]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-ohci.c
firewire: Handle access to CSR resources on local node.
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define descriptor_output_more          0
37 #define descriptor_output_last          (1 << 12)
38 #define descriptor_input_more           (2 << 12)
39 #define descriptor_input_last           (3 << 12)
40 #define descriptor_status               (1 << 11)
41 #define descriptor_key_immediate        (2 << 8)
42 #define descriptor_ping                 (1 << 7)
43 #define descriptor_yy                   (1 << 6)
44 #define descriptor_no_irq               (0 << 4)
45 #define descriptor_irq_error            (1 << 4)
46 #define descriptor_irq_always           (3 << 4)
47 #define descriptor_branch_always        (3 << 2)
48
49 struct descriptor {
50         __le16 req_count;
51         __le16 control;
52         __le32 data_address;
53         __le32 branch_address;
54         __le16 res_count;
55         __le16 transfer_status;
56 } __attribute__((aligned(16)));
57
58 struct ar_context {
59         struct fw_ohci *ohci;
60         struct descriptor descriptor;
61         __le32 buffer[512];
62         dma_addr_t descriptor_bus;
63         dma_addr_t buffer_bus;
64
65         u32 command_ptr;
66         u32 control_set;
67         u32 control_clear;
68
69         struct tasklet_struct tasklet;
70 };
71
72 struct at_context {
73         struct fw_ohci *ohci;
74         dma_addr_t descriptor_bus;
75         dma_addr_t buffer_bus;
76
77         struct list_head list;
78
79         struct {
80                 struct descriptor more;
81                 __le32 header[4];
82                 struct descriptor last;
83         } d;
84
85         u32 command_ptr;
86         u32 control_set;
87         u32 control_clear;
88
89         struct tasklet_struct tasklet;
90 };
91
92 #define it_header_sy(v)          ((v) <<  0)
93 #define it_header_tcode(v)       ((v) <<  4)
94 #define it_header_channel(v)     ((v) <<  8)
95 #define it_header_tag(v)         ((v) << 14)
96 #define it_header_speed(v)       ((v) << 16)
97 #define it_header_data_length(v) ((v) << 16)
98
99 struct iso_context {
100         struct fw_iso_context base;
101         struct tasklet_struct tasklet;
102         u32 control_set;
103         u32 control_clear;
104         u32 command_ptr;
105         u32 context_match;
106
107         struct descriptor *buffer;
108         dma_addr_t buffer_bus;
109         struct descriptor *head_descriptor;
110         struct descriptor *tail_descriptor;
111         struct descriptor *tail_descriptor_last;
112         struct descriptor *prev_descriptor;
113 };
114
115 #define CONFIG_ROM_SIZE 1024
116
117 struct fw_ohci {
118         struct fw_card card;
119
120         __iomem char *registers;
121         dma_addr_t self_id_bus;
122         __le32 *self_id_cpu;
123         struct tasklet_struct bus_reset_tasklet;
124         int node_id;
125         int generation;
126         int request_generation;
127
128         /* Spinlock for accessing fw_ohci data.  Never call out of
129          * this driver with this lock held. */
130         spinlock_t lock;
131         u32 self_id_buffer[512];
132
133         /* Config rom buffers */
134         __be32 *config_rom;
135         dma_addr_t config_rom_bus;
136         __be32 *next_config_rom;
137         dma_addr_t next_config_rom_bus;
138         u32 next_header;
139
140         struct ar_context ar_request_ctx;
141         struct ar_context ar_response_ctx;
142         struct at_context at_request_ctx;
143         struct at_context at_response_ctx;
144
145         u32 it_context_mask;
146         struct iso_context *it_context_list;
147         u32 ir_context_mask;
148         struct iso_context *ir_context_list;
149 };
150
151 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
152 {
153         return container_of(card, struct fw_ohci, card);
154 }
155
156 #define CONTEXT_CYCLE_MATCH_ENABLE      0x80000000
157
158 #define CONTEXT_RUN     0x8000
159 #define CONTEXT_WAKE    0x1000
160 #define CONTEXT_DEAD    0x0800
161 #define CONTEXT_ACTIVE  0x0400
162
163 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
164 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
165 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
166
167 #define FW_OHCI_MAJOR                   240
168 #define OHCI1394_REGISTER_SIZE          0x800
169 #define OHCI_LOOP_COUNT                 500
170 #define OHCI1394_PCI_HCI_Control        0x40
171 #define SELF_ID_BUF_SIZE                0x800
172
173 static char ohci_driver_name[] = KBUILD_MODNAME;
174
175 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
176 {
177         writel(data, ohci->registers + offset);
178 }
179
180 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
181 {
182         return readl(ohci->registers + offset);
183 }
184
185 static inline void flush_writes(const struct fw_ohci *ohci)
186 {
187         /* Do a dummy read to flush writes. */
188         reg_read(ohci, OHCI1394_Version);
189 }
190
191 static int
192 ohci_update_phy_reg(struct fw_card *card, int addr,
193                     int clear_bits, int set_bits)
194 {
195         struct fw_ohci *ohci = fw_ohci(card);
196         u32 val, old;
197
198         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
199         msleep(2);
200         val = reg_read(ohci, OHCI1394_PhyControl);
201         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
202                 fw_error("failed to set phy reg bits.\n");
203                 return -EBUSY;
204         }
205
206         old = OHCI1394_PhyControl_ReadData(val);
207         old = (old & ~clear_bits) | set_bits;
208         reg_write(ohci, OHCI1394_PhyControl,
209                   OHCI1394_PhyControl_Write(addr, old));
210
211         return 0;
212 }
213
214 static void ar_context_run(struct ar_context *ctx)
215 {
216         reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
217         reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
218         flush_writes(ctx->ohci);
219 }
220
221 static void ar_context_tasklet(unsigned long data)
222 {
223         struct ar_context *ctx = (struct ar_context *)data;
224         struct fw_ohci *ohci = ctx->ohci;
225         struct fw_packet p;
226         u32 status, length, tcode;
227
228         /* FIXME: What to do about evt_* errors? */
229         length    = le16_to_cpu(ctx->descriptor.req_count) -
230                 le16_to_cpu(ctx->descriptor.res_count) - 4;
231         status    = le32_to_cpu(ctx->buffer[length / 4]);
232
233         p.ack        = ((status >> 16) & 0x1f) - 16;
234         p.speed      = (status >> 21) & 0x7;
235         p.timestamp  = status & 0xffff;
236         p.generation = ohci->request_generation;
237
238         p.header[0] = le32_to_cpu(ctx->buffer[0]);
239         p.header[1] = le32_to_cpu(ctx->buffer[1]);
240         p.header[2] = le32_to_cpu(ctx->buffer[2]);
241
242         tcode = (p.header[0] >> 4) & 0x0f;
243         switch (tcode) {
244         case TCODE_WRITE_QUADLET_REQUEST:
245         case TCODE_READ_QUADLET_RESPONSE:
246                 p.header[3] = ctx->buffer[3];
247                 p.header_length = 16;
248                 break;
249
250         case TCODE_WRITE_BLOCK_REQUEST:
251         case TCODE_READ_BLOCK_REQUEST :
252         case TCODE_READ_BLOCK_RESPONSE:
253         case TCODE_LOCK_REQUEST:
254         case TCODE_LOCK_RESPONSE:
255                 p.header[3] = le32_to_cpu(ctx->buffer[3]);
256                 p.header_length = 16;
257                 break;
258
259         case TCODE_WRITE_RESPONSE:
260         case TCODE_READ_QUADLET_REQUEST:
261                 p.header_length = 12;
262                 break;
263         }
264
265         p.payload = (void *) ctx->buffer + p.header_length;
266         p.payload_length = length - p.header_length;
