]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-iops.c
ide: remove ->INB, ->OUTB and ->OUTBSYNC methods
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42         outb(val, port);
43 }
44
45 /*
46  *      MMIO operations, typically used for SATA controllers
47  */
48
49 static u8 ide_mm_inb (unsigned long port)
50 {
51         return (u8) readb((void __iomem *) port);
52 }
53
54 static void ide_mm_outb (u8 value, unsigned long port)
55 {
56         writeb(value, (void __iomem *) port);
57 }
58
59 void SELECT_DRIVE (ide_drive_t *drive)
60 {
61         ide_hwif_t *hwif = drive->hwif;
62         const struct ide_port_ops *port_ops = hwif->port_ops;
63         ide_task_t task;
64
65         if (port_ops && port_ops->selectproc)
66                 port_ops->selectproc(drive);
67
68         memset(&task, 0, sizeof(task));
69         task.tf_flags = IDE_TFLAG_OUT_DEVICE;
70
71         drive->hwif->tf_load(drive, &task);
72 }
73
74 void SELECT_MASK(ide_drive_t *drive, int mask)
75 {
76         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
77
78         if (port_ops && port_ops->maskproc)
79                 port_ops->maskproc(drive, mask);
80 }
81
82 static void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
83 {
84         if (hwif->host_flags & IDE_HFLAG_MMIO)
85                 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
86         else
87                 outb(cmd, hwif->io_ports.command_addr);
88 }
89
90 static u8 ide_read_status(ide_hwif_t *hwif)
91 {
92         if (hwif->host_flags & IDE_HFLAG_MMIO)
93                 return readb((void __iomem *)hwif->io_ports.status_addr);
94         else
95                 return inb(hwif->io_ports.status_addr);
96 }
97
98 static u8 ide_read_altstatus(ide_hwif_t *hwif)
99 {
100         if (hwif->host_flags & IDE_HFLAG_MMIO)
101                 return readb((void __iomem *)hwif->io_ports.ctl_addr);
102         else
103                 return inb(hwif->io_ports.ctl_addr);
104 }
105
106 static u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
107 {
108         if (hwif->host_flags & IDE_HFLAG_MMIO)
109                 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
110         else
111                 return inb(hwif->dma_base + ATA_DMA_STATUS);
112 }
113
114 static void ide_set_irq(ide_hwif_t *hwif, int on)
115 {
116         u8 ctl = ATA_DEVCTL_OBS;
117
118         if (on == 4) { /* hack for SRST */
119                 ctl |= 4;
120                 on &= ~4;
121         }
122
123         ctl |= on ? 0 : 2;
124
125         if (hwif->host_flags & IDE_HFLAG_MMIO)
126                 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
127         else
128                 outb(ctl, hwif->io_ports.ctl_addr);
129 }
130
131 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
132 {
133         ide_hwif_t *hwif = drive->hwif;
134         struct ide_io_ports *io_ports = &hwif->io_ports;
135         struct ide_taskfile *tf = &task->tf;
136         void (*tf_outb)(u8 addr, unsigned long port);
137         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
138         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
139
140         if (mmio)
141                 tf_outb = ide_mm_outb;
142         else
143                 tf_outb = ide_outb;
144
145         if (task->tf_flags & IDE_TFLAG_FLAGGED)
146                 HIHI = 0xFF;
147
148         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
149                 u16 data = (tf->hob_data << 8) | tf->data;
150
151                 if (mmio)
152                         writew(data, (void __iomem *)io_ports->data_addr);
153                 else
154                         outw(data, io_ports->data_addr);
155         }
156
157         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
158                 tf_outb(tf->hob_feature, io_ports->feature_addr);
159         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
160                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
161         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
162                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
163         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
164                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
165         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
166                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
167
168         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
169                 tf_outb(tf->feature, io_ports->feature_addr);
170         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
171                 tf_outb(tf->nsect, io_ports->nsect_addr);
172         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
173                 tf_outb(tf->lbal, io_ports->lbal_addr);
174         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
175                 tf_outb(tf->lbam, io_ports->lbam_addr);
176         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
177                 tf_outb(tf->lbah, io_ports->lbah_addr);
178
179         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
180                 tf_outb((tf->device & HIHI) | drive->select.all,
181                          io_ports->device_addr);
182 }
183
184 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
185 {
186         ide_hwif_t *hwif = drive->hwif;
187         struct ide_io_ports *io_ports = &hwif->io_ports;
188         struct ide_taskfile *tf = &task->tf;
189         void (*tf_outb)(u8 addr, unsigned long port);
190         u8 (*tf_inb)(unsigned long port);
191         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
192
193         if (mmio) {
194                 tf_outb = ide_mm_outb;
195                 tf_inb  = ide_mm_inb;
196         } else {
197                 tf_outb = ide_outb;
198                 tf_inb  = ide_inb;
199         }
200
201         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
202                 u16 data;
203
204                 if (mmio)
205                         data = readw((void __iomem *)io_ports->data_addr);
206                 else
207                         data = inw(io_ports->data_addr);
208
209                 tf->data = data & 0xff;
210                 tf->hob_data = (data >> 8) & 0xff;
211         }
212
213         /* be sure we're looking at the low order bits */
214         tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
215
216         if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
217                 tf->feature = tf_inb(io_ports->feature_addr);
218         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
219                 tf->nsect  = tf_inb(io_ports->nsect_addr);
220         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
221                 tf->lbal   = tf_inb(io_ports->lbal_addr);
222         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
223                 tf->lbam   = tf_inb(io_ports->lbam_addr);
224         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
225                 tf->lbah   = tf_inb(io_ports->lbah_addr);
226         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
227                 tf->device = tf_inb(io_ports->device_addr);
228
229         if (task->tf_flags & IDE_TFLAG_LBA48) {
230                 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
231
232                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
233                         tf->hob_feature = tf_inb(io_ports->feature_addr);
234                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
235                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
236                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
237                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
238                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
239                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
240                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
241                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
242         }
243 }
244
245 /*
246  * Some localbus EIDE interfaces require a special access sequence
247  * when using 32-bit I/O instructions to transfer data.  We call this
248  * the "vlb_sync" sequence, which consists of three successive reads
249  * of the sector count register location, with interrupts disabled
250  * to ensure that the reads all happen together.
