385                  * the true state of bus mastering activity; forcing us to
386                  * manually check the BMIDEA bit of each IDE channel.
387                  */
388                 else if (errata.piix4.bmisx) {
389                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
390                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
391                                 pr->power.bm_activity |= 0x1;
392                 }
393
394                 pr->power.bm_check_timestamp = jiffies;
395
396                 /*
397                  * If bus mastering is or was active this jiffy, demote
398                  * to avoid a faulty transition.  Note that the processor
399                  * won't enter a low-power state during this call (to this
400                  * function) but should upon the next.
401                  *
402                  * TBD: A better policy might be to fallback to the demotion
403                  *      state (use it for this quantum only) istead of
404                  *      demoting -- and rely on duration as our sole demotion
405                  *      qualification.  This may, however, introduce DMA
406                  *      issues (e.g. floppy DMA transfer overrun/underrun).
407                  */
408                 if ((pr->power.bm_activity & 0x1) &&
409                     cx->demotion.threshold.bm) {
410                         local_irq_enable();
411                         next_state = cx->demotion.state;
412                         goto end;
413                 }
414         }
415
416 #ifdef CONFIG_HOTPLUG_CPU
417         /*
418          * Check for P_LVL2_UP flag before entering C2 and above on
419          * an SMP system. We do it here instead of doing it at _CST/P_LVL
420          * detection phase, to work cleanly with logical CPU hotplug.
421          */
422         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 
423             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
424                 cx = &pr->power.states[ACPI_STATE_C1];
425 #endif
426
427         /*
428          * Sleep:
429          * ------
430          * Invoke the current Cx state to put the processor to sleep.
431          */
432         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
433                 current_thread_info()->status &= ~TS_POLLING;
434                 /*
435                  * TS_POLLING-cleared state must be visible before we
436                  * test NEED_RESCHED:
437                  */
438                 smp_mb();
439                 if (need_resched()) {
440                         current_thread_info()->status |= TS_POLLING;
441                         local_irq_enable();
442                         return;
443                 }
444         }
445
446         switch (cx->type) {
447
448         case ACPI_STATE_C1:
449                 /*
450                  * Invoke C1.
451                  * Use the appropriate idle routine, the one that would
452                  * be used without acpi C-states.
453                  */
454                 if (pm_idle_save)
455                         pm_idle_save();
456                 else
457                         acpi_safe_halt();
458
459                 /*
460                  * TBD: Can't get time duration while in C1, as resumes
461                  *      go to an ISR rather than here.  Need to instrument
462                  *      base interrupt handler.
463                  */
464                 sleep_ticks = 0xFFFFFFFF;
465                 break;
466
467         case ACPI_STATE_C2:
468                 /* Get start time (ticks) */
469                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
470                 /* Invoke C2 */
471                 acpi_state_timer_broadcast(pr, cx, 1);
472                 acpi_cstate_enter(cx);
473                 /* Get end time (ticks) */
474                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
475
476 #ifdef CONFIG_GENERIC_TIME
477                 /* TSC halts in C2, so notify users */
478                 mark_tsc_unstable("possible TSC halt in C2");
479 #endif
480                 /* Re-enable interrupts */
481                 local_irq_enable();
482                 current_thread_info()->status |= TS_POLLING;
483                 /* Compute time (ticks) that we were actually asleep */
484                 sleep_ticks =
485                     ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
486                 acpi_state_timer_broadcast(pr, cx, 0);
487                 break;
488
489         case ACPI_STATE_C3:
490
491                 /*
492                  * disable bus master
493                  * bm_check implies we need ARB_DIS
494                  * !bm_check implies we need cache flush
495                  * bm_control implies whether we can do ARB_DIS
496                  *
497                  * That leaves a case where bm_check is set and bm_control is
498                  * not set. In that case we cannot do much, we enter C3
499                  * without doing anything.
