]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-sbp2.c
firewire: Coding style cleanup: no spaces after function names.
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/mod_devicetable.h>
34 #include <linux/device.h>
35 #include <linux/scatterlist.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/timer.h>
38
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_dbg.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_host.h>
44
45 #include "fw-transaction.h"
46 #include "fw-topology.h"
47 #include "fw-device.h"
48
49 /* I don't know why the SCSI stack doesn't define something like this... */
50 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
51
52 static const char sbp2_driver_name[] = "sbp2";
53
54 struct sbp2_device {
55         struct kref kref;
56         struct fw_unit *unit;
57         struct fw_address_handler address_handler;
58         struct list_head orb_list;
59         u64 management_agent_address;
60         u64 command_block_agent_address;
61         u32 workarounds;
62         int login_id;
63
64         /*
65          * We cache these addresses and only update them once we've
66          * logged in or reconnected to the sbp2 device.  That way, any
67          * IO to the device will automatically fail and get retried if
68          * it happens in a window where the device is not ready to
69          * handle it (e.g. after a bus reset but before we reconnect).
70          */
71         int node_id;
72         int address_high;
73         int generation;
74
75         int retries;
76         struct delayed_work work;
77         struct Scsi_Host *scsi_host;
78 };
79
80 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
81 #define SBP2_MAX_SECTORS                255     /* Max sectors supported */
82 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
83
84 #define SBP2_ORB_NULL                   0x80000000
85
86 #define SBP2_DIRECTION_TO_MEDIA         0x0
87 #define SBP2_DIRECTION_FROM_MEDIA       0x1
88
89 /* Unit directory keys */
90 #define SBP2_COMMAND_SET_SPECIFIER      0x38
91 #define SBP2_COMMAND_SET                0x39
92 #define SBP2_COMMAND_SET_REVISION       0x3b
93 #define SBP2_FIRMWARE_REVISION          0x3c
94
95 /* Flags for detected oddities and brokeness */
96 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
97 #define SBP2_WORKAROUND_INQUIRY_36      0x2
98 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
99 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
100 #define SBP2_WORKAROUND_OVERRIDE        0x100
101
102 /* Management orb opcodes */
103 #define SBP2_LOGIN_REQUEST              0x0
104 #define SBP2_QUERY_LOGINS_REQUEST       0x1
105 #define SBP2_RECONNECT_REQUEST          0x3
106 #define SBP2_SET_PASSWORD_REQUEST       0x4
107 #define SBP2_LOGOUT_REQUEST             0x7
108 #define SBP2_ABORT_TASK_REQUEST         0xb
109 #define SBP2_ABORT_TASK_SET             0xc
110 #define SBP2_LOGICAL_UNIT_RESET         0xe
111 #define SBP2_TARGET_RESET_REQUEST       0xf
112
113 /* Offsets for command block agent registers */
114 #define SBP2_AGENT_STATE                0x00
115 #define SBP2_AGENT_RESET                0x04
116 #define SBP2_ORB_POINTER                0x08
117 #define SBP2_DOORBELL                   0x10
118 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
119
120 /* Status write response codes */
121 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
122 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
123 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
124 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
125
126 #define status_get_orb_high(v)          ((v).status & 0xffff)
127 #define status_get_sbp_status(v)        (((v).status >> 16) & 0xff)
128 #define status_get_len(v)               (((v).status >> 24) & 0x07)
129 #define status_get_dead(v)              (((v).status >> 27) & 0x01)
130 #define status_get_response(v)          (((v).status >> 28) & 0x03)
131 #define status_get_source(v)            (((v).status >> 30) & 0x03)
132 #define status_get_orb_low(v)           ((v).orb_low)
133 #define status_get_data(v)              ((v).data)
134
135 struct sbp2_status {
136         u32 status;
137         u32 orb_low;
138         u8 data[24];
139 };
140
141 struct sbp2_pointer {
142         u32 high;
143         u32 low;
144 };
145
146 struct sbp2_orb {
147         struct fw_transaction t;
148         dma_addr_t request_bus;
149         int rcode;
150         struct sbp2_pointer pointer;
151         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
152         struct list_head link;
153 };
154
155 #define management_orb_lun(v)                   ((v))
156 #define management_orb_function(v)              ((v) << 16)
157 #define management_orb_reconnect(v)             ((v) << 20)
158 #define management_orb_exclusive                ((1) << 28)
159 #define management_orb_request_format(v)        ((v) << 29)
160 #define management_orb_notify                   ((1) << 31)
161
162 #define management_orb_response_length(v)       ((v))
163 #define management_orb_password_length(v)       ((v) << 16)
164
165 struct sbp2_management_orb {
166         struct sbp2_orb base;
167         struct {
168                 struct sbp2_pointer password;
169                 struct sbp2_pointer response;
170                 u32 misc;
171                 u32 length;
172                 struct sbp2_pointer status_fifo;
173         } request;
174         __be32 response[4];
175         dma_addr_t response_bus;
176         struct completion done;
177         struct sbp2_status status;
178 };
179
180 #define login_response_get_login_id(v)  ((v).misc & 0xffff)
181 #define login_response_get_length(v)    (((v).misc >> 16) & 0xffff)
182
183 struct sbp2_login_response {
184         u32 misc;
185         struct sbp2_pointer command_block_agent;
186         u32 reconnect_hold;
187 };
188
189 #define command_orb_data_size(v)        ((v))
190 #define command_orb_page_size(v)        ((v) << 16)
191 #define command_orb_page_table_present  ((1) << 19)
192 #define command_orb_max_payload(v)      ((v) << 20)
193 #define command_orb_speed(v)            ((v) << 24)
194 #define command_orb_direction(v)        ((v) << 27)
195 #define command_orb_request_format(v)   ((v) << 29)
196 #define command_orb_notify              ((1) << 31)
197
198 struct sbp2_command_orb {
199         struct sbp2_orb base;
200         struct {
201                 struct sbp2_pointer next;
202                 struct sbp2_pointer data_descriptor;
203                 u32 misc;
204                 u8 command_block[12];
205         } request;
206         struct scsi_cmnd *cmd;
207         scsi_done_fn_t done;
208         struct fw_unit *unit;
209
210         struct sbp2_pointer page_table[SG_ALL];
211         dma_addr_t page_table_bus;
212         dma_addr_t request_buffer_bus;
213 };
214
215 /*
216  * List of devices with known bugs.
