]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-io.c
ide: clear HOB bit for REQ_TYPE_ATA_CMD requests in ide_end_drive_cmd()
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->dma_host_set == NULL)
223                         break;
224                 /*
225                  * TODO: respect ->using_dma setting
226                  */
227                 ide_set_dma(drive);
228                 break;
229         }
230         pm->pm_step = ide_pm_state_completed;
231         return ide_stopped;
232
233 out_do_tf:
234         args->tf_flags   = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
235         args->data_phase = TASKFILE_NO_DATA;
236         return do_rw_taskfile(drive, args);
237 }
238
239 /**
240  *      ide_end_dequeued_request        -       complete an IDE I/O
241  *      @drive: IDE device for the I/O
242  *      @uptodate:
243  *      @nr_sectors: number of sectors completed
244  *
245  *      Complete an I/O that is no longer on the request queue. This
246  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
247  *      We must still finish the old request but we must not tamper with the
248  *      queue in the meantime.
249  *
250  *      NOTE: This path does not handle barrier, but barrier is not supported
251  *      on ide-cd anyway.
252  */
253
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255                              int uptodate, int nr_sectors)
256 {
257         unsigned long flags;
258         int ret;
259
260         spin_lock_irqsave(&ide_lock, flags);
261         BUG_ON(!blk_rq_started(rq));
262         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263         spin_unlock_irqrestore(&ide_lock, flags);
264
265         return ret;
266 }
267 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270 /**
271  *      ide_complete_pm_request - end the current Power Management request
272  *      @drive: target drive
273  *      @rq: request
274  *
275  *      This function cleans up the current PM request and stops the queue
276  *      if necessary.
277  */
278 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279 {
280         unsigned long flags;
281
282 #ifdef DEBUG_PM
283         printk("%s: completing PM request, %s\n", drive->name,
284                blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 #endif
286         spin_lock_irqsave(&ide_lock, flags);
287         if (blk_pm_suspend_request(rq)) {
288                 blk_stop_queue(drive->queue);
289         } else {
290                 drive->blocked = 0;
291                 blk_start_queue(drive->queue);
292         }
293         blkdev_dequeue_request(rq);
294         HWGROUP(drive)->rq = NULL;
295         end_that_request_last(rq, 1);
296         spin_unlock_irqrestore(&ide_lock, flags);
297 }
298
299 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300 {
301         ide_hwif_t *hwif = drive->hwif;
302         struct ide_taskfile *tf = &task->tf;
303
304         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305                 u16 data = hwif->INW(IDE_DATA_REG);
306
307                 tf->data = data & 0xff;
308                 tf->hob_data = (data >> 8) & 0xff;
309         }
310
311         /* be sure we're looking at the low order bits */
312         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315                 tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317                 tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319                 tf->lbam   = hwif->INB(IDE_LCYL_REG);
320         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321                 tf->lbah   = hwif->INB(IDE_HCYL_REG);
322         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323                 tf->device = hwif->INB(IDE_SELECT_REG);
324
325         if (task->tf_flags & IDE_TFLAG_LBA48) {
326                 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329                         tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331                         tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333                         tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335                         tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337                         tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338         }
339 }
340
341 /**
342  *      ide_end_drive_cmd       -       end an explicit drive command
343  *      @drive: command 
344  *      @stat: status bits
345  *      @err: error bits
346  *
347  *      Clean up after success/failure of an explicit drive command.
348  *      These get thrown onto the queue so they are synchronized with
349  *      real I/O operations on the drive.
350  *
351  *      In LBA48 mode we have to read the register set twice to get
352  *      all the extra information out.
353  */
354  
355 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 {
357         ide_hwif_t *hwif = HWIF(drive);
358         unsigned long flags;
359         struct request *rq;
360
361         spin_lock_irqsave(&ide_lock, flags);
362         rq = HWGROUP(drive)->rq;
363         spin_unlock_irqrestore(&ide_lock, flags);
364
365         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366                 u8 *args = (u8 *) rq->buffer;
367                 if (rq->errors == 0)
368                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370                 if (args) {
371                         args[0] = stat;
372                         args[1] = err;
373                         /* be sure we're looking at the low order bits */
374                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
375                         args[2] = hwif->INB(IDE_NSECTOR_REG);
376                 }
377         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
378                 ide_task_t *args = (ide_task_t *) rq->special;
379                 if (rq->errors == 0)
380                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
381                         
382                 if (args) {
383                         struct ide_taskfile *tf = &args->tf;
384
385                         tf->error = err;
386                         tf->status = stat;
387
388                         args->tf_flags |= (IDE_TFLAG_IN_TF|IDE_TFLAG_IN_DEVICE);
389                         if (args->tf_flags & IDE_TFLAG_LBA48)
390                                 args->tf_flags |= IDE_TFLAG_IN_HOB;
391
392                         ide_tf_read(drive, args);
393                 }
394         } else if (blk_pm_request(rq)) {
395                 struct request_pm_state *pm = rq->data;
396 #ifdef DEBUG_PM
397                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
398                         drive->name, rq->pm->pm_step, stat, err);
399 #endif
400                 ide_complete_power_step(drive, rq, stat, err);
401                 if (pm->pm_step == ide_pm_state_completed)
402                         ide_complete_pm_request(drive, rq);
403                 return;
404         }
405
406         spin_lock_irqsave(&ide_lock, flags);
407         blkdev_dequeue_request(rq);
408         HWGROUP(drive)->rq = NULL;
409         rq->errors = err;
410         end_that_request_last(rq, !rq->errors);
411         spin_unlock_irqrestore(&ide_lock, flags);
412 }
413
414 EXPORT_SYMBOL(ide_end_drive_cmd);
415
416 /**
417  *      try_to_flush_leftover_data      -       flush junk
418  *      @drive: drive to flush
419  *
420  *      try_to_flush_leftover_data() is invoked in response to a drive
421  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
422  *      resetting the drive, this routine tries to clear the condition
423  *      by read a sector's worth of data from the drive.  Of course,
424  *      this may not help if the drive is *waiting* for data from *us*.
