]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-io.c
7091635360156f6718b3298e5e14498cd08c86b4
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         unsigned long flags;
62         int ret = 1;
63         int error = 0;
64
65         if (uptodate <= 0)
66                 error = uptodate ? uptodate : -EIO;
67
68         /*
69          * if failfast is set on a request, override number of sectors and
70          * complete the whole request right now
71          */
72         if (blk_noretry_request(rq) && error)
73                 nr_bytes = rq->hard_nr_sectors << 9;
74
75         if (!blk_fs_request(rq) && error && !rq->errors)
76                 rq->errors = -EIO;
77
78         /*
79          * decide whether to reenable DMA -- 3 is a random magic for now,
80          * if we DMA timeout more than 3 times, just stay in PIO
81          */
82         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
83             drive->retry_pio <= 3) {
84                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
85                 ide_dma_on(drive);
86         }
87
88         spin_lock_irqsave(&ide_lock, flags);
89         if (!__blk_end_request(rq, error, nr_bytes))
90                 ret = 0;
91         spin_unlock_irqrestore(&ide_lock, flags);
92
93         if (ret == 0 && dequeue)
94                 drive->hwif->hwgroup->rq = NULL;
95
96         return ret;
97 }
98
99 /**
100  *      ide_end_request         -       complete an IDE I/O
101  *      @drive: IDE device for the I/O
102  *      @uptodate:
103  *      @nr_sectors: number of sectors completed
104  *
105  *      This is our end_request wrapper function. We complete the I/O
106  *      update random number input and dequeue the request, which if
107  *      it was tagged may be out of order.
108  */
109
110 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
111 {
112         unsigned int nr_bytes = nr_sectors << 9;
113         struct request *rq = drive->hwif->hwgroup->rq;
114
115         if (!nr_bytes) {
116                 if (blk_pc_request(rq))
117                         nr_bytes = rq->data_len;
118                 else
119                         nr_bytes = rq->hard_cur_sectors << 9;
120         }
121
122         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
123 }
124 EXPORT_SYMBOL(ide_end_request);
125
126 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq)
127 {
128         struct request_pm_state *pm = rq->data;
129
130 #ifdef DEBUG_PM
131         printk(KERN_INFO "%s: complete_power_step(step: %d)\n",
132                 drive->name, pm->pm_step);
133 #endif
134         if (drive->media != ide_disk)
135                 return;
136
137         switch (pm->pm_step) {
138         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
139                 if (pm->pm_state == PM_EVENT_FREEZE)
140                         pm->pm_step = IDE_PM_COMPLETED;
141                 else
142                         pm->pm_step = IDE_PM_STANDBY;
143                 break;
144         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
145                 pm->pm_step = IDE_PM_COMPLETED;
146                 break;
147         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
148                 pm->pm_step = IDE_PM_IDLE;
149                 break;
150         case IDE_PM_IDLE:               /* Resume step 2 (idle)*/
151                 pm->pm_step = IDE_PM_RESTORE_DMA;
152                 break;
153         }
154 }
155
156 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
157 {
158         struct request_pm_state *pm = rq->data;
159         ide_task_t *args = rq->special;
160
161         memset(args, 0, sizeof(*args));
162
163         switch (pm->pm_step) {
164         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
165                 if (drive->media != ide_disk)
166                         break;
167                 /* Not supported? Switch to next step now. */
168                 if (ata_id_flush_enabled(drive->id) == 0 ||
169                     (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
170                         ide_complete_power_step(drive, rq);
171                         return ide_stopped;
172                 }
173                 if (ata_id_flush_ext_enabled(drive->id))
174                         args->tf.command = ATA_CMD_FLUSH_EXT;
175                 else
176                         args->tf.command = ATA_CMD_FLUSH;
177                 goto out_do_tf;
178         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
179                 args->tf.command = ATA_CMD_STANDBYNOW1;
180                 goto out_do_tf;
181         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
182                 ide_set_max_pio(drive);
183                 /*
184                  * skip IDE_PM_IDLE for ATAPI devices
185                  */
186                 if (drive->media != ide_disk)
187                         pm->pm_step = IDE_PM_RESTORE_DMA;
188                 else
189                         ide_complete_power_step(drive, rq);
190                 return ide_stopped;
191         case IDE_PM_IDLE:               /* Resume step 2 (idle) */
192                 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
193                 goto out_do_tf;
194         case IDE_PM_RESTORE_DMA:        /* Resume step 3 (restore DMA) */
195                 /*
196                  * Right now, all we do is call ide_set_dma(drive),
197                  * we could be smarter and check for current xfer_speed
198                  * in struct drive etc...
199                  */
200                 if (drive->hwif->dma_ops == NULL)
201                         break;
202                 /*
203                  * TODO: respect IDE_DFLAG_USING_DMA
204                  */
205                 ide_set_dma(drive);
206                 break;
207         }
208
209         pm->pm_step = IDE_PM_COMPLETED;
210         return ide_stopped;
211
212 out_do_tf:
213         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
214         args->data_phase = TASKFILE_NO_DATA;
215         return do_rw_taskfile(drive, args);
216 }
217
218 /**
219  *      ide_end_dequeued_request        -       complete an IDE I/O
220  *      @drive: IDE device for the I/O
221  *      @uptodate:
222  *      @nr_sectors: number of sectors completed
223  *
224  *      Complete an I/O that is no longer on the request queue. This
225  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
226  *      We must still finish the old request but we must not tamper with the
227  *      queue in the meantime.
228  *
229  *      NOTE: This path does not handle barrier, but barrier is not supported
230  *      on ide-cd anyway.
231  */
232
233 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
234                              int uptodate, int nr_sectors)
235 {
236         BUG_ON(!blk_rq_started(rq));
237
238         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
239 }
240 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
241
242
243 /**
244  *      ide_complete_pm_request - end the current Power Management request
245  *      @drive: target drive
246  *      @rq: request
247  *
248  *      This function cleans up the current PM request and stops the queue
249  *      if necessary.