217  *
218  * The firmware_revision field, masked with 0xffff00, is the best
219  * indicator for the type of bridge chip of a device.  It yields a few
220  * false positives but this did not break correctly behaving devices
221  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
222  * from the config rom can never match that.
223  */
224 static const struct {
225         u32 firmware_revision;
226         u32 model;
227         unsigned workarounds;
228 } sbp2_workarounds_table[] = {
229         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
230                 .firmware_revision      = 0x002800,
231                 .model                  = 0x001010,
232                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
233                                           SBP2_WORKAROUND_MODE_SENSE_8,
234         },
235         /* Initio bridges, actually only needed for some older ones */ {
236                 .firmware_revision      = 0x000200,
237                 .model                  = ~0,
238                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
239         },
240         /* Symbios bridge */ {
241                 .firmware_revision      = 0xa0b800,
242                 .model                  = ~0,
243                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
244         },
245
246         /*
247          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
248          * these iPods do not feature the read_capacity bug according
249          * to one report.  Read_capacity behaviour as well as model_id
250          * could change due to Apple-supplied firmware updates though.
251          */
252
253         /* iPod 4th generation. */ {
254                 .firmware_revision      = 0x0a2700,
255                 .model                  = 0x000021,
256                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
257         },
258         /* iPod mini */ {
259                 .firmware_revision      = 0x0a2700,
260                 .model                  = 0x000023,
261                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
262         },
263         /* iPod Photo */ {
264                 .firmware_revision      = 0x0a2700,
265                 .model                  = 0x00007e,
266                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
267         }
268 };
269
270 static void
271 sbp2_status_write(struct fw_card *card, struct fw_request *request,
272                   int tcode, int destination, int source,
273                   int generation, int speed,
274                   unsigned long long offset,
275                   void *payload, size_t length, void *callback_data)
276 {
277         struct sbp2_device *sd = callback_data;
278         struct sbp2_orb *orb;
279         struct sbp2_status status;
280         size_t header_size;
281         unsigned long flags;
282
283         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
284             length == 0 || length > sizeof status) {
285                 fw_send_response(card, request, RCODE_TYPE_ERROR);
286                 return;
287         }
288
289         header_size = min(length, 2 * sizeof(u32));
290         fw_memcpy_from_be32(&status, payload, header_size);
291         if (length > header_size)
292                 memcpy(status.data, payload + 8, length - header_size);
293         if (status_get_source(status) == 2 || status_get_source(status) == 3) {
294                 fw_notify("non-orb related status write, not handled\n");
295                 fw_send_response(card, request, RCODE_COMPLETE);
296                 return;
297         }
298
299         /* Lookup the orb corresponding to this status write. */
300         spin_lock_irqsave(&card->lock, flags);
301         list_for_each_entry(orb, &sd->orb_list, link) {
302                 if (status_get_orb_high(status) == 0 &&
303                     status_get_orb_low(status) == orb->request_bus &&
304                     orb->rcode == RCODE_COMPLETE) {
305                         list_del(&orb->link);
306                         break;
307                 }
308         }
309         spin_unlock_irqrestore(&card->lock, flags);
310
311         if (&orb->link != &sd->orb_list)
312                 orb->callback(orb, &status);
313         else
314                 fw_error("status write for unknown orb\n");
315
316         fw_send_response(card, request, RCODE_COMPLETE);
317 }
318
319 static void
320 complete_transaction(struct fw_card *card, int rcode,
321                      void *payload, size_t length, void *data)
