]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/char/tty_io.c
[PATCH] tty: clarify disassociate_ctty
[linux-2.6-omap-h63xx.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92 
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  * 
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote init_dev and release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106
107 #undef TTY_DEBUG_HANGUP
108
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
111
112 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
113         .c_iflag = ICRNL | IXON,
114         .c_oflag = OPOST | ONLCR,
115         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117                    ECHOCTL | ECHOKE | IEXTEN,
118         .c_cc = INIT_C_CC,
119         .c_ispeed = 38400,
120         .c_ospeed = 38400
121 };
122
123 EXPORT_SYMBOL(tty_std_termios);
124
125 /* This list gets poked at by procfs and various bits of boot up code. This
126    could do with some rationalisation such as pulling the tty proc function
127    into this file */
128    
129 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
130
131 /* Mutex to protect creating and releasing a tty. This is shared with
132    vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
135
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver;   /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit;           /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
143
144 extern void disable_early_printk(void);
145
146 static void initialize_tty_struct(struct tty_struct *tty);
147
148 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
149 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
150 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
151 static unsigned int tty_poll(struct file *, poll_table *);
152 static int tty_open(struct inode *, struct file *);
153 static int tty_release(struct inode *, struct file *);
154 int tty_ioctl(struct inode * inode, struct file * file,
155               unsigned int cmd, unsigned long arg);
156 static int tty_fasync(int fd, struct file * filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 static struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 static void tty_buffer_free_all(struct tty_struct *);
175
176 /**
177  *      free_tty_struct         -       free a disused tty
178  *      @tty: tty struct to free
179  *
180  *      Free the write buffers, tty queue and tty memory itself.
181  *
182  *      Locking: none. Must be called after tty is definitely unused
183  */
184
185 static inline void free_tty_struct(struct tty_struct *tty)
186 {
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
193
194 /**
195  *      tty_name        -       return tty naming
196  *      @tty: tty structure
197  *      @buf: buffer for output
198  *
199  *      Convert a tty structure into a name. The name reflects the kernel
200  *      naming policy and if udev is in use may not reflect user space
201  *
202  *      Locking: none
203  */
204
205 char *tty_name(struct tty_struct *tty, char *buf)
206 {
207         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
208                 strcpy(buf, "NULL tty");
209         else
210                 strcpy(buf, tty->name);
211         return buf;
212 }
213
214 EXPORT_SYMBOL(tty_name);
215
216 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
217                               const char *routine)
218 {
219 #ifdef TTY_PARANOIA_CHECK
220         if (!tty) {
221                 printk(KERN_WARNING
222                         "null TTY for (%d:%d) in %s\n",
223                         imajor(inode), iminor(inode), routine);
224                 return 1;
225         }
226         if (tty->magic != TTY_MAGIC) {
227                 printk(KERN_WARNING
228                         "bad magic number for tty struct (%d:%d) in %s\n",
229                         imajor(inode), iminor(inode), routine);
230                 return 1;
231         }
232 #endif
233         return 0;
234 }
235
236 static int check_tty_count(struct tty_struct *tty, const char *routine)
237 {
238 #ifdef CHECK_TTY_COUNT
239         struct list_head *p;
240         int count = 0;
241         
242         file_list_lock();
243         list_for_each(p, &tty->tty_files) {
244                 count++;
245         }
246         file_list_unlock();
247         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
248             tty->driver->subtype == PTY_TYPE_SLAVE &&
249             tty->link && tty->link->count)
250                 count++;
251         if (tty->count != count) {
252                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
253                                     "!= #fd's(%d) in %s\n",
254                        tty->name, tty->count, count, routine);
255                 return count;
256         }
257 #endif
258         return 0;
259 }
260
261 /*
262  * Tty buffer allocation management
263  */
264
265 /**
266  *      tty_buffer_free_all             -       free buffers used by a tty
267  *      @tty: tty to free from
268  *
269  *      Remove all the buffers pending on a tty whether queued with data
270  *      or in the free ring. Must be called when the tty is no longer in use
271  *
272  *      Locking: none
273  */
274
275 static void tty_buffer_free_all(struct tty_struct *tty)
276 {
277         struct tty_buffer *thead;
278         while((thead = tty->buf.head) != NULL) {
279                 tty->buf.head = thead->next;
280                 kfree(thead);
281         }
282         while((thead = tty->buf.free) != NULL) {
283                 tty->buf.free = thead->next;
284                 kfree(thead);
285         }
286         tty->buf.tail = NULL;
287         tty->buf.memory_used = 0;
288 }
289
290 /**
291  *      tty_buffer_init         -       prepare a tty buffer structure
292  *      @tty: tty to initialise
293  *
294  *      Set up the initial state of the buffer management for a tty device.
295  *      Must be called before the other tty buffer functions are used.
296  *
297  *      Locking: none
298  */
299
300 static void tty_buffer_init(struct tty_struct *tty)
301 {
302         spin_lock_init(&tty->buf.lock);
303         tty->buf.head = NULL;
304         tty->buf.tail = NULL;
305         tty->buf.free = NULL;
306         tty->buf.memory_used = 0;
307 }
308
309 /**
310  *      tty_buffer_alloc        -       allocate a tty buffer
311  *      @tty: tty device
312  *      @size: desired size (characters)
313  *
314  *      Allocate a new tty buffer to hold the desired number of characters.
315  *      Return NULL if out of memory or the allocation would exceed the
316  *      per device queue
317  *
318  *      Locking: Caller must hold tty->buf.lock
319  */
320
321 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
322 {
323         struct tty_buffer *p;
324
325         if (tty->buf.memory_used + size > 65536)
326                 return NULL;
327         p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
328         if(p == NULL)
329                 return NULL;
330         p->used = 0;
331         p->size = size;
332         p->next = NULL;
333         p->commit = 0;
334         p->read = 0;
335         p->char_buf_ptr = (char *)(p->data);
336         p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
337         tty->buf.memory_used += size;
338         return p;
339 }
340
341 /**
342  *      tty_buffer_free         -       free a tty buffer
343  *      @tty: tty owning the buffer
344  *      @b: the buffer to free
345  *
346  *      Free a tty buffer, or add it to the free list according to our
347  *      internal strategy
348  *
349  *      Locking: Caller must hold tty->buf.lock
350  */
351
352 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
353 {
354         /* Dumb strategy for now - should keep some stats */
355         tty->buf.memory_used -= b->size;
356         WARN_ON(tty->buf.memory_used < 0);
357
358         if(b->size >= 512)
359                 kfree(b);
360         else {
361                 b->next = tty->buf.free;
362                 tty->buf.free = b;
363         }
364 }
365
366 /**
367  *      tty_buffer_find         -       find a free tty buffer
368  *      @tty: tty owning the buffer
369  *      @size: characters wanted
370  *
371  *      Locate an existing suitable tty buffer or if we are lacking one then
372  *      allocate a new one. We round our buffers off in 256 character chunks
373  *      to get better allocation behaviour.
374  *
375  *      Locking: Caller must hold tty->buf.lock
376  */
377
378 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
379 {
380         struct tty_buffer **tbh = &tty->buf.free;
381         while((*tbh) != NULL) {
382                 struct tty_buffer *t = *tbh;
383                 if(t->size >= size) {
384                         *tbh = t->next;
385                         t->next = NULL;
386                         t->used = 0;
387                         t->commit = 0;
388                         t->read = 0;
389                         tty->buf.memory_used += t->size;
390                         return t;
391                 }
392                 tbh = &((*tbh)->next);
393         }
394         /* Round the buffer size out */
395         size = (size + 0xFF) & ~ 0xFF;
396         return tty_buffer_alloc(tty, size);
397         /* Should possibly check if this fails for the largest buffer we
398            have queued and recycle that ? */
399 }
400
401 /**
402  *      tty_buffer_request_room         -       grow tty buffer if needed
403  *      @tty: tty structure
404  *      @size: size desired
405  *
406  *      Make at least size bytes of linear space available for the tty
407  *      buffer. If we fail return the size we managed to find.
408  *
409  *      Locking: Takes tty->buf.lock
410  */
411 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
412 {
413         struct tty_buffer *b, *n;
414         int left;
415         unsigned long flags;
416
417         spin_lock_irqsave(&tty->buf.lock, flags);
418
419         /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
420            remove this conditional if its worth it. This would be invisible
421            to the callers */
422         if ((b = tty->buf.tail) != NULL)
423                 left = b->size - b->used;
424         else
425                 left = 0;
426
427         if (left < size) {
428                 /* This is the slow path - looking for new buffers to use */
429                 if ((n = tty_buffer_find(tty, size)) != NULL) {
430                         if (b != NULL) {
431                                 b->next = n;
432                                 b->commit = b->used;
433                         } else
434                                 tty->buf.head = n;
435                         tty->buf.tail = n;
436                 } else
437                         size = left;
438         }
439
440         spin_unlock_irqrestore(&tty->buf.lock, flags);
441         return size;
442 }
443 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
444
445 /**
446  *      tty_insert_flip_string  -       Add characters to the tty buffer
447  *      @tty: tty structure
448  *      @chars: characters
449  *      @size: size
450  *
451  *      Queue a series of bytes to the tty buffering. All the characters
452  *      passed are marked as without error. Returns the number added.
453  *
454  *      Locking: Called functions may take tty->buf.lock
455  */
456
457 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
458                                 size_t size)
459 {
460         int copied = 0;
461         do {
462                 int space = tty_buffer_request_room(tty, size - copied);
463                 struct tty_buffer *tb = tty->buf.tail;
464                 /* If there is no space then tb may be NULL */
465                 if(unlikely(space == 0))
466                         break;
467                 memcpy(tb->char_buf_ptr + tb->used, chars, space);
468                 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
469                 tb->used += space;
470                 copied += space;
471                 chars += space;
472                 /* There is a small chance that we need to split the data over
473                    several buffers. If this is the case we must loop */
474         } while (unlikely(size > copied));
475         return copied;
476 }
477 EXPORT_SYMBOL(tty_insert_flip_string);
478
479 /**
480  *      tty_insert_flip_string_flags    -       Add characters to the tty buffer
481  *      @tty: tty structure
482  *      @chars: characters
483  *      @flags: flag bytes
484  *      @size: size
485  *
486  *      Queue a series of bytes to the tty buffering. For each character
487  *      the flags array indicates the status of the character. Returns the
488  *      number added.
489  *
490  *      Locking: Called functions may take tty->buf.lock
491  */
492
493 int tty_insert_flip_string_flags(struct tty_struct *tty,
494                 const unsigned char *chars, const char *flags, size_t size)
495 {
496         int copied = 0;
497         do {
498                 int space = tty_buffer_request_room(tty, size - copied);
499                 struct tty_buffer *tb = tty->buf.tail;
500                 /* If there is no space then tb may be NULL */
501                 if(unlikely(space == 0))
502                         break;
503                 memcpy(tb->char_buf_ptr + tb->used, chars, space);
504                 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
505                 tb->used += space;
506                 copied += space;
507                 chars += space;
508                 flags += space;
509                 /* There is a small chance that we need to split the data over
510                    several buffers. If this is the case we must loop */
511         } while (unlikely(size > copied));
512         return copied;
513 }
514 EXPORT_SYMBOL(tty_insert_flip_string_flags);
515
516 /**
517  *      tty_schedule_flip       -       push characters to ldisc
518  *      @tty: tty to push from
519  *
520  *      Takes any pending buffers and transfers their ownership to the
521  *      ldisc side of the queue. It then schedules those characters for
522  *      processing by the line discipline.
523  *
524  *      Locking: Takes tty->buf.lock
525  */
526
527 void tty_schedule_flip(struct tty_struct *tty)
528 {
529         unsigned long flags;
530         spin_lock_irqsave(&tty->buf.lock, flags);
531         if (tty->buf.tail != NULL)
532                 tty->buf.tail->commit = tty->buf.tail->used;
533         spin_unlock_irqrestore(&tty->buf.lock, flags);
534         schedule_delayed_work(&tty->buf.work, 1);
535 }
536 EXPORT_SYMBOL(tty_schedule_flip);
537
538 /**
539  *      tty_prepare_flip_string         -       make room for characters
540  *      @tty: tty
541  *      @chars: return pointer for character write area
542  *      @size: desired size
543  *
544  *      Prepare a block of space in the buffer for data. Returns the length
545  *      available and buffer pointer to the space which is now allocated and
546  *      accounted for as ready for normal characters. This is used for drivers
547  *      that need their own block copy routines into the buffer. There is no
548  *      guarantee the buffer is a DMA target!
549  *
550  *      Locking: May call functions taking tty->buf.lock
551  */
552
553 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
554 {
555         int space = tty_buffer_request_room(tty, size);
556         if (likely(space)) {
557                 struct tty_buffer *tb = tty->buf.tail;
558                 *chars = tb->char_buf_ptr + tb->used;
559                 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
560                 tb->used += space;
561         }
562         return space;
563 }
564
565 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
566
567 /**
568  *      tty_prepare_flip_string_flags   -       make room for characters
569  *      @tty: tty
570  *      @chars: return pointer for character write area
571  *      @flags: return pointer for status flag write area
572  *      @size: desired size
573  *
574  *      Prepare a block of space in the buffer for data. Returns the length
575  *      available and buffer pointer to the space which is now allocated and
576  *      accounted for as ready for characters. This is used for drivers
577  *      that need their own block copy routines into the buffer. There is no
578  *      guarantee the buffer is a DMA target!
579  *
580  *      Locking: May call functions taking tty->buf.lock
581  */
582
583 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
584 {
585         int space = tty_buffer_request_room(tty, size);
586         if (likely(space)) {
587                 struct tty_buffer *tb = tty->buf.tail;
588                 *chars = tb->char_buf_ptr + tb->used;
589                 *flags = tb->flag_buf_ptr + tb->used;
590                 tb->used += space;
591         }
592         return space;
593 }
594
595 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
596
597
598
599 /**
600  *      tty_set_termios_ldisc           -       set ldisc field
601  *      @tty: tty structure
602  *      @num: line discipline number
603  *
604  *      This is probably overkill for real world processors but
605  *      they are not on hot paths so a little discipline won't do 
606  *      any harm.
607  *
608  *      Locking: takes termios_mutex
609  */
610  
611 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
612 {
613         mutex_lock(&tty->termios_mutex);
614         tty->termios->c_line = num;
615         mutex_unlock(&tty->termios_mutex);
616 }
617
618 /*
619  *      This guards the refcounted line discipline lists. The lock
620  *      must be taken with irqs off because there are hangup path
621  *      callers who will do ldisc lookups and cannot sleep.
622  */
623  
624 static DEFINE_SPINLOCK(tty_ldisc_lock);
625 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
626 static struct tty_ldisc tty_ldiscs[NR_LDISCS];  /* line disc dispatch table */
627
628 /**
629  *      tty_register_ldisc      -       install a line discipline
630  *      @disc: ldisc number
631  *      @new_ldisc: pointer to the ldisc object
632  *
633  *      Installs a new line discipline into the kernel. The discipline
634  *      is set up as unreferenced and then made available to the kernel
635  *      from this point onwards.