267
268         /* The OHCI bus reset handler synthesizes a phy packet with
269          * the new generation number when a bus reset happens (see
270          * section 8.4.2.3).  This helps us determine when a request
271          * was received and make sure we send the response in the same
272          * generation.  We only need this for requests; for responses
273          * we use the unique tlabel for finding the matching
274          * request. */
275
276         if (p.ack + 16 == 0x09)
277                 ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
278         else if (ctx == &ohci->ar_request_ctx)
279                 fw_core_handle_request(&ohci->card, &p);
280         else
281                 fw_core_handle_response(&ohci->card, &p);
282
283         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
284         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
285         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
286
287         dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
288                                    sizeof ctx->descriptor_bus, DMA_TO_DEVICE);
289
290         /* FIXME: We stop and restart the ar context here, what if we
291          * stop while a receive is in progress? Maybe we could just
292          * loop the context back to itself and use it in buffer fill
293          * mode as intended... */
294
295         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
296         ar_context_run(ctx);
297 }
298
299 static int
300 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
301 {
302         ctx->descriptor_bus =
303                 dma_map_single(ohci->card.device, &ctx->descriptor,
304                                sizeof ctx->descriptor, DMA_TO_DEVICE);
305         if (ctx->descriptor_bus == 0)
306                 return -ENOMEM;
307
308         if (ctx->descriptor_bus & 0xf)
309                 fw_notify("descriptor not 16-byte aligned: 0x%08lx\n",
310                           (unsigned long)ctx->descriptor_bus);
311
312         ctx->buffer_bus =
313                 dma_map_single(ohci->card.device, ctx->buffer,
314                                sizeof ctx->buffer, DMA_FROM_DEVICE);
315
316         if (ctx->buffer_bus == 0) {
317                 dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
318                                  sizeof ctx->descriptor, DMA_TO_DEVICE);
319                 return -ENOMEM;
320         }
321
322         memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
323         ctx->descriptor.control      = cpu_to_le16(descriptor_input_more |
324                                                    descriptor_status |
325                                                    descriptor_branch_always);
326         ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
327         ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
328         ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);
329
330         ctx->control_set   = control_set;
331         ctx->control_clear = control_set + 4;
332         ctx->command_ptr   = control_set + 12;
333         ctx->ohci          = ohci;
334
335         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
336
337         ar_context_run(ctx);
338
339         return 0;
340 }
341
342 static void
343 do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
344 {
345         struct fw_packet *p, *next;
346
347         list_for_each_entry_safe(p, next, list, link)
348                 p->callback(p, &ohci->card, p->ack);
349 }
350
351 static void
352 complete_transmission(struct fw_packet *packet,
353                       int ack, struct list_head *list)
354 {
355         list_move_tail(&packet->link, list);
356         packet->ack = ack;
357 }
358
359 /* This function prepares the first packet in the context queue for
360  * transmission.  Must always be called with the ochi->lock held to
361  * ensure proper generation handling and locking around packet queue
362  * manipulation. */
363 static void
364 at_context_setup_packet(struct at_context *ctx, struct list_head *list)
365 {
366         struct fw_packet *packet;
367         struct fw_ohci *ohci = ctx->ohci;
368         int z, tcode;
369
370         packet = fw_packet(ctx->list.next);
371
372         memset(&ctx->d, 0, sizeof ctx->d);
373         if (packet->payload_length > 0) {
374                 packet->payload_bus = dma_map_single(ohci->card.device,
375                                                      packet->payload,
376                                                      packet->payload_length,
377                                                      DMA_TO_DEVICE);
378                 if (packet->payload_bus == 0) {
379                         complete_transmission(packet, -ENOMEM, list);
380                         return;
381                 }
382
383                 ctx->d.more.control      =
384                         cpu_to_le16(descriptor_output_more |
385                                     descriptor_key_immediate);
386                 ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
387                 ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
388                 ctx->d.last.control      =
389                         cpu_to_le16(descriptor_output_last |
390                                     descriptor_irq_always |
391                                     descriptor_branch_always);
392                 ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
393                 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
394                 z = 3;
395         } else {
396                 ctx->d.more.control   =
397                         cpu_to_le16(descriptor_output_last |
398                                     descriptor_key_immediate |
399                                     descriptor_irq_always |
400                                     descriptor_branch_always);
401                 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
402                 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
403                 z = 2;
404         }
405
406         /* The DMA format for asyncronous link packets is different
407          * from the IEEE1394 layout, so shift the fields around
408          * accordingly.  If header_length is 8, it's a PHY packet, to
409          * which we need to prepend an extra quadlet. */
410         if (packet->header_length > 8) {
411                 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
412                                                (packet->speed << 16));
413                 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
414                                                (packet->header[0] & 0xffff0000));
415                 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
416
417                 tcode = (packet->header[0] >> 4) & 0x0f;
418                 if (TCODE_IS_BLOCK_PACKET(tcode))
419                         ctx->d.header[3] = cpu_to_le32(packet->header[3]);
420                 else
421                         ctx->d.header[3] = packet->header[3];
422         } else {
423                 ctx->d.header[0] =
424                         cpu_to_le32((OHCI1394_phy_tcode << 4) |
425                                     (packet->speed << 16));
426                 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
427                 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
428                 ctx->d.more.req_count = cpu_to_le16(12);
429         }
430
431         /* FIXME: Document how the locking works. */
432         if (ohci->generation == packet->generation) {
433                 reg_write(ctx->ohci, ctx->command_ptr,
434                           ctx->descriptor_bus | z);
435                 reg_write(ctx->ohci, ctx->control_set,
436                           CONTEXT_RUN | CONTEXT_WAKE);