250  */
251 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
252 {
253         unsigned long flags;
254
255 #ifdef DEBUG_PM
256         printk("%s: completing PM request, %s\n", drive->name,
257                blk_pm_suspend_request(rq) ? "suspend" : "resume");
258 #endif
259         spin_lock_irqsave(&ide_lock, flags);
260         if (blk_pm_suspend_request(rq)) {
261                 blk_stop_queue(drive->queue);
262         } else {
263                 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
264                 blk_start_queue(drive->queue);
265         }
266         spin_unlock_irqrestore(&ide_lock, flags);
267
268         drive->hwif->hwgroup->rq = NULL;
269
270         spin_lock_irqsave(&ide_lock, flags);
271         if (__blk_end_request(rq, 0, 0))
272                 BUG();
273         spin_unlock_irqrestore(&ide_lock, flags);
274 }
275
276 /**
277  *      ide_end_drive_cmd       -       end an explicit drive command
278  *      @drive: command 
279  *      @stat: status bits
280  *      @err: error bits
281  *
282  *      Clean up after success/failure of an explicit drive command.
283  *      These get thrown onto the queue so they are synchronized with
284  *      real I/O operations on the drive.
285  *
286  *      In LBA48 mode we have to read the register set twice to get
287  *      all the extra information out.
288  */
289  
290 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
291 {
292         ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
293         struct request *rq = hwgroup->rq;
294         unsigned long flags;
295
296         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
297                 ide_task_t *task = (ide_task_t *)rq->special;
298
299                 if (rq->errors == 0)
300                         rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
301
302                 if (task) {
303                         struct ide_taskfile *tf = &task->tf;
304
305                         tf->error = err;
306                         tf->status = stat;
307
308                         drive->hwif->tp_ops->tf_read(drive, task);
309
310                         if (task->tf_flags & IDE_TFLAG_DYN)
311                                 kfree(task);
312                 }
313         } else if (blk_pm_request(rq)) {
314                 struct request_pm_state *pm = rq->data;
315
316                 ide_complete_power_step(drive, rq);
317                 if (pm->pm_step == IDE_PM_COMPLETED)
318                         ide_complete_pm_request(drive, rq);
319                 return;
320         }
321
322         hwgroup->rq = NULL;
323
324         rq->errors = err;
325
326         spin_lock_irqsave(&ide_lock, flags);
327         if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
328                                        blk_rq_bytes(rq))))
329                 BUG();
330         spin_unlock_irqrestore(&ide_lock, flags);
331 }
332 EXPORT_SYMBOL(ide_end_drive_cmd);
333
334 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
335 {
336         if (rq->rq_disk) {
337                 ide_driver_t *drv;
338
339                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
340                 drv->end_request(drive, 0, 0);
341         } else
342                 ide_end_request(drive, 0, 0);
343 }
344
345 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
346 {
347         ide_hwif_t *hwif = drive->hwif;
348
349         if ((stat & ATA_BUSY) ||
350             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
351                 /* other bits are useless when BUSY */
352                 rq->errors |= ERROR_RESET;
353         } else if (stat & ATA_ERR) {
354                 /* err has different meaning on cdrom and tape */
355                 if (err == ATA_ABORTED) {
356                         if ((drive->dev_flags & IDE_DFLAG_LBA) &&
357                             /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
358                             hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
359                                 return ide_stopped;
360                 } else if ((err & BAD_CRC) == BAD_CRC) {
361                         /* UDMA crc error, just retry the operation */
362                         drive->crc_count++;
363                 } else if (err & (ATA_BBK | ATA_UNC)) {
364                         /* retries won't help these */
365                         rq->errors = ERROR_MAX;
366                 } else if (err & ATA_TRK0NF) {
367                         /* help it find track zero */
368                         rq->errors |= ERROR_RECAL;
369                 }
370         }
371
372         if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
373             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
374                 int nsect = drive->mult_count ? drive->mult_count : 1;
375
376                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
377         }
378
379         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
380                 ide_kill_rq(drive, rq);
381                 return ide_stopped;
382         }
383
384         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
385                 rq->errors |= ERROR_RESET;
386
387         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
388                 ++rq->errors;
389                 return ide_do_reset(drive);
390         }
391
392         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
393                 drive->special.b.recalibrate = 1;
394
395         ++rq->errors;
396
397         return ide_stopped;
398 }
399
400 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
401 {
402         ide_hwif_t *hwif = drive->hwif;
403
404         if ((stat & ATA_BUSY) ||
405             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
406                 /* other bits are useless when BUSY */
407                 rq->errors |= ERROR_RESET;
408         } else {
409                 /* add decoding error stuff */
410         }
411
412         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
413                 /* force an abort */
414                 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
415
416         if (rq->errors >= ERROR_MAX) {
417                 ide_kill_rq(drive, rq);
418         } else {
419                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
420                         ++rq->errors;
421                         return ide_do_reset(drive);
422                 }
423                 ++rq->errors;
424         }
425
426         return ide_stopped;
427 }
428
429 ide_startstop_t
430 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
431 {
432         if (drive->media == ide_disk)
433                 return ide_ata_error(drive, rq, stat, err);
434         return ide_atapi_error(drive, rq, stat, err);
435 }
436
437 EXPORT_SYMBOL_GPL(__ide_error);
438
439 /**
440  *      ide_error       -       handle an error on the IDE
441  *      @drive: drive the error occurred on
442  *      @msg: message to report
443  *      @stat: status bits
444  *
445  *      ide_error() takes action based on the error returned by the drive.
446  *      For normal I/O that may well include retries. We deal with
447  *      both new-style (taskfile) and old style command handling here.