636  *
637  *      Locking:
638  *              takes tty_ldisc_lock to guard against ldisc races
639  */
640
641 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
642 {
643         unsigned long flags;
644         int ret = 0;
645         
646         if (disc < N_TTY || disc >= NR_LDISCS)
647                 return -EINVAL;
648         
649         spin_lock_irqsave(&tty_ldisc_lock, flags);
650         tty_ldiscs[disc] = *new_ldisc;
651         tty_ldiscs[disc].num = disc;
652         tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
653         tty_ldiscs[disc].refcount = 0;
654         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
655         
656         return ret;
657 }
658 EXPORT_SYMBOL(tty_register_ldisc);
659
660 /**
661  *      tty_unregister_ldisc    -       unload a line discipline
662  *      @disc: ldisc number
663  *      @new_ldisc: pointer to the ldisc object
664  *
665  *      Remove a line discipline from the kernel providing it is not
666  *      currently in use.
667  *
668  *      Locking:
669  *              takes tty_ldisc_lock to guard against ldisc races
670  */
671
672 int tty_unregister_ldisc(int disc)
673 {
674         unsigned long flags;
675         int ret = 0;
676
677         if (disc < N_TTY || disc >= NR_LDISCS)
678                 return -EINVAL;
679
680         spin_lock_irqsave(&tty_ldisc_lock, flags);
681         if (tty_ldiscs[disc].refcount)
682                 ret = -EBUSY;
683         else
684                 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
685         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
686
687         return ret;
688 }
689 EXPORT_SYMBOL(tty_unregister_ldisc);
690
691 /**
692  *      tty_ldisc_get           -       take a reference to an ldisc
693  *      @disc: ldisc number
694  *
695  *      Takes a reference to a line discipline. Deals with refcounts and
696  *      module locking counts. Returns NULL if the discipline is not available.
697  *      Returns a pointer to the discipline and bumps the ref count if it is
698  *      available
699  *
700  *      Locking:
701  *              takes tty_ldisc_lock to guard against ldisc races
702  */
703
704 struct tty_ldisc *tty_ldisc_get(int disc)
705 {
706         unsigned long flags;
707         struct tty_ldisc *ld;
708
709         if (disc < N_TTY || disc >= NR_LDISCS)
710                 return NULL;
711         
712         spin_lock_irqsave(&tty_ldisc_lock, flags);
713
714         ld = &tty_ldiscs[disc];
715         /* Check the entry is defined */
716         if(ld->flags & LDISC_FLAG_DEFINED)
717         {
718                 /* If the module is being unloaded we can't use it */
719                 if (!try_module_get(ld->owner))
720                         ld = NULL;
721                 else /* lock it */
722                         ld->refcount++;
723         }
724         else
725                 ld = NULL;
726         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
727         return ld;
728 }
729
730 EXPORT_SYMBOL_GPL(tty_ldisc_get);
731
732 /**
733  *      tty_ldisc_put           -       drop ldisc reference
734  *      @disc: ldisc number
735  *
736  *      Drop a reference to a line discipline. Manage refcounts and
737  *      module usage counts
738  *
739  *      Locking:
740  *              takes tty_ldisc_lock to guard against ldisc races
741  */
742
743 void tty_ldisc_put(int disc)
744 {
745         struct tty_ldisc *ld;
746         unsigned long flags;
747         
748         BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
749                 
750         spin_lock_irqsave(&tty_ldisc_lock, flags);
751         ld = &tty_ldiscs[disc];
752         BUG_ON(ld->refcount == 0);
753         ld->refcount--;
754         module_put(ld->owner);
755         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
756 }
757         
758 EXPORT_SYMBOL_GPL(tty_ldisc_put);
759
760 /**
761  *      tty_ldisc_assign        -       set ldisc on a tty
762  *      @tty: tty to assign
763  *      @ld: line discipline
764  *
765  *      Install an instance of a line discipline into a tty structure. The
766  *      ldisc must have a reference count above zero to ensure it remains/
767  *      The tty instance refcount starts at zero.
768  *
769  *      Locking:
770  *              Caller must hold references
771  */
772
773 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
774 {
775         tty->ldisc = *ld;
776         tty->ldisc.refcount = 0;
777 }
778
779 /**
780  *      tty_ldisc_try           -       internal helper
781  *      @tty: the tty
782  *
783  *      Make a single attempt to grab and bump the refcount on
784  *      the tty ldisc. Return 0 on failure or 1 on success. This is
785  *      used to implement both the waiting and non waiting versions
786  *      of tty_ldisc_ref
787  *
788  *      Locking: takes tty_ldisc_lock
789  */
790
791 static int tty_ldisc_try(struct tty_struct *tty)
792 {
793         unsigned long flags;
794         struct tty_ldisc *ld;
795         int ret = 0;
796         
797         spin_lock_irqsave(&tty_ldisc_lock, flags);
798         ld = &tty->ldisc;
799         if(test_bit(TTY_LDISC, &tty->flags))
800         {
801                 ld->refcount++;
802                 ret = 1;
803         }
804         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
805         return ret;
806 }
807
808 /**
809  *      tty_ldisc_ref_wait      -       wait for the tty ldisc
810  *      @tty: tty device
811  *
812  *      Dereference the line discipline for the terminal and take a 
813  *      reference to it. If the line discipline is in flux then 
814  *      wait patiently until it changes.
815  *
816  *      Note: Must not be called from an IRQ/timer context. The caller
817  *      must also be careful not to hold other locks that will deadlock
818  *      against a discipline change, such as an existing ldisc reference
819  *      (which we check for)
820  *
821  *      Locking: call functions take tty_ldisc_lock
822  */
823  
824 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
825 {
826         /* wait_event is a macro */
827         wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
828         if(tty->ldisc.refcount == 0)
829                 printk(KERN_ERR "tty_ldisc_ref_wait\n");
830         return &tty->ldisc;
831 }
832
833 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
834
835 /**
836  *      tty_ldisc_ref           -       get the tty ldisc
837  *      @tty: tty device
838  *
839  *      Dereference the line discipline for the terminal and take a 
840  *      reference to it. If the line discipline is in flux then 
841  *      return NULL. Can be called from IRQ and timer functions.
842  *
843  *      Locking: called functions take tty_ldisc_lock
844  */
845  
846 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
847 {
848         if(tty_ldisc_try(tty))
849                 return &tty->ldisc;
850         return NULL;
851 }
852
853 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
854
855 /**
856  *      tty_ldisc_deref         -       free a tty ldisc reference
857  *      @ld: reference to free up
858  *
859  *      Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
860  *      be called in IRQ context.
861  *
862  *      Locking: takes tty_ldisc_lock
863  */
864  
865 void tty_ldisc_deref(struct tty_ldisc *ld)
866 {
867         unsigned long flags;
868
869         BUG_ON(ld == NULL);
870                 
871         spin_lock_irqsave(&tty_ldisc_lock, flags);
872         if(ld->refcount == 0)
873                 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
874         else
875                 ld->refcount--;
876         if(ld->refcount == 0)
877                 wake_up(&tty_ldisc_wait);
878         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
879 }
880
881 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
882
883 /**
884  *      tty_ldisc_enable        -       allow ldisc use
885  *      @tty: terminal to activate ldisc on
886  *
887  *      Set the TTY_LDISC flag when the line discipline can be called
888  *      again. Do neccessary wakeups for existing sleepers.
889  *
890  *      Note: nobody should set this bit except via this function. Clearing
891  *      directly is allowed.
892  */
893
894 static void tty_ldisc_enable(struct tty_struct *tty)
895 {
896         set_bit(TTY_LDISC, &tty->flags);
897         wake_up(&tty_ldisc_wait);
898 }
899         
900 /**
901  *      tty_set_ldisc           -       set line discipline
902  *      @tty: the terminal to set
903  *      @ldisc: the line discipline
904  *
905  *      Set the discipline of a tty line. Must be called from a process
906  *      context.
907  *
908  *      Locking: takes tty_ldisc_lock.
909  *               called functions take termios_mutex
910  */
911  
912 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
913 {
914         int retval = 0;
915         struct tty_ldisc o_ldisc;
916         char buf[64];
917         int work;
918         unsigned long flags;
919         struct tty_ldisc *ld;
920         struct tty_struct *o_tty;
921
922         if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
923                 return -EINVAL;
924
925 restart:
926
927         ld = tty_ldisc_get(ldisc);
928         /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
929         /* Cyrus Durgin <cider@speakeasy.org> */
930         if (ld == NULL) {
931                 request_module("tty-ldisc-%d", ldisc);
932                 ld = tty_ldisc_get(ldisc);
933         }
934         if (ld == NULL)
935                 return -EINVAL;
936
937         /*
938          *      No more input please, we are switching. The new ldisc
939          *      will update this value in the ldisc open function
940          */
941
942         tty->receive_room = 0;
943
944         /*
945          *      Problem: What do we do if this blocks ?
946          */
947
948         tty_wait_until_sent(tty, 0);
949
950         if (tty->ldisc.num == ldisc) {
951                 tty_ldisc_put(ldisc);
952                 return 0;
953         }
954
955         o_ldisc = tty->ldisc;
956         o_tty = tty->link;
957
958         /*
959          *      Make sure we don't change while someone holds a
960          *      reference to the line discipline. The TTY_LDISC bit
961          *      prevents anyone taking a reference once it is clear.
962          *      We need the lock to avoid racing reference takers.
963          */
964
965         spin_lock_irqsave(&tty_ldisc_lock, flags);
966         if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
967                 if(tty->ldisc.refcount) {
968                         /* Free the new ldisc we grabbed. Must drop the lock
969                            first. */
970                         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
971                         tty_ldisc_put(ldisc);
972                         /*
973                          * There are several reasons we may be busy, including
974                          * random momentary I/O traffic. We must therefore
975                          * retry. We could distinguish between blocking ops
976                          * and retries if we made tty_ldisc_wait() smarter. That
977                          * is up for discussion.
978                          */
979                         if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
980                                 return -ERESTARTSYS;
981                         goto restart;
982                 }
983                 if(o_tty && o_tty->ldisc.refcount) {
984                         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
985                         tty_ldisc_put(ldisc);
986                         if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
987                                 return -ERESTARTSYS;
988                         goto restart;
989                 }
990         }
991
992         /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
993
994         if (!test_bit(TTY_LDISC, &tty->flags)) {
995                 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
996                 tty_ldisc_put(ldisc);
997                 ld = tty_ldisc_ref_wait(tty);
998                 tty_ldisc_deref(ld);
999                 goto restart;
1000         }
1001
1002         clear_bit(TTY_LDISC, &tty->flags);
1003         if (o_tty)
1004                 clear_bit(TTY_LDISC, &o_tty->flags);
1005         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1006
1007         /*
1008          *      From this point on we know nobody has an ldisc
1009          *      usage reference, nor can they obtain one until
1010          *      we say so later on.
1011          */
1012
1013         work = cancel_delayed_work(&tty->buf.work);
1014         /*
1015          * Wait for ->hangup_work and ->buf.work handlers to terminate
1016          */
1017          
1018         flush_scheduled_work();
1019         /* Shutdown the current discipline. */
1020         if (tty->ldisc.close)
1021                 (tty->ldisc.close)(tty);
1022
1023         /* Now set up the new line discipline. */
1024         tty_ldisc_assign(tty, ld);
1025         tty_set_termios_ldisc(tty, ldisc);
1026         if (tty->ldisc.open)
1027                 retval = (tty->ldisc.open)(tty);
1028         if (retval < 0) {
1029                 tty_ldisc_put(ldisc);
1030                 /* There is an outstanding reference here so this is safe */
1031                 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1032                 tty_set_termios_ldisc(tty, tty->ldisc.num);
1033                 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1034                         tty_ldisc_put(o_ldisc.num);
1035                         /* This driver is always present */
1036                         tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1037                         tty_set_termios_ldisc(tty, N_TTY);
1038                         if (tty->ldisc.open) {
1039                                 int r = tty->ldisc.open(tty);
1040
1041                                 if (r < 0)
1042                                         panic("Couldn't open N_TTY ldisc for "
1043                                               "%s --- error %d.",
1044                                               tty_name(tty, buf), r);
1045                         }
1046                 }
1047         }
1048         /* At this point we hold a reference to the new ldisc and a
1049            a reference to the old ldisc. If we ended up flipping back
1050            to the existing ldisc we have two references to it */
1051         
1052         if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1053                 tty->driver->set_ldisc(tty);
1054                 
1055         tty_ldisc_put(o_ldisc.num);
1056         
1057         /*
1058          *      Allow ldisc referencing to occur as soon as the driver
1059          *      ldisc callback completes.
1060          */
1061          
1062         tty_ldisc_enable(tty);
1063         if (o_tty)
1064                 tty_ldisc_enable(o_tty);
1065         
1066         /* Restart it in case no characters kick it off. Safe if
1067            already running */
1068         if (work)
1069                 schedule_delayed_work(&tty->buf.work, 1);
1070         return retval;
1071 }
1072
1073 /**
1074  *      get_tty_driver          -       find device of a tty
1075  *      @dev_t: device identifier
1076  *      @index: returns the index of the tty
1077  *
1078  *      This routine returns a tty driver structure, given a device number
1079  *      and also passes back the index number.
1080  *
1081  *      Locking: caller must hold tty_mutex
1082  */
1083
1084 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1085 {
1086         struct tty_driver *p;
1087
1088         list_for_each_entry(p, &tty_drivers, tty_drivers) {
1089                 dev_t base = MKDEV(p->major, p->minor_start);
1090                 if (device < base || device >= base + p->num)
1091                         continue;
1092                 *index = device - base;
1093                 return p;
1094         }
1095         return NULL;
1096 }
1097
1098 /**
1099  *      tty_check_change        -       check for POSIX terminal changes
1100  *      @tty: tty to check
1101  *
1102  *      If we try to write to, or set the state of, a terminal and we're
1103  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
1104  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
1105  *
1106  *      Locking: none
1107  */
1108
1109 int tty_check_change(struct tty_struct * tty)
1110 {
1111         if (current->signal->tty != tty)
1112                 return 0;
1113         if (tty->pgrp <= 0) {
1114                 printk(KERN_WARNING "tty_check_change: tty->pgrp <= 0!\n");
1115                 return 0;
1116         }
1117         if (process_group(current) == tty->pgrp)
1118                 return 0;
1119         if (is_ignored(SIGTTOU))
1120                 return 0;
1121         if (is_orphaned_pgrp(process_group(current)))
1122                 return -EIO;
1123         (void) kill_pg(process_group(current), SIGTTOU, 1);
1124         return -ERESTARTSYS;
1125 }
1126
1127 EXPORT_SYMBOL(tty_check_change);
1128
1129 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1130                                 size_t count, loff_t *ppos)
1131 {
1132         return 0;
1133 }
1134
1135 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1136                                  size_t count, loff_t *ppos)
1137 {
1138         return -EIO;
1139 }
1140
1141 /* No kernel lock held - none needed ;) */
1142 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1143 {
1144         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1145 }
1146
1147 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1148                              unsigned int cmd, unsigned long arg)
1149 {
1150         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1151 }
1152
1153 static const struct file_operations tty_fops = {
1154         .llseek         = no_llseek,
1155         .read           = tty_read,
1156         .write          = tty_write,
1157         .poll           = tty_poll,
1158         .ioctl          = tty_ioctl,
1159         .open           = tty_open,
1160         .release        = tty_release,
1161         .fasync         = tty_fasync,
1162 };
1163
1164 #ifdef CONFIG_UNIX98_PTYS
1165 static const struct file_operations ptmx_fops = {
1166         .llseek         = no_llseek,
1167         .read           = tty_read,
1168         .write          = tty_write,
1169         .poll           = tty_poll,
1170         .ioctl          = tty_ioctl,
1171         .open           = ptmx_open,
1172         .release        = tty_release,
1173         .fasync         = tty_fasync,
1174 };
1175 #endif
1176
1177 static const struct file_operations console_fops = {
1178         .llseek         = no_llseek,
1179         .read           = tty_read,
1180         .write          = redirected_tty_write,
1181         .poll           = tty_poll,
1182         .ioctl          = tty_ioctl,
1183         .open           = tty_open,
1184         .release        = tty_release,
1185         .fasync         = tty_fasync,
1186 };
1187
1188 static const struct file_operations hung_up_tty_fops = {
1189         .llseek         = no_llseek,
1190         .read           = hung_up_tty_read,
1191         .write          = hung_up_tty_write,
1192         .poll           = hung_up_tty_poll,
1193         .ioctl          = hung_up_tty_ioctl,
1194         .release        = tty_release,
1195 };
1196
1197 static DEFINE_SPINLOCK(redirect_lock);
1198 static struct file *redirect;
1199
1200 /**
1201  *      tty_wakeup      -       request more data
1202  *      @tty: terminal
1203  *
1204  *      Internal and external helper for wakeups of tty. This function
1205  *      informs the line discipline if present that the driver is ready
1206  *      to receive more output data.