425  */
426 static void try_to_flush_leftover_data (ide_drive_t *drive)
427 {
428         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
429
430         if (drive->media != ide_disk)
431                 return;
432         while (i > 0) {
433                 u32 buffer[16];
434                 u32 wcount = (i > 16) ? 16 : i;
435
436                 i -= wcount;
437                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
438         }
439 }
440
441 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
442 {
443         if (rq->rq_disk) {
444                 ide_driver_t *drv;
445
446                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
447                 drv->end_request(drive, 0, 0);
448         } else
449                 ide_end_request(drive, 0, 0);
450 }
451
452 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
453 {
454         ide_hwif_t *hwif = drive->hwif;
455
456         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
457                 /* other bits are useless when BUSY */
458                 rq->errors |= ERROR_RESET;
459         } else if (stat & ERR_STAT) {
460                 /* err has different meaning on cdrom and tape */
461                 if (err == ABRT_ERR) {
462                         if (drive->select.b.lba &&
463                             /* some newer drives don't support WIN_SPECIFY */
464                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
465                                 return ide_stopped;
466                 } else if ((err & BAD_CRC) == BAD_CRC) {
467                         /* UDMA crc error, just retry the operation */
468                         drive->crc_count++;
469                 } else if (err & (BBD_ERR | ECC_ERR)) {
470                         /* retries won't help these */
471                         rq->errors = ERROR_MAX;
472                 } else if (err & TRK0_ERR) {
473                         /* help it find track zero */
474                         rq->errors |= ERROR_RECAL;
475                 }
476         }
477
478         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
479             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
480                 try_to_flush_leftover_data(drive);
481
482         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
483                 ide_kill_rq(drive, rq);
484                 return ide_stopped;
485         }
486
487         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
488                 rq->errors |= ERROR_RESET;
489
490         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
491                 ++rq->errors;
492                 return ide_do_reset(drive);
493         }
494
495         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
496                 drive->special.b.recalibrate = 1;
497
498         ++rq->errors;
499
500         return ide_stopped;
501 }
502
503 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
504 {
505         ide_hwif_t *hwif = drive->hwif;
506
507         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
508                 /* other bits are useless when BUSY */
509                 rq->errors |= ERROR_RESET;
510         } else {
511                 /* add decoding error stuff */
512         }
513
514         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
515                 /* force an abort */
516                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
517
518         if (rq->errors >= ERROR_MAX) {
519                 ide_kill_rq(drive, rq);
520         } else {
521                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
522                         ++rq->errors;
523                         return ide_do_reset(drive);
524                 }
525                 ++rq->errors;
526         }
527
528         return ide_stopped;
529 }
530
531 ide_startstop_t
532 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
533 {
534         if (drive->media == ide_disk)
535                 return ide_ata_error(drive, rq, stat, err);
536         return ide_atapi_error(drive, rq, stat, err);
537 }
538
539 EXPORT_SYMBOL_GPL(__ide_error);
540
541 /**
542  *      ide_error       -       handle an error on the IDE
543  *      @drive: drive the error occurred on
544  *      @msg: message to report
545  *      @stat: status bits
546  *
547  *      ide_error() takes action based on the error returned by the drive.
548  *      For normal I/O that may well include retries. We deal with
549  *      both new-style (taskfile) and old style command handling here.
550  *      In the case of taskfile command handling there is work left to
551  *      do
552  */
553  
554 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
555 {
556         struct request *rq;
557         u8 err;
558
559         err = ide_dump_status(drive, msg, stat);
560
561         if ((rq = HWGROUP(drive)->rq) == NULL)
562                 return ide_stopped;
563
564         /* retry only "normal" I/O: */
565         if (!blk_fs_request(rq)) {
566                 rq->errors = 1;
567                 ide_end_drive_cmd(drive, stat, err);
568                 return ide_stopped;
569         }
570
571         if (rq->rq_disk) {
572                 ide_driver_t *drv;
573
574                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
575                 return drv->error(drive, rq, stat, err);
576         } else
577                 return __ide_error(drive, rq, stat, err);
578 }
579
580 EXPORT_SYMBOL_GPL(ide_error);
581
582 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
583 {
584         if (drive->media != ide_disk)
585                 rq->errors |= ERROR_RESET;
586
587         ide_kill_rq(drive, rq);
588
589         return ide_stopped;
590 }
591
592 EXPORT_SYMBOL_GPL(__ide_abort);
593
594 /**
595  *      ide_abort       -       abort pending IDE operations
596  *      @drive: drive the error occurred on
597  *      @msg: message to report
598  *
599  *      ide_abort kills and cleans up when we are about to do a 
600  *      host initiated reset on active commands. Longer term we
601  *      want handlers to have sensible abort handling themselves
602  *
603  *      This differs fundamentally from ide_error because in 
604  *      this case the command is doing just fine when we
605  *      blow it away.