437         } else {
438                 /* We dont return error codes from this function; all
439                  * transmission errors are reported through the
440                  * callback. */
441                 complete_transmission(packet, -ESTALE, list);
442         }
443 }
444
445 static void at_context_stop(struct at_context *ctx)
446 {
447         u32 reg;
448
449         reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
450
451         reg = reg_read(ctx->ohci, ctx->control_set);
452         if (reg & CONTEXT_ACTIVE)
453                 fw_notify("Tried to stop context, but it is still active "
454                           "(0x%08x).\n", reg);
455 }
456
457 static void at_context_tasklet(unsigned long data)
458 {
459         struct at_context *ctx = (struct at_context *)data;
460         struct fw_ohci *ohci = ctx->ohci;
461         struct fw_packet *packet;
462         LIST_HEAD(list);
463         unsigned long flags;
464         int evt;
465
466         spin_lock_irqsave(&ohci->lock, flags);
467
468         packet = fw_packet(ctx->list.next);
469
470         at_context_stop(ctx);
471
472         if (packet->payload_length > 0) {
473                 dma_unmap_single(ohci->card.device, packet->payload_bus,
474                                  packet->payload_length, DMA_TO_DEVICE);
475                 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
476                 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
477         }
478         else {
479                 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
480                 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
481         }
482
483         if (evt < 16) {
484                 switch (evt) {
485                 case OHCI1394_evt_timeout:
486                         /* Async response transmit timed out. */
487                         complete_transmission(packet, -ETIMEDOUT, &list);
488                         break;
489
490                 case OHCI1394_evt_flushed:
491                         /* The packet was flushed should give same
492                          * error as when we try to use a stale
493                          * generation count. */
494                         complete_transmission(packet, -ESTALE, &list);
495                         break;
496
497                 case OHCI1394_evt_missing_ack:
498                         /* This would be a higher level software
499                          * error, it is using a valid (current)
500                          * generation count, but the node is not on
501                          * the bus. */
502                         complete_transmission(packet, -ENODEV, &list);
503                         break;
504
505                 default:
506                         complete_transmission(packet, -EIO, &list);
507                         break;
508                 }
509         } else
510                 complete_transmission(packet, evt - 16, &list);
511
512         /* If more packets are queued, set up the next one. */
513         if (!list_empty(&ctx->list))
514                 at_context_setup_packet(ctx, &list);
515
516         spin_unlock_irqrestore(&ohci->lock, flags);
517
518         do_packet_callbacks(ohci, &list);
519 }
520
521 static int
522 at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
523 {
524         INIT_LIST_HEAD(&ctx->list);
525
526         ctx->descriptor_bus =
527                 dma_map_single(ohci->card.device, &ctx->d,
528                                sizeof ctx->d, DMA_TO_DEVICE);
529         if (ctx->descriptor_bus == 0)
530                 return -ENOMEM;
531
532         ctx->control_set   = control_set;
533         ctx->control_clear = control_set + 4;
534         ctx->command_ptr   = control_set + 12;
535         ctx->ohci          = ohci;
536
537         tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
538
539         return 0;
540 }
541
542 #define header_get_destination(q)       (((q) >> 16) & 0xffff)
543 #define header_get_tcode(q)             (((q) >> 4) & 0x0f)
544 #define header_get_offset_high(q)       (((q) >> 0) & 0xffff)
545 #define header_get_data_length(q)       (((q) >> 16) & 0xffff)
546 #define header_get_extended_tcode(q)    (((q) >> 0) & 0xffff)
547
548 static void
549 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
550 {
551         struct fw_packet response;
552         int tcode, length, i;
553
554         tcode = header_get_tcode(packet->header[0]);
555         if (TCODE_IS_BLOCK_PACKET(tcode))
556                 length = header_get_data_length(packet->header[3]);
557         else
558                 length = 4;
559
560         i = csr - CSR_CONFIG_ROM;
561         if (i + length > CONFIG_ROM_SIZE) {
562                 fw_fill_response(&response, packet->header,
563                                  RCODE_ADDRESS_ERROR, NULL, 0);
564         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
565                 fw_fill_response(&response, packet->header,
566                                  RCODE_TYPE_ERROR, NULL, 0);
567         } else {
568                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
569                                  (void *) ohci->config_rom + i, length);
570         }
571
572         fw_core_handle_response(&ohci->card, &response);
573 }
574
575 static void
576 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
577 {
578         struct fw_packet response;
579         int tcode, length, ext_tcode, sel;
580         __be32 *payload, lock_old;
581         u32 lock_arg, lock_data;
582
583         tcode = header_get_tcode(packet->header[0]);
584         length = header_get_data_length(packet->header[3]);
585         payload = packet->payload;
586         ext_tcode = header_get_extended_tcode(packet->header[3]);
587
588         if (tcode == TCODE_LOCK_REQUEST &&
589             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
590                 lock_arg = be32_to_cpu(payload[0]);
591                 lock_data = be32_to_cpu(payload[1]);
592         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
593                 lock_arg = 0;
594                 lock_data = 0;
595         } else {
596                 fw_fill_response(&response, packet->header,
597                                  RCODE_TYPE_ERROR, NULL, 0);
598                 goto out;
599         }
600
601         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
602         reg_write(ohci, OHCI1394_CSRData, lock_data);
603         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
604         reg_write(ohci, OHCI1394_CSRControl, sel);
605
606         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
607                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
608         else
609                 fw_notify("swap not done yet\n");
610
611         fw_fill_response(&response, packet->header,
612                          RCODE_COMPLETE, &lock_old, sizeof lock_old);
613  out:
614         fw_core_handle_response(&ohci->card, &response);
615 }
616
617 static void
618 handle_local_request(struct at_context *ctx, struct fw_packet *packet)
619 {
620         u64 offset;
621         u32 csr;
622
623         packet->ack = ACK_PENDING;
624         packet->callback(packet, &ctx->ohci->card, packet->ack);
625
626         offset =
627                 ((unsigned long long)
628                  header_get_offset_high(packet->header[1]) << 32) |
629                 packet->header[2];
630         csr = offset - CSR_REGISTER_BASE;
631
632         /* Handle config rom reads. */
633         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
634                 handle_local_rom(ctx->ohci, packet, csr);
635         else switch (csr) {
636         case CSR_BUS_MANAGER_ID:
637         case CSR_BANDWIDTH_AVAILABLE:
638         case CSR_CHANNELS_AVAILABLE_HI:
639         case CSR_CHANNELS_AVAILABLE_LO:
640                 handle_local_lock(ctx->ohci, packet, csr);
641                 break;
642         default:
643                 if (ctx == &ctx->ohci->at_request_ctx)
644                         fw_core_handle_request(&ctx->ohci->card, packet);
645                 else
646                         fw_core_handle_response(&ctx->ohci->card, packet);
647                 break;
648         }
649 }
650
651 static void
652 at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
653 {
654         LIST_HEAD(list);
655         unsigned long flags;
656
657         spin_lock_irqsave(&ctx->ohci->lock, flags);
658
659         if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
660             ctx->ohci->generation == packet->generation) {
661                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
662                 handle_local_request(ctx, packet);
663                 return;
664         }
665
666         list_add_tail(&packet->link, &ctx->list);
667         if (ctx->list.next == &packet->link)
668                 at_context_setup_packet(ctx, &list);
669
670         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
671
672         do_packet_callbacks(ctx->ohci, &list);
673 }
674
675 static void bus_reset_tasklet(unsigned long data)
676 {
677         struct fw_ohci *ohci = (struct fw_ohci *)data;
678         int self_id_count, i, j, reg;
679         int generation, new_generation;
680         unsigned long flags;
681
682         reg = reg_read(ohci, OHCI1394_NodeID);
683         if (!(reg & OHCI1394_NodeID_idValid)) {
684                 fw_error("node ID not valid, new bus reset in progress\n");
685                 return;
686         }
687         ohci->node_id = reg & 0xffff;
688
689         /* The count in the SelfIDCount register is the number of
690          * bytes in the self ID receive buffer.  Since we also receive
691          * the inverted quadlets and a header quadlet, we shift one
692          * bit extra to get the actual number of self IDs. */
693
694         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
695         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
696
697         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
698                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
699                         fw_error("inconsistent self IDs\n");
700                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
701         }
702
703         /* Check the consistency of the self IDs we just read.  The
704          * problem we face is that a new bus reset can start while we
705          * read out the self IDs from the DMA buffer. If this happens,
706          * the DMA buffer will be overwritten with new self IDs and we
707          * will read out inconsistent data.  The OHCI specification
708          * (section 11.2) recommends a technique similar to
709          * linux/seqlock.h, where we remember the generation of the
710          * self IDs in the buffer before reading them out and compare
711          * it to the current generation after reading them out.  If
712          * the two generations match we know we have a consistent set
713          * of self IDs. */
714
715         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
716         if (new_generation != generation) {
717                 fw_notify("recursive bus reset detected, "
718                           "discarding self ids\n");
719                 return;
720         }
721
722         /* FIXME: Document how the locking works. */
723         spin_lock_irqsave(&ohci->lock, flags);
724
725         ohci->generation = generation;
726         at_context_stop(&ohci->at_request_ctx);
727         at_context_stop(&ohci->at_response_ctx);
728         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
729
730         /* This next bit is unrelated to the AT context stuff but we
731          * have to do it under the spinlock also.  If a new config rom
732          * was set up before this reset, the old one is now no longer
733          * in use and we can free it. Update the config rom pointers
734          * to point to the current config rom and clear the
735          * next_config_rom pointer so a new udpate can take place. */
736
737         if (ohci->next_config_rom != NULL) {
738                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
739                                   ohci->config_rom, ohci->config_rom_bus);
740                 ohci->config_rom      = ohci->next_config_rom;
741                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
742                 ohci->next_config_rom = NULL;
743
744                 /* Restore config_rom image and manually update
745                  * config_rom registers.  Writing the header quadlet
746                  * will indicate that the config rom is ready, so we
747                  * do that last. */
748                 reg_write(ohci, OHCI1394_BusOptions,
749                           be32_to_cpu(ohci->config_rom[2]));
750                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
751                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
752         }
753
754         spin_unlock_irqrestore(&ohci->lock, flags);
755
756         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
757                                  self_id_count, ohci->self_id_buffer);
758 }
759
760 static irqreturn_t irq_handler(int irq, void *data)
761 {
762         struct fw_ohci *ohci = data;
763         u32 event, iso_event;
764         int i;
765
766         event = reg_read(ohci, OHCI1394_IntEventClear);
767
768         if (!event)
769                 return IRQ_NONE;
770
771         reg_write(ohci, OHCI1394_IntEventClear, event);
772
773         if (event & OHCI1394_selfIDComplete)
774                 tasklet_schedule(&ohci->bus_reset_tasklet);
775
776         if (event & OHCI1394_RQPkt)
777                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
778
779         if (event & OHCI1394_RSPkt)
780                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
781
782         if (event & OHCI1394_reqTxComplete)
783                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
784
785         if (event & OHCI1394_respTxComplete)
786                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
787
788         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
789         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
790
791         while (iso_event) {
792                 i = ffs(iso_event) - 1;
793                 tasklet_schedule(&ohci->ir_context_list[i].tasklet);
794                 iso_event &= ~(1 << i);
795         }
796
797         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
798         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
799
800         while (iso_event) {
801                 i = ffs(iso_event) - 1;
802                 tasklet_schedule(&ohci->it_context_list[i].tasklet);
803                 iso_event &= ~(1 << i);
804         }
805
806         return IRQ_HANDLED;
807 }
808
809 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
810 {
811         struct fw_ohci *ohci = fw_ohci(card);
812         struct pci_dev *dev = to_pci_dev(card->device);
813
814         /* When the link is not yet enabled, the atomic config rom
815          * update mechanism described below in ohci_set_config_rom()
816          * is not active.  We have to update ConfigRomHeader and
817          * BusOptions manually, and the write to ConfigROMmap takes
818          * effect immediately.  We tie this to the enabling of the
819          * link, so we have a valid config rom before enabling - the
820          * OHCI requires that ConfigROMhdr and BusOptions have valid
821          * values before enabling.