1207  */
1208  
1209 void tty_wakeup(struct tty_struct *tty)
1210 {
1211         struct tty_ldisc *ld;
1212         
1213         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1214                 ld = tty_ldisc_ref(tty);
1215                 if(ld) {
1216                         if(ld->write_wakeup)
1217                                 ld->write_wakeup(tty);
1218                         tty_ldisc_deref(ld);
1219                 }
1220         }
1221         wake_up_interruptible(&tty->write_wait);
1222 }
1223
1224 EXPORT_SYMBOL_GPL(tty_wakeup);
1225
1226 /**
1227  *      tty_ldisc_flush -       flush line discipline queue
1228  *      @tty: tty
1229  *
1230  *      Flush the line discipline queue (if any) for this tty. If there
1231  *      is no line discipline active this is a no-op.
1232  */
1233  
1234 void tty_ldisc_flush(struct tty_struct *tty)
1235 {
1236         struct tty_ldisc *ld = tty_ldisc_ref(tty);
1237         if(ld) {
1238                 if(ld->flush_buffer)
1239                         ld->flush_buffer(tty);
1240                 tty_ldisc_deref(ld);
1241         }
1242 }
1243
1244 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1245
1246 /**
1247  *      tty_reset_termios       -       reset terminal state
1248  *      @tty: tty to reset
1249  *
1250  *      Restore a terminal to the driver default state
1251  */
1252
1253 static void tty_reset_termios(struct tty_struct *tty)
1254 {
1255         mutex_lock(&tty->termios_mutex);
1256         *tty->termios = tty->driver->init_termios;
1257         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1258         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1259         mutex_unlock(&tty->termios_mutex);
1260 }
1261         
1262 /**
1263  *      do_tty_hangup           -       actual handler for hangup events
1264  *      @work: tty device
1265  *
1266  *      This can be called by the "eventd" kernel thread.  That is process
1267  *      synchronous but doesn't hold any locks, so we need to make sure we
1268  *      have the appropriate locks for what we're doing.
1269  *
1270  *      The hangup event clears any pending redirections onto the hung up
1271  *      device. It ensures future writes will error and it does the needed
1272  *      line discipline hangup and signal delivery. The tty object itself
1273  *      remains intact.
1274  *
1275  *      Locking:
1276  *              BKL
1277  *                redirect lock for undoing redirection
1278  *                file list lock for manipulating list of ttys
1279  *                tty_ldisc_lock from called functions
1280  *                termios_mutex resetting termios data
1281  *                tasklist_lock to walk task list for hangup event
1282  *                  ->siglock to protect ->signal/->sighand
1283  */
1284 static void do_tty_hangup(struct work_struct *work)
1285 {
1286         struct tty_struct *tty =
1287                 container_of(work, struct tty_struct, hangup_work);
1288         struct file * cons_filp = NULL;
1289         struct file *filp, *f = NULL;
1290         struct task_struct *p;
1291         struct tty_ldisc *ld;
1292         int    closecount = 0, n;
1293
1294         if (!tty)
1295                 return;
1296
1297         /* inuse_filps is protected by the single kernel lock */
1298         lock_kernel();
1299
1300         spin_lock(&redirect_lock);
1301         if (redirect && redirect->private_data == tty) {
1302                 f = redirect;
1303                 redirect = NULL;
1304         }
1305         spin_unlock(&redirect_lock);
1306         
1307         check_tty_count(tty, "do_tty_hangup");
1308         file_list_lock();
1309         /* This breaks for file handles being sent over AF_UNIX sockets ? */
1310         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1311                 if (filp->f_op->write == redirected_tty_write)
1312                         cons_filp = filp;
1313                 if (filp->f_op->write != tty_write)
1314                         continue;
1315                 closecount++;
1316                 tty_fasync(-1, filp, 0);        /* can't block */
1317                 filp->f_op = &hung_up_tty_fops;
1318         }
1319         file_list_unlock();
1320         
1321         /* FIXME! What are the locking issues here? This may me overdoing things..
1322          * this question is especially important now that we've removed the irqlock. */
1323
1324         ld = tty_ldisc_ref(tty);
1325         if(ld != NULL)  /* We may have no line discipline at this point */
1326         {
1327                 if (ld->flush_buffer)
1328                         ld->flush_buffer(tty);
1329                 if (tty->driver->flush_buffer)
1330                         tty->driver->flush_buffer(tty);
1331                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1332                     ld->write_wakeup)
1333                         ld->write_wakeup(tty);
1334                 if (ld->hangup)
1335                         ld->hangup(tty);
1336         }
1337
1338         /* FIXME: Once we trust the LDISC code better we can wait here for
1339            ldisc completion and fix the driver call race */
1340            
1341         wake_up_interruptible(&tty->write_wait);
1342         wake_up_interruptible(&tty->read_wait);
1343
1344         /*
1345          * Shutdown the current line discipline, and reset it to
1346          * N_TTY.
1347          */
1348         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1349                 tty_reset_termios(tty);
1350         
1351         /* Defer ldisc switch */
1352         /* tty_deferred_ldisc_switch(N_TTY);
1353         
1354           This should get done automatically when the port closes and
1355           tty_release is called */
1356         
1357         read_lock(&tasklist_lock);
1358         if (tty->session > 0) {
1359                 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
1360                         spin_lock_irq(&p->sighand->siglock);
1361                         if (p->signal->tty == tty)
1362                                 p->signal->tty = NULL;
1363                         if (!p->signal->leader) {
1364                                 spin_unlock_irq(&p->sighand->siglock);
1365                                 continue;
1366                         }
1367                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1368                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1369                         if (tty->pgrp > 0)
1370                                 p->signal->tty_old_pgrp = tty->pgrp;
1371                         spin_unlock_irq(&p->sighand->siglock);
1372                 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
1373         }
1374         read_unlock(&tasklist_lock);
1375
1376         tty->flags = 0;
1377         tty->session = 0;
1378         tty->pgrp = -1;
1379         tty->ctrl_status = 0;
1380         /*
1381          *      If one of the devices matches a console pointer, we
1382          *      cannot just call hangup() because that will cause
1383          *      tty->count and state->count to go out of sync.
1384          *      So we just call close() the right number of times.
1385          */
1386         if (cons_filp) {
1387                 if (tty->driver->close)
1388                         for (n = 0; n < closecount; n++)
1389                                 tty->driver->close(tty, cons_filp);
1390         } else if (tty->driver->hangup)
1391                 (tty->driver->hangup)(tty);
1392                 
1393         /* We don't want to have driver/ldisc interactions beyond
1394            the ones we did here. The driver layer expects no
1395            calls after ->hangup() from the ldisc side. However we
1396            can't yet guarantee all that */
1397
1398         set_bit(TTY_HUPPED, &tty->flags);
1399         if (ld) {
1400                 tty_ldisc_enable(tty);
1401                 tty_ldisc_deref(ld);
1402         }
1403         unlock_kernel();
1404         if (f)
1405                 fput(f);
1406 }
1407
1408 /**
1409  *      tty_hangup              -       trigger a hangup event
1410  *      @tty: tty to hangup
1411  *
1412  *      A carrier loss (virtual or otherwise) has occurred on this like
1413  *      schedule a hangup sequence to run after this event.
1414  */
1415
1416 void tty_hangup(struct tty_struct * tty)
1417 {
1418 #ifdef TTY_DEBUG_HANGUP
1419         char    buf[64];
1420         
1421         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1422 #endif
1423         schedule_work(&tty->hangup_work);
1424 }
1425
1426 EXPORT_SYMBOL(tty_hangup);
1427
1428 /**
1429  *      tty_vhangup             -       process vhangup
1430  *      @tty: tty to hangup
1431  *
1432  *      The user has asked via system call for the terminal to be hung up.
1433  *      We do this synchronously so that when the syscall returns the process
1434  *      is complete. That guarantee is neccessary for security reasons.
1435  */
1436
1437 void tty_vhangup(struct tty_struct * tty)
1438 {
1439 #ifdef TTY_DEBUG_HANGUP
1440         char    buf[64];
1441
1442         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1443 #endif
1444         do_tty_hangup(&tty->hangup_work);
1445 }
1446 EXPORT_SYMBOL(tty_vhangup);
1447
1448 /**
1449  *      tty_hung_up_p           -       was tty hung up
1450  *      @filp: file pointer of tty
1451  *
1452  *      Return true if the tty has been subject to a vhangup or a carrier
1453  *      loss
1454  */
1455
1456 int tty_hung_up_p(struct file * filp)
1457 {
1458         return (filp->f_op == &hung_up_tty_fops);
1459 }
1460
1461 EXPORT_SYMBOL(tty_hung_up_p);
1462
1463 static void session_clear_tty(pid_t session)
1464 {
1465         struct task_struct *p;
1466         do_each_task_pid(session, PIDTYPE_SID, p) {
1467                 proc_clear_tty(p);
1468         } while_each_task_pid(session, PIDTYPE_SID, p);
1469 }
1470
1471 /**
1472  *      disassociate_ctty       -       disconnect controlling tty
1473  *      @on_exit: true if exiting so need to "hang up" the session
1474  *
1475  *      This function is typically called only by the session leader, when
1476  *      it wants to disassociate itself from its controlling tty.
1477  *
1478  *      It performs the following functions:
1479  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
1480  *      (2)  Clears the tty from being controlling the session
1481  *      (3)  Clears the controlling tty for all processes in the
1482  *              session group.
1483  *
1484  *      The argument on_exit is set to 1 if called when a process is
1485  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
1486  *
1487  *      Locking:
1488  *              BKL is taken for hysterical raisins
1489  *                tty_mutex is taken to protect tty
1490  *                ->siglock is taken to protect ->signal/->sighand
1491  *                tasklist_lock is taken to walk process list for sessions
1492  *                  ->siglock is taken to protect ->signal/->sighand
1493  */
1494
1495 void disassociate_ctty(int on_exit)
1496 {
1497         struct tty_struct *tty;
1498         int tty_pgrp = -1;
1499         int session;
1500
1501         lock_kernel();
1502
1503         mutex_lock(&tty_mutex);
1504         tty = get_current_tty();
1505         if (tty) {
1506                 tty_pgrp = tty->pgrp;
1507                 mutex_unlock(&tty_mutex);
1508                 /* XXX: here we race, there is nothing protecting tty */
1509                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1510                         tty_vhangup(tty);
1511         } else if (on_exit) {
1512                 pid_t old_pgrp;
1513                 spin_lock_irq(&current->sighand->siglock);
1514                 old_pgrp = current->signal->tty_old_pgrp;
1515                 current->signal->tty_old_pgrp = 0;
1516                 spin_unlock_irq(&current->sighand->siglock);
1517                 if (old_pgrp) {
1518                         kill_pg(old_pgrp, SIGHUP, on_exit);
1519                         kill_pg(old_pgrp, SIGCONT, on_exit);
1520                 }
1521                 mutex_unlock(&tty_mutex);
1522                 unlock_kernel();        
1523                 return;
1524         }
1525         if (tty_pgrp > 0) {
1526                 kill_pg(tty_pgrp, SIGHUP, on_exit);
1527                 if (!on_exit)
1528                         kill_pg(tty_pgrp, SIGCONT, on_exit);
1529         }
1530
1531         spin_lock_irq(&current->sighand->siglock);
1532         current->signal->tty_old_pgrp = 0;
1533         session = process_session(current);
1534         spin_unlock_irq(&current->sighand->siglock);
1535
1536         mutex_lock(&tty_mutex);
1537         /* It is possible that do_tty_hangup has free'd this tty */
1538         tty = get_current_tty();
1539         if (tty) {
1540                 tty->session = 0;
1541                 tty->pgrp = 0;
1542         } else {
1543 #ifdef TTY_DEBUG_HANGUP
1544                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1545                        " = NULL", tty);
1546 #endif
1547         }
1548         mutex_unlock(&tty_mutex);
1549
1550         /* Now clear signal->tty under the lock */
1551         read_lock(&tasklist_lock);
1552         session_clear_tty(session);
1553         read_unlock(&tasklist_lock);
1554         unlock_kernel();
1555 }
1556
1557
1558 /**
1559  *      stop_tty        -       propogate flow control
1560  *      @tty: tty to stop
1561  *
1562  *      Perform flow control to the driver. For PTY/TTY pairs we
1563  *      must also propogate the TIOCKPKT status. May be called
1564  *      on an already stopped device and will not re-call the driver
1565  *      method.
1566  *
1567  *      This functionality is used by both the line disciplines for
1568  *      halting incoming flow and by the driver. It may therefore be
1569  *      called from any context, may be under the tty atomic_write_lock
1570  *      but not always.
1571  *
1572  *      Locking:
1573  *              Broken. Relies on BKL which is unsafe here.
1574  */
1575
1576 void stop_tty(struct tty_struct *tty)
1577 {
1578         if (tty->stopped)
1579                 return;
1580         tty->stopped = 1;
1581         if (tty->link && tty->link->packet) {
1582                 tty->ctrl_status &= ~TIOCPKT_START;
1583                 tty->ctrl_status |= TIOCPKT_STOP;
1584                 wake_up_interruptible(&tty->link->read_wait);
1585         }
1586         if (tty->driver->stop)
1587                 (tty->driver->stop)(tty);
1588 }
1589
1590 EXPORT_SYMBOL(stop_tty);
1591
1592 /**
1593  *      start_tty       -       propogate flow control
1594  *      @tty: tty to start
1595  *
1596  *      Start a tty that has been stopped if at all possible. Perform
1597  *      any neccessary wakeups and propogate the TIOCPKT status. If this
1598  *      is the tty was previous stopped and is being started then the
1599  *      driver start method is invoked and the line discipline woken.