500                  */
501                 if (pr->flags.bm_check && pr->flags.bm_control) {
502                         if (atomic_inc_return(&c3_cpu_count) ==
503                             num_online_cpus()) {
504                                 /*
505                                  * All CPUs are trying to go to C3
506                                  * Disable bus master arbitration
507                                  */
508                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
509                         }
510                 } else if (!pr->flags.bm_check) {
511                         /* SMP with no shared cache... Invalidate cache  */
512                         ACPI_FLUSH_CPU_CACHE();
513                 }
514
515                 /* Get start time (ticks) */
516                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
517                 /* Invoke C3 */
518                 acpi_state_timer_broadcast(pr, cx, 1);
519                 acpi_cstate_enter(cx);
520                 /* Get end time (ticks) */
521                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
522                 if (pr->flags.bm_check && pr->flags.bm_control) {
523                         /* Enable bus master arbitration */
524                         atomic_dec(&c3_cpu_count);
525                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
526                 }
527
528 #ifdef CONFIG_GENERIC_TIME
529                 /* TSC halts in C3, so notify users */
530                 mark_tsc_unstable("TSC halts in C3");
531 #endif
532                 /* Re-enable interrupts */
533                 local_irq_enable();
534                 current_thread_info()->status |= TS_POLLING;
535                 /* Compute time (ticks) that we were actually asleep */
536                 sleep_ticks =
537                     ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
538                 acpi_state_timer_broadcast(pr, cx, 0);
539                 break;
540
541         default:
542                 local_irq_enable();
543                 return;
544         }
545         cx->usage++;
546         if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
547                 cx->time += sleep_ticks;
548
549         next_state = pr->power.state;
550
551 #ifdef CONFIG_HOTPLUG_CPU
552         /* Don't do promotion/demotion */
553         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
554             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
555                 next_state = cx;
556                 goto end;
557         }
558 #endif
559
560         /*
561          * Promotion?
562          * ----------
563          * Track the number of longs (time asleep is greater than threshold)
564          * and promote when the count threshold is reached.  Note that bus
565          * mastering activity may prevent promotions.
566          * Do not promote above max_cstate.
567          */
568         if (cx->promotion.state &&
569             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
570                 if (sleep_ticks > cx->promotion.threshold.ticks &&
571                   cx->promotion.state->latency <= system_latency_constraint()) {
572                         cx->promotion.count++;
573                         cx->demotion.count = 0;
574                         if (cx->promotion.count >=
575                             cx->promotion.threshold.count) {
576                                 if (pr->flags.bm_check) {
577                                         if (!
578                                             (pr->power.bm_activity & cx->
579                                              promotion.threshold.bm)) {
580                                                 next_state =
581                                                     cx->promotion.state;
582                                                 goto end;
583                                         }
584                                 } else {
585                                         next_state = cx->promotion.state;
586                                         goto end;
587                                 }
588                         }
589                 }
590         }
591
592         /*
593          * Demotion?
594          * ---------
595          * Track the number of shorts (time asleep is less than time threshold)
596          * and demote when the usage threshold is reached.
597          */
598         if (cx->demotion.state) {
599                 if (sleep_ticks < cx->demotion.threshold.ticks) {
600                         cx->demotion.count++;
601                         cx->promotion.count = 0;
602                         if (cx->demotion.count >= cx->demotion.threshold.count) {
603                                 next_state = cx->demotion.state;
604                                 goto end;
605                         }
606                 }
607         }
608
609       end:
610         /*
611          * Demote if current state exceeds max_cstate
612          * or if the latency of the current state is unacceptable
613          */
614         if ((pr->power.state - pr->power.states) > max_cstate ||
615                 pr->power.state->latency > system_latency_constraint()) {
616                 if (cx->demotion.state)
617                         next_state = cx->demotion.state;
618         }
619
620         /*
621          * New Cx State?
622          * -------------
623          * If we're going to start using a new Cx state we must clean up
624          * from the previous and prepare to use the new.