251  */
252 static void ata_vlb_sync(unsigned long port)
253 {
254         (void)inb(port);
255         (void)inb(port);
256         (void)inb(port);
257 }
258
259 /*
260  * This is used for most PIO data transfers *from* the IDE interface
261  *
262  * These routines will round up any request for an odd number of bytes,
263  * so if an odd len is specified, be sure that there's at least one
264  * extra byte allocated for the buffer.
265  */
266 static void ata_input_data(ide_drive_t *drive, struct request *rq,
267                            void *buf, unsigned int len)
268 {
269         ide_hwif_t *hwif = drive->hwif;
270         struct ide_io_ports *io_ports = &hwif->io_ports;
271         unsigned long data_addr = io_ports->data_addr;
272         u8 io_32bit = drive->io_32bit;
273         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
274
275         len++;
276
277         if (io_32bit) {
278                 unsigned long uninitialized_var(flags);
279
280                 if ((io_32bit & 2) && !mmio) {
281                         local_irq_save(flags);
282                         ata_vlb_sync(io_ports->nsect_addr);
283                 }
284
285                 if (mmio)
286                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
287                 else
288                         insl(data_addr, buf, len / 4);
289
290                 if ((io_32bit & 2) && !mmio)
291                         local_irq_restore(flags);
292
293                 if ((len & 3) >= 2) {
294                         if (mmio)
295                                 __ide_mm_insw((void __iomem *)data_addr,
296                                                 (u8 *)buf + (len & ~3), 1);
297                         else
298                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
299                 }
300         } else {
301                 if (mmio)
302                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
303                 else
304                         insw(data_addr, buf, len / 2);
305         }
306 }
307
308 /*
309  * This is used for most PIO data transfers *to* the IDE interface
310  */
311 static void ata_output_data(ide_drive_t *drive, struct request *rq,
312                             void *buf, unsigned int len)
313 {
314         ide_hwif_t *hwif = drive->hwif;
315         struct ide_io_ports *io_ports = &hwif->io_ports;
316         unsigned long data_addr = io_ports->data_addr;
317         u8 io_32bit = drive->io_32bit;
318         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
319
320         if (io_32bit) {
321                 unsigned long uninitialized_var(flags);
322
323                 if ((io_32bit & 2) && !mmio) {
324                         local_irq_save(flags);
325                         ata_vlb_sync(io_ports->nsect_addr);
326                 }
327
328                 if (mmio)
329                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
330                 else
331                         outsl(data_addr, buf, len / 4);
332
333                 if ((io_32bit & 2) && !mmio)
334                         local_irq_restore(flags);
335
336                 if ((len & 3) >= 2) {
337                         if (mmio)
338                                 __ide_mm_outsw((void __iomem *)data_addr,
339                                                  (u8 *)buf + (len & ~3), 1);
340                         else
341                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
342                 }
343         } else {
344                 if (mmio)
345                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
346                 else
347                         outsw(data_addr, buf, len / 2);
348         }
349 }
350
351 void default_hwif_transport(ide_hwif_t *hwif)
352 {
353         hwif->exec_command        = ide_exec_command;
354         hwif->read_status         = ide_read_status;
355         hwif->read_altstatus      = ide_read_altstatus;
356         hwif->read_sff_dma_status = ide_read_sff_dma_status;
357
358         hwif->set_irq     = ide_set_irq;
359
360         hwif->tf_load     = ide_tf_load;
361         hwif->tf_read     = ide_tf_read;
362
363         hwif->input_data  = ata_input_data;
364         hwif->output_data = ata_output_data;
365 }
366
367 u8 ide_read_error(ide_drive_t *drive)
368 {
369         ide_task_t task;
370
371         memset(&task, 0, sizeof(task));
372         task.tf_flags = IDE_TFLAG_IN_FEATURE;
373
374         drive->hwif->tf_read(drive, &task);
375
376         return task.tf.error;
377 }
378 EXPORT_SYMBOL_GPL(ide_read_error);
379
380 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
381 {
382         ide_task_t task;
383
384         memset(&task, 0, sizeof(task));
385         task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
386                         IDE_TFLAG_IN_NSECT;
387
388         drive->hwif->tf_read(drive, &task);
389
390         *bcount = (task.tf.lbah << 8) | task.tf.lbam;
391         *ireason = task.tf.nsect & 3;
392 }
393 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
394
395 void ide_fix_driveid (struct hd_driveid *id)
396 {
397 #ifndef __LITTLE_ENDIAN
398 # ifdef __BIG_ENDIAN
399         int i;
400         u16 *stringcast;
401