448  *      In the case of taskfile command handling there is work left to
449  *      do
450  */
451  
452 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
453 {
454         struct request *rq;
455         u8 err;
456
457         err = ide_dump_status(drive, msg, stat);
458
459         if ((rq = HWGROUP(drive)->rq) == NULL)
460                 return ide_stopped;
461
462         /* retry only "normal" I/O: */
463         if (!blk_fs_request(rq)) {
464                 rq->errors = 1;
465                 ide_end_drive_cmd(drive, stat, err);
466                 return ide_stopped;
467         }
468
469         if (rq->rq_disk) {
470                 ide_driver_t *drv;
471
472                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
473                 return drv->error(drive, rq, stat, err);
474         } else
475                 return __ide_error(drive, rq, stat, err);
476 }
477
478 EXPORT_SYMBOL_GPL(ide_error);
479
480 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
481 {
482         tf->nsect   = drive->sect;
483         tf->lbal    = drive->sect;
484         tf->lbam    = drive->cyl;
485         tf->lbah    = drive->cyl >> 8;
486         tf->device  = (drive->head - 1) | drive->select;
487         tf->command = ATA_CMD_INIT_DEV_PARAMS;
488 }
489
490 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
491 {
492         tf->nsect   = drive->sect;
493         tf->command = ATA_CMD_RESTORE;
494 }
495
496 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
497 {
498         tf->nsect   = drive->mult_req;
499         tf->command = ATA_CMD_SET_MULTI;
500 }
501
502 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
503 {
504         special_t *s = &drive->special;
505         ide_task_t args;
506
507         memset(&args, 0, sizeof(ide_task_t));
508         args.data_phase = TASKFILE_NO_DATA;
509
510         if (s->b.set_geometry) {
511                 s->b.set_geometry = 0;
512                 ide_tf_set_specify_cmd(drive, &args.tf);
513         } else if (s->b.recalibrate) {
514                 s->b.recalibrate = 0;
515                 ide_tf_set_restore_cmd(drive, &args.tf);
516         } else if (s->b.set_multmode) {
517                 s->b.set_multmode = 0;
518                 ide_tf_set_setmult_cmd(drive, &args.tf);
519         } else if (s->all) {
520                 int special = s->all;
521                 s->all = 0;
522                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
523                 return ide_stopped;
524         }
525
526         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
527                         IDE_TFLAG_CUSTOM_HANDLER;
528
529         do_rw_taskfile(drive, &args);
530
531         return ide_started;
532 }
533
534 /**
535  *      do_special              -       issue some special commands
536  *      @drive: drive the command is for
537  *
538  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
539  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
540  *
541  *      It used to do much more, but has been scaled back.
542  */
543
544 static ide_startstop_t do_special (ide_drive_t *drive)
545 {
546         special_t *s = &drive->special;
547
548 #ifdef DEBUG
549         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
550 #endif
551         if (drive->media == ide_disk)
552                 return ide_disk_special(drive);
553
554         s->all = 0;
555         drive->mult_req = 0;
556         return ide_stopped;
557 }
558
559 void ide_map_sg(ide_drive_t *drive, struct request *rq)
560 {
561         ide_hwif_t *hwif = drive->hwif;
562         struct scatterlist *sg = hwif->sg_table;
563
564         if (hwif->sg_mapped)    /* needed by ide-scsi */
565                 return;
566
567         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
568                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
569         } else {
570                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
571                 hwif->sg_nents = 1;
572         }
573 }
574
575 EXPORT_SYMBOL_GPL(ide_map_sg);
576
577 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
578 {
579         ide_hwif_t *hwif = drive->hwif;
580
581         hwif->nsect = hwif->nleft = rq->nr_sectors;
582         hwif->cursg_ofs = 0;
583         hwif->cursg = NULL;
584 }
585
586 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
587
588 /**
589  *      execute_drive_command   -       issue special drive command
590  *      @drive: the drive to issue the command on
591  *      @rq: the request structure holding the command
592  *
593  *      execute_drive_cmd() issues a special drive command,  usually 
594  *      initiated by ioctl() from the external hdparm program. The
595  *      command can be a drive command, drive task or taskfile 
596  *      operation. Weirdly you can call it with NULL to wait for
597  *      all commands to finish. Don't do this as that is due to change
598  */
599
600 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
601                 struct request *rq)
602 {
603         ide_hwif_t *hwif = HWIF(drive);
604         ide_task_t *task = rq->special;
605
606         if (task) {
607                 hwif->data_phase = task->data_phase;
608
609                 switch (hwif->data_phase) {
610                 case TASKFILE_MULTI_OUT:
611                 case TASKFILE_OUT:
612                 case TASKFILE_MULTI_IN:
613                 case TASKFILE_IN:
614                         ide_init_sg_cmd(drive, rq);
615                         ide_map_sg(drive, rq);
616                 default:
617                         break;
618                 }
619
620                 return do_rw_taskfile(drive, task);
621         }
622
623         /*
624          * NULL is actually a valid way of waiting for
625          * all current requests to be flushed from the queue.