1600  *
1601  *      Locking:
1602  *              Broken. Relies on BKL which is unsafe here.
1603  */
1604
1605 void start_tty(struct tty_struct *tty)
1606 {
1607         if (!tty->stopped || tty->flow_stopped)
1608                 return;
1609         tty->stopped = 0;
1610         if (tty->link && tty->link->packet) {
1611                 tty->ctrl_status &= ~TIOCPKT_STOP;
1612                 tty->ctrl_status |= TIOCPKT_START;
1613                 wake_up_interruptible(&tty->link->read_wait);
1614         }
1615         if (tty->driver->start)
1616                 (tty->driver->start)(tty);
1617
1618         /* If we have a running line discipline it may need kicking */
1619         tty_wakeup(tty);
1620 }
1621
1622 EXPORT_SYMBOL(start_tty);
1623
1624 /**
1625  *      tty_read        -       read method for tty device files
1626  *      @file: pointer to tty file
1627  *      @buf: user buffer
1628  *      @count: size of user buffer
1629  *      @ppos: unused
1630  *
1631  *      Perform the read system call function on this terminal device. Checks
1632  *      for hung up devices before calling the line discipline method.
1633  *
1634  *      Locking:
1635  *              Locks the line discipline internally while needed
1636  *              For historical reasons the line discipline read method is
1637  *      invoked under the BKL. This will go away in time so do not rely on it
1638  *      in new code. Multiple read calls may be outstanding in parallel.
1639  */
1640
1641 static ssize_t tty_read(struct file * file, char __user * buf, size_t count, 
1642                         loff_t *ppos)
1643 {
1644         int i;
1645         struct tty_struct * tty;
1646         struct inode *inode;
1647         struct tty_ldisc *ld;
1648
1649         tty = (struct tty_struct *)file->private_data;
1650         inode = file->f_path.dentry->d_inode;
1651         if (tty_paranoia_check(tty, inode, "tty_read"))
1652                 return -EIO;
1653         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1654                 return -EIO;
1655
1656         /* We want to wait for the line discipline to sort out in this
1657            situation */
1658         ld = tty_ldisc_ref_wait(tty);
1659         lock_kernel();
1660         if (ld->read)
1661                 i = (ld->read)(tty,file,buf,count);
1662         else
1663                 i = -EIO;
1664         tty_ldisc_deref(ld);
1665         unlock_kernel();
1666         if (i > 0)
1667                 inode->i_atime = current_fs_time(inode->i_sb);
1668         return i;
1669 }
1670
1671 /*
1672  * Split writes up in sane blocksizes to avoid
1673  * denial-of-service type attacks
1674  */
1675 static inline ssize_t do_tty_write(
1676         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1677         struct tty_struct *tty,
1678         struct file *file,
1679         const char __user *buf,
1680         size_t count)
1681 {
1682         ssize_t ret = 0, written = 0;
1683         unsigned int chunk;
1684         
1685         /* FIXME: O_NDELAY ... */
1686         if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1687                 return -ERESTARTSYS;
1688         }
1689
1690         /*
1691          * We chunk up writes into a temporary buffer. This
1692          * simplifies low-level drivers immensely, since they
1693          * don't have locking issues and user mode accesses.
1694          *
1695          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1696          * big chunk-size..
1697          *
1698          * The default chunk-size is 2kB, because the NTTY
1699          * layer has problems with bigger chunks. It will
1700          * claim to be able to handle more characters than
1701          * it actually does.
1702          *
1703          * FIXME: This can probably go away now except that 64K chunks
1704          * are too likely to fail unless switched to vmalloc...
1705          */
1706         chunk = 2048;
1707         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1708                 chunk = 65536;
1709         if (count < chunk)
1710                 chunk = count;
1711
1712         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1713         if (tty->write_cnt < chunk) {
1714                 unsigned char *buf;
1715
1716                 if (chunk < 1024)
1717                         chunk = 1024;
1718
1719                 buf = kmalloc(chunk, GFP_KERNEL);
1720                 if (!buf) {
1721                         mutex_unlock(&tty->atomic_write_lock);
1722                         return -ENOMEM;
1723                 }
1724                 kfree(tty->write_buf);
1725                 tty->write_cnt = chunk;
1726                 tty->write_buf = buf;
1727         }
1728
1729         /* Do the write .. */
1730         for (;;) {
1731                 size_t size = count;
1732                 if (size > chunk)
1733                         size = chunk;
1734                 ret = -EFAULT;
1735                 if (copy_from_user(tty->write_buf, buf, size))
1736                         break;
1737                 lock_kernel();
1738                 ret = write(tty, file, tty->write_buf, size);
1739                 unlock_kernel();
1740                 if (ret <= 0)
1741                         break;
1742                 written += ret;
1743                 buf += ret;
1744                 count -= ret;
1745                 if (!count)
1746                         break;
1747                 ret = -ERESTARTSYS;
1748                 if (signal_pending(current))
1749                         break;
1750                 cond_resched();
1751         }
1752         if (written) {
1753                 struct inode *inode = file->f_path.dentry->d_inode;
1754                 inode->i_mtime = current_fs_time(inode->i_sb);
1755                 ret = written;
1756         }
1757         mutex_unlock(&tty->atomic_write_lock);
1758         return ret;
1759 }
1760
1761
1762 /**
1763  *      tty_write               -       write method for tty device file
1764  *      @file: tty file pointer
1765  *      @buf: user data to write
1766  *      @count: bytes to write
1767  *      @ppos: unused
1768  *
1769  *      Write data to a tty device via the line discipline.
1770  *
1771  *      Locking:
1772  *              Locks the line discipline as required
1773  *              Writes to the tty driver are serialized by the atomic_write_lock
1774  *      and are then processed in chunks to the device. The line discipline
1775  *      write method will not be involked in parallel for each device
1776  *              The line discipline write method is called under the big
1777  *      kernel lock for historical reasons. New code should not rely on this.
1778  */
1779
1780 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1781                          loff_t *ppos)
1782 {
1783         struct tty_struct * tty;
1784         struct inode *inode = file->f_path.dentry->d_inode;
1785         ssize_t ret;
1786         struct tty_ldisc *ld;
1787         
1788         tty = (struct tty_struct *)file->private_data;
1789         if (tty_paranoia_check(tty, inode, "tty_write"))
1790                 return -EIO;
1791         if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1792                 return -EIO;
1793
1794         ld = tty_ldisc_ref_wait(tty);           
1795         if (!ld->write)
1796                 ret = -EIO;
1797         else
1798                 ret = do_tty_write(ld->write, tty, file, buf, count);
1799         tty_ldisc_deref(ld);
1800         return ret;
1801 }
1802
1803 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1804                          loff_t *ppos)
1805 {
1806         struct file *p = NULL;
1807
1808         spin_lock(&redirect_lock);
1809         if (redirect) {
1810                 get_file(redirect);
1811                 p = redirect;
1812         }
1813         spin_unlock(&redirect_lock);
1814
1815         if (p) {
1816                 ssize_t res;
1817                 res = vfs_write(p, buf, count, &p->f_pos);
1818                 fput(p);
1819                 return res;
1820         }
1821
1822         return tty_write(file, buf, count, ppos);
1823 }
1824
1825 static char ptychar[] = "pqrstuvwxyzabcde";
1826
1827 /**
1828  *      pty_line_name   -       generate name for a pty
1829  *      @driver: the tty driver in use
1830  *      @index: the minor number
1831  *      @p: output buffer of at least 6 bytes
1832  *
1833  *      Generate a name from a driver reference and write it to the output
1834  *      buffer.
1835  *
1836  *      Locking: None
1837  */
1838 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1839 {
1840         int i = index + driver->name_base;
1841         /* ->name is initialized to "ttyp", but "tty" is expected */
1842         sprintf(p, "%s%c%x",
1843                         driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1844                         ptychar[i >> 4 & 0xf], i & 0xf);
1845 }
1846
1847 /**
1848  *      pty_line_name   -       generate name for a tty
1849  *      @driver: the tty driver in use
1850  *      @index: the minor number
1851  *      @p: output buffer of at least 7 bytes
1852  *
1853  *      Generate a name from a driver reference and write it to the output
1854  *      buffer.
1855  *
1856  *      Locking: None
1857  */
1858 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1859 {
1860         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1861 }
1862
1863 /**
1864  *      init_dev                -       initialise a tty device
1865  *      @driver: tty driver we are opening a device on
1866  *      @idx: device index
1867  *      @tty: returned tty structure
1868  *
1869  *      Prepare a tty device. This may not be a "new" clean device but
1870  *      could also be an active device. The pty drivers require special
1871  *      handling because of this.
1872  *
1873  *      Locking:
1874  *              The function is called under the tty_mutex, which
1875  *      protects us from the tty struct or driver itself going away.
1876  *
1877  *      On exit the tty device has the line discipline attached and
1878  *      a reference count of 1. If a pair was created for pty/tty use
1879  *      and the other was a pty master then it too has a reference count of 1.
1880  *
1881  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1882  * failed open.  The new code protects the open with a mutex, so it's
1883  * really quite straightforward.  The mutex locking can probably be
1884  * relaxed for the (most common) case of reopening a tty.
1885  */
1886
1887 static int init_dev(struct tty_driver *driver, int idx,
1888         struct tty_struct **ret_tty)
1889 {
1890         struct tty_struct *tty, *o_tty;
1891         struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1892         struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1893         int retval = 0;
1894
1895         /* check whether we're reopening an existing tty */
1896         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1897                 tty = devpts_get_tty(idx);
1898                 if (tty && driver->subtype == PTY_TYPE_MASTER)
1899                         tty = tty->link;
1900         } else {
1901                 tty = driver->ttys[idx];
1902         }
1903         if (tty) goto fast_track;
1904
1905         /*
1906          * First time open is complex, especially for PTY devices.
1907          * This code guarantees that either everything succeeds and the
1908          * TTY is ready for operation, or else the table slots are vacated
1909          * and the allocated memory released.  (Except that the termios 
1910          * and locked termios may be retained.)
1911          */
1912
1913         if (!try_module_get(driver->owner)) {
1914                 retval = -ENODEV;
1915                 goto end_init;
1916         }
1917
1918         o_tty = NULL;
1919         tp = o_tp = NULL;
1920         ltp = o_ltp = NULL;
1921
1922         tty = alloc_tty_struct();
1923         if(!tty)
1924                 goto fail_no_mem;
1925         initialize_tty_struct(tty);
1926         tty->driver = driver;
1927         tty->index = idx;
1928         tty_line_name(driver, idx, tty->name);
1929
1930         if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1931                 tp_loc = &tty->termios;
1932                 ltp_loc = &tty->termios_locked;
1933         } else {
1934                 tp_loc = &driver->termios[idx];
1935                 ltp_loc = &driver->termios_locked[idx];
1936         }
1937
1938         if (!*tp_loc) {
1939                 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1940                                                 GFP_KERNEL);
1941                 if (!tp)
1942                         goto free_mem_out;
1943                 *tp = driver->init_termios;
1944         }
1945
1946         if (!*ltp_loc) {
1947                 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1948                                                  GFP_KERNEL);
1949                 if (!ltp)
1950                         goto free_mem_out;
1951                 memset(ltp, 0, sizeof(struct ktermios));
1952         }
1953
1954         if (driver->type == TTY_DRIVER_TYPE_PTY) {
1955                 o_tty = alloc_tty_struct();
1956                 if (!o_tty)
1957                         goto free_mem_out;
1958                 initialize_tty_struct(o_tty);
1959                 o_tty->driver = driver->other;
1960                 o_tty->index = idx;
1961                 tty_line_name(driver->other, idx, o_tty->name);
1962
1963                 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1964                         o_tp_loc = &o_tty->termios;
1965                         o_ltp_loc = &o_tty->termios_locked;
1966                 } else {
1967                         o_tp_loc = &driver->other->termios[idx];
1968                         o_ltp_loc = &driver->other->termios_locked[idx];
1969                 }
1970
1971                 if (!*o_tp_loc) {
1972                         o_tp = (struct ktermios *)
1973                                 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1974                         if (!o_tp)
1975                                 goto free_mem_out;
1976                         *o_tp = driver->other->init_termios;
1977                 }
1978
1979                 if (!*o_ltp_loc) {
1980                         o_ltp = (struct ktermios *)
1981                                 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1982                         if (!o_ltp)
1983                                 goto free_mem_out;
1984                         memset(o_ltp, 0, sizeof(struct ktermios));
1985                 }
1986
1987                 /*
1988                  * Everything allocated ... set up the o_tty structure.
1989                  */
1990                 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
1991                         driver->other->ttys[idx] = o_tty;
1992                 }
1993                 if (!*o_tp_loc)
1994                         *o_tp_loc = o_tp;
1995                 if (!*o_ltp_loc)
1996                         *o_ltp_loc = o_ltp;
1997                 o_tty->termios = *o_tp_loc;
1998                 o_tty->termios_locked = *o_ltp_loc;
1999                 driver->other->refcount++;
2000                 if (driver->subtype == PTY_TYPE_MASTER)
2001                         o_tty->count++;
2002
2003                 /* Establish the links in both directions */
2004                 tty->link   = o_tty;
2005                 o_tty->link = tty;
2006         }
2007
2008         /* 
2009          * All structures have been allocated, so now we install them.
2010          * Failures after this point use release_tty to clean up, so
2011          * there's no need to null out the local pointers.
2012          */
2013         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2014                 driver->ttys[idx] = tty;
2015         }
2016         
2017         if (!*tp_loc)
2018                 *tp_loc = tp;
2019         if (!*ltp_loc)
2020                 *ltp_loc = ltp;
2021         tty->termios = *tp_loc;
2022         tty->termios_locked = *ltp_loc;
2023         /* Compatibility until drivers always set this */
2024         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2025         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2026         driver->refcount++;
2027         tty->count++;
2028
2029         /* 
2030          * Structures all installed ... call the ldisc open routines.
2031          * If we fail here just call release_tty to clean up.  No need
2032          * to decrement the use counts, as release_tty doesn't care.
2033          */
2034
2035         if (tty->ldisc.open) {
2036                 retval = (tty->ldisc.open)(tty);
2037                 if (retval)
2038                         goto release_mem_out;
2039         }
2040         if (o_tty && o_tty->ldisc.open) {
2041                 retval = (o_tty->ldisc.open)(o_tty);
2042                 if (retval) {
2043                         if (tty->ldisc.close)
2044                                 (tty->ldisc.close)(tty);
2045                         goto release_mem_out;
2046                 }
2047                 tty_ldisc_enable(o_tty);
2048         }
2049         tty_ldisc_enable(tty);
2050         goto success;
2051
2052         /*
2053          * This fast open can be used if the tty is already open.
2054          * No memory is allocated, and the only failures are from
2055          * attempting to open a closing tty or attempting multiple
2056          * opens on a pty master.