822          *
823          * However, when the ConfigROMmap is written, some controllers
824          * always read back quadlets 0 and 2 from the config rom to
825          * the ConfigRomHeader and BusOptions registers on bus reset.
826          * They shouldn't do that in this initial case where the link
827          * isn't enabled.  This means we have to use the same
828          * workaround here, setting the bus header to 0 and then write
829          * the right values in the bus reset tasklet.
830          */
831
832         ohci->next_config_rom =
833                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
834                                    &ohci->next_config_rom_bus, GFP_KERNEL);
835         if (ohci->next_config_rom == NULL)
836                 return -ENOMEM;
837
838         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
839         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
840
841         ohci->next_header = config_rom[0];
842         ohci->next_config_rom[0] = 0;
843         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
844         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
845         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
846
847         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
848
849         if (request_irq(dev->irq, irq_handler,
850                         SA_SHIRQ, ohci_driver_name, ohci)) {
851                 fw_error("Failed to allocate shared interrupt %d.\n",
852                          dev->irq);
853                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
854                                   ohci->config_rom, ohci->config_rom_bus);
855                 return -EIO;
856         }
857
858         reg_write(ohci, OHCI1394_HCControlSet,
859                   OHCI1394_HCControl_linkEnable |
860                   OHCI1394_HCControl_BIBimageValid);
861         flush_writes(ohci);
862
863         /* We are ready to go, initiate bus reset to finish the
864          * initialization. */
865
866         fw_core_initiate_bus_reset(&ohci->card, 1);
867
868         return 0;
869 }
870
871 static int
872 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
873 {
874         struct fw_ohci *ohci;
875         unsigned long flags;
876         int retval = 0;
877         __be32 *next_config_rom;
878         dma_addr_t next_config_rom_bus;
879
880         ohci = fw_ohci(card);
881
882         /* When the OHCI controller is enabled, the config rom update
883          * mechanism is a bit tricky, but easy enough to use.  See
884          * section 5.5.6 in the OHCI specification.
885          *
886          * The OHCI controller caches the new config rom address in a
887          * shadow register (ConfigROMmapNext) and needs a bus reset
888          * for the changes to take place.  When the bus reset is
889          * detected, the controller loads the new values for the
890          * ConfigRomHeader and BusOptions registers from the specified
891          * config rom and loads ConfigROMmap from the ConfigROMmapNext
892          * shadow register. All automatically and atomically.
893          *
894          * Now, there's a twist to this story.  The automatic load of
895          * ConfigRomHeader and BusOptions doesn't honor the
896          * noByteSwapData bit, so with a be32 config rom, the
897          * controller will load be32 values in to these registers
898          * during the atomic update, even on litte endian
899          * architectures.  The workaround we use is to put a 0 in the
900          * header quadlet; 0 is endian agnostic and means that the
901          * config rom isn't ready yet.  In the bus reset tasklet we
902          * then set up the real values for the two registers.