402         id->config         = __le16_to_cpu(id->config);
403         id->cyls           = __le16_to_cpu(id->cyls);
404         id->reserved2      = __le16_to_cpu(id->reserved2);
405         id->heads          = __le16_to_cpu(id->heads);
406         id->track_bytes    = __le16_to_cpu(id->track_bytes);
407         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
408         id->sectors        = __le16_to_cpu(id->sectors);
409         id->vendor0        = __le16_to_cpu(id->vendor0);
410         id->vendor1        = __le16_to_cpu(id->vendor1);
411         id->vendor2        = __le16_to_cpu(id->vendor2);
412         stringcast = (u16 *)&id->serial_no[0];
413         for (i = 0; i < (20/2); i++)
414                 stringcast[i] = __le16_to_cpu(stringcast[i]);
415         id->buf_type       = __le16_to_cpu(id->buf_type);
416         id->buf_size       = __le16_to_cpu(id->buf_size);
417         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
418         stringcast = (u16 *)&id->fw_rev[0];
419         for (i = 0; i < (8/2); i++)
420                 stringcast[i] = __le16_to_cpu(stringcast[i]);
421         stringcast = (u16 *)&id->model[0];
422         for (i = 0; i < (40/2); i++)
423                 stringcast[i] = __le16_to_cpu(stringcast[i]);
424         id->dword_io       = __le16_to_cpu(id->dword_io);
425         id->reserved50     = __le16_to_cpu(id->reserved50);
426         id->field_valid    = __le16_to_cpu(id->field_valid);
427         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
428         id->cur_heads      = __le16_to_cpu(id->cur_heads);
429         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
430         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
431         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
432         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
433         id->dma_1word      = __le16_to_cpu(id->dma_1word);
434         id->dma_mword      = __le16_to_cpu(id->dma_mword);
435         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
436         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
437         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
438         id->eide_pio       = __le16_to_cpu(id->eide_pio);
439         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
440         for (i = 0; i < 2; ++i)
441                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
442         for (i = 0; i < 4; ++i)
443                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
444         id->queue_depth    = __le16_to_cpu(id->queue_depth);
445         for (i = 0; i < 4; ++i)
446                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
447         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
448         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
449         id->command_set_1  = __le16_to_cpu(id->command_set_1);
450         id->command_set_2  = __le16_to_cpu(id->command_set_2);
451         id->cfsse          = __le16_to_cpu(id->cfsse);
452         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
453         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
454         id->csf_default    = __le16_to_cpu(id->csf_default);
455         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
456         id->trseuc         = __le16_to_cpu(id->trseuc);
457         id->trsEuc         = __le16_to_cpu(id->trsEuc);
458         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
459         id->mprc           = __le16_to_cpu(id->mprc);
460         id->hw_config      = __le16_to_cpu(id->hw_config);
461         id->acoustic       = __le16_to_cpu(id->acoustic);
462         id->msrqs          = __le16_to_cpu(id->msrqs);
463         id->sxfert         = __le16_to_cpu(id->sxfert);
464         id->sal            = __le16_to_cpu(id->sal);
465         id->spg            = __le32_to_cpu(id->spg);
466         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
467         for (i = 0; i < 22; i++)
468                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
469         id->last_lun       = __le16_to_cpu(id->last_lun);
470         id->word127        = __le16_to_cpu(id->word127);
471         id->dlf            = __le16_to_cpu(id->dlf);
472         id->csfo           = __le16_to_cpu(id->csfo);
473         for (i = 0; i < 26; i++)
474                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
475         id->word156        = __le16_to_cpu(id->word156);
476         for (i = 0; i < 3; i++)
477                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
478         id->cfa_power      = __le16_to_cpu(id->cfa_power);
479         for (i = 0; i < 14; i++)
480                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
481         for (i = 0; i < 31; i++)
482                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
483         for (i = 0; i < 48; i++)
484                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
485         id->integrity_word  = __le16_to_cpu(id->integrity_word);
486 # else
487 #  error "Please fix <asm/byteorder.h>"
488 # endif
489 #endif
490 }
491
492 /*
493  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
494  * removing leading/trailing blanks and compressing internal blanks.