2057          */
2058 fast_track:
2059         if (test_bit(TTY_CLOSING, &tty->flags)) {
2060                 retval = -EIO;
2061                 goto end_init;
2062         }
2063         if (driver->type == TTY_DRIVER_TYPE_PTY &&
2064             driver->subtype == PTY_TYPE_MASTER) {
2065                 /*
2066                  * special case for PTY masters: only one open permitted, 
2067                  * and the slave side open count is incremented as well.
2068                  */
2069                 if (tty->count) {
2070                         retval = -EIO;
2071                         goto end_init;
2072                 }
2073                 tty->link->count++;
2074         }
2075         tty->count++;
2076         tty->driver = driver; /* N.B. why do this every time?? */
2077
2078         /* FIXME */
2079         if(!test_bit(TTY_LDISC, &tty->flags))
2080                 printk(KERN_ERR "init_dev but no ldisc\n");
2081 success:
2082         *ret_tty = tty;
2083         
2084         /* All paths come through here to release the mutex */
2085 end_init:
2086         return retval;
2087
2088         /* Release locally allocated memory ... nothing placed in slots */
2089 free_mem_out:
2090         kfree(o_tp);
2091         if (o_tty)
2092                 free_tty_struct(o_tty);
2093         kfree(ltp);
2094         kfree(tp);
2095         free_tty_struct(tty);
2096
2097 fail_no_mem:
2098         module_put(driver->owner);
2099         retval = -ENOMEM;
2100         goto end_init;
2101
2102         /* call the tty release_tty routine to clean out this slot */
2103 release_mem_out:
2104         if (printk_ratelimit())
2105                 printk(KERN_INFO "init_dev: ldisc open failed, "
2106                                  "clearing slot %d\n", idx);
2107         release_tty(tty, idx);
2108         goto end_init;
2109 }
2110
2111 /**
2112  *      release_one_tty         -       release tty structure memory
2113  *
2114  *      Releases memory associated with a tty structure, and clears out the
2115  *      driver table slots. This function is called when a device is no longer
2116  *      in use. It also gets called when setup of a device fails.
2117  *
2118  *      Locking:
2119  *              tty_mutex - sometimes only
2120  *              takes the file list lock internally when working on the list
2121  *      of ttys that the driver keeps.
2122  *              FIXME: should we require tty_mutex is held here ??
2123  */
2124 static void release_one_tty(struct tty_struct *tty, int idx)
2125 {
2126         int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2127         struct ktermios *tp;
2128
2129         if (!devpts)
2130                 tty->driver->ttys[idx] = NULL;
2131
2132         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2133                 tp = tty->termios;
2134                 if (!devpts)
2135                         tty->driver->termios[idx] = NULL;
2136                 kfree(tp);
2137
2138                 tp = tty->termios_locked;
2139                 if (!devpts)
2140                         tty->driver->termios_locked[idx] = NULL;
2141                 kfree(tp);
2142         }
2143
2144
2145         tty->magic = 0;
2146         tty->driver->refcount--;
2147
2148         file_list_lock();
2149         list_del_init(&tty->tty_files);
2150         file_list_unlock();
2151
2152         free_tty_struct(tty);
2153 }
2154
2155 /**
2156  *      release_tty             -       release tty structure memory
2157  *
2158  *      Release both @tty and a possible linked partner (think pty pair),
2159  *      and decrement the refcount of the backing module.
2160  *
2161  *      Locking:
2162  *              tty_mutex - sometimes only
2163  *              takes the file list lock internally when working on the list
2164  *      of ttys that the driver keeps.
2165  *              FIXME: should we require tty_mutex is held here ??
2166  */
2167 static void release_tty(struct tty_struct *tty, int idx)
2168 {
2169         struct tty_driver *driver = tty->driver;
2170
2171         if (tty->link)
2172                 release_one_tty(tty->link, idx);
2173         release_one_tty(tty, idx);
2174         module_put(driver->owner);
2175 }
2176
2177 /*
2178  * Even releasing the tty structures is a tricky business.. We have
2179  * to be very careful that the structures are all released at the
2180  * same time, as interrupts might otherwise get the wrong pointers.
2181  *
2182  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2183  * lead to double frees or releasing memory still in use.
2184  */
2185 static void release_dev(struct file * filp)
2186 {
2187         struct tty_struct *tty, *o_tty;
2188         int     pty_master, tty_closing, o_tty_closing, do_sleep;
2189         int     devpts;
2190         int     idx;
2191         char    buf[64];
2192         unsigned long flags;
2193         
2194         tty = (struct tty_struct *)filp->private_data;
2195         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2196                 return;
2197
2198         check_tty_count(tty, "release_dev");
2199
2200         tty_fasync(-1, filp, 0);
2201
2202         idx = tty->index;
2203         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2204                       tty->driver->subtype == PTY_TYPE_MASTER);
2205         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2206         o_tty = tty->link;
2207
2208 #ifdef TTY_PARANOIA_CHECK
2209         if (idx < 0 || idx >= tty->driver->num) {
2210                 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2211                                   "free (%s)\n", tty->name);
2212                 return;
2213         }
2214         if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2215                 if (tty != tty->driver->ttys[idx]) {
2216                         printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2217                                "for (%s)\n", idx, tty->name);
2218                         return;
2219                 }
2220                 if (tty->termios != tty->driver->termios[idx]) {
2221                         printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2222                                "for (%s)\n",
2223                                idx, tty->name);
2224                         return;
2225                 }
2226                 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2227                         printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2228                                "termios_locked for (%s)\n",
2229                                idx, tty->name);
2230                         return;
2231                 }
2232         }
2233 #endif
2234
2235 #ifdef TTY_DEBUG_HANGUP
2236         printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2237                tty_name(tty, buf), tty->count);
2238 #endif
2239
2240 #ifdef TTY_PARANOIA_CHECK
2241         if (tty->driver->other &&
2242              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2243                 if (o_tty != tty->driver->other->ttys[idx]) {
2244                         printk(KERN_DEBUG "release_dev: other->table[%d] "
2245                                           "not o_tty for (%s)\n",
2246                                idx, tty->name);
2247                         return;
2248                 }
2249                 if (o_tty->termios != tty->driver->other->termios[idx]) {
2250                         printk(KERN_DEBUG "release_dev: other->termios[%d] "
2251                                           "not o_termios for (%s)\n",
2252                                idx, tty->name);
2253                         return;
2254                 }
2255                 if (o_tty->termios_locked != 
2256                       tty->driver->other->termios_locked[idx]) {
2257                         printk(KERN_DEBUG "release_dev: other->termios_locked["
2258                                           "%d] not o_termios_locked for (%s)\n",
2259                                idx, tty->name);
2260                         return;
2261                 }
2262                 if (o_tty->link != tty) {
2263                         printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2264                         return;
2265                 }
2266         }
2267 #endif
2268         if (tty->driver->close)
2269                 tty->driver->close(tty, filp);
2270
2271         /*
2272          * Sanity check: if tty->count is going to zero, there shouldn't be
2273          * any waiters on tty->read_wait or tty->write_wait.  We test the
2274          * wait queues and kick everyone out _before_ actually starting to
2275          * close.  This ensures that we won't block while releasing the tty
2276          * structure.
2277          *
2278          * The test for the o_tty closing is necessary, since the master and
2279          * slave sides may close in any order.  If the slave side closes out
2280          * first, its count will be one, since the master side holds an open.
2281          * Thus this test wouldn't be triggered at the time the slave closes,
2282          * so we do it now.
2283          *
2284          * Note that it's possible for the tty to be opened again while we're
2285          * flushing out waiters.  By recalculating the closing flags before
2286          * each iteration we avoid any problems.
2287          */
2288         while (1) {
2289                 /* Guard against races with tty->count changes elsewhere and
2290                    opens on /dev/tty */
2291                    
2292                 mutex_lock(&tty_mutex);
2293                 tty_closing = tty->count <= 1;
2294                 o_tty_closing = o_tty &&
2295                         (o_tty->count <= (pty_master ? 1 : 0));
2296                 do_sleep = 0;
2297
2298                 if (tty_closing) {
2299                         if (waitqueue_active(&tty->read_wait)) {
2300                                 wake_up(&tty->read_wait);
2301                                 do_sleep++;
2302                         }
2303                         if (waitqueue_active(&tty->write_wait)) {
2304                                 wake_up(&tty->write_wait);
2305                                 do_sleep++;
2306                         }
2307                 }
2308                 if (o_tty_closing) {
2309                         if (waitqueue_active(&o_tty->read_wait)) {
2310                                 wake_up(&o_tty->read_wait);
2311                                 do_sleep++;
2312                         }
2313                         if (waitqueue_active(&o_tty->write_wait)) {
2314                                 wake_up(&o_tty->write_wait);
2315                                 do_sleep++;
2316                         }
2317                 }
2318                 if (!do_sleep)
2319                         break;
2320
2321                 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2322                                     "active!\n", tty_name(tty, buf));
2323                 mutex_unlock(&tty_mutex);
2324                 schedule();
2325         }       
2326
2327         /*
2328          * The closing flags are now consistent with the open counts on 
2329          * both sides, and we've completed the last operation that could 
2330          * block, so it's safe to proceed with closing.
2331          */
2332         if (pty_master) {
2333                 if (--o_tty->count < 0) {
2334                         printk(KERN_WARNING "release_dev: bad pty slave count "
2335                                             "(%d) for %s\n",
2336                                o_tty->count, tty_name(o_tty, buf));
2337                         o_tty->count = 0;
2338                 }
2339         }
2340         if (--tty->count < 0) {
2341                 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2342                        tty->count, tty_name(tty, buf));
2343                 tty->count = 0;
2344         }
2345         
2346         /*
2347          * We've decremented tty->count, so we need to remove this file
2348          * descriptor off the tty->tty_files list; this serves two
2349          * purposes:
2350          *  - check_tty_count sees the correct number of file descriptors
2351          *    associated with this tty.
2352          *  - do_tty_hangup no longer sees this file descriptor as
2353          *    something that needs to be handled for hangups.
2354          */
2355         file_kill(filp);
2356         filp->private_data = NULL;
2357
2358         /*
2359          * Perform some housekeeping before deciding whether to return.
2360          *
2361          * Set the TTY_CLOSING flag if this was the last open.  In the
2362          * case of a pty we may have to wait around for the other side
2363          * to close, and TTY_CLOSING makes sure we can't be reopened.
2364          */
2365         if(tty_closing)
2366                 set_bit(TTY_CLOSING, &tty->flags);
2367         if(o_tty_closing)
2368                 set_bit(TTY_CLOSING, &o_tty->flags);
2369
2370         /*
2371          * If _either_ side is closing, make sure there aren't any
2372          * processes that still think tty or o_tty is their controlling
2373          * tty.
2374          */
2375         if (tty_closing || o_tty_closing) {
2376                 read_lock(&tasklist_lock);
2377                 session_clear_tty(tty->session);
2378                 if (o_tty)
2379                         session_clear_tty(o_tty->session);
2380                 read_unlock(&tasklist_lock);
2381         }
2382
2383         mutex_unlock(&tty_mutex);
2384
2385         /* check whether both sides are closing ... */
2386         if (!tty_closing || (o_tty && !o_tty_closing))
2387                 return;
2388         
2389 #ifdef TTY_DEBUG_HANGUP
2390         printk(KERN_DEBUG "freeing tty structure...");
2391 #endif
2392         /*
2393          * Prevent flush_to_ldisc() from rescheduling the work for later.  Then
2394          * kill any delayed work. As this is the final close it does not
2395          * race with the set_ldisc code path.
2396          */
2397         clear_bit(TTY_LDISC, &tty->flags);
2398         cancel_delayed_work(&tty->buf.work);
2399
2400         /*
2401          * Wait for ->hangup_work and ->buf.work handlers to terminate
2402          */
2403          
2404         flush_scheduled_work();
2405         
2406         /*
2407          * Wait for any short term users (we know they are just driver
2408          * side waiters as the file is closing so user count on the file
2409          * side is zero.
2410          */
2411         spin_lock_irqsave(&tty_ldisc_lock, flags);
2412         while(tty->ldisc.refcount)
2413         {
2414                 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2415                 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2416                 spin_lock_irqsave(&tty_ldisc_lock, flags);
2417         }
2418         spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2419         /*
2420          * Shutdown the current line discipline, and reset it to N_TTY.
2421          * N.B. why reset ldisc when we're releasing the memory??
2422          *
2423          * FIXME: this MUST get fixed for the new reflocking
2424          */
2425         if (tty->ldisc.close)
2426                 (tty->ldisc.close)(tty);
2427         tty_ldisc_put(tty->ldisc.num);
2428         
2429         /*
2430          *      Switch the line discipline back
2431          */
2432         tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2433         tty_set_termios_ldisc(tty,N_TTY); 
2434         if (o_tty) {
2435                 /* FIXME: could o_tty be in setldisc here ? */
2436                 clear_bit(TTY_LDISC, &o_tty->flags);
2437                 if (o_tty->ldisc.close)
2438                         (o_tty->ldisc.close)(o_tty);
2439                 tty_ldisc_put(o_tty->ldisc.num);
2440                 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2441                 tty_set_termios_ldisc(o_tty,N_TTY); 
2442         }
2443         /*
2444          * The release_tty function takes care of the details of clearing
2445          * the slots and preserving the termios structure.
2446          */
2447         release_tty(tty, idx);
2448
2449 #ifdef CONFIG_UNIX98_PTYS
2450         /* Make this pty number available for reallocation */
2451         if (devpts) {
2452                 down(&allocated_ptys_lock);
2453                 idr_remove(&allocated_ptys, idx);
2454                 up(&allocated_ptys_lock);
2455         }
2456 #endif
2457
2458 }
2459
2460 /**
2461  *      tty_open                -       open a tty device
2462  *      @inode: inode of device file
2463  *      @filp: file pointer to tty
2464  *
2465  *      tty_open and tty_release keep up the tty count that contains the
2466  *      number of opens done on a tty. We cannot use the inode-count, as
2467  *      different inodes might point to the same tty.
2468  *
2469  *      Open-counting is needed for pty masters, as well as for keeping
2470  *      track of serial lines: DTR is dropped when the last close happens.
2471  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2472  *
2473  *      The termios state of a pty is reset on first open so that
2474  *      settings don't persist across reuse.
2475  *
2476  *      Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2477  *               tty->count should protect the rest.