903          *
904          * We use ohci->lock to avoid racing with the code that sets
905          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
906          */
907
908         next_config_rom =
909                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
910                                    &next_config_rom_bus, GFP_KERNEL);
911         if (next_config_rom == NULL)
912                 return -ENOMEM;
913
914         spin_lock_irqsave(&ohci->lock, flags);
915
916         if (ohci->next_config_rom == NULL) {
917                 ohci->next_config_rom = next_config_rom;
918                 ohci->next_config_rom_bus = next_config_rom_bus;
919
920                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
921                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
922                                   length * 4);
923
924                 ohci->next_header = config_rom[0];
925                 ohci->next_config_rom[0] = 0;
926
927                 reg_write(ohci, OHCI1394_ConfigROMmap,
928                           ohci->next_config_rom_bus);
929         } else {
930                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
931                                   next_config_rom, next_config_rom_bus);
932                 retval = -EBUSY;
933         }
934
935         spin_unlock_irqrestore(&ohci->lock, flags);
936
937         /* Now initiate a bus reset to have the changes take
938          * effect. We clean up the old config rom memory and DMA
939          * mappings in the bus reset tasklet, since the OHCI
940          * controller could need to access it before the bus reset
941          * takes effect. */
942         if (retval == 0)
943                 fw_core_initiate_bus_reset(&ohci->card, 1);
944
945         return retval;
946 }
947
948 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
949 {
950         struct fw_ohci *ohci = fw_ohci(card);
951
952         at_context_transmit(&ohci->at_request_ctx, packet);
953 }
954
955 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
956 {
957         struct fw_ohci *ohci = fw_ohci(card);
958
959         at_context_transmit(&ohci->at_response_ctx, packet);
960 }
961
962 static int
963 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
964 {
965         struct fw_ohci *ohci = fw_ohci(card);
966         unsigned long flags;
967         int n, retval = 0;
968
969         /* FIXME:  Make sure this bitmask is cleared when we clear the busReset
970          * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
971
972         spin_lock_irqsave(&ohci->lock, flags);
973
974         if (ohci->generation != generation) {
975                 retval = -ESTALE;
976                 goto out;
977         }
978
979         /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
980          * enabled for _all_ nodes on remote buses. */
981
982         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
983         if (n < 32)
984                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
985         else
986                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
987
988         flush_writes(ohci);
989  out:
990         spin_unlock_irqrestore(&ohci->lock, flags);
991         return retval;
992 }
993
994 static void ir_context_tasklet(unsigned long data)
995 {
996         struct iso_context *ctx = (struct iso_context *)data;
997
998         (void)ctx;
999 }
1000
1001 #define ISO_BUFFER_SIZE (64 * 1024)
1002
1003 static void flush_iso_context(struct iso_context *ctx)
1004 {
1005         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1006         struct descriptor *d, *last;
1007         u32 address;
1008         int z;
1009
1010         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
1011                                 ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1012
1013         d    = ctx->tail_descriptor;
1014         last = ctx->tail_descriptor_last;
1015
1016         while (last->branch_address != 0 && last->transfer_status != 0) {
1017                 address = le32_to_cpu(last->branch_address);
1018                 z = address & 0xf;
1019                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
1020
1021                 if (z == 2)
1022                         last = d;
1023                 else
1024                         last = d + z - 1;
1025
1026                 if (le16_to_cpu(last->control) & descriptor_irq_always)
1027                         ctx->base.callback(&ctx->base,
1028                                            0, le16_to_cpu(last->res_count),
1029                                            ctx->base.callback_data);
1030         }
1031
1032         ctx->tail_descriptor      = d;
1033         ctx->tail_descriptor_last = last;
1034 }
1035
1036 static void it_context_tasklet(unsigned long data)
1037 {
1038         struct iso_context *ctx = (struct iso_context *)data;
1039
1040         flush_iso_context(ctx);
1041 }
1042
1043 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1044                                                         int type)
1045 {
1046         struct fw_ohci *ohci = fw_ohci(card);
1047         struct iso_context *ctx, *list;
1048         void (*tasklet) (unsigned long data);
1049         u32 *mask;
1050         unsigned long flags;
1051         int index;
1052
1053         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1054                 mask = &ohci->it_context_mask;
1055                 list = ohci->it_context_list;
1056                 tasklet = it_context_tasklet;
1057         } else {
1058                 mask = &ohci->ir_context_mask;
1059                 list = ohci->ir_context_list;
1060                 tasklet = ir_context_tasklet;
1061         }
1062
1063         spin_lock_irqsave(&ohci->lock, flags);
1064         index = ffs(*mask) - 1;
1065         if (index >= 0)
1066                 *mask &= ~(1 << index);
1067         spin_unlock_irqrestore(&ohci->lock, flags);
1068
1069         if (index < 0)
1070                 return ERR_PTR(-EBUSY);
1071
1072         ctx = &list[index];
1073         memset(ctx, 0, sizeof *ctx);
1074         tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);
1075
1076         ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
1077         if (ctx->buffer == NULL) {
1078                 spin_lock_irqsave(&ohci->lock, flags);
1079                 *mask |= 1 << index;
1080                 spin_unlock_irqrestore(&ohci->lock, flags);
1081                 return ERR_PTR(-ENOMEM);
1082         }
1083
1084         ctx->buffer_bus =
1085             dma_map_single(card->device, ctx->buffer,
1086                            ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1087
1088         ctx->head_descriptor      = ctx->buffer;
1089         ctx->prev_descriptor      = ctx->buffer;
1090         ctx->tail_descriptor      = ctx->buffer;
1091         ctx->tail_descriptor_last = ctx->buffer;
1092
1093         /* We put a dummy descriptor in the buffer that has a NULL
1094          * branch address and looks like it's been sent.  That way we
1095          * have a descriptor to append DMA programs to.  Also, the
1096          * ring buffer invariant is that it always has at least one
1097          * element so that head == tail means buffer full. */
1098
1099         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
1100         ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
1101         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
1102         ctx->head_descriptor++;
1103
1104         return &ctx->base;
1105 }
1106
1107 static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
1108 {
1109         struct iso_context *ctx = (struct iso_context *)base;
1110         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1111         u32 cycle_match = 0;
1112         int index;
1113
1114         index = ctx - ohci->it_context_list;
1115         if (cycle > 0)
1116                 cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
1117                         (cycle & 0x7fff) << 16;
1118
1119         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1120         reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
