]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-io.c
Merge branch 'upstream-fixes' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50
51 #include <asm/byteorder.h>
52 #include <asm/irq.h>
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/bitops.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 HWGROUP(drive)->hwif->ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (!list_empty(&rq->queuelist))
84                         blkdev_dequeue_request(rq);
85                 HWGROUP(drive)->rq = NULL;
86                 end_that_request_last(rq, uptodate);
87                 ret = 0;
88         }
89
90         return ret;
91 }
92
93 /**
94  *      ide_end_request         -       complete an IDE I/O
95  *      @drive: IDE device for the I/O
96  *      @uptodate:
97  *      @nr_sectors: number of sectors completed
98  *
99  *      This is our end_request wrapper function. We complete the I/O
100  *      update random number input and dequeue the request, which if
101  *      it was tagged may be out of order.
102  */
103
104 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
105 {
106         unsigned int nr_bytes = nr_sectors << 9;
107         struct request *rq;
108         unsigned long flags;
109         int ret = 1;
110
111         /*
112          * room for locking improvements here, the calls below don't
113          * need the queue lock held at all
114          */
115         spin_lock_irqsave(&ide_lock, flags);
116         rq = HWGROUP(drive)->rq;
117
118         if (!nr_bytes) {
119                 if (blk_pc_request(rq))
120                         nr_bytes = rq->data_len;
121                 else
122                         nr_bytes = rq->hard_cur_sectors << 9;
123         }
124
125         ret = __ide_end_request(drive, rq, uptodate, nr_bytes);
126
127         spin_unlock_irqrestore(&ide_lock, flags);
128         return ret;
129 }
130 EXPORT_SYMBOL(ide_end_request);
131
132 /*
133  * Power Management state machine. This one is rather trivial for now,
134  * we should probably add more, like switching back to PIO on suspend
135  * to help some BIOSes, re-do the door locking on resume, etc...
136  */
137
138 enum {
139         ide_pm_flush_cache      = ide_pm_state_start_suspend,
140         idedisk_pm_standby,
141
142         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
143         idedisk_pm_idle,
144         ide_pm_restore_dma,
145 };
146
147 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
148 {
149         struct request_pm_state *pm = rq->data;
150
151         if (drive->media != ide_disk)
152                 return;
153
154         switch (pm->pm_step) {
155         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
156                 if (pm->pm_state == PM_EVENT_FREEZE)
157                         pm->pm_step = ide_pm_state_completed;
158                 else
159                         pm->pm_step = idedisk_pm_standby;
160                 break;
161         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
162                 pm->pm_step = ide_pm_state_completed;
163                 break;
164         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
165                 pm->pm_step = idedisk_pm_idle;
166                 break;
167         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
168                 pm->pm_step = ide_pm_restore_dma;
169                 break;
170         }
171 }
172
173 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
174 {
175         struct request_pm_state *pm = rq->data;
176         ide_task_t *args = rq->special;
177
178         memset(args, 0, sizeof(*args));
179
180         switch (pm->pm_step) {
181         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
182                 if (drive->media != ide_disk)
183                         break;
184                 /* Not supported? Switch to next step now. */
185                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
186                         ide_complete_power_step(drive, rq, 0, 0);
187                         return ide_stopped;
188                 }
189                 if (ide_id_has_flush_cache_ext(drive->id))
190                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
191                 else
192                         args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
193                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
194                 args->handler      = &task_no_data_intr;
195                 return do_rw_taskfile(drive, args);
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
199                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
200                 args->handler      = &task_no_data_intr;
201                 return do_rw_taskfile(drive, args);
202
203         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
204                 ide_set_max_pio(drive);
205                 /*
206                  * skip idedisk_pm_idle for ATAPI devices
207                  */
208                 if (drive->media != ide_disk)
209                         pm->pm_step = ide_pm_restore_dma;
210                 else
211                         ide_complete_power_step(drive, rq, 0, 0);
212                 return ide_stopped;
213
214         case idedisk_pm_idle:           /* Resume step 2 (idle) */
215                 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
216                 args->command_type = IDE_DRIVE_TASK_NO_DATA;
217                 args->handler = task_no_data_intr;
218                 return do_rw_taskfile(drive, args);
219
220         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
221                 /*
222                  * Right now, all we do is call hwif->ide_dma_check(drive),
223                  * we could be smarter and check for current xfer_speed
224                  * in struct drive etc...
225                  */
226                 if (drive->hwif->ide_dma_check == NULL)
227                         break;
228                 drive->hwif->dma_off_quietly(drive);
229                 /*
230                  * TODO: respect ->using_dma setting
231                  */
232                 ide_set_dma(drive);
233                 break;
234         }
235         pm->pm_step = ide_pm_state_completed;
236         return ide_stopped;
237 }
238
239 /**
240  *      ide_end_dequeued_request        -       complete an IDE I/O
241  *      @drive: IDE device for the I/O
242  *      @uptodate:
243  *      @nr_sectors: number of sectors completed
244  *
245  *      Complete an I/O that is no longer on the request queue. This
246  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
247  *      We must still finish the old request but we must not tamper with the
248  *      queue in the meantime.
249  *
250  *      NOTE: This path does not handle barrier, but barrier is not supported
251  *      on ide-cd anyway.
252  */
253
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255                              int uptodate, int nr_sectors)
256 {
257         unsigned long flags;
258         int ret = 1;
259
260         spin_lock_irqsave(&ide_lock, flags);
261
262         BUG_ON(!blk_rq_started(rq));
263
264         /*
265          * if failfast is set on a request, override number of sectors and
266          * complete the whole request right now
267          */
268         if (blk_noretry_request(rq) && end_io_error(uptodate))
269                 nr_sectors = rq->hard_nr_sectors;
270
271         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
272                 rq->errors = -EIO;
273
274         /*
275          * decide whether to reenable DMA -- 3 is a random magic for now,
276          * if we DMA timeout more than 3 times, just stay in PIO
277          */
278         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
279                 drive->state = 0;
280                 HWGROUP(drive)->hwif->ide_dma_on(drive);
281         }
282
283         if (!end_that_request_first(rq, uptodate, nr_sectors)) {
284                 add_disk_randomness(rq->rq_disk);
285                 if (blk_rq_tagged(rq))
286                         blk_queue_end_tag(drive->queue, rq);
287                 end_that_request_last(rq, uptodate);
288                 ret = 0;
289         }
290         spin_unlock_irqrestore(&ide_lock, flags);
291         return ret;
292 }
293 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
294
295
296 /**
297  *      ide_complete_pm_request - end the current Power Management request
298  *      @drive: target drive
299  *      @rq: request
300  *
301  *      This function cleans up the current PM request and stops the queue
302  *      if necessary.