606  */
607  
608 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
609 {
610         struct request *rq;
611
612         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
613                 return ide_stopped;
614
615         /* retry only "normal" I/O: */
616         if (!blk_fs_request(rq)) {
617                 rq->errors = 1;
618                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
619                 return ide_stopped;
620         }
621
622         if (rq->rq_disk) {
623                 ide_driver_t *drv;
624
625                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
626                 return drv->abort(drive, rq);
627         } else
628                 return __ide_abort(drive, rq);
629 }
630
631 /**
632  *      drive_cmd_intr          -       drive command completion interrupt
633  *      @drive: drive the completion interrupt occurred on
634  *
635  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
636  *      We do any necessary data reading and then wait for the drive to
637  *      go non busy. At that point we may read the error data and complete
638  *      the request
639  */
640  
641 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
642 {
643         struct request *rq = HWGROUP(drive)->rq;
644         ide_hwif_t *hwif = HWIF(drive);
645         u8 *args = (u8 *) rq->buffer;
646         u8 stat = hwif->INB(IDE_STATUS_REG);
647         int retries = 10;
648
649         local_irq_enable_in_hardirq();
650         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
651             (stat & DRQ_STAT) && args && args[3]) {
652                 u8 io_32bit = drive->io_32bit;
653                 drive->io_32bit = 0;
654                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
655                 drive->io_32bit = io_32bit;
656                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
657                         udelay(100);
658         }
659
660         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
661                 return ide_error(drive, "drive_cmd", stat);
662                 /* calls ide_end_drive_cmd */
663         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
664         return ide_stopped;
665 }
666
667 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
668 {
669         tf->nsect   = drive->sect;
670         tf->lbal    = drive->sect;
671         tf->lbam    = drive->cyl;
672         tf->lbah    = drive->cyl >> 8;
673         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
674         tf->command = WIN_SPECIFY;
675 }
676
677 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
678 {
679         tf->nsect   = drive->sect;
680         tf->command = WIN_RESTORE;
681 }
682
683 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
684 {
685         tf->nsect   = drive->mult_req;
686         tf->command = WIN_SETMULT;
687 }
688
689 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
690 {
691         special_t *s = &drive->special;
692         ide_task_t args;
693
694         memset(&args, 0, sizeof(ide_task_t));
695         args.data_phase = TASKFILE_NO_DATA;
696
697         if (s->b.set_geometry) {
698                 s->b.set_geometry = 0;
699                 ide_tf_set_specify_cmd(drive, &args.tf);
700         } else if (s->b.recalibrate) {
701                 s->b.recalibrate = 0;
702                 ide_tf_set_restore_cmd(drive, &args.tf);
703         } else if (s->b.set_multmode) {
704                 s->b.set_multmode = 0;
705                 if (drive->mult_req > drive->id->max_multsect)
706                         drive->mult_req = drive->id->max_multsect;
707                 ide_tf_set_setmult_cmd(drive, &args.tf);
708         } else if (s->all) {
709                 int special = s->all;
710                 s->all = 0;
711                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
712                 return ide_stopped;
713         }
714
715         args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE |
716                         IDE_TFLAG_CUSTOM_HANDLER;
717
718         do_rw_taskfile(drive, &args);
719
720         return ide_started;
721 }
722
723 /*
724  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
725  */
726 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
727 {
728         switch (req_pio) {
729         case 202:
730         case 201:
731         case 200:
732         case 102:
733         case 101:
734         case 100:
735                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
736         case 9:
737         case 8:
738                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
739         case 7:
740         case 6:
741                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
742         default:
743                 return 0;
744         }
745 }
746
747 /**
748  *      do_special              -       issue some special commands
749  *      @drive: drive the command is for
750  *
751  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
752  *      commands to a drive.  It used to do much more, but has been scaled
753  *      back.
754  */
755
756 static ide_startstop_t do_special (ide_drive_t *drive)
757 {
758         special_t *s = &drive->special;
759
760 #ifdef DEBUG
761         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
762 #endif
763         if (s->b.set_tune) {
764                 ide_hwif_t *hwif = drive->hwif;
765                 u8 req_pio = drive->tune_req;
766
767                 s->b.set_tune = 0;
768
769                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
770
771                         if (hwif->set_pio_mode == NULL)
772                                 return ide_stopped;
773
774                         /*
775                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
776                          */
777                         if (req_pio == 8 || req_pio == 9) {
778                                 unsigned long flags;
779
780                                 spin_lock_irqsave(&ide_lock, flags);
781                                 hwif->set_pio_mode(drive, req_pio);
782                                 spin_unlock_irqrestore(&ide_lock, flags);
783                         } else
784                                 hwif->set_pio_mode(drive, req_pio);
785                 } else {
786                         int keep_dma = drive->using_dma;
787
788                         ide_set_pio(drive, req_pio);
789
790                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
791                                 if (keep_dma)
792                                         ide_dma_on(drive);
793                         }
794                 }
795
796                 return ide_stopped;
797         } else {
798                 if (drive->media == ide_disk)
799                         return ide_disk_special(drive);
800
801                 s->all = 0;
802                 drive->mult_req = 0;
803                 return ide_stopped;
804         }
805 }
806
807 void ide_map_sg(ide_drive_t *drive, struct request *rq)
808 {
809         ide_hwif_t *hwif = drive->hwif;
810         struct scatterlist *sg = hwif->sg_table;
811
812         if (hwif->sg_mapped)    /* needed by ide-scsi */
813                 return;
814
815         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
816                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
817         } else {
818                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
819                 hwif->sg_nents = 1;
820         }
821 }
822
823 EXPORT_SYMBOL_GPL(ide_map_sg);
824
825 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
826 {
827         ide_hwif_t *hwif = drive->hwif;
828
829         hwif->nsect = hwif->nleft = rq->nr_sectors;
830         hwif->cursg_ofs = 0;
831         hwif->cursg = NULL;
832 }
833
834 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
835
836 /**
837  *      execute_drive_command   -       issue special drive command
838  *      @drive: the drive to issue the command on
839  *      @rq: the request structure holding the command
840  *
841  *      execute_drive_cmd() issues a special drive command,  usually 
842  *      initiated by ioctl() from the external hdparm program. The
843  *      command can be a drive command, drive task or taskfile 
844  *      operation. Weirdly you can call it with NULL to wait for
845  *      all commands to finish. Don't do this as that is due to change
846  */
847
848 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
849                 struct request *rq)
850 {
851         ide_hwif_t *hwif = HWIF(drive);
852         u8 *args = rq->buffer;
853         ide_task_t ltask;
854         struct ide_taskfile *tf = &ltask.tf;
855
856         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
857                 ide_task_t *task = rq->special;
858  
859                 if (task == NULL)
860                         goto done;
861
862                 hwif->data_phase = task->data_phase;
863
864                 switch (hwif->data_phase) {
865                 case TASKFILE_MULTI_OUT:
866                 case TASKFILE_OUT:
867                 case TASKFILE_MULTI_IN:
868                 case TASKFILE_IN:
869                         ide_init_sg_cmd(drive, rq);
870                         ide_map_sg(drive, rq);
871                 default:
872                         break;
873                 }
874
875                 return do_rw_taskfile(drive, task);
876         }
877
878         if (args == NULL)
879                 goto done;
880
881         memset(&ltask, 0, sizeof(ltask));
882         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
883 #ifdef DEBUG
884                 printk("%s: DRIVE_CMD\n", drive->name);
885 #endif
886                 tf->feature = args[2];
887                 if (args[0] == WIN_SMART) {
888                         tf->nsect = args[3];
889                         tf->lbal  = args[1];
890                         tf->lbam  = 0x4f;
891                         tf->lbah  = 0xc2;
892                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
893                 } else {
894                         tf->nsect = args[1];
895                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
896                                          IDE_TFLAG_OUT_NSECT;
897                 }
898         }
899         tf->command = args[0];
900         ide_tf_load(drive, &ltask);
901         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
902         return ide_started;
903
904 done:
905         /*
906          * NULL is actually a valid way of waiting for
907          * all current requests to be flushed from the queue.