495  * It is primarily used to tidy up the model name/number fields as
496  * returned by the WIN_[P]IDENTIFY commands.
497  */
498
499 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
500 {
501         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
502
503         if (byteswap) {
504                 /* convert from big-endian to host byte order */
505                 for (p = end ; p != s;) {
506                         unsigned short *pp = (unsigned short *) (p -= 2);
507                         *pp = ntohs(*pp);
508                 }
509         }
510         /* strip leading blanks */
511         while (s != end && *s == ' ')
512                 ++s;
513         /* compress internal blanks and strip trailing blanks */
514         while (s != end && *s) {
515                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
516                         *p++ = *(s-1);
517         }
518         /* wipe out trailing garbage */
519         while (p != end)
520                 *p++ = '\0';
521 }
522
523 EXPORT_SYMBOL(ide_fixstring);
524
525 /*
526  * Needed for PCI irq sharing
527  */
528 int drive_is_ready (ide_drive_t *drive)
529 {
530         ide_hwif_t *hwif        = HWIF(drive);
531         u8 stat                 = 0;
532
533         if (drive->waiting_for_dma)
534                 return hwif->dma_ops->dma_test_irq(drive);
535
536 #if 0
537         /* need to guarantee 400ns since last command was issued */
538         udelay(1);
539 #endif
540
541         /*
542          * We do a passive status test under shared PCI interrupts on
543          * cards that truly share the ATA side interrupt, but may also share
544          * an interrupt with another pci card/device.  We make no assumptions
545          * about possible isa-pnp and pci-pnp issues yet.
546          */
547         if (hwif->io_ports.ctl_addr)
548                 stat = hwif->read_altstatus(hwif);
549         else
550                 /* Note: this may clear a pending IRQ!! */
551                 stat = hwif->read_status(hwif);
552
553         if (stat & BUSY_STAT)
554                 /* drive busy:  definitely not interrupting */
555                 return 0;
556
557         /* drive ready: *might* be interrupting */
558         return 1;
559 }
560
561 EXPORT_SYMBOL(drive_is_ready);
562
563 /*
564  * This routine busy-waits for the drive status to be not "busy".
565  * It then checks the status for all of the "good" bits and none
566  * of the "bad" bits, and if all is okay it returns 0.  All other
567  * cases return error -- caller may then invoke ide_error().
568  *
569  * This routine should get fixed to not hog the cpu during extra long waits..
570  * That could be done by busy-waiting for the first jiffy or two, and then
571  * setting a timer to wake up at half second intervals thereafter,
572  * until timeout is achieved, before timing out.
573  */
574 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
575 {
576         ide_hwif_t *hwif = drive->hwif;
577         unsigned long flags;
578         int i;
579         u8 stat;
580
581         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
582         stat = hwif->read_status(hwif);
583
584         if (stat & BUSY_STAT) {
585                 local_irq_set(flags);
586                 timeout += jiffies;
587                 while ((stat = hwif->read_status(hwif)) & BUSY_STAT) {
588                         if (time_after(jiffies, timeout)) {
589                                 /*
590                                  * One last read after the timeout in case
591                                  * heavy interrupt load made us not make any
592                                  * progress during the timeout..
593                                  */
594                                 stat = hwif->read_status(hwif);
595                                 if (!(stat & BUSY_STAT))
596                                         break;
597
598                                 local_irq_restore(flags);
599                                 *rstat = stat;
600                                 return -EBUSY;
601                         }
602                 }
603                 local_irq_restore(flags);
604         }
605         /*
606          * Allow status to settle, then read it again.
607          * A few rare drives vastly violate the 400ns spec here,
608          * so we'll wait up to 10usec for a "good" status
609          * rather than expensively fail things immediately.
610          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
611          */
612         for (i = 0; i < 10; i++) {
613                 udelay(1);
614                 stat = hwif->read_status(hwif);
615
616                 if (OK_STAT(stat, good, bad)) {
617                         *rstat = stat;
618                         return 0;
619                 }
620         }
621         *rstat = stat;
622         return -EFAULT;
623 }
624
625 /*
626  * In case of error returns error value after doing "*startstop = ide_error()".
627  * The caller should return the updated value of "startstop" in this case,
628  * "startstop" is unchanged when the function returns 0.
629  */
630 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
631 {
632         int err;
633         u8 stat;
634
635         /* bail early if we've exceeded max_failures */
636         if (drive->max_failures && (drive->failures > drive->max_failures)) {
637                 *startstop = ide_stopped;
638                 return 1;
639         }
640
641         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
642
643         if (err) {
644                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
645                 *startstop = ide_error(drive, s, stat);
646         }
647
648         return err;
649 }
650
651 EXPORT_SYMBOL(ide_wait_stat);
652
653 /**
654  *      ide_in_drive_list       -       look for drive in black/white list
655  *      @id: drive identifier
656  *      @drive_table: list to inspect
657  *
658  *      Look for a drive in the blacklist and the whitelist tables
659  *      Returns 1 if the drive is found in the table.