2478  *               ->siglock protects ->signal/->sighand
2479  */
2480
2481 static int tty_open(struct inode * inode, struct file * filp)
2482 {
2483         struct tty_struct *tty;
2484         int noctty, retval;
2485         struct tty_driver *driver;
2486         int index;
2487         dev_t device = inode->i_rdev;
2488         unsigned short saved_flags = filp->f_flags;
2489
2490         nonseekable_open(inode, filp);
2491         
2492 retry_open:
2493         noctty = filp->f_flags & O_NOCTTY;
2494         index  = -1;
2495         retval = 0;
2496         
2497         mutex_lock(&tty_mutex);
2498
2499         if (device == MKDEV(TTYAUX_MAJOR,0)) {
2500                 tty = get_current_tty();
2501                 if (!tty) {
2502                         mutex_unlock(&tty_mutex);
2503                         return -ENXIO;
2504                 }
2505                 driver = tty->driver;
2506                 index = tty->index;
2507                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2508                 /* noctty = 1; */
2509                 goto got_driver;
2510         }
2511 #ifdef CONFIG_VT
2512         if (device == MKDEV(TTY_MAJOR,0)) {
2513                 extern struct tty_driver *console_driver;
2514                 driver = console_driver;
2515                 index = fg_console;
2516                 noctty = 1;
2517                 goto got_driver;
2518         }
2519 #endif
2520         if (device == MKDEV(TTYAUX_MAJOR,1)) {
2521                 driver = console_device(&index);
2522                 if (driver) {
2523                         /* Don't let /dev/console block */
2524                         filp->f_flags |= O_NONBLOCK;
2525                         noctty = 1;
2526                         goto got_driver;
2527                 }
2528                 mutex_unlock(&tty_mutex);
2529                 return -ENODEV;
2530         }
2531
2532         driver = get_tty_driver(device, &index);
2533         if (!driver) {
2534                 mutex_unlock(&tty_mutex);
2535                 return -ENODEV;
2536         }
2537 got_driver:
2538         retval = init_dev(driver, index, &tty);
2539         mutex_unlock(&tty_mutex);
2540         if (retval)
2541                 return retval;
2542
2543         filp->private_data = tty;
2544         file_move(filp, &tty->tty_files);
2545         check_tty_count(tty, "tty_open");
2546         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2547             tty->driver->subtype == PTY_TYPE_MASTER)
2548                 noctty = 1;
2549 #ifdef TTY_DEBUG_HANGUP
2550         printk(KERN_DEBUG "opening %s...", tty->name);
2551 #endif
2552         if (!retval) {
2553                 if (tty->driver->open)
2554                         retval = tty->driver->open(tty, filp);
2555                 else
2556                         retval = -ENODEV;
2557         }
2558         filp->f_flags = saved_flags;
2559
2560         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2561                 retval = -EBUSY;
2562
2563         if (retval) {
2564 #ifdef TTY_DEBUG_HANGUP
2565                 printk(KERN_DEBUG "error %d in opening %s...", retval,
2566                        tty->name);
2567 #endif
2568                 release_dev(filp);
2569                 if (retval != -ERESTARTSYS)
2570                         return retval;
2571                 if (signal_pending(current))
2572                         return retval;
2573                 schedule();
2574                 /*
2575                  * Need to reset f_op in case a hangup happened.
2576                  */
2577                 if (filp->f_op == &hung_up_tty_fops)
2578                         filp->f_op = &tty_fops;
2579                 goto retry_open;
2580         }
2581
2582         mutex_lock(&tty_mutex);
2583         spin_lock_irq(&current->sighand->siglock);
2584         if (!noctty &&
2585             current->signal->leader &&
2586             !current->signal->tty &&
2587             tty->session == 0)
2588                 __proc_set_tty(current, tty);
2589         spin_unlock_irq(&current->sighand->siglock);
2590         mutex_unlock(&tty_mutex);
2591         return 0;
2592 }
2593
2594 #ifdef CONFIG_UNIX98_PTYS
2595 /**
2596  *      ptmx_open               -       open a unix 98 pty master
2597  *      @inode: inode of device file
2598  *      @filp: file pointer to tty
2599  *
2600  *      Allocate a unix98 pty master device from the ptmx driver.
2601  *
2602  *      Locking: tty_mutex protects theinit_dev work. tty->count should
2603                 protect the rest.
2604  *              allocated_ptys_lock handles the list of free pty numbers
2605  */
2606
2607 static int ptmx_open(struct inode * inode, struct file * filp)
2608 {
2609         struct tty_struct *tty;
2610         int retval;
2611         int index;
2612         int idr_ret;
2613
2614         nonseekable_open(inode, filp);
2615
2616         /* find a device that is not in use. */
2617         down(&allocated_ptys_lock);
2618         if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2619                 up(&allocated_ptys_lock);
2620                 return -ENOMEM;
2621         }
2622         idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2623         if (idr_ret < 0) {
2624                 up(&allocated_ptys_lock);
2625                 if (idr_ret == -EAGAIN)
2626                         return -ENOMEM;
2627                 return -EIO;
2628         }
2629         if (index >= pty_limit) {
2630                 idr_remove(&allocated_ptys, index);
2631                 up(&allocated_ptys_lock);
2632                 return -EIO;
2633         }
2634         up(&allocated_ptys_lock);
2635
2636         mutex_lock(&tty_mutex);
2637         retval = init_dev(ptm_driver, index, &tty);
2638         mutex_unlock(&tty_mutex);
2639         
2640         if (retval)
2641                 goto out;
2642
2643         set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2644         filp->private_data = tty;
2645         file_move(filp, &tty->tty_files);
2646
2647         retval = -ENOMEM;
2648         if (devpts_pty_new(tty->link))
2649                 goto out1;
2650
2651         check_tty_count(tty, "tty_open");
2652         retval = ptm_driver->open(tty, filp);
2653         if (!retval)
2654                 return 0;
2655 out1:
2656         release_dev(filp);
2657         return retval;
2658 out:
2659         down(&allocated_ptys_lock);
2660         idr_remove(&allocated_ptys, index);
2661         up(&allocated_ptys_lock);
2662         return retval;
2663 }
2664 #endif
2665
2666 /**
2667  *      tty_release             -       vfs callback for close
2668  *      @inode: inode of tty
2669  *      @filp: file pointer for handle to tty
2670  *
2671  *      Called the last time each file handle is closed that references
2672  *      this tty. There may however be several such references.
2673  *
2674  *      Locking:
2675  *              Takes bkl. See release_dev
2676  */
2677
2678 static int tty_release(struct inode * inode, struct file * filp)
2679 {
2680         lock_kernel();
2681         release_dev(filp);
2682         unlock_kernel();
2683         return 0;
2684 }
2685
2686 /**
2687  *      tty_poll        -       check tty status
2688  *      @filp: file being polled
2689  *      @wait: poll wait structures to update
2690  *
2691  *      Call the line discipline polling method to obtain the poll
2692  *      status of the device.
2693  *
2694  *      Locking: locks called line discipline but ldisc poll method
2695  *      may be re-entered freely by other callers.
2696  */
2697
2698 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2699 {
2700         struct tty_struct * tty;
2701         struct tty_ldisc *ld;
2702         int ret = 0;
2703
2704         tty = (struct tty_struct *)filp->private_data;
2705         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2706                 return 0;
2707                 
2708         ld = tty_ldisc_ref_wait(tty);
2709         if (ld->poll)
2710                 ret = (ld->poll)(tty, filp, wait);
2711         tty_ldisc_deref(ld);
2712         return ret;
2713 }
2714
2715 static int tty_fasync(int fd, struct file * filp, int on)
2716 {
2717         struct tty_struct * tty;
2718         int retval;
2719
2720         tty = (struct tty_struct *)filp->private_data;
2721         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2722                 return 0;
2723         
2724         retval = fasync_helper(fd, filp, on, &tty->fasync);
2725         if (retval <= 0)
2726                 return retval;
2727
2728         if (on) {
2729                 if (!waitqueue_active(&tty->read_wait))
2730                         tty->minimum_to_wake = 1;
2731                 retval = f_setown(filp, (-tty->pgrp) ? : current->pid, 0);
2732                 if (retval)
2733                         return retval;
2734         } else {
2735                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2736                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2737         }
2738         return 0;
2739 }
2740
2741 /**
2742  *      tiocsti                 -       fake input character
2743  *      @tty: tty to fake input into
2744  *      @p: pointer to character
2745  *
2746  *      Fake input to a tty device. Does the neccessary locking and
2747  *      input management.
2748  *
2749  *      FIXME: does not honour flow control ??
2750  *
2751  *      Locking:
2752  *              Called functions take tty_ldisc_lock
2753  *              current->signal->tty check is safe without locks
2754  *
2755  *      FIXME: may race normal receive processing
2756  */
2757
2758 static int tiocsti(struct tty_struct *tty, char __user *p)
2759 {
2760         char ch, mbz = 0;
2761         struct tty_ldisc *ld;
2762         
2763         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2764                 return -EPERM;
2765         if (get_user(ch, p))
2766                 return -EFAULT;
2767         ld = tty_ldisc_ref_wait(tty);
2768         ld->receive_buf(tty, &ch, &mbz, 1);
2769         tty_ldisc_deref(ld);
2770         return 0;
2771 }
2772
2773 /**
2774  *      tiocgwinsz              -       implement window query ioctl
2775  *      @tty; tty
2776  *      @arg: user buffer for result
2777  *
2778  *      Copies the kernel idea of the window size into the user buffer.
2779  *
2780  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2781  *              is consistent.
2782  */
2783
2784 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2785 {
2786         int err;
2787
2788         mutex_lock(&tty->termios_mutex);
2789         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2790         mutex_unlock(&tty->termios_mutex);
2791
2792         return err ? -EFAULT: 0;
2793 }
2794
2795 /**
2796  *      tiocswinsz              -       implement window size set ioctl
2797  *      @tty; tty
2798  *      @arg: user buffer for result
2799  *
2800  *      Copies the user idea of the window size to the kernel. Traditionally
2801  *      this is just advisory information but for the Linux console it
2802  *      actually has driver level meaning and triggers a VC resize.
2803  *
2804  *      Locking:
2805  *              Called function use the console_sem is used to ensure we do
2806  *      not try and resize the console twice at once.
2807  *              The tty->termios_mutex is used to ensure we don't double
2808  *      resize and get confused. Lock order - tty->termios_mutex before
2809  *      console sem
2810  */
2811
2812 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2813         struct winsize __user * arg)
2814 {
2815         struct winsize tmp_ws;
2816
2817         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2818                 return -EFAULT;
2819
2820         mutex_lock(&tty->termios_mutex);
2821         if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2822                 goto done;
2823
2824 #ifdef CONFIG_VT
2825         if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2826                 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2827                                         tmp_ws.ws_row)) {
2828                         mutex_unlock(&tty->termios_mutex);
2829                         return -ENXIO;
2830                 }
2831         }
2832 #endif
2833         if (tty->pgrp > 0)
2834                 kill_pg(tty->pgrp, SIGWINCH, 1);
2835         if ((real_tty->pgrp != tty->pgrp) && (real_tty->pgrp > 0))
2836                 kill_pg(real_tty->pgrp, SIGWINCH, 1);
2837         tty->winsize = tmp_ws;
2838         real_tty->winsize = tmp_ws;
2839 done:
2840         mutex_unlock(&tty->termios_mutex);
2841         return 0;
2842 }
2843
2844 /**
2845  *      tioccons        -       allow admin to move logical console
2846  *      @file: the file to become console
2847  *
2848  *      Allow the adminstrator to move the redirected console device
2849  *
2850  *      Locking: uses redirect_lock to guard the redirect information
2851  */
2852
2853 static int tioccons(struct file *file)
2854 {
2855         if (!capable(CAP_SYS_ADMIN))
2856                 return -EPERM;
2857         if (file->f_op->write == redirected_tty_write) {
2858                 struct file *f;
2859                 spin_lock(&redirect_lock);
2860                 f = redirect;
2861                 redirect = NULL;
2862                 spin_unlock(&redirect_lock);
2863                 if (f)
2864                         fput(f);
2865                 return 0;
2866         }
2867         spin_lock(&redirect_lock);
2868         if (redirect) {
2869                 spin_unlock(&redirect_lock);
2870                 return -EBUSY;
2871         }
2872         get_file(file);
2873         redirect = file;
2874         spin_unlock(&redirect_lock);
2875         return 0;
2876 }
2877
2878 /**
2879  *      fionbio         -       non blocking ioctl
2880  *      @file: file to set blocking value
2881  *      @p: user parameter
2882  *
2883  *      Historical tty interfaces had a blocking control ioctl before
2884  *      the generic functionality existed. This piece of history is preserved
2885  *      in the expected tty API of posix OS's.
2886  *
2887  *      Locking: none, the open fle handle ensures it won't go away.
2888  */
2889
2890 static int fionbio(struct file *file, int __user *p)
2891 {
2892         int nonblock;
2893
2894         if (get_user(nonblock, p))
2895                 return -EFAULT;
2896
2897         if (nonblock)
2898                 file->f_flags |= O_NONBLOCK;
2899         else
2900                 file->f_flags &= ~O_NONBLOCK;
2901         return 0;
2902 }
2903
2904 /**
2905  *      tiocsctty       -       set controlling tty
2906  *      @tty: tty structure
2907  *      @arg: user argument
2908  *
2909  *      This ioctl is used to manage job control. It permits a session
2910  *      leader to set this tty as the controlling tty for the session.
2911  *
2912  *      Locking:
2913  *              Takes tty_mutex() to protect tty instance
2914  *              Takes tasklist_lock internally to walk sessions
2915  *              Takes ->siglock() when updating signal->tty
2916  */
2917
2918 static int tiocsctty(struct tty_struct *tty, int arg)
2919 {
2920         int ret = 0;
2921         if (current->signal->leader &&
2922                         (process_session(current) == tty->session))
2923                 return ret;
2924
2925         mutex_lock(&tty_mutex);
2926         /*
2927          * The process must be a session leader and
2928          * not have a controlling tty already.
2929          */
2930         if (!current->signal->leader || current->signal->tty) {
2931                 ret = -EPERM;
2932                 goto unlock;
2933         }
2934
2935         if (tty->session > 0) {
2936                 /*
2937                  * This tty is already the controlling
2938                  * tty for another session group!
2939                  */
2940                 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2941                         /*
2942                          * Steal it away
2943                          */
2944                         read_lock(&tasklist_lock);
2945                         session_clear_tty(tty->session);
2946                         read_unlock(&tasklist_lock);
2947                 } else {
2948                         ret = -EPERM;
2949                         goto unlock;
2950                 }
2951         }
2952         proc_set_tty(current, tty);
2953 unlock:
2954         mutex_unlock(&tty_mutex);
2955         return ret;
2956 }
2957
2958 /**
2959  *      tiocgpgrp               -       get process group
2960  *      @tty: tty passed by user
2961  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2962  *      @p: returned pid
2963  *
2964  *      Obtain the process group of the tty. If there is no process group
2965  *      return an error.
2966  *
2967  *      Locking: none. Reference to current->signal->tty is safe.
2968  */
2969
2970 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2971 {
2972         /*
2973          * (tty == real_tty) is a cheap way of
2974          * testing if the tty is NOT a master pty.
2975          */
2976         if (tty == real_tty && current->signal->tty != real_tty)
2977                 return -ENOTTY;
2978         return put_user(real_tty->pgrp, p);
2979 }
2980
2981 /**
2982  *      tiocspgrp               -       attempt to set process group
2983  *      @tty: tty passed by user
2984  *      @real_tty: tty side device matching tty passed by user
2985  *      @p: pid pointer
2986  *
2987  *      Set the process group of the tty to the session passed. Only
2988  *      permitted where the tty session is our session.