303  */
304 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
305 {
306         unsigned long flags;
307
308 #ifdef DEBUG_PM
309         printk("%s: completing PM request, %s\n", drive->name,
310                blk_pm_suspend_request(rq) ? "suspend" : "resume");
311 #endif
312         spin_lock_irqsave(&ide_lock, flags);
313         if (blk_pm_suspend_request(rq)) {
314                 blk_stop_queue(drive->queue);
315         } else {
316                 drive->blocked = 0;
317                 blk_start_queue(drive->queue);
318         }
319         blkdev_dequeue_request(rq);
320         HWGROUP(drive)->rq = NULL;
321         end_that_request_last(rq, 1);
322         spin_unlock_irqrestore(&ide_lock, flags);
323 }
324
325 /*
326  * FIXME: probably move this somewhere else, name is bad too :)
327  */
328 u64 ide_get_error_location(ide_drive_t *drive, char *args)
329 {
330         u32 high, low;
331         u8 hcyl, lcyl, sect;
332         u64 sector;
333
334         high = 0;
335         hcyl = args[5];
336         lcyl = args[4];
337         sect = args[3];
338
339         if (ide_id_has_flush_cache_ext(drive->id)) {
340                 low = (hcyl << 16) | (lcyl << 8) | sect;
341                 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
342                 high = ide_read_24(drive);
343         } else {
344                 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
345                 if (cur & 0x40) {
346                         high = cur & 0xf;
347                         low = (hcyl << 16) | (lcyl << 8) | sect;
348                 } else {
349                         low = hcyl * drive->head * drive->sect;
350                         low += lcyl * drive->sect;
351                         low += sect - 1;
352                 }
353         }
354
355         sector = ((u64) high << 24) | low;
356         return sector;
357 }
358 EXPORT_SYMBOL(ide_get_error_location);
359
360 /**
361  *      ide_end_drive_cmd       -       end an explicit drive command
362  *      @drive: command 
363  *      @stat: status bits
364  *      @err: error bits
365  *
366  *      Clean up after success/failure of an explicit drive command.
367  *      These get thrown onto the queue so they are synchronized with
368  *      real I/O operations on the drive.
369  *
370  *      In LBA48 mode we have to read the register set twice to get
371  *      all the extra information out.
372  */
373  
374 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
375 {
376         ide_hwif_t *hwif = HWIF(drive);
377         unsigned long flags;
378         struct request *rq;
379
380         spin_lock_irqsave(&ide_lock, flags);
381         rq = HWGROUP(drive)->rq;
382         spin_unlock_irqrestore(&ide_lock, flags);
383
384         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
385                 u8 *args = (u8 *) rq->buffer;
386                 if (rq->errors == 0)
387                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
388
389                 if (args) {
390                         args[0] = stat;
391                         args[1] = err;
392                         args[2] = hwif->INB(IDE_NSECTOR_REG);
393                 }
394         } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
395                 u8 *args = (u8 *) rq->buffer;
396                 if (rq->errors == 0)
397                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
398
399                 if (args) {
400                         args[0] = stat;
401                         args[1] = err;
402                         args[2] = hwif->INB(IDE_NSECTOR_REG);
403                         args[3] = hwif->INB(IDE_SECTOR_REG);
404                         args[4] = hwif->INB(IDE_LCYL_REG);
405                         args[5] = hwif->INB(IDE_HCYL_REG);
406                         args[6] = hwif->INB(IDE_SELECT_REG);
407                 }
408         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
409                 ide_task_t *args = (ide_task_t *) rq->special;
410                 if (rq->errors == 0)
411                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
412                         
413                 if (args) {
414                         if (args->tf_in_flags.b.data) {
415                                 u16 data                                = hwif->INW(IDE_DATA_REG);
416                                 args->tfRegister[IDE_DATA_OFFSET]       = (data) & 0xFF;
417                                 args->hobRegister[IDE_DATA_OFFSET]      = (data >> 8) & 0xFF;
418                         }
419                         args->tfRegister[IDE_ERROR_OFFSET]   = err;
420                         /* be sure we're looking at the low order bits */
421                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
422                         args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
423                         args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
424                         args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
425                         args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
426                         args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
427                         args->tfRegister[IDE_STATUS_OFFSET]  = stat;
428
429                         if (drive->addressing == 1) {
430                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
431                                 args->hobRegister[IDE_FEATURE_OFFSET]   = hwif->INB(IDE_FEATURE_REG);
432                                 args->hobRegister[IDE_NSECTOR_OFFSET]   = hwif->INB(IDE_NSECTOR_REG);
433                                 args->hobRegister[IDE_SECTOR_OFFSET]    = hwif->INB(IDE_SECTOR_REG);
434                                 args->hobRegister[IDE_LCYL_OFFSET]      = hwif->INB(IDE_LCYL_REG);
435                                 args->hobRegister[IDE_HCYL_OFFSET]      = hwif->INB(IDE_HCYL_REG);
436                         }
437                 }
438         } else if (blk_pm_request(rq)) {
439                 struct request_pm_state *pm = rq->data;
440 #ifdef DEBUG_PM
441                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
442                         drive->name, rq->pm->pm_step, stat, err);
443 #endif
444                 ide_complete_power_step(drive, rq, stat, err);
445                 if (pm->pm_step == ide_pm_state_completed)
446                         ide_complete_pm_request(drive, rq);
447                 return;
448         }
449
450         spin_lock_irqsave(&ide_lock, flags);
451         blkdev_dequeue_request(rq);
452         HWGROUP(drive)->rq = NULL;
453         rq->errors = err;
454         end_that_request_last(rq, !rq->errors);
455         spin_unlock_irqrestore(&ide_lock, flags);
456 }
457
458 EXPORT_SYMBOL(ide_end_drive_cmd);
459
460 /**
461  *      try_to_flush_leftover_data      -       flush junk
462  *      @drive: drive to flush
463  *
464  *      try_to_flush_leftover_data() is invoked in response to a drive
465  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
466  *      resetting the drive, this routine tries to clear the condition
467  *      by read a sector's worth of data from the drive.  Of course,
468  *      this may not help if the drive is *waiting* for data from *us*.