908          */
909 #ifdef DEBUG
910         printk("%s: DRIVE_CMD (null)\n", drive->name);
911 #endif
912         ide_end_drive_cmd(drive,
913                         hwif->INB(IDE_STATUS_REG),
914                         hwif->INB(IDE_ERROR_REG));
915         return ide_stopped;
916 }
917
918 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
919 {
920         struct request_pm_state *pm = rq->data;
921
922         if (blk_pm_suspend_request(rq) &&
923             pm->pm_step == ide_pm_state_start_suspend)
924                 /* Mark drive blocked when starting the suspend sequence. */
925                 drive->blocked = 1;
926         else if (blk_pm_resume_request(rq) &&
927                  pm->pm_step == ide_pm_state_start_resume) {
928                 /* 
929                  * The first thing we do on wakeup is to wait for BSY bit to
930                  * go away (with a looong timeout) as a drive on this hwif may
931                  * just be POSTing itself.
932                  * We do that before even selecting as the "other" device on
933                  * the bus may be broken enough to walk on our toes at this
934                  * point.
935                  */
936                 int rc;
937 #ifdef DEBUG_PM
938                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
939 #endif
940                 rc = ide_wait_not_busy(HWIF(drive), 35000);
941                 if (rc)
942                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
943                 SELECT_DRIVE(drive);
944                 ide_set_irq(drive, 1);
945                 rc = ide_wait_not_busy(HWIF(drive), 100000);
946                 if (rc)
947                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
948         }
949 }
950
951 /**
952  *      start_request   -       start of I/O and command issuing for IDE
953  *
954  *      start_request() initiates handling of a new I/O request. It
955  *      accepts commands and I/O (read/write) requests. It also does
956  *      the final remapping for weird stuff like EZDrive. Once 
957  *      device mapper can work sector level the EZDrive stuff can go away
958  *
959  *      FIXME: this function needs a rename
960  */
961  
962 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
963 {
964         ide_startstop_t startstop;
965         sector_t block;
966
967         BUG_ON(!blk_rq_started(rq));
968
969 #ifdef DEBUG
970         printk("%s: start_request: current=0x%08lx\n",
971                 HWIF(drive)->name, (unsigned long) rq);
972 #endif
973
974         /* bail early if we've exceeded max_failures */
975         if (drive->max_failures && (drive->failures > drive->max_failures)) {
976                 rq->cmd_flags |= REQ_FAILED;
977                 goto kill_rq;
978         }
979
980         block    = rq->sector;
981         if (blk_fs_request(rq) &&
982             (drive->media == ide_disk || drive->media == ide_floppy)) {
983                 block += drive->sect0;
984         }
985         /* Yecch - this will shift the entire interval,
986            possibly killing some innocent following sector */
987         if (block == 0 && drive->remap_0_to_1 == 1)
988                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
989
990         if (blk_pm_request(rq))
991                 ide_check_pm_state(drive, rq);
992
993         SELECT_DRIVE(drive);
994         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
995                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
996                 return startstop;
997         }
998         if (!drive->special.all) {
999                 ide_driver_t *drv;
1000
1001                 /*
1002                  * We reset the drive so we need to issue a SETFEATURES.
1003                  * Do it _after_ do_special() restored device parameters.
1004                  */
1005                 if (drive->current_speed == 0xff)
1006                         ide_config_drive_speed(drive, drive->desired_speed);
1007
1008                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1009                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1010                         return execute_drive_cmd(drive, rq);
1011                 else if (blk_pm_request(rq)) {
1012                         struct request_pm_state *pm = rq->data;
1013 #ifdef DEBUG_PM
1014                         printk("%s: start_power_step(step: %d)\n",
1015                                 drive->name, rq->pm->pm_step);
1016 #endif
1017                         startstop = ide_start_power_step(drive, rq);
1018                         if (startstop == ide_stopped &&
1019                             pm->pm_step == ide_pm_state_completed)
1020                                 ide_complete_pm_request(drive, rq);
1021                         return startstop;
1022                 }
1023
1024                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1025                 return drv->do_request(drive, rq, block);
1026         }
1027         return do_special(drive);
1028 kill_rq:
1029         ide_kill_rq(drive, rq);
1030         return ide_stopped;
1031 }
1032
1033 /**
1034  *      ide_stall_queue         -       pause an IDE device
1035  *      @drive: drive to stall
1036  *      @timeout: time to stall for (jiffies)
1037  *
1038  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1039  *      to the hwgroup by sleeping for timeout jiffies.
1040  */
1041  
1042 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1043 {
1044         if (timeout > WAIT_WORSTCASE)
1045                 timeout = WAIT_WORSTCASE;
1046         drive->sleep = timeout + jiffies;
1047         drive->sleeping = 1;
1048 }
1049
1050 EXPORT_SYMBOL(ide_stall_queue);
1051
1052 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1053
1054 /**
1055  *      choose_drive            -       select a drive to service
1056  *      @hwgroup: hardware group to select on
1057  *
1058  *      choose_drive() selects the next drive which will be serviced.
1059  *      This is necessary because the IDE layer can't issue commands
1060  *      to both drives on the same cable, unlike SCSI.
1061  */
1062  
1063 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1064 {
1065         ide_drive_t *drive, *best;
1066
1067 repeat: 
1068         best = NULL;
1069         drive = hwgroup->drive;
1070
1071         /*
1072          * drive is doing pre-flush, ordered write, post-flush sequence. even
1073          * though that is 3 requests, it must be seen as a single transaction.