322 {
323         struct sbp2_orb *orb = data;
324         unsigned long flags;
325
326         orb->rcode = rcode;
327         if (rcode != RCODE_COMPLETE) {
328                 spin_lock_irqsave(&card->lock, flags);
329                 list_del(&orb->link);
330                 spin_unlock_irqrestore(&card->lock, flags);
331                 orb->callback(orb, NULL);
332         }
333 }
334
335 static void
336 sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
337               int node_id, int generation, u64 offset)
338 {
339         struct fw_device *device = fw_device(unit->device.parent);
340         struct sbp2_device *sd = unit->device.driver_data;
341         unsigned long flags;
342
343         orb->pointer.high = 0;
344         orb->pointer.low = orb->request_bus;
345         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof orb->pointer);
346
347         spin_lock_irqsave(&device->card->lock, flags);
348         list_add_tail(&orb->link, &sd->orb_list);
349         spin_unlock_irqrestore(&device->card->lock, flags);
350
351         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
352                         node_id, generation,
353                         device->node->max_speed, offset,
354                         &orb->pointer, sizeof orb->pointer,
355                         complete_transaction, orb);
356 }
357
358 static int sbp2_cancel_orbs(struct fw_unit *unit)
359 {
360         struct fw_device *device = fw_device(unit->device.parent);
361         struct sbp2_device *sd = unit->device.driver_data;
362         struct sbp2_orb *orb, *next;
363         struct list_head list;
364         unsigned long flags;
365         int retval = -ENOENT;
366
367         INIT_LIST_HEAD(&list);
368         spin_lock_irqsave(&device->card->lock, flags);
369         list_splice_init(&sd->orb_list, &list);
370         spin_unlock_irqrestore(&device->card->lock, flags);
371
372         list_for_each_entry_safe(orb, next, &list, link) {
373                 retval = 0;
374                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
375                         continue;
376
377                 orb->rcode = RCODE_CANCELLED;
378                 orb->callback(orb, NULL);
379         }
380
381         return retval;
382 }
383
384 static void
385 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
386 {
387         struct sbp2_management_orb *orb =
388             (struct sbp2_management_orb *)base_orb;
389
390         if (status)
391                 memcpy(&orb->status, status, sizeof *status);
392         complete(&orb->done);
393 }
394
395 static int
396 sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
397                          int function, int lun, void *response)
398 {
399         struct fw_device *device = fw_device(unit->device.parent);
400         struct sbp2_device *sd = unit->device.driver_data;
401         struct sbp2_management_orb *orb;
402         int retval = -ENOMEM;
403
404         orb = kzalloc(sizeof *orb, GFP_ATOMIC);
405         if (orb == NULL)
406                 return -ENOMEM;
407
408         /*
409          * The sbp2 device is going to send a block read request to
410          * read out the request from host memory, so map it for dma.
411          */
412         orb->base.request_bus =
413                 dma_map_single(device->card->device, &orb->request,
414                                sizeof orb->request, DMA_TO_DEVICE);
415         if (dma_mapping_error(orb->base.request_bus))
416                 goto out;
417
418         orb->response_bus =
419                 dma_map_single(device->card->device, &orb->response,
420                                sizeof orb->response, DMA_FROM_DEVICE);
421         if (dma_mapping_error(orb->response_bus))
422                 goto out;
423
424         orb->request.response.high    = 0;
425         orb->request.response.low     = orb->response_bus;
426
427         orb->request.misc =
428                 management_orb_notify |
429                 management_orb_function(function) |
430                 management_orb_lun(lun);
431         orb->request.length =
432                 management_orb_response_length(sizeof orb->response);
433
434         orb->request.status_fifo.high = sd->address_handler.offset >> 32;
435         orb->request.status_fifo.low  = sd->address_handler.offset;
436
437         /*
438          * FIXME: Yeah, ok this isn't elegant, we hardwire exclusive
439          * login and 1 second reconnect time.  The reconnect setting
440          * is probably fine, but the exclusive login should be an option.