469  */
470 static void try_to_flush_leftover_data (ide_drive_t *drive)
471 {
472         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
473
474         if (drive->media != ide_disk)
475                 return;
476         while (i > 0) {
477                 u32 buffer[16];
478                 u32 wcount = (i > 16) ? 16 : i;
479
480                 i -= wcount;
481                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
482         }
483 }
484
485 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
486 {
487         if (rq->rq_disk) {
488                 ide_driver_t *drv;
489
490                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
491                 drv->end_request(drive, 0, 0);
492         } else
493                 ide_end_request(drive, 0, 0);
494 }
495
496 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
497 {
498         ide_hwif_t *hwif = drive->hwif;
499
500         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
501                 /* other bits are useless when BUSY */
502                 rq->errors |= ERROR_RESET;
503         } else if (stat & ERR_STAT) {
504                 /* err has different meaning on cdrom and tape */
505                 if (err == ABRT_ERR) {
506                         if (drive->select.b.lba &&
507                             /* some newer drives don't support WIN_SPECIFY */
508                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
509                                 return ide_stopped;
510                 } else if ((err & BAD_CRC) == BAD_CRC) {
511                         /* UDMA crc error, just retry the operation */
512                         drive->crc_count++;
513                 } else if (err & (BBD_ERR | ECC_ERR)) {
514                         /* retries won't help these */
515                         rq->errors = ERROR_MAX;
516                 } else if (err & TRK0_ERR) {
517                         /* help it find track zero */
518                         rq->errors |= ERROR_RECAL;
519                 }
520         }
521
522         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
523                 try_to_flush_leftover_data(drive);
524
525         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
526                 ide_kill_rq(drive, rq);
527                 return ide_stopped;
528         }
529
530         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
531                 rq->errors |= ERROR_RESET;
532
533         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
534                 ++rq->errors;
535                 return ide_do_reset(drive);
536         }
537
538         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
539                 drive->special.b.recalibrate = 1;
540
541         ++rq->errors;
542
543         return ide_stopped;
544 }
545
546 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
547 {
548         ide_hwif_t *hwif = drive->hwif;
549
550         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
551                 /* other bits are useless when BUSY */
552                 rq->errors |= ERROR_RESET;
553         } else {
554                 /* add decoding error stuff */
555         }
556
557         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
558                 /* force an abort */
559                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
560
561         if (rq->errors >= ERROR_MAX) {
562                 ide_kill_rq(drive, rq);
563         } else {
564                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
565                         ++rq->errors;
566                         return ide_do_reset(drive);
567                 }
568                 ++rq->errors;
569         }
570
571         return ide_stopped;
572 }
573
574 ide_startstop_t
575 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
576 {
577         if (drive->media == ide_disk)
578                 return ide_ata_error(drive, rq, stat, err);
579         return ide_atapi_error(drive, rq, stat, err);
580 }
581
582 EXPORT_SYMBOL_GPL(__ide_error);
583
584 /**
585  *      ide_error       -       handle an error on the IDE
586  *      @drive: drive the error occurred on
587  *      @msg: message to report
588  *      @stat: status bits
589  *
590  *      ide_error() takes action based on the error returned by the drive.
591  *      For normal I/O that may well include retries. We deal with
592  *      both new-style (taskfile) and old style command handling here.
593  *      In the case of taskfile command handling there is work left to
594  *      do
595  */
596  
597 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
598 {
599         struct request *rq;
600         u8 err;
601
602         err = ide_dump_status(drive, msg, stat);
603
604         if ((rq = HWGROUP(drive)->rq) == NULL)
605                 return ide_stopped;
606
607         /* retry only "normal" I/O: */
608         if (!blk_fs_request(rq)) {
609                 rq->errors = 1;
610                 ide_end_drive_cmd(drive, stat, err);
611                 return ide_stopped;
612         }
613
614         if (rq->rq_disk) {
615                 ide_driver_t *drv;
616
617                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
618                 return drv->error(drive, rq, stat, err);
619         } else
620                 return __ide_error(drive, rq, stat, err);
621 }
622
623 EXPORT_SYMBOL_GPL(ide_error);
624
625 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
626 {
627         if (drive->media != ide_disk)
628                 rq->errors |= ERROR_RESET;
629
630         ide_kill_rq(drive, rq);
631
632         return ide_stopped;
633 }
634
635 EXPORT_SYMBOL_GPL(__ide_abort);
636
637 /**
638  *      ide_abort       -       abort pending IDE operations
639  *      @drive: drive the error occurred on
640  *      @msg: message to report
641  *
642  *      ide_abort kills and cleans up when we are about to do a 
643  *      host initiated reset on active commands. Longer term we
644  *      want handlers to have sensible abort handling themselves
645  *
646  *      This differs fundamentally from ide_error because in 
647  *      this case the command is doing just fine when we
648  *      blow it away.
649  */
650  
651 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
652 {
653         struct request *rq;
654
655         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
656                 return ide_stopped;
657
658         /* retry only "normal" I/O: */
659         if (!blk_fs_request(rq)) {
660                 rq->errors = 1;
661                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
662                 return ide_stopped;
663         }
664
665         if (rq->rq_disk) {
666                 ide_driver_t *drv;
667
668                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
669                 return drv->abort(drive, rq);
670         } else
671                 return __ide_abort(drive, rq);
672 }
673
674 /**
675  *      ide_cmd         -       issue a simple drive command
676  *      @drive: drive the command is for
677  *      @cmd: command byte
678  *      @nsect: sector byte
679  *      @handler: handler for the command completion
680  *
681  *      Issue a simple drive command with interrupts.
682  *      The drive must be selected beforehand.
683  */
684
685 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
686                 ide_handler_t *handler)
687 {
688         ide_hwif_t *hwif = HWIF(drive);
689         if (IDE_CONTROL_REG)
690                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
691         SELECT_MASK(drive,0);
692         hwif->OUTB(nsect,IDE_NSECTOR_REG);
693         ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
694 }
695
696 /**
697  *      drive_cmd_intr          -       drive command completion interrupt
698  *      @drive: drive the completion interrupt occurred on
699  *
700  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
701  *      We do any necessary data reading and then wait for the drive to
702  *      go non busy. At that point we may read the error data and complete
703  *      the request
704  */
705  
706 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
707 {
708         struct request *rq = HWGROUP(drive)->rq;
709         ide_hwif_t *hwif = HWIF(drive);
710         u8 *args = (u8 *) rq->buffer;
711         u8 stat = hwif->INB(IDE_STATUS_REG);
712         int retries = 10;
713
714         local_irq_enable_in_hardirq();
715         if ((stat & DRQ_STAT) && args && args[3]) {
716                 u8 io_32bit = drive->io_32bit;
717                 drive->io_32bit = 0;
718                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
719                 drive->io_32bit = io_32bit;
720                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
721                         udelay(100);
722         }
723
724         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
725                 return ide_error(drive, "drive_cmd", stat);
726                 /* calls ide_end_drive_cmd */
727         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
728         return ide_stopped;
729 }
730
731 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
732 {
733         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
734         task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
735         task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
736         task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
737         task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
738         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
739
740         task->handler = &set_geometry_intr;
741 }
742
743 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
744 {
745         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
746         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
747
748         task->handler = &recal_intr;
749 }
750
751 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
752 {
753         task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
754         task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
755
756         task->handler = &set_multmode_intr;
757 }
758
759 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
760 {
761         special_t *s = &drive->special;
762         ide_task_t args;
763
764         memset(&args, 0, sizeof(ide_task_t));
765         args.command_type = IDE_DRIVE_TASK_NO_DATA;
766
767         if (s->b.set_geometry) {
768                 s->b.set_geometry = 0;
769                 ide_init_specify_cmd(drive, &args);
770         } else if (s->b.recalibrate) {
771                 s->b.recalibrate = 0;
772                 ide_init_restore_cmd(drive, &args);
773         } else if (s->b.set_multmode) {
774                 s->b.set_multmode = 0;
775                 if (drive->mult_req > drive->id->max_multsect)
776                         drive->mult_req = drive->id->max_multsect;
777                 ide_init_setmult_cmd(drive, &args);
778         } else if (s->all) {
779                 int special = s->all;
780                 s->all = 0;
781                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
782                 return ide_stopped;
783         }
784
785         do_rw_taskfile(drive, &args);
786
787         return ide_started;
788 }
789
790 /*
791  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
792  */
793 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
794 {
795         switch (req_pio) {
796         case 202:
797         case 201:
798         case 200:
799         case 102:
800         case 101:
801         case 100:
802                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
803         case 9:
804         case 8:
805                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
806         case 7:
807         case 6:
808                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
809         default:
810                 return 0;
811         }
812 }
813
814 /**
815  *      do_special              -       issue some special commands
816  *      @drive: drive the command is for
817  *
818  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
819  *      commands to a drive.  It used to do much more, but has been scaled
820  *      back.