1074          * we must not preempt this drive until that is complete
1075          */
1076         if (blk_queue_flushing(drive->queue)) {
1077                 /*
1078                  * small race where queue could get replugged during
1079                  * the 3-request flush cycle, just yank the plug since
1080                  * we want it to finish asap
1081                  */
1082                 blk_remove_plug(drive->queue);
1083                 return drive;
1084         }
1085
1086         do {
1087                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1088                     && !elv_queue_empty(drive->queue)) {
1089                         if (!best
1090                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1091                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1092                         {
1093                                 if (!blk_queue_plugged(drive->queue))
1094                                         best = drive;
1095                         }
1096                 }
1097         } while ((drive = drive->next) != hwgroup->drive);
1098         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1099                 long t = (signed long)(WAKEUP(best) - jiffies);
1100                 if (t >= WAIT_MIN_SLEEP) {
1101                 /*
1102                  * We *may* have some time to spare, but first let's see if
1103                  * someone can potentially benefit from our nice mood today..
1104                  */
1105                         drive = best->next;
1106                         do {
1107                                 if (!drive->sleeping
1108                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1109                                  && time_before(WAKEUP(drive), jiffies + t))
1110                                 {
1111                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1112                                         goto repeat;
1113                                 }
1114                         } while ((drive = drive->next) != best);
1115                 }
1116         }
1117         return best;
1118 }
1119
1120 /*
1121  * Issue a new request to a drive from hwgroup
1122  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1123  *
1124  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1125  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1126  * may have both interfaces in a single hwgroup to "serialize" access.
1127  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1128  * together into one hwgroup for serialized access.
1129  *
1130  * Note also that several hwgroups can end up sharing a single IRQ,
1131  * possibly along with many other devices.  This is especially common in
1132  * PCI-based systems with off-board IDE controller cards.
1133  *
1134  * The IDE driver uses the single global ide_lock spinlock to protect
1135  * access to the request queues, and to protect the hwgroup->busy flag.
1136  *
1137  * The first thread into the driver for a particular hwgroup sets the
1138  * hwgroup->busy flag to indicate that this hwgroup is now active,
1139  * and then initiates processing of the top request from the request queue.
1140  *
1141  * Other threads attempting entry notice the busy setting, and will simply
1142  * queue their new requests and exit immediately.  Note that hwgroup->busy
1143  * remains set even when the driver is merely awaiting the next interrupt.
1144  * Thus, the meaning is "this hwgroup is busy processing a request".
1145  *
1146  * When processing of a request completes, the completing thread or IRQ-handler
1147  * will start the next request from the queue.  If no more work remains,
1148  * the driver will clear the hwgroup->busy flag and exit.
1149  *
1150  * The ide_lock (spinlock) is used to protect all access to the
1151  * hwgroup->busy flag, but is otherwise not needed for most processing in
1152  * the driver.  This makes the driver much more friendlier to shared IRQs
1153  * than previous designs, while remaining 100% (?) SMP safe and capable.
1154  */
1155 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1156 {
1157         ide_drive_t     *drive;
1158         ide_hwif_t      *hwif;
1159         struct request  *rq;
1160         ide_startstop_t startstop;
1161         int             loops = 0;
1162
1163         /* for atari only: POSSIBLY BROKEN HERE(?) */
1164         ide_get_lock(ide_intr, hwgroup);
1165
1166         /* caller must own ide_lock */
1167         BUG_ON(!irqs_disabled());
1168
1169         while (!hwgroup->busy) {
1170                 hwgroup->busy = 1;
1171                 drive = choose_drive(hwgroup);
1172                 if (drive == NULL) {
1173                         int sleeping = 0;
1174                         unsigned long sleep = 0; /* shut up, gcc */
1175                         hwgroup->rq = NULL;
1176                         drive = hwgroup->drive;
1177                         do {
1178                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1179                                         sleeping = 1;
1180                                         sleep = drive->sleep;
1181                                 }
1182                         } while ((drive = drive->next) != hwgroup->drive);
1183                         if (sleeping) {
1184                 /*
1185                  * Take a short snooze, and then wake up this hwgroup again.
1186                  * This gives other hwgroups on the same a chance to
1187                  * play fairly with us, just in case there are big differences
1188                  * in relative throughputs.. don't want to hog the cpu too much.
1189                  */
1190                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1191                                         sleep = jiffies + WAIT_MIN_SLEEP;
1192 #if 1
1193                                 if (timer_pending(&hwgroup->timer))
1194                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1195 #endif
1196                                 /* so that ide_timer_expiry knows what to do */
1197                                 hwgroup->sleeping = 1;
1198                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1199                                 mod_timer(&hwgroup->timer, sleep);
1200                                 /* we purposely leave hwgroup->busy==1
1201                                  * while sleeping */
1202                         } else {
1203                                 /* Ugly, but how can we sleep for the lock
1204                                  * otherwise? perhaps from tq_disk?
1205                                  */
1206
1207                                 /* for atari only */
1208                                 ide_release_lock();
1209                                 hwgroup->busy = 0;
1210                         }
1211
1212                         /* no more work for this hwgroup (for now) */
1213                         return;
1214                 }
1215         again:
1216                 hwif = HWIF(drive);
1217                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1218                         /*
1219                          * set nIEN for previous hwif, drives in the
1220                          * quirk_list may not like intr setups/cleanups
1221                          */
1222                         if (drive->quirk_list != 1)
1223                                 ide_set_irq(drive, 0);
1224                 }
1225                 hwgroup->hwif = hwif;
1226                 hwgroup->drive = drive;
1227                 drive->sleeping = 0;
1228                 drive->service_start = jiffies;
1229
1230                 if (blk_queue_plugged(drive->queue)) {
1231                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1232                         break;
1233                 }
1234
1235                 /*
1236                  * we know that the queue isn't empty, but this can happen
1237                  * if the q->prep_rq_fn() decides to kill a request
1238                  */
1239                 rq = elv_next_request(drive->queue);
1240                 if (!rq) {
1241                         hwgroup->busy = 0;
1242                         break;
1243                 }
1244
1245                 /*
1246                  * Sanity: don't accept a request that isn't a PM request
1247                  * if we are currently power managed. This is very important as
1248                  * blk_stop_queue() doesn't prevent the elv_next_request()
1249                  * above to return us whatever is in the queue. Since we call
1250                  * ide_do_request() ourselves, we end up taking requests while
1251                  * the queue is blocked...