441          */
442         if (function == SBP2_LOGIN_REQUEST) {
443                 orb->request.misc |=
444                         management_orb_exclusive |
445                         management_orb_reconnect(0);
446         }
447
448         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof orb->request);
449
450         init_completion(&orb->done);
451         orb->base.callback = complete_management_orb;
452
453         sbp2_send_orb(&orb->base, unit,
454                       node_id, generation, sd->management_agent_address);
455
456         wait_for_completion_timeout(&orb->done,
457                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
458
459         retval = -EIO;
460         if (sbp2_cancel_orbs(unit) == 0) {
461                 fw_error("orb reply timed out, rcode=0x%02x\n",
462                          orb->base.rcode);
463                 goto out;
464         }
465
466         if (orb->base.rcode != RCODE_COMPLETE) {
467                 fw_error("management write failed, rcode 0x%02x\n",
468                          orb->base.rcode);
469                 goto out;
470         }
471
472         if (status_get_response(orb->status) != 0 ||
473             status_get_sbp_status(orb->status) != 0) {
474                 fw_error("error status: %d:%d\n",
475                          status_get_response(orb->status),
476                          status_get_sbp_status(orb->status));
477                 goto out;
478         }
479
480         retval = 0;
481  out:
482         dma_unmap_single(device->card->device, orb->base.request_bus,
483                          sizeof orb->request, DMA_TO_DEVICE);
484         dma_unmap_single(device->card->device, orb->response_bus,
485                          sizeof orb->response, DMA_FROM_DEVICE);
486
487         if (response)
488                 fw_memcpy_from_be32(response,
489                                     orb->response, sizeof orb->response);
490         kfree(orb);
491
492         return retval;
493 }
494
495 static void
496 complete_agent_reset_write(struct fw_card *card, int rcode,
497                            void *payload, size_t length, void *data)
498 {
499         struct fw_transaction *t = data;
500
501         kfree(t);
502 }
503
504 static int sbp2_agent_reset(struct fw_unit *unit)
505 {
506         struct fw_device *device = fw_device(unit->device.parent);
507         struct sbp2_device *sd = unit->device.driver_data;
508         struct fw_transaction *t;
509         static u32 zero;
510
511         t = kzalloc(sizeof *t, GFP_ATOMIC);
512         if (t == NULL)
513                 return -ENOMEM;
514
515         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
516                         sd->node_id, sd->generation, SCODE_400,
517                         sd->command_block_agent_address + SBP2_AGENT_RESET,
518                         &zero, sizeof zero, complete_agent_reset_write, t);
519
520         return 0;
521 }
522
523 static int add_scsi_devices(struct fw_unit *unit);
524 static void remove_scsi_devices(struct fw_unit *unit);
525 static void sbp2_reconnect(struct work_struct *work);
526
527 static void
528 release_sbp2_device(struct kref *kref)
529 {
530         struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
531
532         sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
533                                  SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
534
535         remove_scsi_devices(sd->unit);
536
537         fw_core_remove_address_handler(&sd->address_handler);
538         fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
539         put_device(&sd->unit->device);
540         kfree(sd);
541 }
542
543 static void sbp2_login(struct work_struct *work)
544 {
545         struct sbp2_device *sd =
546                 container_of(work, struct sbp2_device, work.work);
547         struct fw_unit *unit = sd->unit;
548         struct fw_device *device = fw_device(unit->device.parent);
549         struct sbp2_login_response response;
550         int generation, node_id, local_node_id, lun, retval;
551
552         /* FIXME: Make this work for multi-lun devices. */
553         lun = 0;
554
555         generation    = device->card->generation;
556         node_id       = device->node->node_id;
557         local_node_id = device->card->local_node->node_id;
558
559         if (sbp2_send_management_orb(unit, node_id, generation,
560                                      SBP2_LOGIN_REQUEST, lun, &response) < 0) {
561                 if (sd->retries++ < 5) {
562                         schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
563                 } else {
564                         fw_error("failed to login to %s\n",
565                                  unit->device.bus_id);
566                         remove_scsi_devices(unit);
567                         kref_put(&sd->kref, release_sbp2_device);
568                 }
569                 return;
570         }
571
572         sd->generation   = generation;
573         sd->node_id      = node_id;
574         sd->address_high = local_node_id << 16;
575
576         /* Get command block agent offset and login id. */
577         sd->command_block_agent_address =
578                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
579                 response.command_block_agent.low;
580         sd->login_id = login_response_get_login_id(response);
581
582         fw_notify("logged in to sbp2 unit %s (%d retries)\n",
583                   unit->device.bus_id, sd->retries);
584         fw_notify(" - management_agent_address:    0x%012llx\n",
585                   (unsigned long long) sd->management_agent_address);
586         fw_notify(" - command_block_agent_address: 0x%012llx\n",
587                   (unsigned long long) sd->command_block_agent_address);
588         fw_notify(" - status write address:        0x%012llx\n",
589                   (unsigned long long) sd->address_handler.offset);
590
591 #if 0
592         /* FIXME: The linux1394 sbp2 does this last step. */
593         sbp2_set_busy_timeout(scsi_id);
594 #endif
595
596         PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
597         sbp2_agent_reset(unit);
598
599         retval = add_scsi_devices(unit);
600         if (retval < 0) {
601                 sbp2_send_management_orb(unit, sd->node_id, sd->generation,
602                                          SBP2_LOGOUT_REQUEST, sd->login_id,
603                                          NULL);
604                 /*
605                  * Set this back to sbp2_login so we fall back and
606                  * retry login on bus reset.