821  */
822
823 static ide_startstop_t do_special (ide_drive_t *drive)
824 {
825         special_t *s = &drive->special;
826
827 #ifdef DEBUG
828         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
829 #endif
830         if (s->b.set_tune) {
831                 ide_hwif_t *hwif = drive->hwif;
832                 u8 req_pio = drive->tune_req;
833
834                 s->b.set_tune = 0;
835
836                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
837                         if (hwif->set_pio_mode)
838                                 hwif->set_pio_mode(drive, req_pio);
839                 } else
840                         ide_set_pio(drive, req_pio);
841
842                 return ide_stopped;
843         } else {
844                 if (drive->media == ide_disk)
845                         return ide_disk_special(drive);
846
847                 s->all = 0;
848                 drive->mult_req = 0;
849                 return ide_stopped;
850         }
851 }
852
853 void ide_map_sg(ide_drive_t *drive, struct request *rq)
854 {
855         ide_hwif_t *hwif = drive->hwif;
856         struct scatterlist *sg = hwif->sg_table;
857
858         if (hwif->sg_mapped)    /* needed by ide-scsi */
859                 return;
860
861         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
862                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
863         } else {
864                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
865                 hwif->sg_nents = 1;
866         }
867 }
868
869 EXPORT_SYMBOL_GPL(ide_map_sg);
870
871 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
872 {
873         ide_hwif_t *hwif = drive->hwif;
874
875         hwif->nsect = hwif->nleft = rq->nr_sectors;
876         hwif->cursg = hwif->cursg_ofs = 0;
877 }
878
879 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
880
881 /**
882  *      execute_drive_command   -       issue special drive command
883  *      @drive: the drive to issue the command on
884  *      @rq: the request structure holding the command
885  *
886  *      execute_drive_cmd() issues a special drive command,  usually 
887  *      initiated by ioctl() from the external hdparm program. The
888  *      command can be a drive command, drive task or taskfile 
889  *      operation. Weirdly you can call it with NULL to wait for
890  *      all commands to finish. Don't do this as that is due to change
891  */
892
893 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
894                 struct request *rq)
895 {
896         ide_hwif_t *hwif = HWIF(drive);
897         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
898                 ide_task_t *args = rq->special;
899  
900                 if (!args)
901                         goto done;
902
903                 hwif->data_phase = args->data_phase;
904
905                 switch (hwif->data_phase) {
906                 case TASKFILE_MULTI_OUT:
907                 case TASKFILE_OUT:
908                 case TASKFILE_MULTI_IN:
909                 case TASKFILE_IN:
910                         ide_init_sg_cmd(drive, rq);
911                         ide_map_sg(drive, rq);
912                 default:
913                         break;
914                 }
915
916                 if (args->tf_out_flags.all != 0) 
917                         return flagged_taskfile(drive, args);
918                 return do_rw_taskfile(drive, args);
919         } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
920                 u8 *args = rq->buffer;
921                 u8 sel;
922  
923                 if (!args)
924                         goto done;
925 #ifdef DEBUG
926                 printk("%s: DRIVE_TASK_CMD ", drive->name);
927                 printk("cmd=0x%02x ", args[0]);
928                 printk("fr=0x%02x ", args[1]);
929                 printk("ns=0x%02x ", args[2]);
930                 printk("sc=0x%02x ", args[3]);
931                 printk("lcyl=0x%02x ", args[4]);
932                 printk("hcyl=0x%02x ", args[5]);
933                 printk("sel=0x%02x\n", args[6]);
934 #endif
935                 hwif->OUTB(args[1], IDE_FEATURE_REG);
936                 hwif->OUTB(args[3], IDE_SECTOR_REG);
937                 hwif->OUTB(args[4], IDE_LCYL_REG);
938                 hwif->OUTB(args[5], IDE_HCYL_REG);
939                 sel = (args[6] & ~0x10);
940                 if (drive->select.b.unit)
941                         sel |= 0x10;
942                 hwif->OUTB(sel, IDE_SELECT_REG);
943                 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
944                 return ide_started;
945         } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
946                 u8 *args = rq->buffer;
947
948                 if (!args)
949                         goto done;
950 #ifdef DEBUG
951                 printk("%s: DRIVE_CMD ", drive->name);
952                 printk("cmd=0x%02x ", args[0]);
953                 printk("sc=0x%02x ", args[1]);
954                 printk("fr=0x%02x ", args[2]);
955                 printk("xx=0x%02x\n", args[3]);
956 #endif
957                 if (args[0] == WIN_SMART) {
958                         hwif->OUTB(0x4f, IDE_LCYL_REG);
959                         hwif->OUTB(0xc2, IDE_HCYL_REG);
960                         hwif->OUTB(args[2],IDE_FEATURE_REG);
961                         hwif->OUTB(args[1],IDE_SECTOR_REG);
962                         ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
963                         return ide_started;
964                 }
965                 hwif->OUTB(args[2],IDE_FEATURE_REG);
966                 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
967                 return ide_started;
968         }
969
970 done:
971         /*
972          * NULL is actually a valid way of waiting for
973          * all current requests to be flushed from the queue.
974          */
975 #ifdef DEBUG
976         printk("%s: DRIVE_CMD (null)\n", drive->name);
977 #endif
978         ide_end_drive_cmd(drive,
979                         hwif->INB(IDE_STATUS_REG),
980                         hwif->INB(IDE_ERROR_REG));
981         return ide_stopped;
982 }
983
984 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
985 {
986         struct request_pm_state *pm = rq->data;
987
988         if (blk_pm_suspend_request(rq) &&
989             pm->pm_step == ide_pm_state_start_suspend)
990                 /* Mark drive blocked when starting the suspend sequence. */
991                 drive->blocked = 1;
992         else if (blk_pm_resume_request(rq) &&
993                  pm->pm_step == ide_pm_state_start_resume) {
994                 /* 
995                  * The first thing we do on wakeup is to wait for BSY bit to
996                  * go away (with a looong timeout) as a drive on this hwif may
997                  * just be POSTing itself.
998                  * We do that before even selecting as the "other" device on
999                  * the bus may be broken enough to walk on our toes at this
1000                  * point.