660  */
661
662 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
663 {
664         for ( ; drive_table->id_model; drive_table++)
665                 if ((!strcmp(drive_table->id_model, id->model)) &&
666                     (!drive_table->id_firmware ||
667                      strstr(id->fw_rev, drive_table->id_firmware)))
668                         return 1;
669         return 0;
670 }
671
672 EXPORT_SYMBOL_GPL(ide_in_drive_list);
673
674 /*
675  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
676  * We list them here and depend on the device side cable detection for them.
677  *
678  * Some optical devices with the buggy firmwares have the same problem.
679  */
680 static const struct drive_list_entry ivb_list[] = {
681         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
682         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
683         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
684         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
685         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
686         { "TSSTcorp CDDVDW SH-S202H"    , "SB00"        },
687         { "TSSTcorp CDDVDW SH-S202H"    , "SB01"        },
688         { NULL                          , NULL          }
689 };
690
691 /*
692  *  All hosts that use the 80c ribbon must use!
693  *  The name is derived from upper byte of word 93 and the 80c ribbon.
694  */
695 u8 eighty_ninty_three (ide_drive_t *drive)
696 {
697         ide_hwif_t *hwif = drive->hwif;
698         struct hd_driveid *id = drive->id;
699         int ivb = ide_in_drive_list(id, ivb_list);
700
701         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
702                 return 1;
703
704         if (ivb)
705                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
706                                   drive->name);
707
708         if (ide_dev_is_sata(id) && !ivb)
709                 return 1;
710
711         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
712                 goto no_80w;
713
714         /*
715          * FIXME:
716          * - change master/slave IDENTIFY order
717          * - force bit13 (80c cable present) check also for !ivb devices
718          *   (unless the slave device is pre-ATA3)
719          */
720         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
721                 return 1;
722
723 no_80w:
724         if (drive->udma33_warned == 1)
725                 return 0;
726
727         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
728                             "limiting max speed to UDMA33\n",
729                             drive->name,
730                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
731
732         drive->udma33_warned = 1;
733
734         return 0;
735 }
736
737 int ide_driveid_update(ide_drive_t *drive)
738 {
739         ide_hwif_t *hwif = drive->hwif;
740         struct hd_driveid *id;
741         unsigned long timeout, flags;
742         u8 stat;
743
744         /*
745          * Re-read drive->id for possible DMA mode
746          * change (copied from ide-probe.c)
747          */
748
749         SELECT_MASK(drive, 1);
750         hwif->set_irq(hwif, 0);
751         msleep(50);
752         hwif->exec_command(hwif, WIN_IDENTIFY);
753         timeout = jiffies + WAIT_WORSTCASE;
754         do {
755                 if (time_after(jiffies, timeout)) {
756                         SELECT_MASK(drive, 0);
757                         return 0;       /* drive timed-out */
758                 }
759
760                 msleep(50);     /* give drive a breather */
761                 stat = hwif->read_altstatus(hwif);
762         } while (stat & BUSY_STAT);
763
764         msleep(50);     /* wait for IRQ and DRQ_STAT */
765         stat = hwif->read_status(hwif);
766
767         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
768                 SELECT_MASK(drive, 0);
769                 printk("%s: CHECK for good STATUS\n", drive->name);
770                 return 0;
771         }
772         local_irq_save(flags);
773         SELECT_MASK(drive, 0);
774         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
775         if (!id) {
776                 local_irq_restore(flags);
777                 return 0;
778         }
779         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
780         (void)hwif->read_status(hwif);  /* clear drive IRQ */
781         local_irq_enable();
782         local_irq_restore(flags);
783         ide_fix_driveid(id);
784         if (id) {
785                 drive->id->dma_ultra = id->dma_ultra;
786                 drive->id->dma_mword = id->dma_mword;
787                 drive->id->dma_1word = id->dma_1word;
788                 /* anything more ? */
789                 kfree(id);
790
791                 if (drive->using_dma && ide_id_dma_bug(drive))
792                         ide_dma_off(drive);
793         }
794
795         return 1;
796 }
797
798 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
799 {
800         ide_hwif_t *hwif = drive->hwif;
801         int error = 0;
802         u8 stat;
803         ide_task_t task;
804
805 #ifdef CONFIG_BLK_DEV_IDEDMA
806         if (hwif->dma_ops)      /* check if host supports DMA */
807                 hwif->dma_ops->dma_host_set(drive, 0);
808 #endif
809
810         /* Skip setting PIO flow-control modes on pre-EIDE drives */
811         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
812                 goto skip;
813
814         /*
815          * Don't use ide_wait_cmd here - it will
816          * attempt to set_geometry and recalibrate,
817          * but for some reason these don't work at
818          * this point (lost interrupt).