626          */
627 #ifdef DEBUG
628         printk("%s: DRIVE_CMD (null)\n", drive->name);
629 #endif
630         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
631                           ide_read_error(drive));
632
633         return ide_stopped;
634 }
635
636 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
637                        int arg)
638 {
639         struct request_queue *q = drive->queue;
640         struct request *rq;
641         int ret = 0;
642
643         if (!(setting->flags & DS_SYNC))
644                 return setting->set(drive, arg);
645
646         rq = blk_get_request(q, READ, __GFP_WAIT);
647         rq->cmd_type = REQ_TYPE_SPECIAL;
648         rq->cmd_len = 5;
649         rq->cmd[0] = REQ_DEVSET_EXEC;
650         *(int *)&rq->cmd[1] = arg;
651         rq->special = setting->set;
652
653         if (blk_execute_rq(q, NULL, rq, 0))
654                 ret = rq->errors;
655         blk_put_request(rq);
656
657         return ret;
658 }
659 EXPORT_SYMBOL_GPL(ide_devset_execute);
660
661 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
662 {
663         u8 cmd = rq->cmd[0];
664
665         if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
666                 ide_task_t task;
667                 struct ide_taskfile *tf = &task.tf;
668
669                 memset(&task, 0, sizeof(task));
670                 if (cmd == REQ_PARK_HEADS) {
671                         drive->sleep = *(unsigned long *)rq->special;
672                         drive->dev_flags |= IDE_DFLAG_SLEEPING;
673                         tf->command = ATA_CMD_IDLEIMMEDIATE;
674                         tf->feature = 0x44;
675                         tf->lbal = 0x4c;
676                         tf->lbam = 0x4e;
677                         tf->lbah = 0x55;
678                         task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
679                 } else          /* cmd == REQ_UNPARK_HEADS */
680                         tf->command = ATA_CMD_CHK_POWER;
681
682                 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
683                 task.rq = rq;
684                 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
685                 return do_rw_taskfile(drive, &task);
686         }
687
688         switch (cmd) {
689         case REQ_DEVSET_EXEC:
690         {
691                 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
692
693                 err = setfunc(drive, *(int *)&rq->cmd[1]);
694                 if (err)
695                         rq->errors = err;
696                 else
697                         err = 1;
698                 ide_end_request(drive, err, 0);
699                 return ide_stopped;
700         }
701         case REQ_DRIVE_RESET:
702                 return ide_do_reset(drive);
703         default:
704                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
705                 ide_end_request(drive, 0, 0);
706                 return ide_stopped;
707         }
708 }
709
710 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
711 {
712         struct request_pm_state *pm = rq->data;
713
714         if (blk_pm_suspend_request(rq) &&
715             pm->pm_step == IDE_PM_START_SUSPEND)
716                 /* Mark drive blocked when starting the suspend sequence. */
717                 drive->dev_flags |= IDE_DFLAG_BLOCKED;
718         else if (blk_pm_resume_request(rq) &&
719                  pm->pm_step == IDE_PM_START_RESUME) {
720                 /* 
721                  * The first thing we do on wakeup is to wait for BSY bit to
722                  * go away (with a looong timeout) as a drive on this hwif may
723                  * just be POSTing itself.
724                  * We do that before even selecting as the "other" device on
725                  * the bus may be broken enough to walk on our toes at this
726                  * point.
727                  */
728                 ide_hwif_t *hwif = drive->hwif;
729                 int rc;
730 #ifdef DEBUG_PM
731                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
732 #endif
733                 rc = ide_wait_not_busy(hwif, 35000);
734                 if (rc)
735                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
736                 SELECT_DRIVE(drive);
737                 hwif->tp_ops->set_irq(hwif, 1);
738                 rc = ide_wait_not_busy(hwif, 100000);
739                 if (rc)
740                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
741         }
742 }
743
744 /**
745  *      start_request   -       start of I/O and command issuing for IDE
746  *
747  *      start_request() initiates handling of a new I/O request. It
748  *      accepts commands and I/O (read/write) requests.
749  *
750  *      FIXME: this function needs a rename
751  */
752  
753 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
754 {
755         ide_startstop_t startstop;
756
757         BUG_ON(!blk_rq_started(rq));
758
759 #ifdef DEBUG
760         printk("%s: start_request: current=0x%08lx\n",
761                 HWIF(drive)->name, (unsigned long) rq);
762 #endif
763
764         /* bail early if we've exceeded max_failures */
765         if (drive->max_failures && (drive->failures > drive->max_failures)) {
766                 rq->cmd_flags |= REQ_FAILED;
767                 goto kill_rq;
768         }
769
770         if (blk_pm_request(rq))
771                 ide_check_pm_state(drive, rq);
772
773         SELECT_DRIVE(drive);
774         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
775                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
776                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
777                 return startstop;
778         }
779         if (!drive->special.all) {
780                 ide_driver_t *drv;
781
782                 /*
783                  * We reset the drive so we need to issue a SETFEATURES.
784                  * Do it _after_ do_special() restored device parameters.
785                  */
786                 if (drive->current_speed == 0xff)
787                         ide_config_drive_speed(drive, drive->desired_speed);
788
789                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
790                         return execute_drive_cmd(drive, rq);
791                 else if (blk_pm_request(rq)) {
792                         struct request_pm_state *pm = rq->data;
793 #ifdef DEBUG_PM
794                         printk("%s: start_power_step(step: %d)\n",
795                                 drive->name, pm->pm_step);
796 #endif
797                         startstop = ide_start_power_step(drive, rq);
798                         if (startstop == ide_stopped &&
799                             pm->pm_step == IDE_PM_COMPLETED)
800                                 ide_complete_pm_request(drive, rq);
801                         return startstop;
802                 } else if (!rq->rq_disk && blk_special_request(rq))
803                         /*
804                          * TODO: Once all ULDs have been modified to
805                          * check for specific op codes rather than
806                          * blindly accepting any special request, the
807                          * check for ->rq_disk above may be replaced
808                          * by a more suitable mechanism or even
809                          * dropped entirely.
810                          */
811                         return ide_special_rq(drive, rq);
812
813                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
814
815                 return drv->do_request(drive, rq, rq->sector);
816         }
817         return do_special(drive);
818 kill_rq:
819         ide_kill_rq(drive, rq);
820         return ide_stopped;
821 }
822
823 /**
824  *      ide_stall_queue         -       pause an IDE device
825  *      @drive: drive to stall
826  *      @timeout: time to stall for (jiffies)
827  *
828  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
829  *      to the hwgroup by sleeping for timeout jiffies.
830  */
831  
832 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
833 {
834         if (timeout > WAIT_WORSTCASE)
835                 timeout = WAIT_WORSTCASE;
836         drive->sleep = timeout + jiffies;
837         drive->dev_flags |= IDE_DFLAG_SLEEPING;
838 }
839
840 EXPORT_SYMBOL(ide_stall_queue);
841
842 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
843
844 /**
845  *      choose_drive            -       select a drive to service
846  *      @hwgroup: hardware group to select on
847  *
848  *      choose_drive() selects the next drive which will be serviced.