607                  */
608                 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
609         }
610         kref_put(&sd->kref, release_sbp2_device);
611 }
612
613 static int sbp2_probe(struct device *dev)
614 {
615         struct fw_unit *unit = fw_unit(dev);
616         struct fw_device *device = fw_device(unit->device.parent);
617         struct sbp2_device *sd;
618         struct fw_csr_iterator ci;
619         int i, key, value;
620         u32 model, firmware_revision;
621
622         sd = kzalloc(sizeof *sd, GFP_KERNEL);
623         if (sd == NULL)
624                 return -ENOMEM;
625
626         unit->device.driver_data = sd;
627         sd->unit = unit;
628         INIT_LIST_HEAD(&sd->orb_list);
629         kref_init(&sd->kref);
630
631         sd->address_handler.length = 0x100;
632         sd->address_handler.address_callback = sbp2_status_write;
633         sd->address_handler.callback_data = sd;
634
635         if (fw_core_add_address_handler(&sd->address_handler,
636                                         &fw_high_memory_region) < 0) {
637                 kfree(sd);
638                 return -EBUSY;
639         }
640
641         if (fw_device_enable_phys_dma(device) < 0) {
642                 fw_core_remove_address_handler(&sd->address_handler);
643                 kfree(sd);
644                 return -EBUSY;
645         }
646
647         /*
648          * Scan unit directory to get management agent address,
649          * firmware revison and model.  Initialize firmware_revision
650          * and model to values that wont match anything in our table.
651          */
652         firmware_revision = 0xff000000;
653         model = 0xff000000;
654         fw_csr_iterator_init(&ci, unit->directory);
655         while (fw_csr_iterator_next(&ci, &key, &value)) {
656                 switch (key) {
657                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
658                         sd->management_agent_address =
659                                 0xfffff0000000ULL + 4 * value;
660                         break;
661                 case SBP2_FIRMWARE_REVISION:
662                         firmware_revision = value;
663                         break;
664                 case CSR_MODEL:
665                         model = value;
666                         break;
667                 }
668         }
669
670         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
671                 if (sbp2_workarounds_table[i].firmware_revision !=
672                     (firmware_revision & 0xffffff00))
673                         continue;
674                 if (sbp2_workarounds_table[i].model != model &&
675                     sbp2_workarounds_table[i].model != ~0)
676                         continue;
677                 sd->workarounds |= sbp2_workarounds_table[i].workarounds;
678                 break;
679         }
680
681         if (sd->workarounds)
682                 fw_notify("Workarounds for node %s: 0x%x "
683                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
684                           unit->device.bus_id,
685                           sd->workarounds, firmware_revision, model);
686
687         get_device(&unit->device);
688
689         /*
690          * We schedule work to do the login so we can easily
691          * reschedule retries. Always get the ref before scheduling
692          * work.
693          */
694         INIT_DELAYED_WORK(&sd->work, sbp2_login);
695         if (schedule_delayed_work(&sd->work, 0))
696                 kref_get(&sd->kref);
697
698         return 0;
699 }
700
701 static int sbp2_remove(struct device *dev)
702 {
703         struct fw_unit *unit = fw_unit(dev);
704         struct sbp2_device *sd = unit->device.driver_data;
705
706         kref_put(&sd->kref, release_sbp2_device);
707
708         return 0;
709 }
710
711 static void sbp2_reconnect(struct work_struct *work)
712 {
713         struct sbp2_device *sd =
714                 container_of(work, struct sbp2_device, work.work);
715         struct fw_unit *unit = sd->unit;
716         struct fw_device *device = fw_device(unit->device.parent);
717         int generation, node_id, local_node_id;
718
719         generation    = device->card->generation;
720         node_id       = device->node->node_id;
721         local_node_id = device->card->local_node->node_id;
722
723         if (sbp2_send_management_orb(unit, node_id, generation,
724                                      SBP2_RECONNECT_REQUEST,
725                                      sd->login_id, NULL) < 0) {
726                 if (sd->retries++ >= 5) {
727                         fw_error("failed to reconnect to %s\n",
728                                  unit->device.bus_id);
729                         /* Fall back and try to log in again. */
730                         sd->retries = 0;
731                         PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
732                 }
733                 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
734                 return;
735         }
736
737         sd->generation   = generation;
738         sd->node_id      = node_id;
739         sd->address_high = local_node_id << 16;
740
741         fw_notify("reconnected to unit %s (%d retries)\n",
742                   unit->device.bus_id, sd->retries);
743         sbp2_agent_reset(unit);
744         sbp2_cancel_orbs(unit);
745         kref_put(&sd->kref, release_sbp2_device);
746 }
747
748 static void sbp2_update(struct fw_unit *unit)
749 {
750         struct fw_device *device = fw_device(unit->device.parent);
751         struct sbp2_device *sd = unit->device.driver_data;
752
753         sd->retries = 0;
754         fw_device_enable_phys_dma(device);
755         if (schedule_delayed_work(&sd->work, 0))
756                 kref_get(&sd->kref);
757 }
758
759 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
760 #define SBP2_SW_VERSION_ENTRY   0x00010483
761
762 static const struct fw_device_id sbp2_id_table[] = {
763         {