2989  *
2990  *      Locking: None
2991  */
2992
2993 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2994 {
2995         pid_t pgrp;
2996         int retval = tty_check_change(real_tty);
2997
2998         if (retval == -EIO)
2999                 return -ENOTTY;
3000         if (retval)
3001                 return retval;
3002         if (!current->signal->tty ||
3003             (current->signal->tty != real_tty) ||
3004             (real_tty->session != process_session(current)))
3005                 return -ENOTTY;
3006         if (get_user(pgrp, p))
3007                 return -EFAULT;
3008         if (pgrp < 0)
3009                 return -EINVAL;
3010         if (session_of_pgrp(pgrp) != process_session(current))
3011                 return -EPERM;
3012         real_tty->pgrp = pgrp;
3013         return 0;
3014 }
3015
3016 /**
3017  *      tiocgsid                -       get session id
3018  *      @tty: tty passed by user
3019  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
3020  *      @p: pointer to returned session id
3021  *
3022  *      Obtain the session id of the tty. If there is no session
3023  *      return an error.
3024  *
3025  *      Locking: none. Reference to current->signal->tty is safe.
3026  */
3027
3028 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3029 {
3030         /*
3031          * (tty == real_tty) is a cheap way of
3032          * testing if the tty is NOT a master pty.
3033         */
3034         if (tty == real_tty && current->signal->tty != real_tty)
3035                 return -ENOTTY;
3036         if (real_tty->session <= 0)
3037                 return -ENOTTY;
3038         return put_user(real_tty->session, p);
3039 }
3040
3041 /**
3042  *      tiocsetd        -       set line discipline
3043  *      @tty: tty device
3044  *      @p: pointer to user data
3045  *
3046  *      Set the line discipline according to user request.
3047  *
3048  *      Locking: see tty_set_ldisc, this function is just a helper
3049  */
3050
3051 static int tiocsetd(struct tty_struct *tty, int __user *p)
3052 {
3053         int ldisc;
3054
3055         if (get_user(ldisc, p))
3056                 return -EFAULT;
3057         return tty_set_ldisc(tty, ldisc);
3058 }
3059
3060 /**
3061  *      send_break      -       performed time break
3062  *      @tty: device to break on
3063  *      @duration: timeout in mS
3064  *
3065  *      Perform a timed break on hardware that lacks its own driver level
3066  *      timed break functionality.
3067  *
3068  *      Locking:
3069  *              atomic_write_lock serializes
3070  *
3071  */
3072
3073 static int send_break(struct tty_struct *tty, unsigned int duration)
3074 {
3075         if (mutex_lock_interruptible(&tty->atomic_write_lock))
3076                 return -EINTR;
3077         tty->driver->break_ctl(tty, -1);
3078         if (!signal_pending(current)) {
3079                 msleep_interruptible(duration);
3080         }
3081         tty->driver->break_ctl(tty, 0);
3082         mutex_unlock(&tty->atomic_write_lock);
3083         if (signal_pending(current))
3084                 return -EINTR;
3085         return 0;
3086 }
3087
3088 /**
3089  *      tiocmget                -       get modem status
3090  *      @tty: tty device
3091  *      @file: user file pointer
3092  *      @p: pointer to result
3093  *
3094  *      Obtain the modem status bits from the tty driver if the feature
3095  *      is supported. Return -EINVAL if it is not available.
3096  *
3097  *      Locking: none (up to the driver)
3098  */
3099
3100 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3101 {
3102         int retval = -EINVAL;
3103
3104         if (tty->driver->tiocmget) {
3105                 retval = tty->driver->tiocmget(tty, file);
3106
3107                 if (retval >= 0)
3108                         retval = put_user(retval, p);
3109         }
3110         return retval;
3111 }
3112
3113 /**
3114  *      tiocmset                -       set modem status
3115  *      @tty: tty device
3116  *      @file: user file pointer
3117  *      @cmd: command - clear bits, set bits or set all
3118  *      @p: pointer to desired bits
3119  *
3120  *      Set the modem status bits from the tty driver if the feature
3121  *      is supported. Return -EINVAL if it is not available.
3122  *
3123  *      Locking: none (up to the driver)
3124  */
3125
3126 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3127              unsigned __user *p)
3128 {
3129         int retval = -EINVAL;
3130
3131         if (tty->driver->tiocmset) {
3132                 unsigned int set, clear, val;
3133
3134                 retval = get_user(val, p);
3135                 if (retval)
3136                         return retval;
3137
3138                 set = clear = 0;
3139                 switch (cmd) {
3140                 case TIOCMBIS:
3141                         set = val;
3142                         break;
3143                 case TIOCMBIC:
3144                         clear = val;
3145                         break;
3146                 case TIOCMSET:
3147                         set = val;
3148                         clear = ~val;
3149                         break;
3150                 }
3151
3152                 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3153                 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3154
3155                 retval = tty->driver->tiocmset(tty, file, set, clear);
3156         }
3157         return retval;
3158 }
3159
3160 /*
3161  * Split this up, as gcc can choke on it otherwise..
3162  */
3163 int tty_ioctl(struct inode * inode, struct file * file,
3164               unsigned int cmd, unsigned long arg)
3165 {
3166         struct tty_struct *tty, *real_tty;
3167         void __user *p = (void __user *)arg;
3168         int retval;
3169         struct tty_ldisc *ld;
3170         
3171         tty = (struct tty_struct *)file->private_data;
3172         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3173                 return -EINVAL;
3174
3175         /* CHECKME: is this safe as one end closes ? */
3176
3177         real_tty = tty;
3178         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3179             tty->driver->subtype == PTY_TYPE_MASTER)
3180                 real_tty = tty->link;
3181
3182         /*
3183          * Break handling by driver
3184          */
3185         if (!tty->driver->break_ctl) {
3186                 switch(cmd) {
3187                 case TIOCSBRK:
3188                 case TIOCCBRK:
3189                         if (tty->driver->ioctl)
3190                                 return tty->driver->ioctl(tty, file, cmd, arg);
3191                         return -EINVAL;
3192                         
3193                 /* These two ioctl's always return success; even if */
3194                 /* the driver doesn't support them. */
3195                 case TCSBRK:
3196                 case TCSBRKP:
3197                         if (!tty->driver->ioctl)
3198                                 return 0;
3199                         retval = tty->driver->ioctl(tty, file, cmd, arg);
3200                         if (retval == -ENOIOCTLCMD)
3201                                 retval = 0;
3202                         return retval;
3203                 }
3204         }
3205
3206         /*
3207          * Factor out some common prep work
3208          */
3209         switch (cmd) {
3210         case TIOCSETD:
3211         case TIOCSBRK:
3212         case TIOCCBRK:
3213         case TCSBRK:
3214         case TCSBRKP:                   
3215                 retval = tty_check_change(tty);
3216                 if (retval)
3217                         return retval;
3218                 if (cmd != TIOCCBRK) {
3219                         tty_wait_until_sent(tty, 0);
3220                         if (signal_pending(current))
3221                                 return -EINTR;
3222                 }
3223                 break;
3224         }
3225
3226         switch (cmd) {
3227                 case TIOCSTI:
3228                         return tiocsti(tty, p);
3229                 case TIOCGWINSZ:
3230                         return tiocgwinsz(tty, p);
3231                 case TIOCSWINSZ:
3232                         return tiocswinsz(tty, real_tty, p);
3233                 case TIOCCONS:
3234                         return real_tty!=tty ? -EINVAL : tioccons(file);
3235                 case FIONBIO:
3236                         return fionbio(file, p);
3237                 case TIOCEXCL:
3238                         set_bit(TTY_EXCLUSIVE, &tty->flags);
3239                         return 0;
3240                 case TIOCNXCL:
3241                         clear_bit(TTY_EXCLUSIVE, &tty->flags);
3242                         return 0;
3243                 case TIOCNOTTY:
3244                         if (current->signal->tty != tty)
3245                                 return -ENOTTY;
3246                         if (current->signal->leader)
3247                                 disassociate_ctty(0);
3248                         proc_clear_tty(current);
3249                         return 0;
3250                 case TIOCSCTTY:
3251                         return tiocsctty(tty, arg);
3252                 case TIOCGPGRP:
3253                         return tiocgpgrp(tty, real_tty, p);
3254                 case TIOCSPGRP:
3255                         return tiocspgrp(tty, real_tty, p);
3256                 case TIOCGSID:
3257                         return tiocgsid(tty, real_tty, p);
3258                 case TIOCGETD:
3259                         /* FIXME: check this is ok */
3260                         return put_user(tty->ldisc.num, (int __user *)p);
3261                 case TIOCSETD:
3262                         return tiocsetd(tty, p);
3263 #ifdef CONFIG_VT
3264                 case TIOCLINUX:
3265                         return tioclinux(tty, arg);
3266 #endif
3267                 /*
3268                  * Break handling
3269                  */
3270                 case TIOCSBRK:  /* Turn break on, unconditionally */
3271                         tty->driver->break_ctl(tty, -1);
3272                         return 0;
3273                         
3274                 case TIOCCBRK:  /* Turn break off, unconditionally */
3275                         tty->driver->break_ctl(tty, 0);
3276                         return 0;
3277                 case TCSBRK:   /* SVID version: non-zero arg --> no break */
3278                         /* non-zero arg means wait for all output data
3279                          * to be sent (performed above) but don't send break.
3280                          * This is used by the tcdrain() termios function.
3281                          */
3282                         if (!arg)
3283                                 return send_break(tty, 250);
3284                         return 0;
3285                 case TCSBRKP:   /* support for POSIX tcsendbreak() */   
3286                         return send_break(tty, arg ? arg*100 : 250);
3287
3288                 case TIOCMGET:
3289                         return tty_tiocmget(tty, file, p);
3290
3291                 case TIOCMSET:
3292                 case TIOCMBIC:
3293                 case TIOCMBIS:
3294                         return tty_tiocmset(tty, file, cmd, p);
3295         }
3296         if (tty->driver->ioctl) {
3297                 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3298                 if (retval != -ENOIOCTLCMD)
3299                         return retval;
3300         }
3301         ld = tty_ldisc_ref_wait(tty);
3302         retval = -EINVAL;
3303         if (ld->ioctl) {
3304                 retval = ld->ioctl(tty, file, cmd, arg);
3305                 if (retval == -ENOIOCTLCMD)
3306                         retval = -EINVAL;
3307         }
3308         tty_ldisc_deref(ld);
3309         return retval;
3310 }
3311
3312
3313 /*
3314  * This implements the "Secure Attention Key" ---  the idea is to
3315  * prevent trojan horses by killing all processes associated with this
3316  * tty when the user hits the "Secure Attention Key".  Required for
3317  * super-paranoid applications --- see the Orange Book for more details.
3318  * 
3319  * This code could be nicer; ideally it should send a HUP, wait a few
3320  * seconds, then send a INT, and then a KILL signal.  But you then
3321  * have to coordinate with the init process, since all processes associated
3322  * with the current tty must be dead before the new getty is allowed
3323  * to spawn.
3324  *
3325  * Now, if it would be correct ;-/ The current code has a nasty hole -
3326  * it doesn't catch files in flight. We may send the descriptor to ourselves
3327  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3328  *
3329  * Nasty bug: do_SAK is being called in interrupt context.  This can
3330  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3331  */
3332 void __do_SAK(struct tty_struct *tty)
3333 {
3334 #ifdef TTY_SOFT_SAK
3335         tty_hangup(tty);
3336 #else
3337         struct task_struct *g, *p;
3338         int session;
3339         int             i;
3340         struct file     *filp;
3341         struct fdtable *fdt;
3342         
3343         if (!tty)
3344                 return;
3345         session = tty->session;
3346         
3347         tty_ldisc_flush(tty);
3348
3349         if (tty->driver->flush_buffer)
3350                 tty->driver->flush_buffer(tty);
3351         
3352         read_lock(&tasklist_lock);
3353         /* Kill the entire session */
3354         do_each_task_pid(session, PIDTYPE_SID, p) {
3355                 printk(KERN_NOTICE "SAK: killed process %d"
3356                         " (%s): process_session(p)==tty->session\n",
3357                         p->pid, p->comm);
3358                 send_sig(SIGKILL, p, 1);
3359         } while_each_task_pid(session, PIDTYPE_SID, p);
3360         /* Now kill any processes that happen to have the
3361          * tty open.
3362          */
3363         do_each_thread(g, p) {
3364                 if (p->signal->tty == tty) {
3365                         printk(KERN_NOTICE "SAK: killed process %d"
3366                             " (%s): process_session(p)==tty->session\n",
3367                             p->pid, p->comm);
3368                         send_sig(SIGKILL, p, 1);
3369                         continue;
3370                 }
3371                 task_lock(p);
3372                 if (p->files) {
3373                         /*
3374                          * We don't take a ref to the file, so we must
3375                          * hold ->file_lock instead.
3376                          */
3377                         spin_lock(&p->files->file_lock);
3378                         fdt = files_fdtable(p->files);
3379                         for (i=0; i < fdt->max_fds; i++) {
3380                                 filp = fcheck_files(p->files, i);
3381                                 if (!filp)
3382                                         continue;
3383                                 if (filp->f_op->read == tty_read &&
3384                                     filp->private_data == tty) {
3385                                         printk(KERN_NOTICE "SAK: killed process %d"
3386                                             " (%s): fd#%d opened to the tty\n",
3387                                             p->pid, p->comm, i);
3388                                         force_sig(SIGKILL, p);
3389                                         break;
3390                                 }
3391                         }
3392                         spin_unlock(&p->files->file_lock);
3393                 }
3394                 task_unlock(p);
3395         } while_each_thread(g, p);
3396         read_unlock(&tasklist_lock);
3397 #endif
3398 }
3399
3400 static void do_SAK_work(struct work_struct *work)
3401 {
3402         struct tty_struct *tty =
3403                 container_of(work, struct tty_struct, SAK_work);
3404         __do_SAK(tty);
3405 }
3406
3407 /*
3408  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3409  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3410  * the values which we write to it will be identical to the values which it
3411  * already has. --akpm
3412  */
3413 void do_SAK(struct tty_struct *tty)
3414 {
3415         if (!tty)
3416                 return;
3417         PREPARE_WORK(&tty->SAK_work, do_SAK_work);
3418         schedule_work(&tty->SAK_work);
3419 }
3420
3421 EXPORT_SYMBOL(do_SAK);
3422
3423 /**
3424  *      flush_to_ldisc
3425  *      @work: tty structure passed from work queue.
3426  *
3427  *      This routine is called out of the software interrupt to flush data
3428  *      from the buffer chain to the line discipline.
3429  *
3430  *      Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3431  *      while invoking the line discipline receive_buf method. The
3432  *      receive_buf method is single threaded for each tty instance.