1121                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
1122         reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1123         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
1124                   CONTEXT_RUN | cycle_match);
1125         flush_writes(ohci);
1126
1127         return 0;
1128 }
1129
1130 static void ohci_free_iso_context(struct fw_iso_context *base)
1131 {
1132         struct fw_ohci *ohci = fw_ohci(base->card);
1133         struct iso_context *ctx = (struct iso_context *)base;
1134         unsigned long flags;
1135         int index;
1136
1137         flush_iso_context(ctx);
1138
1139         spin_lock_irqsave(&ohci->lock, flags);
1140
1141         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1142                 index = ctx - ohci->it_context_list;
1143                 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1144                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1145                 ohci->it_context_mask |= 1 << index;
1146         } else {
1147                 index = ctx - ohci->ir_context_list;
1148                 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1149                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1150                 ohci->ir_context_mask |= 1 << index;
1151         }
1152         flush_writes(ohci);
1153
1154         dma_unmap_single(ohci->card.device, ctx->buffer_bus,
1155                          ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1156
1157         spin_unlock_irqrestore(&ohci->lock, flags);
1158 }
1159
1160 static int
1161 ohci_queue_iso(struct fw_iso_context *base,
1162                struct fw_iso_packet *packet, void *payload)
1163 {
1164         struct iso_context *ctx = (struct iso_context *)base;
1165         struct fw_ohci *ohci = fw_ohci(ctx->base.card);
1166         struct descriptor *d, *end, *last, *tail, *pd;
1167         struct fw_iso_packet *p;
1168         __le32 *header;
1169         dma_addr_t d_bus;
1170         u32 z, header_z, payload_z, irq;
1171         u32 payload_index, payload_end_index, next_page_index;
1172         int index, page, end_page, i, length, offset;
1173
1174         /* FIXME: Cycle lost behavior should be configurable: lose
1175          * packet, retransmit or terminate.. */
1176
1177         p = packet;
1178         payload_index = payload - ctx->base.buffer;
1179         d = ctx->head_descriptor;
1180         tail = ctx->tail_descriptor;
1181         end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);
1182
1183         if (p->skip)
1184                 z = 1;
1185         else
1186                 z = 2;
1187         if (p->header_length > 0)
1188                 z++;
1189
1190         /* Determine the first page the payload isn't contained in. */
1191         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1192         if (p->payload_length > 0)
1193                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1194         else
1195                 payload_z = 0;
1196
1197         z += payload_z;
1198
1199         /* Get header size in number of descriptors. */
1200         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1201
1202         if (d + z + header_z <= tail) {
1203                 goto has_space;
1204         } else if (d > tail && d + z + header_z <= end) {
1205                 goto has_space;
1206         } else if (d > tail && ctx->buffer + z + header_z <= tail) {
1207                 d = ctx->buffer;
1208                 goto has_space;
1209         }
1210
1211         /* No space in buffer */
1212         return -1;
1213
1214  has_space:
1215         memset(d, 0, (z + header_z) * sizeof *d);
1216         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
1217
1218         if (!p->skip) {
1219                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1220                 d[0].req_count = cpu_to_le16(8);
1221
1222                 header = (__le32 *) &d[1];
1223                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1224                                         it_header_tag(p->tag) |
1225                                         it_header_tcode(TCODE_STREAM_DATA) |
1226                                         it_header_channel(ctx->base.channel) |
1227                                         it_header_speed(ctx->base.speed));
1228                 header[1] =
1229                         cpu_to_le32(it_header_data_length(p->header_length +
1230                                                           p->payload_length));
1231         }
1232
1233         if (p->header_length > 0) {
1234                 d[2].req_count    = cpu_to_le16(p->header_length);
1235                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1236                 memcpy(&d[z], p->header, p->header_length);
1237         }
1238
1239         pd = d + z - payload_z;
1240         payload_end_index = payload_index + p->payload_length;
1241         for (i = 0; i < payload_z; i++) {
1242                 page               = payload_index >> PAGE_SHIFT;
1243                 offset             = payload_index & ~PAGE_MASK;
1244                 next_page_index    = (page + 1) << PAGE_SHIFT;
1245                 length             =
1246                         min(next_page_index, payload_end_index) - payload_index;
1247                 pd[i].req_count    = cpu_to_le16(length);
1248                 pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);
1249
1250                 payload_index += length;
1251         }
1252
1253         if (z == 2)
1254                 last = d;
1255         else
1256                 last = d + z - 1;
1257
1258         if (p->interrupt)
1259                 irq = descriptor_irq_always;
1260         else
1261                 irq = descriptor_no_irq;
1262
1263         last->control = cpu_to_le16(descriptor_output_last |
1264                                     descriptor_status |
1265                                     descriptor_branch_always |
1266                                     irq);
1267
1268         dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
1269                                    ISO_BUFFER_SIZE, DMA_TO_DEVICE);
1270
1271         ctx->head_descriptor = d + z + header_z;
1272         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
1273         ctx->prev_descriptor = last;
1274
1275         index = ctx - ohci->it_context_list;
1276         reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
1277         flush_writes(ohci);
1278
1279         return 0;
1280 }
1281
1282 static const struct fw_card_driver ohci_driver = {
1283         .name                   = ohci_driver_name,
1284         .enable                 = ohci_enable,
1285         .update_phy_reg         = ohci_update_phy_reg,
1286         .set_config_rom         = ohci_set_config_rom,
1287         .send_request           = ohci_send_request,
1288         .send_response          = ohci_send_response,
1289         .enable_phys_dma        = ohci_enable_phys_dma,
1290
1291         .allocate_iso_context   = ohci_allocate_iso_context,
1292         .free_iso_context       = ohci_free_iso_context,
1293         .queue_iso              = ohci_queue_iso,
1294         .send_iso               = ohci_send_iso,
1295 };
1296
1297 static int software_reset(struct fw_ohci *ohci)
1298 {
1299         int i;
1300
1301         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1302
1303         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1304                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1305                      OHCI1394_HCControl_softReset) == 0)
1306                         return 0;
1307                 msleep(1);
1308         }
1309
1310         return -EBUSY;
1311 }
1312
1313 /* ---------- pci subsystem interface ---------- */
1314
1315 enum {
1316         CLEANUP_SELF_ID,
1317         CLEANUP_REGISTERS,
1318         CLEANUP_IOMEM,
1319         CLEANUP_DISABLE,
1320         CLEANUP_PUT_CARD,
1321 };
1322
1323 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1324 {
1325         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1326
1327         switch (stage) {
1328         case CLEANUP_SELF_ID:
1329                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1330                                   ohci->self_id_cpu, ohci->self_id_bus);
1331         case CLEANUP_REGISTERS:
1332                 kfree(ohci->it_context_list);
1333                 kfree(ohci->ir_context_list);
1334                 pci_iounmap(dev, ohci->registers);
1335         case CLEANUP_IOMEM:
1336                 pci_release_region(dev, 0);
1337         case CLEANUP_DISABLE:
1338                 pci_disable_device(dev);
1339         case CLEANUP_PUT_CARD:
1340                 fw_card_put(&ohci->card);
1341         }
1342
1343         return code;
1344 }
1345
1346 static int __devinit
1347 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1348 {
1349         struct fw_ohci *ohci;
1350         u32 bus_options, max_receive, link_speed;
1351         u64 guid;
1352         int error_code;
1353         size_t size;
1354
1355         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1356         if (ohci == NULL) {
1357                 fw_error("Could not malloc fw_ohci data.\n");
1358                 return -ENOMEM;
1359         }
1360
1361         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1362
1363         if (pci_enable_device(dev)) {
1364                 fw_error("Failed to enable OHCI hardware.\n");
1365                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1366         }
1367
1368         pci_set_master(dev);
1369         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1370         pci_set_drvdata(dev, ohci);
1371
1372         spin_lock_init(&ohci->lock);
1373
1374         tasklet_init(&ohci->bus_reset_tasklet,
1375                      bus_reset_tasklet, (unsigned long)ohci);
1376
1377         if (pci_request_region(dev, 0, ohci_driver_name)) {
1378                 fw_error("MMIO resource unavailable\n");
1379                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1380         }
1381
1382         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1383         if (ohci->registers == NULL) {
1384                 fw_error("Failed to remap registers\n");
1385                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1386         }
1387
1388         if (software_reset(ohci)) {
1389                 fw_error("Failed to reset ohci card.\n");
1390                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1391         }
1392
1393         /* Now enable LPS, which we need in order to start accessing
1394          * most of the registers.  In fact, on some cards (ALI M5251),
1395          * accessing registers in the SClk domain without LPS enabled
1396          * will lock up the machine.  Wait 50msec to make sure we have
1397          * full link enabled.  */
1398         reg_write(ohci, OHCI1394_HCControlSet,
1399                   OHCI1394_HCControl_LPS |
1400                   OHCI1394_HCControl_postedWriteEnable);
1401         flush_writes(ohci);
1402         msleep(50);
1403
1404         reg_write(ohci, OHCI1394_HCControlClear,
1405                   OHCI1394_HCControl_noByteSwapData);
1406
1407         reg_write(ohci, OHCI1394_LinkControlSet,
1408                   OHCI1394_LinkControl_rcvSelfID |
1409                   OHCI1394_LinkControl_cycleTimerEnable |
1410                   OHCI1394_LinkControl_cycleMaster);
1411
1412         ar_context_init(&ohci->ar_request_ctx, ohci,
1413                         OHCI1394_AsReqRcvContextControlSet);
1414
1415         ar_context_init(&ohci->ar_response_ctx, ohci,
1416                         OHCI1394_AsRspRcvContextControlSet);
1417
1418         at_context_init(&ohci->at_request_ctx, ohci,
1419                         OHCI1394_AsReqTrContextControlSet);
1420
1421         at_context_init(&ohci->at_response_ctx, ohci,
1422                         OHCI1394_AsRspTrContextControlSet);
1423
1424         reg_write(ohci, OHCI1394_ATRetries,
1425                   OHCI1394_MAX_AT_REQ_RETRIES |
1426                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1427                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1428
1429         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1430         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1431         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1432         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1433         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1434
1435         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1436         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1437         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1438         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1439         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1440
1441         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1442                 fw_error("Out of memory for it/ir contexts.\n");
1443                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1444         }
1445
1446         /* self-id dma buffer allocation */
1447         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1448                                                SELF_ID_BUF_SIZE,
1449                                                &ohci->self_id_bus,
1450                                                GFP_KERNEL);
1451         if (ohci->self_id_cpu == NULL) {
1452                 fw_error("Out of memory for self ID buffer.\n");
1453                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1454         }
1455
1456         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1457         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1458         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1459         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1460         reg_write(ohci, OHCI1394_IntMaskSet,
1461                   OHCI1394_selfIDComplete |
1462                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1463                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1464                   OHCI1394_isochRx | OHCI1394_isochTx |
1465                   OHCI1394_masterIntEnable);
1466
1467         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1468         max_receive = (bus_options >> 12) & 0xf;
1469         link_speed = bus_options & 0x7;
1470         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1471                 reg_read(ohci, OHCI1394_GUIDLo);
1472
1473         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1474         if (error_code < 0)
1475                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1476
1477         fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1478
1479         return 0;
1480 }
1481
1482 static void pci_remove(struct pci_dev *dev)
1483 {
1484         struct fw_ohci *ohci;
1485
1486         ohci = pci_get_drvdata(dev);
1487         reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1488         fw_core_remove_card(&ohci->card);
1489
1490         /* FIXME: Fail all pending packets here, now that the upper
1491          * layers can't queue any more. */
1492
1493         software_reset(ohci);
1494         free_irq(dev->irq, ohci);
1495         cleanup(ohci, CLEANUP_SELF_ID, 0);
1496
1497         fw_notify("Removed fw-ohci device.\n");
1498 }
1499
1500 static struct pci_device_id pci_table[] = {
1501         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1502         { }
1503 };
1504
1505 MODULE_DEVICE_TABLE(pci, pci_table);
1506
1507 static struct pci_driver fw_ohci_pci_driver = {
1508         .name           = ohci_driver_name,
1509         .id_table       = pci_table,
1510         .probe          = pci_probe,
1511         .remove         = pci_remove,
1512 };
1513
1514 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1515 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1516 MODULE_LICENSE("GPL");
1517
1518 static int __init fw_ohci_init(void)
1519 {
1520         return pci_register_driver(&fw_ohci_pci_driver);
1521 }
1522
1523 static void __exit fw_ohci_cleanup(void)
1524 {
1525         pci_unregister_driver(&fw_ohci_pci_driver);
1526 }
1527
1528 module_init(fw_ohci_init);
1529 module_exit(fw_ohci_cleanup);