764                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
765                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
766                 .version      = SBP2_SW_VERSION_ENTRY,
767         },
768         { }
769 };
770
771 static struct fw_driver sbp2_driver = {
772         .driver   = {
773                 .owner  = THIS_MODULE,
774                 .name   = sbp2_driver_name,
775                 .bus    = &fw_bus_type,
776                 .probe  = sbp2_probe,
777                 .remove = sbp2_remove,
778         },
779         .update   = sbp2_update,
780         .id_table = sbp2_id_table,
781 };
782
783 static unsigned int
784 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
785 {
786         int sam_status;
787
788         sense_data[0] = 0x70;
789         sense_data[1] = 0x0;
790         sense_data[2] = sbp2_status[1];
791         sense_data[3] = sbp2_status[4];
792         sense_data[4] = sbp2_status[5];
793         sense_data[5] = sbp2_status[6];
794         sense_data[6] = sbp2_status[7];
795         sense_data[7] = 10;
796         sense_data[8] = sbp2_status[8];
797         sense_data[9] = sbp2_status[9];
798         sense_data[10] = sbp2_status[10];
799         sense_data[11] = sbp2_status[11];
800         sense_data[12] = sbp2_status[2];
801         sense_data[13] = sbp2_status[3];
802         sense_data[14] = sbp2_status[12];
803         sense_data[15] = sbp2_status[13];
804
805         sam_status = sbp2_status[0] & 0x3f;
806
807         switch (sam_status) {
808         case SAM_STAT_GOOD:
809         case SAM_STAT_CHECK_CONDITION:
810         case SAM_STAT_CONDITION_MET:
811         case SAM_STAT_BUSY:
812         case SAM_STAT_RESERVATION_CONFLICT:
813         case SAM_STAT_COMMAND_TERMINATED:
814                 return DID_OK << 16 | sam_status;
815
816         default:
817                 return DID_ERROR << 16;
818         }
819 }
820
821 static void
822 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
823 {
824         struct sbp2_command_orb *orb = (struct sbp2_command_orb *)base_orb;
825         struct fw_unit *unit = orb->unit;
826         struct fw_device *device = fw_device(unit->device.parent);
827         struct scatterlist *sg;
828         int result;
829
830         if (status != NULL) {
831                 if (status_get_dead(*status))
832                         sbp2_agent_reset(unit);
833
834                 switch (status_get_response(*status)) {
835                 case SBP2_STATUS_REQUEST_COMPLETE:
836                         result = DID_OK << 16;
837                         break;
838                 case SBP2_STATUS_TRANSPORT_FAILURE:
839                         result = DID_BUS_BUSY << 16;
840                         break;
841                 case SBP2_STATUS_ILLEGAL_REQUEST:
842                 case SBP2_STATUS_VENDOR_DEPENDENT:
843                 default:
844                         result = DID_ERROR << 16;
845                         break;
846                 }
847
848                 if (result == DID_OK << 16 && status_get_len(*status) > 1)
849                         result = sbp2_status_to_sense_data(status_get_data(*status),
850                                                            orb->cmd->sense_buffer);
851         } else {
852                 /*
853                  * If the orb completes with status == NULL, something
854                  * went wrong, typically a bus reset happened mid-orb
855                  * or when sending the write (less likely).
856                  */
857                 result = DID_BUS_BUSY << 16;
858         }
859
860         dma_unmap_single(device->card->device, orb->base.request_bus,
861                          sizeof orb->request, DMA_TO_DEVICE);
862
863         if (orb->cmd->use_sg > 0) {
864                 sg = (struct scatterlist *)orb->cmd->request_buffer;
865                 dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
866                              orb->cmd->sc_data_direction);
867         }
868
869         if (orb->page_table_bus != 0)
870                 dma_unmap_single(device->card->device, orb->page_table_bus,
871                                  sizeof orb->page_table_bus, DMA_TO_DEVICE);
872
873         if (orb->request_buffer_bus != 0)
874                 dma_unmap_single(device->card->device, orb->request_buffer_bus,
875                                  sizeof orb->request_buffer_bus,
876                                  DMA_FROM_DEVICE);
877
878         orb->cmd->result = result;
879         orb->done(orb->cmd);
880         kfree(orb);
881 }
882
883 static void sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
884 {
885         struct fw_unit *unit =
886                 (struct fw_unit *)orb->cmd->device->host->hostdata[0];
887         struct fw_device *device = fw_device(unit->device.parent);
888         struct sbp2_device *sd = unit->device.driver_data;
889         struct scatterlist *sg;
890         int sg_len, l, i, j, count;
891         size_t size;
892         dma_addr_t sg_addr;
893
894         sg = (struct scatterlist *)orb->cmd->request_buffer;
895         count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
896                            orb->cmd->sc_data_direction);
897
898         /*
899          * Handle the special case where there is only one element in
900          * the scatter list by converting it to an immediate block
901          * request. This is also a workaround for broken devices such
902          * as the second generation iPod which doesn't support page
903          * tables.
904          */
905         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
906                 orb->request.data_descriptor.high = sd->address_high;
907                 orb->request.data_descriptor.low  = sg_dma_address(sg);
908                 orb->request.misc |=
909                         command_orb_data_size(sg_dma_len(sg));
910                 return;
911         }
912
913         /*
914          * Convert the scatterlist to an sbp2 page table.  If any
915          * scatterlist entries are too big for sbp2 we split the as we go.