625          */
626         if (next_state != pr->power.state)
627                 acpi_processor_power_activate(pr, next_state);
628 }
629
630 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
631 {
632         unsigned int i;
633         unsigned int state_is_set = 0;
634         struct acpi_processor_cx *lower = NULL;
635         struct acpi_processor_cx *higher = NULL;
636         struct acpi_processor_cx *cx;
637
638
639         if (!pr)
640                 return -EINVAL;
641
642         /*
643          * This function sets the default Cx state policy (OS idle handler).
644          * Our scheme is to promote quickly to C2 but more conservatively
645          * to C3.  We're favoring C2  for its characteristics of low latency
646          * (quick response), good power savings, and ability to allow bus
647          * mastering activity.  Note that the Cx state policy is completely
648          * customizable and can be altered dynamically.
649          */
650
651         /* startup state */
652         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
653                 cx = &pr->power.states[i];
654                 if (!cx->valid)
655                         continue;
656
657                 if (!state_is_set)
658                         pr->power.state = cx;
659                 state_is_set++;
660                 break;
661         }
662
663         if (!state_is_set)
664                 return -ENODEV;
665
666         /* demotion */
667         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
668                 cx = &pr->power.states[i];
669                 if (!cx->valid)
670                         continue;
671
672                 if (lower) {
673                         cx->demotion.state = lower;
674                         cx->demotion.threshold.ticks = cx->latency_ticks;
675                         cx->demotion.threshold.count = 1;
676                         if (cx->type == ACPI_STATE_C3)
677                                 cx->demotion.threshold.bm = bm_history;
678                 }
679
680                 lower = cx;
681         }
682
683         /* promotion */
684         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
685                 cx = &pr->power.states[i];
686                 if (!cx->valid)
687                         continue;
688
689                 if (higher) {
690                         cx->promotion.state = higher;
691                         cx->promotion.threshold.ticks = cx->latency_ticks;
692                         if (cx->type >= ACPI_STATE_C2)
693                                 cx->promotion.threshold.count = 4;
694                         else
695                                 cx->promotion.threshold.count = 10;
696                         if (higher->type == ACPI_STATE_C3)
697                                 cx->promotion.threshold.bm = bm_history;
698                 }
699
700                 higher = cx;
701         }
702
703         return 0;
704 }
705
706 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
707 {
708
709         if (!pr)
710                 return -EINVAL;
711
712         if (!pr->pblk)
713                 return -ENODEV;
714
715         /* if info is obtained from pblk/fadt, type equals state */
716         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
717         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
718
719 #ifndef CONFIG_HOTPLUG_CPU
720         /*
721          * Check for P_LVL2_UP flag before entering C2 and above on
722          * an SMP system. 
723          */
724         if ((num_online_cpus() > 1) &&
725             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
726                 return -ENODEV;
727 #endif
728
729         /* determine C2 and C3 address from pblk */
730         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
731         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
732
733         /* determine latencies from FADT */
734         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
735         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
736
737         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
738                           "lvl2[0x%08x] lvl3[0x%08x]\n",
739                           pr->power.states[ACPI_STATE_C2].address,
740                           pr->power.states[ACPI_STATE_C3].address));
741
742         return 0;
743 }
744
745 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
746 {
747         if (!pr->power.states[ACPI_STATE_C1].valid) {
748                 /* set the first C-State to C1 */
749                 /* all processors need to support C1 */
750                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
751                 pr->power.states[ACPI_STATE_C1].valid = 1;
752         }
753         /* the C0 state only exists as a filler in our array */
754         pr->power.states[ACPI_STATE_C0].valid = 1;
755         return 0;
756 }
757
758 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
759 {
760         acpi_status status = 0;
761         acpi_integer count;
762         int current_count;
763         int i;
764         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
765         union acpi_object *cst;
766
767
768         if (nocst)
769                 return -ENODEV;
770
771         current_count = 0;
772
773         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
774         if (ACPI_FAILURE(status)) {
775                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
776                 return -ENODEV;
777         }
778
779         cst = buffer.pointer;