849  *      This is necessary because the IDE layer can't issue commands
850  *      to both drives on the same cable, unlike SCSI.
851  */
852  
853 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
854 {
855         ide_drive_t *drive, *best;
856
857 repeat: 
858         best = NULL;
859         drive = hwgroup->drive;
860
861         /*
862          * drive is doing pre-flush, ordered write, post-flush sequence. even
863          * though that is 3 requests, it must be seen as a single transaction.
864          * we must not preempt this drive until that is complete
865          */
866         if (blk_queue_flushing(drive->queue)) {
867                 /*
868                  * small race where queue could get replugged during
869                  * the 3-request flush cycle, just yank the plug since
870                  * we want it to finish asap
871                  */
872                 blk_remove_plug(drive->queue);
873                 return drive;
874         }
875
876         do {
877                 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
878                 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
879
880                 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
881                     !elv_queue_empty(drive->queue)) {
882                         if (best == NULL ||
883                             (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
884                             (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
885                                 if (!blk_queue_plugged(drive->queue))
886                                         best = drive;
887                         }
888                 }
889         } while ((drive = drive->next) != hwgroup->drive);
890
891         if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
892             (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
893             best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
894                 long t = (signed long)(WAKEUP(best) - jiffies);
895                 if (t >= WAIT_MIN_SLEEP) {
896                 /*
897                  * We *may* have some time to spare, but first let's see if
898                  * someone can potentially benefit from our nice mood today..
899                  */
900                         drive = best->next;
901                         do {
902                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
903                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
904                                  && time_before(WAKEUP(drive), jiffies + t))
905                                 {
906                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
907                                         goto repeat;
908                                 }
909                         } while ((drive = drive->next) != best);
910                 }
911         }
912         return best;
913 }
914
915 /*
916  * Issue a new request to a drive from hwgroup
917  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
918  *
919  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
920  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
921  * may have both interfaces in a single hwgroup to "serialize" access.
922  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
923  * together into one hwgroup for serialized access.
924  *
925  * Note also that several hwgroups can end up sharing a single IRQ,
926  * possibly along with many other devices.  This is especially common in
927  * PCI-based systems with off-board IDE controller cards.
928  *
929  * The IDE driver uses the single global ide_lock spinlock to protect
930  * access to the request queues, and to protect the hwgroup->busy flag.
931  *
932  * The first thread into the driver for a particular hwgroup sets the
933  * hwgroup->busy flag to indicate that this hwgroup is now active,
934  * and then initiates processing of the top request from the request queue.
935  *
936  * Other threads attempting entry notice the busy setting, and will simply
937  * queue their new requests and exit immediately.  Note that hwgroup->busy
938  * remains set even when the driver is merely awaiting the next interrupt.
939  * Thus, the meaning is "this hwgroup is busy processing a request".
940  *
941  * When processing of a request completes, the completing thread or IRQ-handler
942  * will start the next request from the queue.  If no more work remains,
943  * the driver will clear the hwgroup->busy flag and exit.
944  *
945  * The ide_lock (spinlock) is used to protect all access to the
946  * hwgroup->busy flag, but is otherwise not needed for most processing in
947  * the driver.  This makes the driver much more friendlier to shared IRQs
948  * than previous designs, while remaining 100% (?) SMP safe and capable.
949  */
950 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
951 {
952         ide_drive_t     *drive;
953         ide_hwif_t      *hwif;
954         struct request  *rq;
955         ide_startstop_t startstop;
956         int             loops = 0;
957
958         /* caller must own ide_lock */
959         BUG_ON(!irqs_disabled());
960
961         while (!hwgroup->busy) {
962                 hwgroup->busy = 1;
963                 /* for atari only */
964                 ide_get_lock(ide_intr, hwgroup);
965                 drive = choose_drive(hwgroup);
966                 if (drive == NULL) {
967                         int sleeping = 0;
968                         unsigned long sleep = 0; /* shut up, gcc */
969                         hwgroup->rq = NULL;
970                         drive = hwgroup->drive;
971                         do {
972                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
973                                     (sleeping == 0 ||
974                                      time_before(drive->sleep, sleep))) {
975                                         sleeping = 1;
976                                         sleep = drive->sleep;
977                                 }
978                         } while ((drive = drive->next) != hwgroup->drive);
979                         if (sleeping) {
980                 /*
981                  * Take a short snooze, and then wake up this hwgroup again.
982                  * This gives other hwgroups on the same a chance to
983                  * play fairly with us, just in case there are big differences
984                  * in relative throughputs.. don't want to hog the cpu too much.
985                  */
986                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
987                                         sleep = jiffies + WAIT_MIN_SLEEP;
988 #if 1
989                                 if (timer_pending(&hwgroup->timer))
990                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
991 #endif
992                                 /* so that ide_timer_expiry knows what to do */
993                                 hwgroup->sleeping = 1;
994                                 hwgroup->req_gen_timer = hwgroup->req_gen;
995                                 mod_timer(&hwgroup->timer, sleep);
996                                 /* we purposely leave hwgroup->busy==1
997                                  * while sleeping */
998                         } else {
999                                 /* Ugly, but how can we sleep for the lock
1000                                  * otherwise? perhaps from tq_disk?