916          */
917         for (i = 0, j = 0; i < count; i++) {
918                 sg_len = sg_dma_len(sg + i);
919                 sg_addr = sg_dma_address(sg + i);
920                 while (sg_len) {
921                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
922                         orb->page_table[j].low = sg_addr;
923                         orb->page_table[j].high = (l << 16);
924                         sg_addr += l;
925                         sg_len -= l;
926                         j++;
927                 }
928         }
929
930         size = sizeof orb->page_table[0] * j;
931
932         /*
933          * The data_descriptor pointer is the one case where we need
934          * to fill in the node ID part of the address.  All other
935          * pointers assume that the data referenced reside on the
936          * initiator (i.e. us), but data_descriptor can refer to data
937          * on other nodes so we need to put our ID in descriptor.high.
938          */
939
940         orb->page_table_bus =
941                 dma_map_single(device->card->device, orb->page_table,
942                                size, DMA_TO_DEVICE);
943         orb->request.data_descriptor.high = sd->address_high;
944         orb->request.data_descriptor.low  = orb->page_table_bus;
945         orb->request.misc |=
946                 command_orb_page_table_present |
947                 command_orb_data_size(j);
948
949         fw_memcpy_to_be32(orb->page_table, orb->page_table, size);
950 }
951
952 static void sbp2_command_orb_map_buffer(struct sbp2_command_orb *orb)
953 {
954         struct fw_unit *unit =
955                 (struct fw_unit *)orb->cmd->device->host->hostdata[0];
956         struct fw_device *device = fw_device(unit->device.parent);
957         struct sbp2_device *sd = unit->device.driver_data;
958
959         /*
960          * As for map_scatterlist, we need to fill in the high bits of
961          * the data_descriptor pointer.
962          */
963
964         orb->request_buffer_bus =
965                 dma_map_single(device->card->device,
966                                orb->cmd->request_buffer,
967                                orb->cmd->request_bufflen,
968                                orb->cmd->sc_data_direction);
969         orb->request.data_descriptor.high = sd->address_high;
970         orb->request.data_descriptor.low  = orb->request_buffer_bus;
971         orb->request.misc |=
972                 command_orb_data_size(orb->cmd->request_bufflen);
973 }
974
975 /* SCSI stack integration */
976
977 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
978 {
979         struct fw_unit *unit = (struct fw_unit *)cmd->device->host->hostdata[0];
980         struct fw_device *device = fw_device(unit->device.parent);
981         struct sbp2_device *sd = unit->device.driver_data;
982         struct sbp2_command_orb *orb;
983
984         /*
985          * Bidirectional commands are not yet implemented, and unknown
986          * transfer direction not handled.
987          */
988         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
989                 fw_error("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
990                 goto fail_alloc;
991         }
992
993         orb = kzalloc(sizeof *orb, GFP_ATOMIC);
994         if (orb == NULL) {
995                 fw_notify("failed to alloc orb\n");
996                 goto fail_alloc;
997         }
998
999         /* Initialize rcode to something not RCODE_COMPLETE. */
1000         orb->base.rcode = -1;
1001         orb->base.request_bus =
1002                 dma_map_single(device->card->device, &orb->request,
1003                                sizeof orb->request, DMA_TO_DEVICE);
1004         if (dma_mapping_error(orb->base.request_bus))
1005                 goto fail_mapping;
1006
1007         orb->unit = unit;
1008         orb->done = done;
1009         orb->cmd  = cmd;
1010
1011         orb->request.next.high   = SBP2_ORB_NULL;
1012         orb->request.next.low    = 0x0;
1013         /*
1014          * At speed 100 we can do 512 bytes per packet, at speed 200,
1015          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1016          * specifies the max payload size as 2 ^ (max_payload + 2), so
1017          * if we set this to max_speed + 7, we get the right value.
1018          */
1019         orb->request.misc =
1020                 command_orb_max_payload(device->node->max_speed + 7) |
1021                 command_orb_speed(device->node->max_speed) |
1022                 command_orb_notify;
1023
1024         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1025                 orb->request.misc |=
1026                         command_orb_direction(SBP2_DIRECTION_FROM_MEDIA);
1027         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1028                 orb->request.misc |=
1029                         command_orb_direction(SBP2_DIRECTION_TO_MEDIA);
1030
1031         if (cmd->use_sg) {
1032                 sbp2_command_orb_map_scatterlist(orb);
1033         } else if (cmd->request_bufflen > SBP2_MAX_SG_ELEMENT_LENGTH) {
1034                 /*
1035                  * FIXME: Need to split this into a sg list... but
1036                  * could we get the scsi or blk layer to do that by
1037                  * reporting our max supported block size?