1001                  */
1002                 int rc;
1003 #ifdef DEBUG_PM
1004                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
1005 #endif
1006                 rc = ide_wait_not_busy(HWIF(drive), 35000);
1007                 if (rc)
1008                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
1009                 SELECT_DRIVE(drive);
1010                 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
1011                 rc = ide_wait_not_busy(HWIF(drive), 100000);
1012                 if (rc)
1013                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
1014         }
1015 }
1016
1017 /**
1018  *      start_request   -       start of I/O and command issuing for IDE
1019  *
1020  *      start_request() initiates handling of a new I/O request. It
1021  *      accepts commands and I/O (read/write) requests. It also does
1022  *      the final remapping for weird stuff like EZDrive. Once 
1023  *      device mapper can work sector level the EZDrive stuff can go away
1024  *
1025  *      FIXME: this function needs a rename
1026  */
1027  
1028 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
1029 {
1030         ide_startstop_t startstop;
1031         sector_t block;
1032
1033         BUG_ON(!blk_rq_started(rq));
1034
1035 #ifdef DEBUG
1036         printk("%s: start_request: current=0x%08lx\n",
1037                 HWIF(drive)->name, (unsigned long) rq);
1038 #endif
1039
1040         /* bail early if we've exceeded max_failures */
1041         if (drive->max_failures && (drive->failures > drive->max_failures)) {
1042                 goto kill_rq;
1043         }
1044
1045         block    = rq->sector;
1046         if (blk_fs_request(rq) &&
1047             (drive->media == ide_disk || drive->media == ide_floppy)) {
1048                 block += drive->sect0;
1049         }
1050         /* Yecch - this will shift the entire interval,
1051            possibly killing some innocent following sector */
1052         if (block == 0 && drive->remap_0_to_1 == 1)
1053                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
1054
1055         if (blk_pm_request(rq))
1056                 ide_check_pm_state(drive, rq);
1057
1058         SELECT_DRIVE(drive);
1059         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1060                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1061                 return startstop;
1062         }
1063         if (!drive->special.all) {
1064                 ide_driver_t *drv;
1065
1066                 /*
1067                  * We reset the drive so we need to issue a SETFEATURES.
1068                  * Do it _after_ do_special() restored device parameters.
1069                  */
1070                 if (drive->current_speed == 0xff)
1071                         ide_config_drive_speed(drive, drive->desired_speed);
1072
1073                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1074                     rq->cmd_type == REQ_TYPE_ATA_TASK ||
1075                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1076                         return execute_drive_cmd(drive, rq);
1077                 else if (blk_pm_request(rq)) {
1078                         struct request_pm_state *pm = rq->data;
1079 #ifdef DEBUG_PM
1080                         printk("%s: start_power_step(step: %d)\n",
1081                                 drive->name, rq->pm->pm_step);
1082 #endif
1083                         startstop = ide_start_power_step(drive, rq);
1084                         if (startstop == ide_stopped &&
1085                             pm->pm_step == ide_pm_state_completed)
1086                                 ide_complete_pm_request(drive, rq);
1087                         return startstop;
1088                 }
1089
1090                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1091                 return drv->do_request(drive, rq, block);
1092         }
1093         return do_special(drive);
1094 kill_rq:
1095         ide_kill_rq(drive, rq);
1096         return ide_stopped;
1097 }
1098
1099 /**
1100  *      ide_stall_queue         -       pause an IDE device
1101  *      @drive: drive to stall
1102  *      @timeout: time to stall for (jiffies)
1103  *
1104  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1105  *      to the hwgroup by sleeping for timeout jiffies.
1106  */
1107  
1108 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1109 {
1110         if (timeout > WAIT_WORSTCASE)
1111                 timeout = WAIT_WORSTCASE;
1112         drive->sleep = timeout + jiffies;
1113         drive->sleeping = 1;
1114 }
1115
1116 EXPORT_SYMBOL(ide_stall_queue);
1117
1118 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1119
1120 /**
1121  *      choose_drive            -       select a drive to service
1122  *      @hwgroup: hardware group to select on
1123  *
1124  *      choose_drive() selects the next drive which will be serviced.
1125  *      This is necessary because the IDE layer can't issue commands
1126  *      to both drives on the same cable, unlike SCSI.
1127  */
1128  
1129 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1130 {
1131         ide_drive_t *drive, *best;
1132
1133 repeat: 
1134         best = NULL;
1135         drive = hwgroup->drive;
1136
1137         /*
1138          * drive is doing pre-flush, ordered write, post-flush sequence. even
1139          * though that is 3 requests, it must be seen as a single transaction.
1140          * we must not preempt this drive until that is complete
1141          */
1142         if (blk_queue_flushing(drive->queue)) {
1143                 /*
1144                  * small race where queue could get replugged during
1145                  * the 3-request flush cycle, just yank the plug since
1146                  * we want it to finish asap
1147                  */
1148                 blk_remove_plug(drive->queue);
1149                 return drive;
1150         }
1151
1152         do {
1153                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1154                     && !elv_queue_empty(drive->queue)) {
1155                         if (!best
1156                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1157                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1158                         {
1159                                 if (!blk_queue_plugged(drive->queue))
1160                                         best = drive;
1161                         }
1162                 }
1163         } while ((drive = drive->next) != hwgroup->drive);
1164         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1165                 long t = (signed long)(WAKEUP(best) - jiffies);
1166                 if (t >= WAIT_MIN_SLEEP) {
1167                 /*
1168                  * We *may* have some time to spare, but first let's see if
1169                  * someone can potentially benefit from our nice mood today..
1170                  */
1171                         drive = best->next;
1172                         do {
1173                                 if (!drive->sleeping
1174                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1175                                  && time_before(WAKEUP(drive), jiffies + t))
1176                                 {
1177                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1178                                         goto repeat;
1179                                 }
1180                         } while ((drive = drive->next) != best);
1181                 }
1182         }
1183         return best;
1184 }
1185
1186 /*
1187  * Issue a new request to a drive from hwgroup
1188  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1189  *
1190  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1191  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1192  * may have both interfaces in a single hwgroup to "serialize" access.
1193  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1194  * together into one hwgroup for serialized access.
1195  *
1196  * Note also that several hwgroups can end up sharing a single IRQ,
1197  * possibly along with many other devices.  This is especially common in
1198  * PCI-based systems with off-board IDE controller cards.
1199  *
1200  * The IDE driver uses the single global ide_lock spinlock to protect
1201  * access to the request queues, and to protect the hwgroup->busy flag.
1202  *
1203  * The first thread into the driver for a particular hwgroup sets the
1204  * hwgroup->busy flag to indicate that this hwgroup is now active,
1205  * and then initiates processing of the top request from the request queue.
1206  *
1207  * Other threads attempting entry notice the busy setting, and will simply
1208  * queue their new requests and exit immediately.  Note that hwgroup->busy
1209  * remains set even when the driver is merely awaiting the next interrupt.
1210  * Thus, the meaning is "this hwgroup is busy processing a request".
1211  *
1212  * When processing of a request completes, the completing thread or IRQ-handler
1213  * will start the next request from the queue.  If no more work remains,
1214  * the driver will clear the hwgroup->busy flag and exit.
1215  *
1216  * The ide_lock (spinlock) is used to protect all access to the
1217  * hwgroup->busy flag, but is otherwise not needed for most processing in
1218  * the driver.  This makes the driver much more friendlier to shared IRQs
1219  * than previous designs, while remaining 100% (?) SMP safe and capable.