1001                                  */
1002
1003                                 /* for atari only */
1004                                 ide_release_lock();
1005                                 hwgroup->busy = 0;
1006                         }
1007
1008                         /* no more work for this hwgroup (for now) */
1009                         return;
1010                 }
1011         again:
1012                 hwif = HWIF(drive);
1013                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1014                         /*
1015                          * set nIEN for previous hwif, drives in the
1016                          * quirk_list may not like intr setups/cleanups
1017                          */
1018                         if (drive->quirk_list != 1)
1019                                 hwif->tp_ops->set_irq(hwif, 0);
1020                 }
1021                 hwgroup->hwif = hwif;
1022                 hwgroup->drive = drive;
1023                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1024                 drive->service_start = jiffies;
1025
1026                 if (blk_queue_plugged(drive->queue)) {
1027                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1028                         break;
1029                 }
1030
1031                 /*
1032                  * we know that the queue isn't empty, but this can happen
1033                  * if the q->prep_rq_fn() decides to kill a request
1034                  */
1035                 rq = elv_next_request(drive->queue);
1036                 if (!rq) {
1037                         hwgroup->busy = 0;
1038                         break;
1039                 }
1040
1041                 /*
1042                  * Sanity: don't accept a request that isn't a PM request
1043                  * if we are currently power managed. This is very important as
1044                  * blk_stop_queue() doesn't prevent the elv_next_request()
1045                  * above to return us whatever is in the queue. Since we call
1046                  * ide_do_request() ourselves, we end up taking requests while
1047                  * the queue is blocked...
1048                  * 
1049                  * We let requests forced at head of queue with ide-preempt
1050                  * though. I hope that doesn't happen too much, hopefully not
1051                  * unless the subdriver triggers such a thing in its own PM
1052                  * state machine.
1053                  *
1054                  * We count how many times we loop here to make sure we service
1055                  * all drives in the hwgroup without looping for ever
1056                  */
1057                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1058                     blk_pm_request(rq) == 0 &&
1059                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
1060                         drive = drive->next ? drive->next : hwgroup->drive;
1061                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1062                                 goto again;
1063                         /* We clear busy, there should be no pending ATA command at this point. */
1064                         hwgroup->busy = 0;
1065                         break;
1066                 }
1067
1068                 hwgroup->rq = rq;
1069
1070                 /*
1071                  * Some systems have trouble with IDE IRQs arriving while
1072                  * the driver is still setting things up.  So, here we disable
1073                  * the IRQ used by this interface while the request is being started.
1074                  * This may look bad at first, but pretty much the same thing
1075                  * happens anyway when any interrupt comes in, IDE or otherwise
1076                  *  -- the kernel masks the IRQ while it is being handled.
1077                  */
1078                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1079                         disable_irq_nosync(hwif->irq);
1080                 spin_unlock(&ide_lock);
1081                 local_irq_enable_in_hardirq();
1082                         /* allow other IRQs while we start this request */
1083                 startstop = start_request(drive, rq);
1084                 spin_lock_irq(&ide_lock);
1085                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1086                         enable_irq(hwif->irq);
1087                 if (startstop == ide_stopped)
1088                         hwgroup->busy = 0;
1089         }
1090 }
1091
1092 /*
1093  * Passes the stuff to ide_do_request
1094  */
1095 void do_ide_request(struct request_queue *q)
1096 {
1097         ide_drive_t *drive = q->queuedata;
1098
1099         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1100 }
1101
1102 /*
1103  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1104  * retry the current request in pio mode instead of risking tossing it
1105  * all away
1106  */
1107 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1108 {
1109         ide_hwif_t *hwif = HWIF(drive);
1110         struct request *rq;
1111         ide_startstop_t ret = ide_stopped;
1112
1113         /*
1114          * end current dma transaction
1115          */
1116
1117         if (error < 0) {
1118                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1119                 (void)hwif->dma_ops->dma_end(drive);
1120                 ret = ide_error(drive, "dma timeout error",
1121                                 hwif->tp_ops->read_status(hwif));
1122         } else {
1123                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1124                 hwif->dma_ops->dma_timeout(drive);
1125         }
1126
1127         /*
1128          * disable dma for now, but remember that we did so because of
1129          * a timeout -- we'll reenable after we finish this next request
1130          * (or rather the first chunk of it) in pio.
1131          */
1132         drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1133         drive->retry_pio++;
1134         ide_dma_off_quietly(drive);
1135
1136         /*
1137          * un-busy drive etc (hwgroup->busy is cleared on return) and
1138          * make sure request is sane
1139          */
1140         rq = HWGROUP(drive)->rq;
1141
1142         if (!rq)
1143                 goto out;
1144
1145         HWGROUP(drive)->rq = NULL;
1146
1147         rq->errors = 0;
1148
1149         if (!rq->bio)
1150                 goto out;
1151
1152         rq->sector = rq->bio->bi_sector;
1153         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1154         rq->hard_cur_sectors = rq->current_nr_sectors;
1155         rq->buffer = bio_data(rq->bio);
1156 out:
1157         return ret;
1158 }
1159
1160 /**
1161  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1162  *      @data: timer callback magic (hwgroup)
1163  *
1164  *      An IDE command has timed out before the expected drive return
1165  *      occurred. At this point we attempt to clean up the current
1166  *      mess. If the current handler includes an expiry handler then
1167  *      we invoke the expiry handler, and providing it is happy the
1168  *      work is done. If that fails we apply generic recovery rules
1169  *      invoking the handler and checking the drive DMA status. We
1170  *      have an excessively incestuous relationship with the DMA
1171  *      logic that wants cleaning up.
1172  */
1173  
1174 void ide_timer_expiry (unsigned long data)
1175 {
1176         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1177         ide_handler_t   *handler;
1178         ide_expiry_t    *expiry;
1179         unsigned long   flags;
1180         unsigned long   wait = -1;
1181
1182         spin_lock_irqsave(&ide_lock, flags);
1183
1184         if (((handler = hwgroup->handler) == NULL) ||
1185             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1186                 /*
1187                  * Either a marginal timeout occurred
1188                  * (got the interrupt just as timer expired),
1189                  * or we were "sleeping" to give other devices a chance.
1190                  * Either way, we don't really want to complain about anything.