1038                  */
1039                 fw_error("command > 64k\n");
1040                 goto fail_bufflen;
1041         } else if (cmd->request_bufflen > 0) {
1042                 sbp2_command_orb_map_buffer(orb);
1043         }
1044
1045         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof orb->request);
1046
1047         memset(orb->request.command_block,
1048                0, sizeof orb->request.command_block);
1049         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1050
1051         orb->base.callback = complete_command_orb;
1052
1053         sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
1054                       sd->command_block_agent_address + SBP2_ORB_POINTER);
1055
1056         return 0;
1057
1058  fail_bufflen:
1059         dma_unmap_single(device->card->device, orb->base.request_bus,
1060                          sizeof orb->request, DMA_TO_DEVICE);
1061  fail_mapping:
1062         kfree(orb);
1063  fail_alloc:
1064         cmd->result = DID_ERROR << 16;
1065         done(cmd);
1066         return 0;
1067 }
1068
1069 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1070 {
1071         struct fw_unit *unit = (struct fw_unit *)sdev->host->hostdata[0];
1072         struct sbp2_device *sd = unit->device.driver_data;
1073
1074         sdev->allow_restart = 1;
1075
1076         if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1077                 sdev->inquiry_len = 36;
1078         return 0;
1079 }
1080
1081 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1082 {
1083         struct fw_unit *unit = (struct fw_unit *)sdev->host->hostdata[0];
1084         struct sbp2_device *sd = unit->device.driver_data;
1085
1086         sdev->use_10_for_rw = 1;
1087
1088         if (sdev->type == TYPE_ROM)
1089                 sdev->use_10_for_ms = 1;
1090         if (sdev->type == TYPE_DISK &&
1091             sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1092                 sdev->skip_ms_page_8 = 1;
1093         if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
1094                 fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
1095                 sdev->fix_capacity = 1;
1096         }
1097
1098         return 0;
1099 }
1100
1101 /*
1102  * Called by scsi stack when something has really gone wrong.  Usually
1103  * called when a command has timed-out for some reason.
1104  */
1105 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1106 {
1107         struct fw_unit *unit = (struct fw_unit *)cmd->device->host->hostdata[0];
1108
1109         fw_notify("sbp2_scsi_abort\n");
1110         sbp2_agent_reset(unit);
1111         sbp2_cancel_orbs(unit);
1112
1113         return SUCCESS;
1114 }
1115
1116 static struct scsi_host_template scsi_driver_template = {
1117         .module                 = THIS_MODULE,
1118         .name                   = "SBP-2 IEEE-1394",
1119         .proc_name              = (char *)sbp2_driver_name,
1120         .queuecommand           = sbp2_scsi_queuecommand,
1121         .slave_alloc            = sbp2_scsi_slave_alloc,
1122         .slave_configure        = sbp2_scsi_slave_configure,
1123         .eh_abort_handler       = sbp2_scsi_abort,
1124         .this_id                = -1,
1125         .sg_tablesize           = SG_ALL,
1126         .use_clustering         = ENABLE_CLUSTERING,
1127         .cmd_per_lun            = 1,
1128         .can_queue              = 1,
1129 };
1130
1131 static int add_scsi_devices(struct fw_unit *unit)
1132 {
1133         struct sbp2_device *sd = unit->device.driver_data;
1134         int retval, lun;
1135
1136         if (sd->scsi_host != NULL)
1137                 return 0;
1138
1139         sd->scsi_host = scsi_host_alloc(&scsi_driver_template,
1140                                         sizeof(unsigned long));
1141         if (sd->scsi_host == NULL) {
1142                 fw_error("failed to register scsi host\n");
1143                 return -1;
1144         }
1145
1146         sd->scsi_host->hostdata[0] = (unsigned long)unit;
1147         retval = scsi_add_host(sd->scsi_host, &unit->device);
1148         if (retval < 0) {
1149                 fw_error("failed to add scsi host\n");
1150                 scsi_host_put(sd->scsi_host);
1151                 sd->scsi_host = NULL;
1152                 return retval;
1153         }
1154
1155         /* FIXME: Loop over luns here. */
1156         lun = 0;
1157         retval = scsi_add_device(sd->scsi_host, 0, 0, lun);
1158         if (retval < 0) {
1159                 fw_error("failed to add scsi device\n");
1160                 scsi_remove_host(sd->scsi_host);
1161                 scsi_host_put(sd->scsi_host);
1162                 sd->scsi_host = NULL;
1163                 return retval;
1164         }
1165
1166         return 0;
1167 }
1168
1169 static void remove_scsi_devices(struct fw_unit *unit)
1170 {
1171         struct sbp2_device *sd = unit->device.driver_data;
1172
1173         if (sd->scsi_host != NULL) {
1174                 scsi_remove_host(sd->scsi_host);
1175                 scsi_host_put(sd->scsi_host);
1176         }
1177         sd->scsi_host = NULL;
1178 }
1179
1180 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1181 MODULE_DESCRIPTION("SCSI over IEEE1394");
1182 MODULE_LICENSE("GPL");
1183 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1184
1185 static int __init sbp2_init(void)
1186 {
1187         return driver_register(&sbp2_driver.driver);
1188 }
1189
1190 static void __exit sbp2_cleanup(void)
1191 {
1192         driver_unregister(&sbp2_driver.driver);
1193 }
1194
1195 module_init(sbp2_init);
1196 module_exit(sbp2_cleanup);