819          */
820         /*
821          * Select the drive, and issue the SETFEATURES command
822          */
823         disable_irq_nosync(hwif->irq);
824         
825         /*
826          *      FIXME: we race against the running IRQ here if
827          *      this is called from non IRQ context. If we use
828          *      disable_irq() we hang on the error path. Work
829          *      is needed.
830          */
831          
832         udelay(1);
833         SELECT_DRIVE(drive);
834         SELECT_MASK(drive, 0);
835         udelay(1);
836         hwif->set_irq(hwif, 0);
837
838         memset(&task, 0, sizeof(task));
839         task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
840         task.tf.feature = SETFEATURES_XFER;
841         task.tf.nsect   = speed;
842
843         hwif->tf_load(drive, &task);
844
845         hwif->exec_command(hwif, WIN_SETFEATURES);
846
847         if (drive->quirk_list == 2)
848                 hwif->set_irq(hwif, 1);
849
850         error = __ide_wait_stat(drive, drive->ready_stat,
851                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
852                                 WAIT_CMD, &stat);
853
854         SELECT_MASK(drive, 0);
855
856         enable_irq(hwif->irq);
857
858         if (error) {
859                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
860                 return error;
861         }
862
863         drive->id->dma_ultra &= ~0xFF00;
864         drive->id->dma_mword &= ~0x0F00;
865         drive->id->dma_1word &= ~0x0F00;
866
867  skip:
868 #ifdef CONFIG_BLK_DEV_IDEDMA
869         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
870             drive->using_dma)
871                 hwif->dma_ops->dma_host_set(drive, 1);
872         else if (hwif->dma_ops) /* check if host supports DMA */
873                 ide_dma_off_quietly(drive);
874 #endif
875
876         switch(speed) {
877                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
878                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
879                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
880                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
881                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
882                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
883                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
884                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
885                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
886                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
887                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
888                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
889                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
890                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
891                 default: break;
892         }
893         if (!drive->init_speed)
894                 drive->init_speed = speed;
895         drive->current_speed = speed;
896         return error;
897 }
898
899 /*
900  * This should get invoked any time we exit the driver to
901  * wait for an interrupt response from a drive.  handler() points
902  * at the appropriate code to handle the next interrupt, and a
903  * timer is started to prevent us from waiting forever in case
904  * something goes wrong (see the ide_timer_expiry() handler later on).
905  *
906  * See also ide_execute_command
907  */
908 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
909                       unsigned int timeout, ide_expiry_t *expiry)
910 {
911         ide_hwgroup_t *hwgroup = HWGROUP(drive);
912
913         BUG_ON(hwgroup->handler);
914         hwgroup->handler        = handler;
915         hwgroup->expiry         = expiry;
916         hwgroup->timer.expires  = jiffies + timeout;
917         hwgroup->req_gen_timer  = hwgroup->req_gen;
918         add_timer(&hwgroup->timer);
919 }
920
921 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
922                       unsigned int timeout, ide_expiry_t *expiry)
923 {
924         unsigned long flags;
925         spin_lock_irqsave(&ide_lock, flags);
926         __ide_set_handler(drive, handler, timeout, expiry);
927         spin_unlock_irqrestore(&ide_lock, flags);
928 }
929
930 EXPORT_SYMBOL(ide_set_handler);
931  
932 /**
933  *      ide_execute_command     -       execute an IDE command
934  *      @drive: IDE drive to issue the command against
935  *      @command: command byte to write
936  *      @handler: handler for next phase
937  *      @timeout: timeout for command
938  *      @expiry:  handler to run on timeout
939  *
940  *      Helper function to issue an IDE command. This handles the
941  *      atomicity requirements, command timing and ensures that the 
942  *      handler and IRQ setup do not race. All IDE command kick off
943  *      should go via this function or do equivalent locking.
944  */
945
946 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
947                          unsigned timeout, ide_expiry_t *expiry)
948 {
949         unsigned long flags;
950         ide_hwif_t *hwif = HWIF(drive);
951
952         spin_lock_irqsave(&ide_lock, flags);
953         __ide_set_handler(drive, handler, timeout, expiry);
954         hwif->exec_command(hwif, cmd);
955         /*
956          * Drive takes 400nS to respond, we must avoid the IRQ being
957          * serviced before that.
958          *
959          * FIXME: we could skip this delay with care on non shared devices
960          */
961         ndelay(400);
962         spin_unlock_irqrestore(&ide_lock, flags);
963 }
964 EXPORT_SYMBOL(ide_execute_command);
965
966 void ide_execute_pkt_cmd(ide_drive_t *drive)
967 {
968         ide_hwif_t *hwif = drive->hwif;
969         unsigned long flags;
970
971         spin_lock_irqsave(&ide_lock, flags);
972         hwif->exec_command(hwif, WIN_PACKETCMD);
973         ndelay(400);
974         spin_unlock_irqrestore(&ide_lock, flags);
975 }
976 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
977
978 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
979 {
980         struct request *rq = drive->hwif->hwgroup->rq;
981
982         if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
983                 ide_end_request(drive, err ? err : 1, 0);
984 }
985
986 /* needed below */
987 static ide_startstop_t do_reset1 (ide_drive_t *, int);
988
989 /*
990  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
991  * during an atapi drive reset operation. If the drive has not yet responded,
992  * and we have not yet hit our maximum waiting time, then the timer is restarted
993  * for another 50ms.