1191                  */
1192                 if (hwgroup->sleeping) {
1193                         hwgroup->sleeping = 0;
1194                         hwgroup->busy = 0;
1195                 }
1196         } else {
1197                 ide_drive_t *drive = hwgroup->drive;
1198                 if (!drive) {
1199                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1200                         hwgroup->handler = NULL;
1201                 } else {
1202                         ide_hwif_t *hwif;
1203                         ide_startstop_t startstop = ide_stopped;
1204                         if (!hwgroup->busy) {
1205                                 hwgroup->busy = 1;      /* paranoia */
1206                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1207                         }
1208                         if ((expiry = hwgroup->expiry) != NULL) {
1209                                 /* continue */
1210                                 if ((wait = expiry(drive)) > 0) {
1211                                         /* reset timer */
1212                                         hwgroup->timer.expires  = jiffies + wait;
1213                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1214                                         add_timer(&hwgroup->timer);
1215                                         spin_unlock_irqrestore(&ide_lock, flags);
1216                                         return;
1217                                 }
1218                         }
1219                         hwgroup->handler = NULL;
1220                         /*
1221                          * We need to simulate a real interrupt when invoking
1222                          * the handler() function, which means we need to
1223                          * globally mask the specific IRQ:
1224                          */
1225                         spin_unlock(&ide_lock);
1226                         hwif  = HWIF(drive);
1227                         /* disable_irq_nosync ?? */
1228                         disable_irq(hwif->irq);
1229                         /* local CPU only,
1230                          * as if we were handling an interrupt */
1231                         local_irq_disable();
1232                         if (hwgroup->polling) {
1233                                 startstop = handler(drive);
1234                         } else if (drive_is_ready(drive)) {
1235                                 if (drive->waiting_for_dma)
1236                                         hwif->dma_ops->dma_lost_irq(drive);
1237                                 (void)ide_ack_intr(hwif);
1238                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1239                                 startstop = handler(drive);
1240                         } else {
1241                                 if (drive->waiting_for_dma) {
1242                                         startstop = ide_dma_timeout_retry(drive, wait);
1243                                 } else
1244                                         startstop =
1245                                         ide_error(drive, "irq timeout",
1246                                                   hwif->tp_ops->read_status(hwif));
1247                         }
1248                         drive->service_time = jiffies - drive->service_start;
1249                         spin_lock_irq(&ide_lock);
1250                         enable_irq(hwif->irq);
1251                         if (startstop == ide_stopped)
1252                                 hwgroup->busy = 0;
1253                 }
1254         }
1255         ide_do_request(hwgroup, IDE_NO_IRQ);
1256         spin_unlock_irqrestore(&ide_lock, flags);
1257 }
1258
1259 /**
1260  *      unexpected_intr         -       handle an unexpected IDE interrupt
1261  *      @irq: interrupt line
1262  *      @hwgroup: hwgroup being processed
1263  *
1264  *      There's nothing really useful we can do with an unexpected interrupt,
1265  *      other than reading the status register (to clear it), and logging it.
1266  *      There should be no way that an irq can happen before we're ready for it,
1267  *      so we needn't worry much about losing an "important" interrupt here.
1268  *
1269  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1270  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1271  *      looks "good", we just ignore the interrupt completely.
1272  *
1273  *      This routine assumes __cli() is in effect when called.
1274  *
1275  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1276  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1277  *      we could screw up by interfering with a new request being set up for 
1278  *      irq15.
1279  *
1280  *      In reality, this is a non-issue.  The new command is not sent unless 
1281  *      the drive is ready to accept one, in which case we know the drive is
1282  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1283  *      before completing the issuance of any new drive command, so we will not
1284  *      be accidentally invoked as a result of any valid command completion
1285  *      interrupt.
1286  *
1287  *      Note that we must walk the entire hwgroup here. We know which hwif
1288  *      is doing the current command, but we don't know which hwif burped
1289  *      mysteriously.
1290  */
1291  
1292 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1293 {
1294         u8 stat;
1295         ide_hwif_t *hwif = hwgroup->hwif;
1296
1297         /*
1298          * handle the unexpected interrupt
1299          */
1300         do {
1301                 if (hwif->irq == irq) {
1302                         stat = hwif->tp_ops->read_status(hwif);
1303
1304                         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1305                                 /* Try to not flood the console with msgs */
1306                                 static unsigned long last_msgtime, count;
1307                                 ++count;
1308                                 if (time_after(jiffies, last_msgtime + HZ)) {
1309                                         last_msgtime = jiffies;
1310                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1311                                                 "status=0x%02x, count=%ld\n",
1312                                                 hwif->name,
1313                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1314                                 }
1315                         }
1316                 }
1317         } while ((hwif = hwif->next) != hwgroup->hwif);
1318 }
1319
1320 /**
1321  *      ide_intr        -       default IDE interrupt handler
1322  *      @irq: interrupt number
1323  *      @dev_id: hwif group
1324  *      @regs: unused weirdness from the kernel irq layer
1325  *
1326  *      This is the default IRQ handler for the IDE layer. You should
1327  *      not need to override it. If you do be aware it is subtle in
1328  *      places
1329  *
1330  *      hwgroup->hwif is the interface in the group currently performing
1331  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1332  *      the IRQ handler to call. As we issue a command the handlers
1333  *      step through multiple states, reassigning the handler to the
1334  *      next step in the process. Unlike a smart SCSI controller IDE
1335  *      expects the main processor to sequence the various transfer
1336  *      stages. We also manage a poll timer to catch up with most
1337  *      timeout situations. There are still a few where the handlers
1338  *      don't ever decide to give up.
1339  *
1340  *      The handler eventually returns ide_stopped to indicate the
1341  *      request completed. At this point we issue the next request
1342  *      on the hwgroup and the process begins again.
1343  */
1344  
1345 irqreturn_t ide_intr (int irq, void *dev_id)
1346 {
1347         unsigned long flags;
1348         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1349         ide_hwif_t *hwif;
1350         ide_drive_t *drive;
1351         ide_handler_t *handler;
1352         ide_startstop_t startstop;
1353         irqreturn_t irq_ret = IRQ_NONE;
1354
1355         spin_lock_irqsave(&ide_lock, flags);
1356         hwif = hwgroup->hwif;
1357
1358         if (!ide_ack_intr(hwif))
1359                 goto out;
1360
1361         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1362                 /*
1363                  * Not expecting an interrupt from this drive.