1220  */
1221 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1222 {
1223         ide_drive_t     *drive;
1224         ide_hwif_t      *hwif;
1225         struct request  *rq;
1226         ide_startstop_t startstop;
1227         int             loops = 0;
1228
1229         /* for atari only: POSSIBLY BROKEN HERE(?) */
1230         ide_get_lock(ide_intr, hwgroup);
1231
1232         /* caller must own ide_lock */
1233         BUG_ON(!irqs_disabled());
1234
1235         while (!hwgroup->busy) {
1236                 hwgroup->busy = 1;
1237                 drive = choose_drive(hwgroup);
1238                 if (drive == NULL) {
1239                         int sleeping = 0;
1240                         unsigned long sleep = 0; /* shut up, gcc */
1241                         hwgroup->rq = NULL;
1242                         drive = hwgroup->drive;
1243                         do {
1244                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1245                                         sleeping = 1;
1246                                         sleep = drive->sleep;
1247                                 }
1248                         } while ((drive = drive->next) != hwgroup->drive);
1249                         if (sleeping) {
1250                 /*
1251                  * Take a short snooze, and then wake up this hwgroup again.
1252                  * This gives other hwgroups on the same a chance to
1253                  * play fairly with us, just in case there are big differences
1254                  * in relative throughputs.. don't want to hog the cpu too much.
1255                  */
1256                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1257                                         sleep = jiffies + WAIT_MIN_SLEEP;
1258 #if 1
1259                                 if (timer_pending(&hwgroup->timer))
1260                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1261 #endif
1262                                 /* so that ide_timer_expiry knows what to do */
1263                                 hwgroup->sleeping = 1;
1264                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1265                                 mod_timer(&hwgroup->timer, sleep);
1266                                 /* we purposely leave hwgroup->busy==1
1267                                  * while sleeping */
1268                         } else {
1269                                 /* Ugly, but how can we sleep for the lock
1270                                  * otherwise? perhaps from tq_disk?
1271                                  */
1272
1273                                 /* for atari only */
1274                                 ide_release_lock();
1275                                 hwgroup->busy = 0;
1276                         }
1277
1278                         /* no more work for this hwgroup (for now) */
1279                         return;
1280                 }
1281         again:
1282                 hwif = HWIF(drive);
1283                 if (hwgroup->hwif->sharing_irq &&
1284                     hwif != hwgroup->hwif &&
1285                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1286                         /* set nIEN for previous hwif */
1287                         SELECT_INTERRUPT(drive);
1288                 }
1289                 hwgroup->hwif = hwif;
1290                 hwgroup->drive = drive;
1291                 drive->sleeping = 0;
1292                 drive->service_start = jiffies;
1293
1294                 if (blk_queue_plugged(drive->queue)) {
1295                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1296                         break;
1297                 }
1298
1299                 /*
1300                  * we know that the queue isn't empty, but this can happen
1301                  * if the q->prep_rq_fn() decides to kill a request
1302                  */
1303                 rq = elv_next_request(drive->queue);
1304                 if (!rq) {
1305                         hwgroup->busy = 0;
1306                         break;
1307                 }
1308
1309                 /*
1310                  * Sanity: don't accept a request that isn't a PM request
1311                  * if we are currently power managed. This is very important as
1312                  * blk_stop_queue() doesn't prevent the elv_next_request()
1313                  * above to return us whatever is in the queue. Since we call
1314                  * ide_do_request() ourselves, we end up taking requests while
1315                  * the queue is blocked...
1316                  * 
1317                  * We let requests forced at head of queue with ide-preempt
1318                  * though. I hope that doesn't happen too much, hopefully not
1319                  * unless the subdriver triggers such a thing in its own PM
1320                  * state machine.
1321                  *
1322                  * We count how many times we loop here to make sure we service
1323                  * all drives in the hwgroup without looping for ever
1324                  */
1325                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1326                         drive = drive->next ? drive->next : hwgroup->drive;
1327                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1328                                 goto again;
1329                         /* We clear busy, there should be no pending ATA command at this point. */
1330                         hwgroup->busy = 0;
1331                         break;
1332                 }
1333
1334                 hwgroup->rq = rq;
1335
1336                 /*
1337                  * Some systems have trouble with IDE IRQs arriving while
1338                  * the driver is still setting things up.  So, here we disable
1339                  * the IRQ used by this interface while the request is being started.
1340                  * This may look bad at first, but pretty much the same thing
1341                  * happens anyway when any interrupt comes in, IDE or otherwise
1342                  *  -- the kernel masks the IRQ while it is being handled.
1343                  */
1344                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1345                         disable_irq_nosync(hwif->irq);
1346                 spin_unlock(&ide_lock);
1347                 local_irq_enable_in_hardirq();
1348                         /* allow other IRQs while we start this request */
1349                 startstop = start_request(drive, rq);
1350                 spin_lock_irq(&ide_lock);
1351                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1352                         enable_irq(hwif->irq);
1353                 if (startstop == ide_stopped)
1354                         hwgroup->busy = 0;
1355         }
1356 }
1357
1358 /*
1359  * Passes the stuff to ide_do_request
1360  */
1361 void do_ide_request(struct request_queue *q)
1362 {
1363         ide_drive_t *drive = q->queuedata;
1364
1365         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1366 }
1367
1368 /*
1369  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1370  * retry the current request in pio mode instead of risking tossing it
1371  * all away
1372  */
1373 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1374 {
1375         ide_hwif_t *hwif = HWIF(drive);
1376         struct request *rq;
1377         ide_startstop_t ret = ide_stopped;
1378
1379         /*
1380          * end current dma transaction
1381          */
1382
1383         if (error < 0) {
1384                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1385                 (void)HWIF(drive)->ide_dma_end(drive);
1386                 ret = ide_error(drive, "dma timeout error",
1387                                                 hwif->INB(IDE_STATUS_REG));
1388         } else {
1389                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1390                 hwif->dma_timeout(drive);
1391         }
1392
1393         /*
1394          * disable dma for now, but remember that we did so because of
1395          * a timeout -- we'll reenable after we finish this next request
1396          * (or rather the first chunk of it) in pio.
1397          */
1398         drive->retry_pio++;
1399         drive->state = DMA_PIO_RETRY;
1400         hwif->dma_off_quietly(drive);
1401
1402         /*
1403          * un-busy drive etc (hwgroup->busy is cleared on return) and
1404          * make sure request is sane
1405          */
1406         rq = HWGROUP(drive)->rq;
1407
1408         if (!rq)
1409                 goto out;
1410
1411         HWGROUP(drive)->rq = NULL;
1412
1413         rq->errors = 0;
1414
1415         if (!rq->bio)
1416                 goto out;
1417
1418         rq->sector = rq->bio->bi_sector;
1419         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1420         rq->hard_cur_sectors = rq->current_nr_sectors;
1421         rq->buffer = bio_data(rq->bio);
1422 out:
1423         return ret;
1424 }
1425
1426 /**
1427  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1428  *      @data: timer callback magic (hwgroup)
1429  *
1430  *      An IDE command has timed out before the expected drive return
1431  *      occurred. At this point we attempt to clean up the current
1432  *      mess. If the current handler includes an expiry handler then
1433  *      we invoke the expiry handler, and providing it is happy the
1434  *      work is done. If that fails we apply generic recovery rules
1435  *      invoking the handler and checking the drive DMA status. We
1436  *      have an excessively incestuous relationship with the DMA
1437  *      logic that wants cleaning up.