1252                  * 
1253                  * We let requests forced at head of queue with ide-preempt
1254                  * though. I hope that doesn't happen too much, hopefully not
1255                  * unless the subdriver triggers such a thing in its own PM
1256                  * state machine.
1257                  *
1258                  * We count how many times we loop here to make sure we service
1259                  * all drives in the hwgroup without looping for ever
1260                  */
1261                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1262                         drive = drive->next ? drive->next : hwgroup->drive;
1263                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1264                                 goto again;
1265                         /* We clear busy, there should be no pending ATA command at this point. */
1266                         hwgroup->busy = 0;
1267                         break;
1268                 }
1269
1270                 hwgroup->rq = rq;
1271
1272                 /*
1273                  * Some systems have trouble with IDE IRQs arriving while
1274                  * the driver is still setting things up.  So, here we disable
1275                  * the IRQ used by this interface while the request is being started.
1276                  * This may look bad at first, but pretty much the same thing
1277                  * happens anyway when any interrupt comes in, IDE or otherwise
1278                  *  -- the kernel masks the IRQ while it is being handled.
1279                  */
1280                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1281                         disable_irq_nosync(hwif->irq);
1282                 spin_unlock(&ide_lock);
1283                 local_irq_enable_in_hardirq();
1284                         /* allow other IRQs while we start this request */
1285                 startstop = start_request(drive, rq);
1286                 spin_lock_irq(&ide_lock);
1287                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1288                         enable_irq(hwif->irq);
1289                 if (startstop == ide_stopped)
1290                         hwgroup->busy = 0;
1291         }
1292 }
1293
1294 /*
1295  * Passes the stuff to ide_do_request
1296  */
1297 void do_ide_request(struct request_queue *q)
1298 {
1299         ide_drive_t *drive = q->queuedata;
1300
1301         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1302 }
1303
1304 /*
1305  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1306  * retry the current request in pio mode instead of risking tossing it
1307  * all away
1308  */
1309 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1310 {
1311         ide_hwif_t *hwif = HWIF(drive);
1312         struct request *rq;
1313         ide_startstop_t ret = ide_stopped;
1314
1315         /*
1316          * end current dma transaction
1317          */
1318
1319         if (error < 0) {
1320                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1321                 (void)HWIF(drive)->ide_dma_end(drive);
1322                 ret = ide_error(drive, "dma timeout error",
1323                                                 hwif->INB(IDE_STATUS_REG));
1324         } else {
1325                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1326                 hwif->dma_timeout(drive);
1327         }
1328
1329         /*
1330          * disable dma for now, but remember that we did so because of
1331          * a timeout -- we'll reenable after we finish this next request
1332          * (or rather the first chunk of it) in pio.
1333          */
1334         drive->retry_pio++;
1335         drive->state = DMA_PIO_RETRY;
1336         ide_dma_off_quietly(drive);
1337
1338         /*
1339          * un-busy drive etc (hwgroup->busy is cleared on return) and
1340          * make sure request is sane
1341          */
1342         rq = HWGROUP(drive)->rq;
1343
1344         if (!rq)
1345                 goto out;
1346
1347         HWGROUP(drive)->rq = NULL;
1348
1349         rq->errors = 0;
1350
1351         if (!rq->bio)
1352                 goto out;
1353
1354         rq->sector = rq->bio->bi_sector;
1355         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1356         rq->hard_cur_sectors = rq->current_nr_sectors;
1357         rq->buffer = bio_data(rq->bio);
1358 out:
1359         return ret;
1360 }
1361
1362 /**
1363  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1364  *      @data: timer callback magic (hwgroup)
1365  *
1366  *      An IDE command has timed out before the expected drive return
1367  *      occurred. At this point we attempt to clean up the current
1368  *      mess. If the current handler includes an expiry handler then
1369  *      we invoke the expiry handler, and providing it is happy the
1370  *      work is done. If that fails we apply generic recovery rules
1371  *      invoking the handler and checking the drive DMA status. We
1372  *      have an excessively incestuous relationship with the DMA
1373  *      logic that wants cleaning up.
1374  */
1375  
1376 void ide_timer_expiry (unsigned long data)
1377 {
1378         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1379         ide_handler_t   *handler;
1380         ide_expiry_t    *expiry;
1381         unsigned long   flags;
1382         unsigned long   wait = -1;
1383
1384         spin_lock_irqsave(&ide_lock, flags);
1385
1386         if (((handler = hwgroup->handler) == NULL) ||
1387             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1388                 /*
1389                  * Either a marginal timeout occurred
1390                  * (got the interrupt just as timer expired),
1391                  * or we were "sleeping" to give other devices a chance.
1392                  * Either way, we don't really want to complain about anything.
1393                  */
1394                 if (hwgroup->sleeping) {
1395                         hwgroup->sleeping = 0;
1396                         hwgroup->busy = 0;
1397                 }
1398         } else {
1399                 ide_drive_t *drive = hwgroup->drive;
1400                 if (!drive) {
1401                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1402                         hwgroup->handler = NULL;
1403                 } else {
1404                         ide_hwif_t *hwif;
1405                         ide_startstop_t startstop = ide_stopped;
1406                         if (!hwgroup->busy) {
1407                                 hwgroup->busy = 1;      /* paranoia */
1408                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1409                         }
1410                         if ((expiry = hwgroup->expiry) != NULL) {
1411                                 /* continue */
1412                                 if ((wait = expiry(drive)) > 0) {
1413                                         /* reset timer */
1414                                         hwgroup->timer.expires  = jiffies + wait;
1415                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1416                                         add_timer(&hwgroup->timer);
1417                                         spin_unlock_irqrestore(&ide_lock, flags);
1418                                         return;
1419                                 }
1420                         }
1421                         hwgroup->handler = NULL;
1422                         /*
1423                          * We need to simulate a real interrupt when invoking
1424                          * the handler() function, which means we need to
1425                          * globally mask the specific IRQ:
1426                          */
1427                         spin_unlock(&ide_lock);
1428                         hwif  = HWIF(drive);
1429                         /* disable_irq_nosync ?? */
1430                         disable_irq(hwif->irq);
1431                         /* local CPU only,
1432                          * as if we were handling an interrupt */
1433                         local_irq_disable();
1434                         if (hwgroup->polling) {
1435                                 startstop = handler(drive);
1436                         } else if (drive_is_ready(drive)) {
1437                                 if (drive->waiting_for_dma)
1438                                         hwgroup->hwif->dma_lost_irq(drive);
1439                                 (void)ide_ack_intr(hwif);
1440                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1441                                 startstop = handler(drive);
1442                         } else {
1443                                 if (drive->waiting_for_dma) {
1444                                         startstop = ide_dma_timeout_retry(drive, wait);
1445                                 } else
1446                                         startstop =
1447                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1448                         }
1449                         drive->service_time = jiffies - drive->service_start;
1450                         spin_lock_irq(&ide_lock);
1451                         enable_irq(hwif->irq);
1452                         if (startstop == ide_stopped)
1453                                 hwgroup->busy = 0;
1454                 }
1455         }
1456         ide_do_request(hwgroup, IDE_NO_IRQ);
1457         spin_unlock_irqrestore(&ide_lock, flags);
1458 }
1459
1460 /**
1461  *      unexpected_intr         -       handle an unexpected IDE interrupt
1462  *      @irq: interrupt line
1463  *      @hwgroup: hwgroup being processed
1464  *
1465  *      There's nothing really useful we can do with an unexpected interrupt,
1466  *      other than reading the status register (to clear it), and logging it.