994  */
995 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
996 {
997         ide_hwif_t *hwif = drive->hwif;
998         ide_hwgroup_t *hwgroup = hwif->hwgroup;
999         u8 stat;
1000
1001         SELECT_DRIVE(drive);
1002         udelay (10);
1003         stat = hwif->read_status(hwif);
1004
1005         if (OK_STAT(stat, 0, BUSY_STAT))
1006                 printk("%s: ATAPI reset complete\n", drive->name);
1007         else {
1008                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1009                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1010                         /* continue polling */
1011                         return ide_started;
1012                 }
1013                 /* end of polling */
1014                 hwgroup->polling = 0;
1015                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1016                                 drive->name, stat);
1017                 /* do it the old fashioned way */
1018                 return do_reset1(drive, 1);
1019         }
1020         /* done polling */
1021         hwgroup->polling = 0;
1022         ide_complete_drive_reset(drive, 0);
1023         return ide_stopped;
1024 }
1025
1026 /*
1027  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1028  * during an ide reset operation. If the drives have not yet responded,
1029  * and we have not yet hit our maximum waiting time, then the timer is restarted
1030  * for another 50ms.
1031  */
1032 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1033 {
1034         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1035         ide_hwif_t *hwif        = HWIF(drive);
1036         const struct ide_port_ops *port_ops = hwif->port_ops;
1037         u8 tmp;
1038         int err = 0;
1039
1040         if (port_ops && port_ops->reset_poll) {
1041                 err = port_ops->reset_poll(drive);
1042                 if (err) {
1043                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1044                                 hwif->name, drive->name);
1045                         goto out;
1046                 }
1047         }
1048
1049         tmp = hwif->read_status(hwif);
1050
1051         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1052                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1053                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1054                         /* continue polling */
1055                         return ide_started;
1056                 }
1057                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1058                 drive->failures++;
1059                 err = -EIO;
1060         } else  {
1061                 printk("%s: reset: ", hwif->name);
1062                 tmp = ide_read_error(drive);
1063
1064                 if (tmp == 1) {
1065                         printk("success\n");
1066                         drive->failures = 0;
1067                 } else {
1068                         drive->failures++;
1069                         printk("master: ");
1070                         switch (tmp & 0x7f) {
1071                                 case 1: printk("passed");
1072                                         break;
1073                                 case 2: printk("formatter device error");
1074                                         break;
1075                                 case 3: printk("sector buffer error");
1076                                         break;
1077                                 case 4: printk("ECC circuitry error");
1078                                         break;
1079                                 case 5: printk("controlling MPU error");
1080                                         break;
1081                                 default:printk("error (0x%02x?)", tmp);
1082                         }
1083                         if (tmp & 0x80)
1084                                 printk("; slave: failed");
1085                         printk("\n");
1086                         err = -EIO;
1087                 }
1088         }
1089 out:
1090         hwgroup->polling = 0;   /* done polling */
1091         ide_complete_drive_reset(drive, err);
1092         return ide_stopped;
1093 }
1094
1095 static void ide_disk_pre_reset(ide_drive_t *drive)
1096 {
1097         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1098
1099         drive->special.all = 0;
1100         drive->special.b.set_geometry = legacy;
1101         drive->special.b.recalibrate  = legacy;
1102         drive->mult_count = 0;
1103         if (!drive->keep_settings && !drive->using_dma)
1104                 drive->mult_req = 0;
1105         if (drive->mult_req != drive->mult_count)
1106                 drive->special.b.set_multmode = 1;
1107 }
1108
1109 static void pre_reset(ide_drive_t *drive)
1110 {
1111         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1112
1113         if (drive->media == ide_disk)
1114                 ide_disk_pre_reset(drive);
1115         else
1116                 drive->post_reset = 1;
1117
1118         if (drive->using_dma) {
1119                 if (drive->crc_count)
1120                         ide_check_dma_crc(drive);
1121                 else
1122                         ide_dma_off(drive);
1123         }
1124
1125         if (!drive->keep_settings) {
1126                 if (!drive->using_dma) {
1127                         drive->unmask = 0;
1128                         drive->io_32bit = 0;
1129                 }
1130                 return;
1131         }
1132
1133         if (port_ops && port_ops->pre_reset)
1134                 port_ops->pre_reset(drive);
1135
1136         if (drive->current_speed != 0xff)
1137                 drive->desired_speed = drive->current_speed;
1138         drive->current_speed = 0xff;
1139 }
1140
1141 /*
1142  * do_reset1() attempts to recover a confused drive by resetting it.