1438  */
1439  
1440 void ide_timer_expiry (unsigned long data)
1441 {
1442         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1443         ide_handler_t   *handler;
1444         ide_expiry_t    *expiry;
1445         unsigned long   flags;
1446         unsigned long   wait = -1;
1447
1448         spin_lock_irqsave(&ide_lock, flags);
1449
1450         if (((handler = hwgroup->handler) == NULL) ||
1451             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1452                 /*
1453                  * Either a marginal timeout occurred
1454                  * (got the interrupt just as timer expired),
1455                  * or we were "sleeping" to give other devices a chance.
1456                  * Either way, we don't really want to complain about anything.
1457                  */
1458                 if (hwgroup->sleeping) {
1459                         hwgroup->sleeping = 0;
1460                         hwgroup->busy = 0;
1461                 }
1462         } else {
1463                 ide_drive_t *drive = hwgroup->drive;
1464                 if (!drive) {
1465                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1466                         hwgroup->handler = NULL;
1467                 } else {
1468                         ide_hwif_t *hwif;
1469                         ide_startstop_t startstop = ide_stopped;
1470                         if (!hwgroup->busy) {
1471                                 hwgroup->busy = 1;      /* paranoia */
1472                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1473                         }
1474                         if ((expiry = hwgroup->expiry) != NULL) {
1475                                 /* continue */
1476                                 if ((wait = expiry(drive)) > 0) {
1477                                         /* reset timer */
1478                                         hwgroup->timer.expires  = jiffies + wait;
1479                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1480                                         add_timer(&hwgroup->timer);
1481                                         spin_unlock_irqrestore(&ide_lock, flags);
1482                                         return;
1483                                 }
1484                         }
1485                         hwgroup->handler = NULL;
1486                         /*
1487                          * We need to simulate a real interrupt when invoking
1488                          * the handler() function, which means we need to
1489                          * globally mask the specific IRQ:
1490                          */
1491                         spin_unlock(&ide_lock);
1492                         hwif  = HWIF(drive);
1493 #if DISABLE_IRQ_NOSYNC
1494                         disable_irq_nosync(hwif->irq);
1495 #else
1496                         /* disable_irq_nosync ?? */
1497                         disable_irq(hwif->irq);
1498 #endif /* DISABLE_IRQ_NOSYNC */
1499                         /* local CPU only,
1500                          * as if we were handling an interrupt */
1501                         local_irq_disable();
1502                         if (hwgroup->polling) {
1503                                 startstop = handler(drive);
1504                         } else if (drive_is_ready(drive)) {
1505                                 if (drive->waiting_for_dma)
1506                                         hwgroup->hwif->dma_lost_irq(drive);
1507                                 (void)ide_ack_intr(hwif);
1508                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1509                                 startstop = handler(drive);
1510                         } else {
1511                                 if (drive->waiting_for_dma) {
1512                                         startstop = ide_dma_timeout_retry(drive, wait);
1513                                 } else
1514                                         startstop =
1515                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1516                         }
1517                         drive->service_time = jiffies - drive->service_start;
1518                         spin_lock_irq(&ide_lock);
1519                         enable_irq(hwif->irq);
1520                         if (startstop == ide_stopped)
1521                                 hwgroup->busy = 0;
1522                 }
1523         }
1524         ide_do_request(hwgroup, IDE_NO_IRQ);
1525         spin_unlock_irqrestore(&ide_lock, flags);
1526 }
1527
1528 /**
1529  *      unexpected_intr         -       handle an unexpected IDE interrupt
1530  *      @irq: interrupt line
1531  *      @hwgroup: hwgroup being processed
1532  *
1533  *      There's nothing really useful we can do with an unexpected interrupt,
1534  *      other than reading the status register (to clear it), and logging it.
1535  *      There should be no way that an irq can happen before we're ready for it,
1536  *      so we needn't worry much about losing an "important" interrupt here.
1537  *
1538  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1539  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1540  *      looks "good", we just ignore the interrupt completely.
1541  *
1542  *      This routine assumes __cli() is in effect when called.
1543  *
1544  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1545  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1546  *      we could screw up by interfering with a new request being set up for 
1547  *      irq15.
1548  *
1549  *      In reality, this is a non-issue.  The new command is not sent unless 
1550  *      the drive is ready to accept one, in which case we know the drive is
1551  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1552  *      before completing the issuance of any new drive command, so we will not
1553  *      be accidentally invoked as a result of any valid command completion
1554  *      interrupt.
1555  *
1556  *      Note that we must walk the entire hwgroup here. We know which hwif
1557  *      is doing the current command, but we don't know which hwif burped
1558  *      mysteriously.
1559  */
1560  
1561 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1562 {
1563         u8 stat;
1564         ide_hwif_t *hwif = hwgroup->hwif;
1565
1566         /*
1567          * handle the unexpected interrupt
1568          */
1569         do {
1570                 if (hwif->irq == irq) {
1571                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1572                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1573                                 /* Try to not flood the console with msgs */
1574                                 static unsigned long last_msgtime, count;
1575                                 ++count;
1576                                 if (time_after(jiffies, last_msgtime + HZ)) {
1577                                         last_msgtime = jiffies;
1578                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1579                                                 "status=0x%02x, count=%ld\n",
1580                                                 hwif->name,
1581                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1582                                 }
1583                         }
1584                 }
1585         } while ((hwif = hwif->next) != hwgroup->hwif);
1586 }
1587
1588 /**
1589  *      ide_intr        -       default IDE interrupt handler
1590  *      @irq: interrupt number
1591  *      @dev_id: hwif group
1592  *      @regs: unused weirdness from the kernel irq layer
1593  *
1594  *      This is the default IRQ handler for the IDE layer. You should
1595  *      not need to override it. If you do be aware it is subtle in
1596  *      places
1597  *
1598  *      hwgroup->hwif is the interface in the group currently performing
1599  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1600  *      the IRQ handler to call. As we issue a command the handlers
1601  *      step through multiple states, reassigning the handler to the
1602  *      next step in the process. Unlike a smart SCSI controller IDE
1603  *      expects the main processor to sequence the various transfer
1604  *      stages. We also manage a poll timer to catch up with most
1605  *      timeout situations. There are still a few where the handlers
1606  *      don't ever decide to give up.
1607  *
1608  *      The handler eventually returns ide_stopped to indicate the
1609  *      request completed. At this point we issue the next request
1610  *      on the hwgroup and the process begins again.
1611  */
1612  
1613 irqreturn_t ide_intr (int irq, void *dev_id)
1614 {
1615         unsigned long flags;
1616         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1617         ide_hwif_t *hwif;
1618         ide_drive_t *drive;
1619         ide_handler_t *handler;
1620         ide_startstop_t startstop;
1621
1622         spin_lock_irqsave(&ide_lock, flags);
1623         hwif = hwgroup->hwif;
1624
1625         if (!ide_ack_intr(hwif)) {
1626                 spin_unlock_irqrestore(&ide_lock, flags);
1627                 return IRQ_NONE;
1628         }
1629
1630         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1631                 /*
1632                  * Not expecting an interrupt from this drive.