780
781         /* There must be at least 2 elements */
782         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
783                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
784                 status = -EFAULT;
785                 goto end;
786         }
787
788         count = cst->package.elements[0].integer.value;
789
790         /* Validate number of power states. */
791         if (count < 1 || count != cst->package.count - 1) {
792                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
793                 status = -EFAULT;
794                 goto end;
795         }
796
797         /* Tell driver that at least _CST is supported. */
798         pr->flags.has_cst = 1;
799
800         for (i = 1; i <= count; i++) {
801                 union acpi_object *element;
802                 union acpi_object *obj;
803                 struct acpi_power_register *reg;
804                 struct acpi_processor_cx cx;
805
806                 memset(&cx, 0, sizeof(cx));
807
808                 element = &(cst->package.elements[i]);
809                 if (element->type != ACPI_TYPE_PACKAGE)
810                         continue;
811
812                 if (element->package.count != 4)
813                         continue;
814
815                 obj = &(element->package.elements[0]);
816
817                 if (obj->type != ACPI_TYPE_BUFFER)
818                         continue;
819
820                 reg = (struct acpi_power_register *)obj->buffer.pointer;
821
822                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
823                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
824                         continue;
825
826                 /* There should be an easy way to extract an integer... */
827                 obj = &(element->package.elements[1]);
828                 if (obj->type != ACPI_TYPE_INTEGER)
829                         continue;
830
831                 cx.type = obj->integer.value;
832                 /*
833                  * Some buggy BIOSes won't list C1 in _CST -
834                  * Let acpi_processor_get_power_info_default() handle them later
835                  */
836                 if (i == 1 && cx.type != ACPI_STATE_C1)
837                         current_count++;
838
839                 cx.address = reg->address;
840                 cx.index = current_count + 1;
841
842                 cx.space_id = ACPI_CSTATE_SYSTEMIO;
843                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
844                         if (acpi_processor_ffh_cstate_probe
845                                         (pr->id, &cx, reg) == 0) {
846                                 cx.space_id = ACPI_CSTATE_FFH;
847                         } else if (cx.type != ACPI_STATE_C1) {
848                                 /*
849                                  * C1 is a special case where FIXED_HARDWARE
850                                  * can be handled in non-MWAIT way as well.
851                                  * In that case, save this _CST entry info.
852                                  * That is, we retain space_id of SYSTEM_IO for
853                                  * halt based C1.
854                                  * Otherwise, ignore this info and continue.
855                                  */
856                                 continue;
857                         }
858                 }
859
860                 obj = &(element->package.elements[2]);
861                 if (obj->type != ACPI_TYPE_INTEGER)
862                         continue;
863
864                 cx.latency = obj->integer.value;
865
866                 obj = &(element->package.elements[3]);
867                 if (obj->type != ACPI_TYPE_INTEGER)
868                         continue;
869
870                 cx.power = obj->integer.value;
871
872                 current_count++;
873                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
874
875                 /*
876                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
877                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
878                  */
879                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
880                         printk(KERN_WARNING
881                                "Limiting number of power states to max (%d)\n",
882                                ACPI_PROCESSOR_MAX_POWER);
883                         printk(KERN_WARNING
884                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
885                         break;
886                 }
887         }
888
889         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
890                           current_count));
891
892         /* Validate number of power states discovered */
893         if (current_count < 2)
894                 status = -EFAULT;
895
896       end:
897         kfree(buffer.pointer);
898
899         return status;
900 }
901
902 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
903 {
904
905         if (!cx->address)
906                 return;
907
908         /*
909          * C2 latency must be less than or equal to 100
910          * microseconds.
911          */
912         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
913                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
914                                   "latency too large [%d]\n", cx->latency));
915                 return;
916         }
917
918         /*
919          * Otherwise we've met all of our C2 requirements.