1467  *      There should be no way that an irq can happen before we're ready for it,
1468  *      so we needn't worry much about losing an "important" interrupt here.
1469  *
1470  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1471  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1472  *      looks "good", we just ignore the interrupt completely.
1473  *
1474  *      This routine assumes __cli() is in effect when called.
1475  *
1476  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1477  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1478  *      we could screw up by interfering with a new request being set up for 
1479  *      irq15.
1480  *
1481  *      In reality, this is a non-issue.  The new command is not sent unless 
1482  *      the drive is ready to accept one, in which case we know the drive is
1483  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1484  *      before completing the issuance of any new drive command, so we will not
1485  *      be accidentally invoked as a result of any valid command completion
1486  *      interrupt.
1487  *
1488  *      Note that we must walk the entire hwgroup here. We know which hwif
1489  *      is doing the current command, but we don't know which hwif burped
1490  *      mysteriously.
1491  */
1492  
1493 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1494 {
1495         u8 stat;
1496         ide_hwif_t *hwif = hwgroup->hwif;
1497
1498         /*
1499          * handle the unexpected interrupt
1500          */
1501         do {
1502                 if (hwif->irq == irq) {
1503                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1504                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1505                                 /* Try to not flood the console with msgs */
1506                                 static unsigned long last_msgtime, count;
1507                                 ++count;
1508                                 if (time_after(jiffies, last_msgtime + HZ)) {
1509                                         last_msgtime = jiffies;
1510                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1511                                                 "status=0x%02x, count=%ld\n",
1512                                                 hwif->name,
1513                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1514                                 }
1515                         }
1516                 }
1517         } while ((hwif = hwif->next) != hwgroup->hwif);
1518 }
1519
1520 /**
1521  *      ide_intr        -       default IDE interrupt handler
1522  *      @irq: interrupt number
1523  *      @dev_id: hwif group
1524  *      @regs: unused weirdness from the kernel irq layer
1525  *
1526  *      This is the default IRQ handler for the IDE layer. You should
1527  *      not need to override it. If you do be aware it is subtle in
1528  *      places
1529  *
1530  *      hwgroup->hwif is the interface in the group currently performing
1531  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1532  *      the IRQ handler to call. As we issue a command the handlers
1533  *      step through multiple states, reassigning the handler to the
1534  *      next step in the process. Unlike a smart SCSI controller IDE
1535  *      expects the main processor to sequence the various transfer
1536  *      stages. We also manage a poll timer to catch up with most
1537  *      timeout situations. There are still a few where the handlers
1538  *      don't ever decide to give up.
1539  *
1540  *      The handler eventually returns ide_stopped to indicate the
1541  *      request completed. At this point we issue the next request
1542  *      on the hwgroup and the process begins again.
1543  */
1544  
1545 irqreturn_t ide_intr (int irq, void *dev_id)
1546 {
1547         unsigned long flags;
1548         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1549         ide_hwif_t *hwif;
1550         ide_drive_t *drive;
1551         ide_handler_t *handler;
1552         ide_startstop_t startstop;
1553
1554         spin_lock_irqsave(&ide_lock, flags);
1555         hwif = hwgroup->hwif;
1556
1557         if (!ide_ack_intr(hwif)) {
1558                 spin_unlock_irqrestore(&ide_lock, flags);
1559                 return IRQ_NONE;
1560         }
1561
1562         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1563                 /*
1564                  * Not expecting an interrupt from this drive.
1565                  * That means this could be:
1566                  *      (1) an interrupt from another PCI device
1567                  *      sharing the same PCI INT# as us.
1568                  * or   (2) a drive just entered sleep or standby mode,
1569                  *      and is interrupting to let us know.
1570                  * or   (3) a spurious interrupt of unknown origin.
1571                  *
1572                  * For PCI, we cannot tell the difference,
1573                  * so in that case we just ignore it and hope it goes away.
1574                  *
1575                  * FIXME: unexpected_intr should be hwif-> then we can
1576                  * remove all the ifdef PCI crap
1577                  */
1578 #ifdef CONFIG_BLK_DEV_IDEPCI
1579                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1580 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1581                 {
1582                         /*
1583                          * Probably not a shared PCI interrupt,
1584                          * so we can safely try to do something about it:
1585                          */
1586                         unexpected_intr(irq, hwgroup);
1587 #ifdef CONFIG_BLK_DEV_IDEPCI
1588                 } else {
1589                         /*
1590                          * Whack the status register, just in case
1591                          * we have a leftover pending IRQ.
1592                          */
1593                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1594 #endif /* CONFIG_BLK_DEV_IDEPCI */
1595                 }
1596                 spin_unlock_irqrestore(&ide_lock, flags);
1597                 return IRQ_NONE;
1598         }
1599         drive = hwgroup->drive;
1600         if (!drive) {
1601                 /*
1602                  * This should NEVER happen, and there isn't much
1603                  * we could do about it here.