1633                  * That means this could be:
1634                  *      (1) an interrupt from another PCI device
1635                  *      sharing the same PCI INT# as us.
1636                  * or   (2) a drive just entered sleep or standby mode,
1637                  *      and is interrupting to let us know.
1638                  * or   (3) a spurious interrupt of unknown origin.
1639                  *
1640                  * For PCI, we cannot tell the difference,
1641                  * so in that case we just ignore it and hope it goes away.
1642                  *
1643                  * FIXME: unexpected_intr should be hwif-> then we can
1644                  * remove all the ifdef PCI crap
1645                  */
1646 #ifdef CONFIG_BLK_DEV_IDEPCI
1647                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1648 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1649                 {
1650                         /*
1651                          * Probably not a shared PCI interrupt,
1652                          * so we can safely try to do something about it:
1653                          */
1654                         unexpected_intr(irq, hwgroup);
1655 #ifdef CONFIG_BLK_DEV_IDEPCI
1656                 } else {
1657                         /*
1658                          * Whack the status register, just in case
1659                          * we have a leftover pending IRQ.
1660                          */
1661                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1662 #endif /* CONFIG_BLK_DEV_IDEPCI */
1663                 }
1664                 spin_unlock_irqrestore(&ide_lock, flags);
1665                 return IRQ_NONE;
1666         }
1667         drive = hwgroup->drive;
1668         if (!drive) {
1669                 /*
1670                  * This should NEVER happen, and there isn't much
1671                  * we could do about it here.
1672                  *
1673                  * [Note - this can occur if the drive is hot unplugged]
1674                  */
1675                 spin_unlock_irqrestore(&ide_lock, flags);
1676                 return IRQ_HANDLED;
1677         }
1678         if (!drive_is_ready(drive)) {
1679                 /*
1680                  * This happens regularly when we share a PCI IRQ with
1681                  * another device.  Unfortunately, it can also happen
1682                  * with some buggy drives that trigger the IRQ before
1683                  * their status register is up to date.  Hopefully we have
1684                  * enough advance overhead that the latter isn't a problem.
1685                  */
1686                 spin_unlock_irqrestore(&ide_lock, flags);
1687                 return IRQ_NONE;
1688         }
1689         if (!hwgroup->busy) {
1690                 hwgroup->busy = 1;      /* paranoia */
1691                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1692         }
1693         hwgroup->handler = NULL;
1694         hwgroup->req_gen++;
1695         del_timer(&hwgroup->timer);
1696         spin_unlock(&ide_lock);
1697
1698         /* Some controllers might set DMA INTR no matter DMA or PIO;
1699          * bmdma status might need to be cleared even for
1700          * PIO interrupts to prevent spurious/lost irq.
1701          */
1702         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1703                 /* ide_dma_end() needs bmdma status for error checking.
1704                  * So, skip clearing bmdma status here and leave it
1705                  * to ide_dma_end() if this is dma interrupt.
1706                  */
1707                 hwif->ide_dma_clear_irq(drive);
1708
1709         if (drive->unmask)
1710                 local_irq_enable_in_hardirq();
1711         /* service this interrupt, may set handler for next interrupt */
1712         startstop = handler(drive);
1713         spin_lock_irq(&ide_lock);
1714
1715         /*
1716          * Note that handler() may have set things up for another
1717          * interrupt to occur soon, but it cannot happen until
1718          * we exit from this routine, because it will be the
1719          * same irq as is currently being serviced here, and Linux
1720          * won't allow another of the same (on any CPU) until we return.
1721          */
1722         drive->service_time = jiffies - drive->service_start;
1723         if (startstop == ide_stopped) {
1724                 if (hwgroup->handler == NULL) { /* paranoia */
1725                         hwgroup->busy = 0;
1726                         ide_do_request(hwgroup, hwif->irq);
1727                 } else {
1728                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1729                                 "on exit\n", drive->name);
1730                 }
1731         }
1732         spin_unlock_irqrestore(&ide_lock, flags);
1733         return IRQ_HANDLED;
1734 }
1735
1736 /**
1737  *      ide_init_drive_cmd      -       initialize a drive command request
1738  *      @rq: request object
1739  *
1740  *      Initialize a request before we fill it in and send it down to
1741  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1742  *      now it doesn't do a lot, but if that changes abusers will have a
1743  *      nasty surprise.
1744  */
1745
1746 void ide_init_drive_cmd (struct request *rq)
1747 {
1748         memset(rq, 0, sizeof(*rq));
1749         rq->cmd_type = REQ_TYPE_ATA_CMD;
1750         rq->ref_count = 1;
1751 }
1752
1753 EXPORT_SYMBOL(ide_init_drive_cmd);
1754
1755 /**
1756  *      ide_do_drive_cmd        -       issue IDE special command
1757  *      @drive: device to issue command
1758  *      @rq: request to issue
1759  *      @action: action for processing
1760  *
1761  *      This function issues a special IDE device request
1762  *      onto the request queue.
1763  *
1764  *      If action is ide_wait, then the rq is queued at the end of the
1765  *      request queue, and the function sleeps until it has been processed.
1766  *      This is for use when invoked from an ioctl handler.
1767  *
1768  *      If action is ide_preempt, then the rq is queued at the head of
1769  *      the request queue, displacing the currently-being-processed
1770  *      request and this function returns immediately without waiting
1771  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1772  *      intended for careful use by the ATAPI tape/cdrom driver code.
1773  *
1774  *      If action is ide_end, then the rq is queued at the end of the
1775  *      request queue, and the function returns immediately without waiting
1776  *      for the new rq to be completed. This is again intended for careful
1777  *      use by the ATAPI tape/cdrom driver code.
1778  */
1779  
1780 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1781 {
1782         unsigned long flags;
1783         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1784         DECLARE_COMPLETION_ONSTACK(wait);
1785         int where = ELEVATOR_INSERT_BACK, err;
1786         int must_wait = (action == ide_wait || action == ide_head_wait);
1787
1788         rq->errors = 0;
1789
1790         /*
1791          * we need to hold an extra reference to request for safe inspection
1792          * after completion
1793          */
1794         if (must_wait) {
1795                 rq->ref_count++;
1796                 rq->end_io_data = &wait;
1797                 rq->end_io = blk_end_sync_rq;
1798         }
1799
1800         spin_lock_irqsave(&ide_lock, flags);
1801         if (action == ide_preempt)
1802                 hwgroup->rq = NULL;
1803         if (action == ide_preempt || action == ide_head_wait) {
1804                 where = ELEVATOR_INSERT_FRONT;
1805                 rq->cmd_flags |= REQ_PREEMPT;
1806         }
1807         __elv_add_request(drive->queue, rq, where, 0);
1808         ide_do_request(hwgroup, IDE_NO_IRQ);
1809         spin_unlock_irqrestore(&ide_lock, flags);
1810
1811         err = 0;
1812         if (must_wait) {
1813                 wait_for_completion(&wait);
1814                 if (rq->errors)
1815                         err = -EIO;
1816
1817                 blk_put_request(rq);
1818         }
1819
1820         return err;
1821 }
1822
1823 EXPORT_SYMBOL(ide_do_drive_cmd);