920          * Normalize the C2 latency to expidite policy
921          */
922         cx->valid = 1;
923         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
924
925         return;
926 }
927
928 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
929                                            struct acpi_processor_cx *cx)
930 {
931         static int bm_check_flag;
932
933
934         if (!cx->address)
935                 return;
936
937         /*
938          * C3 latency must be less than or equal to 1000
939          * microseconds.
940          */
941         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
942                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
943                                   "latency too large [%d]\n", cx->latency));
944                 return;
945         }
946
947         /*
948          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
949          * DMA transfers are used by any ISA device to avoid livelock.
950          * Note that we could disable Type-F DMA (as recommended by
951          * the erratum), but this is known to disrupt certain ISA
952          * devices thus we take the conservative approach.
953          */
954         else if (errata.piix4.fdma) {
955                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
956                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
957                 return;
958         }
959
960         /* All the logic here assumes flags.bm_check is same across all CPUs */
961         if (!bm_check_flag) {
962                 /* Determine whether bm_check is needed based on CPU  */
963                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
964                 bm_check_flag = pr->flags.bm_check;
965         } else {
966                 pr->flags.bm_check = bm_check_flag;
967         }
968
969         if (pr->flags.bm_check) {
970                 /* bus mastering control is necessary */
971                 if (!pr->flags.bm_control) {
972                         /* In this case we enter C3 without bus mastering */
973                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
974                                 "C3 support without bus mastering control\n"));
975                 }
976         } else {
977                 /*
978                  * WBINVD should be set in fadt, for C3 state to be
979                  * supported on when bm_check is not required.
980                  */
981                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
982                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
983                                           "Cache invalidation should work properly"
984                                           " for C3 to be enabled on SMP systems\n"));
985                         return;
986                 }
987                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
988         }
989
990         /*
991          * Otherwise we've met all of our C3 requirements.
992          * Normalize the C3 latency to expidite policy.  Enable
993          * checking of bus mastering status (bm_check) so we can
994          * use this in our C3 policy
995          */
996         cx->valid = 1;
997         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
998
999         return;
1000 }
1001
1002 static int acpi_processor_power_verify(struct acpi_processor *pr)
1003 {
1004         unsigned int i;
1005         unsigned int working = 0;
1006
1007         pr->power.timer_broadcast_on_state = INT_MAX;
1008
1009         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1010                 struct acpi_processor_cx *cx = &pr->power.states[i];
1011
1012                 switch (cx->type) {
1013                 case ACPI_STATE_C1:
1014                         cx->valid = 1;
1015                         break;
1016
1017                 case ACPI_STATE_C2:
1018                         acpi_processor_power_verify_c2(cx);
1019                         if (cx->valid)
1020                                 acpi_timer_check_state(i, pr, cx);
1021                         break;
1022
1023                 case ACPI_STATE_C3:
1024                         acpi_processor_power_verify_c3(pr, cx);
1025                         if (cx->valid)
1026                                 acpi_timer_check_state(i, pr, cx);
1027                         break;
1028                 }
1029
1030                 if (cx->valid)
1031                         working++;
1032         }
1033
1034         acpi_propagate_timer_broadcast(pr);
1035
1036         return (working);
1037 }
1038
1039 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1040 {
1041         unsigned int i;
1042         int result;
1043
1044
1045         /* NOTE: the idle thread may not be running while calling
1046          * this function */
1047
1048         /* Zero initialize all the C-states info. */
1049         memset(pr->power.states, 0, sizeof(pr->power.states));
1050
1051         result = acpi_processor_get_power_info_cst(pr);
1052         if (result == -ENODEV)
1053                 result = acpi_processor_get_power_info_fadt(pr);
1054
1055         if (result)
1056                 return result;
1057
1058         acpi_processor_get_power_info_default(pr);
1059
1060         pr->power.count = acpi_processor_power_verify(pr);
1061
1062         /*
1063          * Set Default Policy
1064          * ------------------
1065          * Now that we know which states are supported, set the default
1066          * policy.  Note that this policy can be changed dynamically
1067          * (e.g. encourage deeper sleeps to conserve battery life when
1068          * not on AC).