3433  */
3434  
3435 static void flush_to_ldisc(struct work_struct *work)
3436 {
3437         struct tty_struct *tty =
3438                 container_of(work, struct tty_struct, buf.work.work);
3439         unsigned long   flags;
3440         struct tty_ldisc *disc;
3441         struct tty_buffer *tbuf, *head;
3442         char *char_buf;
3443         unsigned char *flag_buf;
3444
3445         disc = tty_ldisc_ref(tty);
3446         if (disc == NULL)       /*  !TTY_LDISC */
3447                 return;
3448
3449         spin_lock_irqsave(&tty->buf.lock, flags);
3450         head = tty->buf.head;
3451         if (head != NULL) {
3452                 tty->buf.head = NULL;
3453                 for (;;) {
3454                         int count = head->commit - head->read;
3455                         if (!count) {
3456                                 if (head->next == NULL)
3457                                         break;
3458                                 tbuf = head;
3459                                 head = head->next;
3460                                 tty_buffer_free(tty, tbuf);
3461                                 continue;
3462                         }
3463                         if (!tty->receive_room) {
3464                                 schedule_delayed_work(&tty->buf.work, 1);
3465                                 break;
3466                         }
3467                         if (count > tty->receive_room)
3468                                 count = tty->receive_room;
3469                         char_buf = head->char_buf_ptr + head->read;
3470                         flag_buf = head->flag_buf_ptr + head->read;
3471                         head->read += count;
3472                         spin_unlock_irqrestore(&tty->buf.lock, flags);
3473                         disc->receive_buf(tty, char_buf, flag_buf, count);
3474                         spin_lock_irqsave(&tty->buf.lock, flags);
3475                 }
3476                 tty->buf.head = head;
3477         }
3478         spin_unlock_irqrestore(&tty->buf.lock, flags);
3479
3480         tty_ldisc_deref(disc);
3481 }
3482
3483 /**
3484  *      tty_flip_buffer_push    -       terminal
3485  *      @tty: tty to push
3486  *
3487  *      Queue a push of the terminal flip buffers to the line discipline. This
3488  *      function must not be called from IRQ context if tty->low_latency is set.
3489  *
3490  *      In the event of the queue being busy for flipping the work will be
3491  *      held off and retried later.
3492  *
3493  *      Locking: tty buffer lock. Driver locks in low latency mode.
3494  */
3495
3496 void tty_flip_buffer_push(struct tty_struct *tty)
3497 {
3498         unsigned long flags;
3499         spin_lock_irqsave(&tty->buf.lock, flags);
3500         if (tty->buf.tail != NULL)
3501                 tty->buf.tail->commit = tty->buf.tail->used;
3502         spin_unlock_irqrestore(&tty->buf.lock, flags);
3503
3504         if (tty->low_latency)
3505                 flush_to_ldisc(&tty->buf.work.work);
3506         else
3507                 schedule_delayed_work(&tty->buf.work, 1);
3508 }
3509
3510 EXPORT_SYMBOL(tty_flip_buffer_push);
3511
3512
3513 /**
3514  *      initialize_tty_struct
3515  *      @tty: tty to initialize
3516  *
3517  *      This subroutine initializes a tty structure that has been newly
3518  *      allocated.
3519  *
3520  *      Locking: none - tty in question must not be exposed at this point
3521  */
3522
3523 static void initialize_tty_struct(struct tty_struct *tty)
3524 {
3525         memset(tty, 0, sizeof(struct tty_struct));
3526         tty->magic = TTY_MAGIC;
3527         tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3528         tty->pgrp = -1;
3529         tty->overrun_time = jiffies;
3530         tty->buf.head = tty->buf.tail = NULL;
3531         tty_buffer_init(tty);
3532         INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3533         init_MUTEX(&tty->buf.pty_sem);
3534         mutex_init(&tty->termios_mutex);
3535         init_waitqueue_head(&tty->write_wait);
3536         init_waitqueue_head(&tty->read_wait);
3537         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3538         mutex_init(&tty->atomic_read_lock);
3539         mutex_init(&tty->atomic_write_lock);
3540         spin_lock_init(&tty->read_lock);
3541         INIT_LIST_HEAD(&tty->tty_files);
3542         INIT_WORK(&tty->SAK_work, NULL);
3543 }
3544
3545 /*
3546  * The default put_char routine if the driver did not define one.
3547  */
3548
3549 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3550 {
3551         tty->driver->write(tty, &ch, 1);
3552 }
3553
3554 static struct class *tty_class;
3555
3556 /**
3557  *      tty_register_device - register a tty device
3558  *      @driver: the tty driver that describes the tty device
3559  *      @index: the index in the tty driver for this tty device
3560  *      @device: a struct device that is associated with this tty device.
3561  *              This field is optional, if there is no known struct device
3562  *              for this tty device it can be set to NULL safely.
3563  *
3564  *      Returns a pointer to the struct device for this tty device
3565  *      (or ERR_PTR(-EFOO) on error).
3566  *
3567  *      This call is required to be made to register an individual tty device
3568  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3569  *      that bit is not set, this function should not be called by a tty
3570  *      driver.
3571  *
3572  *      Locking: ??
3573  */
3574
3575 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3576                                    struct device *device)
3577 {
3578         char name[64];
3579         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3580
3581         if (index >= driver->num) {
3582                 printk(KERN_ERR "Attempt to register invalid tty line number "
3583                        " (%d).\n", index);
3584                 return ERR_PTR(-EINVAL);
3585         }
3586
3587         if (driver->type == TTY_DRIVER_TYPE_PTY)
3588                 pty_line_name(driver, index, name);
3589         else
3590                 tty_line_name(driver, index, name);
3591
3592         return device_create(tty_class, device, dev, name);
3593 }
3594
3595 /**
3596  *      tty_unregister_device - unregister a tty device
3597  *      @driver: the tty driver that describes the tty device
3598  *      @index: the index in the tty driver for this tty device
3599  *
3600  *      If a tty device is registered with a call to tty_register_device() then
3601  *      this function must be called when the tty device is gone.
3602  *
3603  *      Locking: ??
3604  */
3605
3606 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3607 {
3608         device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3609 }
3610
3611 EXPORT_SYMBOL(tty_register_device);
3612 EXPORT_SYMBOL(tty_unregister_device);
3613
3614 struct tty_driver *alloc_tty_driver(int lines)
3615 {
3616         struct tty_driver *driver;
3617
3618         driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3619         if (driver) {
3620                 memset(driver, 0, sizeof(struct tty_driver));
3621                 driver->magic = TTY_DRIVER_MAGIC;
3622                 driver->num = lines;
3623                 /* later we'll move allocation of tables here */
3624         }
3625         return driver;
3626 }
3627
3628 void put_tty_driver(struct tty_driver *driver)
3629 {
3630         kfree(driver);
3631 }
3632
3633 void tty_set_operations(struct tty_driver *driver,
3634                         const struct tty_operations *op)
3635 {
3636         driver->open = op->open;
3637         driver->close = op->close;
3638         driver->write = op->write;
3639         driver->put_char = op->put_char;
3640         driver->flush_chars = op->flush_chars;
3641         driver->write_room = op->write_room;
3642         driver->chars_in_buffer = op->chars_in_buffer;
3643         driver->ioctl = op->ioctl;
3644         driver->set_termios = op->set_termios;
3645         driver->throttle = op->throttle;
3646         driver->unthrottle = op->unthrottle;
3647         driver->stop = op->stop;
3648         driver->start = op->start;
3649         driver->hangup = op->hangup;
3650         driver->break_ctl = op->break_ctl;
3651         driver->flush_buffer = op->flush_buffer;
3652         driver->set_ldisc = op->set_ldisc;
3653         driver->wait_until_sent = op->wait_until_sent;
3654         driver->send_xchar = op->send_xchar;
3655         driver->read_proc = op->read_proc;
3656         driver->write_proc = op->write_proc;
3657         driver->tiocmget = op->tiocmget;
3658         driver->tiocmset = op->tiocmset;
3659 }
3660
3661
3662 EXPORT_SYMBOL(alloc_tty_driver);
3663 EXPORT_SYMBOL(put_tty_driver);
3664 EXPORT_SYMBOL(tty_set_operations);
3665
3666 /*
3667  * Called by a tty driver to register itself.
3668  */
3669 int tty_register_driver(struct tty_driver *driver)
3670 {
3671         int error;
3672         int i;
3673         dev_t dev;
3674         void **p = NULL;
3675
3676         if (driver->flags & TTY_DRIVER_INSTALLED)
3677                 return 0;
3678
3679         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
3680                 p = kmalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3681                 if (!p)
3682                         return -ENOMEM;
3683                 memset(p, 0, driver->num * 3 * sizeof(void *));
3684         }
3685
3686         if (!driver->major) {
3687                 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3688                                                 (char*)driver->name);
3689                 if (!error) {
3690                         driver->major = MAJOR(dev);
3691                         driver->minor_start = MINOR(dev);
3692                 }
3693         } else {
3694                 dev = MKDEV(driver->major, driver->minor_start);
3695                 error = register_chrdev_region(dev, driver->num,
3696                                                 (char*)driver->name);
3697         }
3698         if (error < 0) {
3699                 kfree(p);
3700                 return error;
3701         }
3702
3703         if (p) {
3704                 driver->ttys = (struct tty_struct **)p;
3705                 driver->termios = (struct ktermios **)(p + driver->num);
3706                 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3707         } else {
3708                 driver->ttys = NULL;
3709                 driver->termios = NULL;
3710                 driver->termios_locked = NULL;
3711         }
3712
3713         cdev_init(&driver->cdev, &tty_fops);
3714         driver->cdev.owner = driver->owner;
3715         error = cdev_add(&driver->cdev, dev, driver->num);
3716         if (error) {
3717                 unregister_chrdev_region(dev, driver->num);
3718                 driver->ttys = NULL;
3719                 driver->termios = driver->termios_locked = NULL;
3720                 kfree(p);
3721                 return error;
3722         }
3723
3724         if (!driver->put_char)
3725                 driver->put_char = tty_default_put_char;
3726         
3727         list_add(&driver->tty_drivers, &tty_drivers);
3728         
3729         if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3730                 for(i = 0; i < driver->num; i++)
3731                     tty_register_device(driver, i, NULL);
3732         }
3733         proc_tty_register_driver(driver);
3734         return 0;
3735 }
3736
3737 EXPORT_SYMBOL(tty_register_driver);
3738
3739 /*
3740  * Called by a tty driver to unregister itself.
3741  */
3742 int tty_unregister_driver(struct tty_driver *driver)
3743 {
3744         int i;
3745         struct ktermios *tp;
3746         void *p;
3747
3748         if (driver->refcount)
3749                 return -EBUSY;
3750
3751         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3752                                 driver->num);
3753
3754         list_del(&driver->tty_drivers);
3755
3756         /*
3757          * Free the termios and termios_locked structures because
3758          * we don't want to get memory leaks when modular tty
3759          * drivers are removed from the kernel.
3760          */
3761         for (i = 0; i < driver->num; i++) {
3762                 tp = driver->termios[i];
3763                 if (tp) {
3764                         driver->termios[i] = NULL;
3765                         kfree(tp);
3766                 }
3767                 tp = driver->termios_locked[i];
3768                 if (tp) {
3769                         driver->termios_locked[i] = NULL;
3770                         kfree(tp);
3771                 }
3772                 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3773                         tty_unregister_device(driver, i);
3774         }
3775         p = driver->ttys;
3776         proc_tty_unregister_driver(driver);
3777         driver->ttys = NULL;
3778         driver->termios = driver->termios_locked = NULL;
3779         kfree(p);
3780         cdev_del(&driver->cdev);
3781         return 0;
3782 }
3783 EXPORT_SYMBOL(tty_unregister_driver);
3784
3785 dev_t tty_devnum(struct tty_struct *tty)
3786 {
3787         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3788 }
3789 EXPORT_SYMBOL(tty_devnum);
3790
3791 void proc_clear_tty(struct task_struct *p)
3792 {
3793         spin_lock_irq(&p->sighand->siglock);
3794         p->signal->tty = NULL;
3795         spin_unlock_irq(&p->sighand->siglock);
3796 }
3797 EXPORT_SYMBOL(proc_clear_tty);
3798
3799 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3800 {
3801         if (tty) {
3802                 tty->session = process_session(tsk);
3803                 tty->pgrp = process_group(tsk);
3804         }
3805         tsk->signal->tty = tty;
3806         tsk->signal->tty_old_pgrp = 0;
3807 }
3808
3809 void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3810 {
3811         spin_lock_irq(&tsk->sighand->siglock);
3812         __proc_set_tty(tsk, tty);
3813         spin_unlock_irq(&tsk->sighand->siglock);
3814 }
3815
3816 struct tty_struct *get_current_tty(void)
3817 {
3818         struct tty_struct *tty;
3819         WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3820         tty = current->signal->tty;
3821         /*
3822          * session->tty can be changed/cleared from under us, make sure we
3823          * issue the load. The obtained pointer, when not NULL, is valid as
3824          * long as we hold tty_mutex.
3825          */
3826         barrier();
3827         return tty;
3828 }
3829 EXPORT_SYMBOL_GPL(get_current_tty);
3830
3831 /*
3832  * Initialize the console device. This is called *early*, so
3833  * we can't necessarily depend on lots of kernel help here.
3834  * Just do some early initializations, and do the complex setup
3835  * later.
3836  */
3837 void __init console_init(void)
3838 {
3839         initcall_t *call;
3840
3841         /* Setup the default TTY line discipline. */
3842         (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3843
3844         /*
3845          * set up the console device so that later boot sequences can 
3846          * inform about problems etc..
3847          */
3848 #ifdef CONFIG_EARLY_PRINTK
3849         disable_early_printk();
3850 #endif
3851         call = __con_initcall_start;
3852         while (call < __con_initcall_end) {
3853                 (*call)();
3854                 call++;
3855         }
3856 }
3857
3858 #ifdef CONFIG_VT
3859 extern int vty_init(void);
3860 #endif
3861
3862 static int __init tty_class_init(void)
3863 {
3864         tty_class = class_create(THIS_MODULE, "tty");
3865         if (IS_ERR(tty_class))
3866                 return PTR_ERR(tty_class);
3867         return 0;
3868 }
3869
3870 postcore_initcall(tty_class_init);
3871
3872 /* 3/2004 jmc: why do these devices exist? */
3873
3874 static struct cdev tty_cdev, console_cdev;
3875 #ifdef CONFIG_UNIX98_PTYS
3876 static struct cdev ptmx_cdev;
3877 #endif
3878 #ifdef CONFIG_VT
3879 static struct cdev vc0_cdev;
3880 #endif
3881
3882 /*
3883  * Ok, now we can initialize the rest of the tty devices and can count
3884  * on memory allocations, interrupts etc..
3885  */
3886 static int __init tty_init(void)
3887 {
3888         cdev_init(&tty_cdev, &tty_fops);
3889         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3890             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3891                 panic("Couldn't register /dev/tty driver\n");
3892         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3893
3894         cdev_init(&console_cdev, &console_fops);
3895         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3896             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3897                 panic("Couldn't register /dev/console driver\n");
3898         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3899
3900 #ifdef CONFIG_UNIX98_PTYS
3901         cdev_init(&ptmx_cdev, &ptmx_fops);
3902         if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3903             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3904                 panic("Couldn't register /dev/ptmx driver\n");
3905         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3906 #endif
3907
3908 #ifdef CONFIG_VT
3909         cdev_init(&vc0_cdev, &console_fops);
3910         if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3911             register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3912                 panic("Couldn't register /dev/tty0 driver\n");
3913         device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3914
3915         vty_init();
3916 #endif
3917         return 0;
3918 }
3919 module_init(tty_init);