1604                  *
1605                  * [Note - this can occur if the drive is hot unplugged]
1606                  */
1607                 spin_unlock_irqrestore(&ide_lock, flags);
1608                 return IRQ_HANDLED;
1609         }
1610         if (!drive_is_ready(drive)) {
1611                 /*
1612                  * This happens regularly when we share a PCI IRQ with
1613                  * another device.  Unfortunately, it can also happen
1614                  * with some buggy drives that trigger the IRQ before
1615                  * their status register is up to date.  Hopefully we have
1616                  * enough advance overhead that the latter isn't a problem.
1617                  */
1618                 spin_unlock_irqrestore(&ide_lock, flags);
1619                 return IRQ_NONE;
1620         }
1621         if (!hwgroup->busy) {
1622                 hwgroup->busy = 1;      /* paranoia */
1623                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1624         }
1625         hwgroup->handler = NULL;
1626         hwgroup->req_gen++;
1627         del_timer(&hwgroup->timer);
1628         spin_unlock(&ide_lock);
1629
1630         /* Some controllers might set DMA INTR no matter DMA or PIO;
1631          * bmdma status might need to be cleared even for
1632          * PIO interrupts to prevent spurious/lost irq.
1633          */
1634         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1635                 /* ide_dma_end() needs bmdma status for error checking.
1636                  * So, skip clearing bmdma status here and leave it
1637                  * to ide_dma_end() if this is dma interrupt.
1638                  */
1639                 hwif->ide_dma_clear_irq(drive);
1640
1641         if (drive->unmask)
1642                 local_irq_enable_in_hardirq();
1643         /* service this interrupt, may set handler for next interrupt */
1644         startstop = handler(drive);
1645         spin_lock_irq(&ide_lock);
1646
1647         /*
1648          * Note that handler() may have set things up for another
1649          * interrupt to occur soon, but it cannot happen until
1650          * we exit from this routine, because it will be the
1651          * same irq as is currently being serviced here, and Linux
1652          * won't allow another of the same (on any CPU) until we return.
1653          */
1654         drive->service_time = jiffies - drive->service_start;
1655         if (startstop == ide_stopped) {
1656                 if (hwgroup->handler == NULL) { /* paranoia */
1657                         hwgroup->busy = 0;
1658                         ide_do_request(hwgroup, hwif->irq);
1659                 } else {
1660                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1661                                 "on exit\n", drive->name);
1662                 }
1663         }
1664         spin_unlock_irqrestore(&ide_lock, flags);
1665         return IRQ_HANDLED;
1666 }
1667
1668 /**
1669  *      ide_init_drive_cmd      -       initialize a drive command request
1670  *      @rq: request object
1671  *
1672  *      Initialize a request before we fill it in and send it down to
1673  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1674  *      now it doesn't do a lot, but if that changes abusers will have a
1675  *      nasty surprise.
1676  */
1677
1678 void ide_init_drive_cmd (struct request *rq)
1679 {
1680         memset(rq, 0, sizeof(*rq));
1681         rq->cmd_type = REQ_TYPE_ATA_CMD;
1682         rq->ref_count = 1;
1683 }
1684
1685 EXPORT_SYMBOL(ide_init_drive_cmd);
1686
1687 /**
1688  *      ide_do_drive_cmd        -       issue IDE special command
1689  *      @drive: device to issue command
1690  *      @rq: request to issue
1691  *      @action: action for processing
1692  *
1693  *      This function issues a special IDE device request
1694  *      onto the request queue.
1695  *
1696  *      If action is ide_wait, then the rq is queued at the end of the
1697  *      request queue, and the function sleeps until it has been processed.
1698  *      This is for use when invoked from an ioctl handler.
1699  *
1700  *      If action is ide_preempt, then the rq is queued at the head of
1701  *      the request queue, displacing the currently-being-processed
1702  *      request and this function returns immediately without waiting
1703  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1704  *      intended for careful use by the ATAPI tape/cdrom driver code.
1705  *
1706  *      If action is ide_end, then the rq is queued at the end of the
1707  *      request queue, and the function returns immediately without waiting
1708  *      for the new rq to be completed. This is again intended for careful
1709  *      use by the ATAPI tape/cdrom driver code.
1710  */
1711  
1712 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1713 {
1714         unsigned long flags;
1715         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1716         DECLARE_COMPLETION_ONSTACK(wait);
1717         int where = ELEVATOR_INSERT_BACK, err;
1718         int must_wait = (action == ide_wait || action == ide_head_wait);
1719
1720         rq->errors = 0;
1721
1722         /*
1723          * we need to hold an extra reference to request for safe inspection
1724          * after completion
1725          */
1726         if (must_wait) {
1727                 rq->ref_count++;
1728                 rq->end_io_data = &wait;
1729                 rq->end_io = blk_end_sync_rq;
1730         }
1731
1732         spin_lock_irqsave(&ide_lock, flags);
1733         if (action == ide_preempt)
1734                 hwgroup->rq = NULL;
1735         if (action == ide_preempt || action == ide_head_wait) {
1736                 where = ELEVATOR_INSERT_FRONT;
1737                 rq->cmd_flags |= REQ_PREEMPT;
1738         }
1739         __elv_add_request(drive->queue, rq, where, 0);
1740         ide_do_request(hwgroup, IDE_NO_IRQ);
1741         spin_unlock_irqrestore(&ide_lock, flags);
1742
1743         err = 0;
1744         if (must_wait) {
1745                 wait_for_completion(&wait);
1746                 if (rq->errors)
1747                         err = -EIO;
1748
1749                 blk_put_request(rq);
1750         }
1751
1752         return err;
1753 }
1754
1755 EXPORT_SYMBOL(ide_do_drive_cmd);
1756
1757 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1758 {
1759         ide_task_t task;
1760
1761         memset(&task, 0, sizeof(task));
1762         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1763                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1764         task.tf.feature = dma;          /* Use PIO/DMA */
1765         task.tf.lbam    = bcount & 0xff;
1766         task.tf.lbah    = (bcount >> 8) & 0xff;
1767
1768         ide_tf_load(drive, &task);
1769 }
1770
1771 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);