1069          */
1070         result = acpi_processor_set_power_policy(pr);
1071         if (result)
1072                 return result;
1073
1074         /*
1075          * if one state of type C2 or C3 is available, mark this
1076          * CPU as being "idle manageable"
1077          */
1078         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1079                 if (pr->power.states[i].valid) {
1080                         pr->power.count = i;
1081                         if (pr->power.states[i].type >= ACPI_STATE_C2)
1082                                 pr->flags.power = 1;
1083                 }
1084         }
1085
1086         return 0;
1087 }
1088
1089 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1090 {
1091         int result = 0;
1092
1093
1094         if (!pr)
1095                 return -EINVAL;
1096
1097         if (nocst) {
1098                 return -ENODEV;
1099         }
1100
1101         if (!pr->flags.power_setup_done)
1102                 return -ENODEV;
1103
1104         /* Fall back to the default idle loop */
1105         pm_idle = pm_idle_save;
1106         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
1107
1108         pr->flags.power = 0;
1109         result = acpi_processor_get_power_info(pr);
1110         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1111                 pm_idle = acpi_processor_idle;
1112
1113         return result;
1114 }
1115
1116 /* proc interface */
1117
1118 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1119 {
1120         struct acpi_processor *pr = seq->private;
1121         unsigned int i;
1122
1123
1124         if (!pr)
1125                 goto end;
1126
1127         seq_printf(seq, "active state:            C%zd\n"
1128                    "max_cstate:              C%d\n"
1129                    "bus master activity:     %08x\n"
1130                    "maximum allowed latency: %d usec\n",
1131                    pr->power.state ? pr->power.state - pr->power.states : 0,
1132                    max_cstate, (unsigned)pr->power.bm_activity,
1133                    system_latency_constraint());
1134
1135         seq_puts(seq, "states:\n");
1136
1137         for (i = 1; i <= pr->power.count; i++) {
1138                 seq_printf(seq, "   %cC%d:                  ",
1139                            (&pr->power.states[i] ==
1140                             pr->power.state ? '*' : ' '), i);
1141
1142                 if (!pr->power.states[i].valid) {
1143                         seq_puts(seq, "<not supported>\n");
1144                         continue;
1145                 }
1146
1147                 switch (pr->power.states[i].type) {
1148                 case ACPI_STATE_C1:
1149                         seq_printf(seq, "type[C1] ");
1150                         break;
1151                 case ACPI_STATE_C2:
1152                         seq_printf(seq, "type[C2] ");
1153                         break;
1154                 case ACPI_STATE_C3:
1155                         seq_printf(seq, "type[C3] ");
1156                         break;
1157                 default:
1158                         seq_printf(seq, "type[--] ");
1159                         break;
1160                 }
1161
1162                 if (pr->power.states[i].promotion.state)
1163                         seq_printf(seq, "promotion[C%zd] ",
1164                                    (pr->power.states[i].promotion.state -
1165                                     pr->power.states));
1166                 else
1167                         seq_puts(seq, "promotion[--] ");
1168
1169                 if (pr->power.states[i].demotion.state)
1170                         seq_printf(seq, "demotion[C%zd] ",
1171                                    (pr->power.states[i].demotion.state -
1172                                     pr->power.states));
1173                 else
1174                         seq_puts(seq, "demotion[--] ");
1175
1176                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1177                            pr->power.states[i].latency,
1178                            pr->power.states[i].usage,
1179                            (unsigned long long)pr->power.states[i].time);
1180         }
1181
1182       end:
1183         return 0;
1184 }
1185
1186 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1187 {
1188         return single_open(file, acpi_processor_power_seq_show,
1189                            PDE(inode)->data);
1190 }
1191
1192 static const struct file_operations acpi_processor_power_fops = {
1193         .open = acpi_processor_power_open_fs,
1194         .read = seq_read,
1195         .llseek = seq_lseek,
1196         .release = single_release,
1197 };
1198
1199 #ifdef CONFIG_SMP
1200 static void smp_callback(void *v)
1201 {
1202         /* we already woke the CPU up, nothing more to do */
1203 }
1204
1205 /*
1206  * This function gets called when a part of the kernel has a new latency
1207  * requirement.  This means we need to get all processors out of their C-state,
1208  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1209  * wakes them all right up.