1364                  * That means this could be:
1365                  *      (1) an interrupt from another PCI device
1366                  *      sharing the same PCI INT# as us.
1367                  * or   (2) a drive just entered sleep or standby mode,
1368                  *      and is interrupting to let us know.
1369                  * or   (3) a spurious interrupt of unknown origin.
1370                  *
1371                  * For PCI, we cannot tell the difference,
1372                  * so in that case we just ignore it and hope it goes away.
1373                  *
1374                  * FIXME: unexpected_intr should be hwif-> then we can
1375                  * remove all the ifdef PCI crap
1376                  */
1377 #ifdef CONFIG_BLK_DEV_IDEPCI
1378                 if (hwif->chipset != ide_pci)
1379 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1380                 {
1381                         /*
1382                          * Probably not a shared PCI interrupt,
1383                          * so we can safely try to do something about it:
1384                          */
1385                         unexpected_intr(irq, hwgroup);
1386 #ifdef CONFIG_BLK_DEV_IDEPCI
1387                 } else {
1388                         /*
1389                          * Whack the status register, just in case
1390                          * we have a leftover pending IRQ.
1391                          */
1392                         (void)hwif->tp_ops->read_status(hwif);
1393 #endif /* CONFIG_BLK_DEV_IDEPCI */
1394                 }
1395                 goto out;
1396         }
1397
1398         drive = hwgroup->drive;
1399         if (!drive) {
1400                 /*
1401                  * This should NEVER happen, and there isn't much
1402                  * we could do about it here.
1403                  *
1404                  * [Note - this can occur if the drive is hot unplugged]
1405                  */
1406                 goto out_handled;
1407         }
1408
1409         if (!drive_is_ready(drive))
1410                 /*
1411                  * This happens regularly when we share a PCI IRQ with
1412                  * another device.  Unfortunately, it can also happen
1413                  * with some buggy drives that trigger the IRQ before
1414                  * their status register is up to date.  Hopefully we have
1415                  * enough advance overhead that the latter isn't a problem.
1416                  */
1417                 goto out;
1418
1419         if (!hwgroup->busy) {
1420                 hwgroup->busy = 1;      /* paranoia */
1421                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1422         }
1423         hwgroup->handler = NULL;
1424         hwgroup->req_gen++;
1425         del_timer(&hwgroup->timer);
1426         spin_unlock(&ide_lock);
1427
1428         if (hwif->port_ops && hwif->port_ops->clear_irq)
1429                 hwif->port_ops->clear_irq(drive);
1430
1431         if (drive->dev_flags & IDE_DFLAG_UNMASK)
1432                 local_irq_enable_in_hardirq();
1433
1434         /* service this interrupt, may set handler for next interrupt */
1435         startstop = handler(drive);
1436
1437         spin_lock_irq(&ide_lock);
1438         /*
1439          * Note that handler() may have set things up for another
1440          * interrupt to occur soon, but it cannot happen until
1441          * we exit from this routine, because it will be the
1442          * same irq as is currently being serviced here, and Linux
1443          * won't allow another of the same (on any CPU) until we return.
1444          */
1445         drive->service_time = jiffies - drive->service_start;
1446         if (startstop == ide_stopped) {
1447                 if (hwgroup->handler == NULL) { /* paranoia */
1448                         hwgroup->busy = 0;
1449                         ide_do_request(hwgroup, hwif->irq);
1450                 } else {
1451                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1452                                 "on exit\n", drive->name);
1453                 }
1454         }
1455 out_handled:
1456         irq_ret = IRQ_HANDLED;
1457 out:
1458         spin_unlock_irqrestore(&ide_lock, flags);
1459         return irq_ret;
1460 }
1461
1462 /**
1463  *      ide_do_drive_cmd        -       issue IDE special command
1464  *      @drive: device to issue command
1465  *      @rq: request to issue
1466  *
1467  *      This function issues a special IDE device request
1468  *      onto the request queue.
1469  *
1470  *      the rq is queued at the head of the request queue, displacing
1471  *      the currently-being-processed request and this function
1472  *      returns immediately without waiting for the new rq to be
1473  *      completed.  This is VERY DANGEROUS, and is intended for
1474  *      careful use by the ATAPI tape/cdrom driver code.
1475  */
1476
1477 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1478 {
1479         ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1480         unsigned long flags;
1481
1482         hwgroup->rq = NULL;
1483
1484         spin_lock_irqsave(&ide_lock, flags);
1485         __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0);
1486         blk_start_queueing(drive->queue);
1487         spin_unlock_irqrestore(&ide_lock, flags);
1488 }
1489
1490 EXPORT_SYMBOL(ide_do_drive_cmd);
1491
1492 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1493 {
1494         ide_hwif_t *hwif = drive->hwif;
1495         ide_task_t task;
1496
1497         memset(&task, 0, sizeof(task));
1498         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1499                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1500         task.tf.feature = dma;          /* Use PIO/DMA */
1501         task.tf.lbam    = bcount & 0xff;
1502         task.tf.lbah    = (bcount >> 8) & 0xff;
1503
1504         ide_tf_dump(drive->name, &task.tf);
1505         hwif->tp_ops->set_irq(hwif, 1);
1506         SELECT_MASK(drive, 0);
1507         hwif->tp_ops->tf_load(drive, &task);
1508 }
1509
1510 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1511
1512 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1513 {
1514         ide_hwif_t *hwif = drive->hwif;
1515         u8 buf[4] = { 0 };
1516
1517         while (len > 0) {
1518                 if (write)
1519                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1520                 else
1521                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1522                 len -= 4;
1523         }
1524 }
1525 EXPORT_SYMBOL_GPL(ide_pad_transfer);