1143  * Unfortunately, resetting a disk drive actually resets all devices on
1144  * the same interface, so it can really be thought of as resetting the
1145  * interface rather than resetting the drive.
1146  *
1147  * ATAPI devices have their own reset mechanism which allows them to be
1148  * individually reset without clobbering other devices on the same interface.
1149  *
1150  * Unfortunately, the IDE interface does not generate an interrupt to let
1151  * us know when the reset operation has finished, so we must poll for this.
1152  * Equally poor, though, is the fact that this may a very long time to complete,
1153  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1154  * we set a timer to poll at 50ms intervals.
1155  */
1156 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1157 {
1158         unsigned int unit;
1159         unsigned long flags;
1160         ide_hwif_t *hwif;
1161         ide_hwgroup_t *hwgroup;
1162         struct ide_io_ports *io_ports;
1163         const struct ide_port_ops *port_ops;
1164
1165         spin_lock_irqsave(&ide_lock, flags);
1166         hwif = HWIF(drive);
1167         hwgroup = HWGROUP(drive);
1168
1169         io_ports = &hwif->io_ports;
1170
1171         /* We must not reset with running handlers */
1172         BUG_ON(hwgroup->handler != NULL);
1173
1174         /* For an ATAPI device, first try an ATAPI SRST. */
1175         if (drive->media != ide_disk && !do_not_try_atapi) {
1176                 pre_reset(drive);
1177                 SELECT_DRIVE(drive);
1178                 udelay (20);
1179                 hwif->exec_command(hwif, WIN_SRST);
1180                 ndelay(400);
1181                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1182                 hwgroup->polling = 1;
1183                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1184                 spin_unlock_irqrestore(&ide_lock, flags);
1185                 return ide_started;
1186         }
1187
1188         /*
1189          * First, reset any device state data we were maintaining
1190          * for any of the drives on this interface.
1191          */
1192         for (unit = 0; unit < MAX_DRIVES; ++unit)
1193                 pre_reset(&hwif->drives[unit]);
1194
1195         if (io_ports->ctl_addr == 0) {
1196                 spin_unlock_irqrestore(&ide_lock, flags);
1197                 ide_complete_drive_reset(drive, -ENXIO);
1198                 return ide_stopped;
1199         }
1200
1201         /*
1202          * Note that we also set nIEN while resetting the device,
1203          * to mask unwanted interrupts from the interface during the reset.
1204          * However, due to the design of PC hardware, this will cause an
1205          * immediate interrupt due to the edge transition it produces.
1206          * This single interrupt gives us a "fast poll" for drives that
1207          * recover from reset very quickly, saving us the first 50ms wait time.
1208          *
1209          * TODO: add ->softreset method and stop abusing ->set_irq
1210          */
1211         /* set SRST and nIEN */
1212         hwif->set_irq(hwif, 4);
1213         /* more than enough time */
1214         udelay(10);
1215         /* clear SRST, leave nIEN (unless device is on the quirk list) */
1216         hwif->set_irq(hwif, drive->quirk_list == 2);
1217         /* more than enough time */
1218         udelay(10);
1219         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1220         hwgroup->polling = 1;
1221         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1222
1223         /*
1224          * Some weird controller like resetting themselves to a strange
1225          * state when the disks are reset this way. At least, the Winbond
1226          * 553 documentation says that
1227          */
1228         port_ops = hwif->port_ops;
1229         if (port_ops && port_ops->resetproc)
1230                 port_ops->resetproc(drive);
1231
1232         spin_unlock_irqrestore(&ide_lock, flags);
1233         return ide_started;
1234 }
1235
1236 /*
1237  * ide_do_reset() is the entry point to the drive/interface reset code.
1238  */
1239
1240 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1241 {
1242         return do_reset1(drive, 0);
1243 }
1244
1245 EXPORT_SYMBOL(ide_do_reset);
1246
1247 /*
1248  * ide_wait_not_busy() waits for the currently selected device on the hwif
1249  * to report a non-busy status, see comments in ide_probe_port().
1250  */
1251 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1252 {
1253         u8 stat = 0;
1254
1255         while(timeout--) {
1256                 /*
1257                  * Turn this into a schedule() sleep once I'm sure
1258                  * about locking issues (2.5 work ?).
1259                  */
1260                 mdelay(1);
1261                 stat = hwif->read_status(hwif);
1262                 if ((stat & BUSY_STAT) == 0)
1263                         return 0;
1264                 /*
1265                  * Assume a value of 0xff means nothing is connected to
1266                  * the interface and it doesn't implement the pull-down
1267                  * resistor on D7.
1268                  */
1269                 if (stat == 0xff)
1270                         return -ENODEV;
1271                 touch_softlockup_watchdog();
1272                 touch_nmi_watchdog();
1273         }
1274         return -EBUSY;
1275 }
1276
1277 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1278