1210  */
1211 static int acpi_processor_latency_notify(struct notifier_block *b,
1212                 unsigned long l, void *v)
1213 {
1214         smp_call_function(smp_callback, NULL, 0, 1);
1215         return NOTIFY_OK;
1216 }
1217
1218 static struct notifier_block acpi_processor_latency_notifier = {
1219         .notifier_call = acpi_processor_latency_notify,
1220 };
1221 #endif
1222
1223 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1224                               struct acpi_device *device)
1225 {
1226         acpi_status status = 0;
1227         static int first_run;
1228         struct proc_dir_entry *entry = NULL;
1229         unsigned int i;
1230
1231
1232         if (!first_run) {
1233                 dmi_check_system(processor_power_dmi_table);
1234                 if (max_cstate < ACPI_C_STATES_MAX)
1235                         printk(KERN_NOTICE
1236                                "ACPI: processor limited to max C-state %d\n",
1237                                max_cstate);
1238                 first_run++;
1239 #ifdef CONFIG_SMP
1240                 register_latency_notifier(&acpi_processor_latency_notifier);
1241 #endif
1242         }
1243
1244         if (!pr)
1245                 return -EINVAL;
1246
1247         if (acpi_gbl_FADT.cst_control && !nocst) {
1248                 status =
1249                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1250                 if (ACPI_FAILURE(status)) {
1251                         ACPI_EXCEPTION((AE_INFO, status,
1252                                         "Notifying BIOS of _CST ability failed"));
1253                 }
1254         }
1255
1256         acpi_processor_get_power_info(pr);
1257
1258         /*
1259          * Install the idle handler if processor power management is supported.
1260          * Note that we use previously set idle handler will be used on
1261          * platforms that only support C1.
1262          */
1263         if ((pr->flags.power) && (!boot_option_idle_override)) {
1264                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1265                 for (i = 1; i <= pr->power.count; i++)
1266                         if (pr->power.states[i].valid)
1267                                 printk(" C%d[C%d]", i,
1268                                        pr->power.states[i].type);
1269                 printk(")\n");
1270
1271                 if (pr->id == 0) {
1272                         pm_idle_save = pm_idle;
1273                         pm_idle = acpi_processor_idle;
1274                 }
1275         }
1276
1277         /* 'power' [R] */
1278         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1279                                   S_IRUGO, acpi_device_dir(device));
1280         if (!entry)
1281                 return -EIO;
1282         else {
1283                 entry->proc_fops = &acpi_processor_power_fops;
1284                 entry->data = acpi_driver_data(device);
1285                 entry->owner = THIS_MODULE;
1286         }
1287
1288         pr->flags.power_setup_done = 1;
1289
1290         return 0;
1291 }
1292
1293 int acpi_processor_power_exit(struct acpi_processor *pr,
1294                               struct acpi_device *device)
1295 {
1296
1297         pr->flags.power_setup_done = 0;
1298
1299         if (acpi_device_dir(device))
1300                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1301                                   acpi_device_dir(device));
1302
1303         /* Unregister the idle handler when processor #0 is removed. */
1304         if (pr->id == 0) {
1305                 pm_idle = pm_idle_save;
1306
1307                 /*
1308                  * We are about to unload the current idle thread pm callback
1309                  * (pm_idle), Wait for all processors to update cached/local
1310                  * copies of pm_idle before proceeding.
1311                  */
1312                 cpu_idle_wait();
1313 #ifdef CONFIG_SMP
1314                 unregister_latency_notifier(&acpi_processor_latency_notifier);
1315 #endif
1316         }
1317
1318         return 0;
1319 }