]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-iops.c
ide: move ide_tf_{load,read} to ide-iops.c
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static u16 ide_inw (unsigned long port)
41 {
42         return (u16) inw(port);
43 }
44
45 static void ide_outb (u8 val, unsigned long port)
46 {
47         outb(val, port);
48 }
49
50 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
51 {
52         outb(addr, port);
53 }
54
55 static void ide_outw (u16 val, unsigned long port)
56 {
57         outw(val, port);
58 }
59
60 void default_hwif_iops (ide_hwif_t *hwif)
61 {
62         hwif->OUTB      = ide_outb;
63         hwif->OUTBSYNC  = ide_outbsync;
64         hwif->OUTW      = ide_outw;
65         hwif->INB       = ide_inb;
66         hwif->INW       = ide_inw;
67 }
68
69 /*
70  *      MMIO operations, typically used for SATA controllers
71  */
72
73 static u8 ide_mm_inb (unsigned long port)
74 {
75         return (u8) readb((void __iomem *) port);
76 }
77
78 static u16 ide_mm_inw (unsigned long port)
79 {
80         return (u16) readw((void __iomem *) port);
81 }
82
83 static void ide_mm_outb (u8 value, unsigned long port)
84 {
85         writeb(value, (void __iomem *) port);
86 }
87
88 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
89 {
90         writeb(value, (void __iomem *) port);
91 }
92
93 static void ide_mm_outw (u16 value, unsigned long port)
94 {
95         writew(value, (void __iomem *) port);
96 }
97
98 void default_hwif_mmiops (ide_hwif_t *hwif)
99 {
100         hwif->OUTB      = ide_mm_outb;
101         /* Most systems will need to override OUTBSYNC, alas however
102            this one is controller specific! */
103         hwif->OUTBSYNC  = ide_mm_outbsync;
104         hwif->OUTW      = ide_mm_outw;
105         hwif->INB       = ide_mm_inb;
106         hwif->INW       = ide_mm_inw;
107 }
108
109 EXPORT_SYMBOL(default_hwif_mmiops);
110
111 void SELECT_DRIVE (ide_drive_t *drive)
112 {
113         ide_hwif_t *hwif = drive->hwif;
114         const struct ide_port_ops *port_ops = hwif->port_ops;
115
116         if (port_ops && port_ops->selectproc)
117                 port_ops->selectproc(drive);
118
119         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
120 }
121
122 void SELECT_MASK (ide_drive_t *drive, int mask)
123 {
124         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
125
126         if (port_ops && port_ops->maskproc)
127                 port_ops->maskproc(drive, mask);
128 }
129
130 void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
131 {
132         ide_hwif_t *hwif = drive->hwif;
133         struct ide_io_ports *io_ports = &hwif->io_ports;
134         struct ide_taskfile *tf = &task->tf;
135         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
136
137         if (task->tf_flags & IDE_TFLAG_FLAGGED)
138                 HIHI = 0xFF;
139
140         ide_set_irq(drive, 1);
141
142         if ((task->tf_flags & IDE_TFLAG_NO_SELECT_MASK) == 0)
143                 SELECT_MASK(drive, 0);
144
145         if (task->tf_flags & IDE_TFLAG_OUT_DATA)
146                 hwif->OUTW((tf->hob_data << 8) | tf->data, io_ports->data_addr);
147
148         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
149                 hwif->OUTB(tf->hob_feature, io_ports->feature_addr);
150         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
151                 hwif->OUTB(tf->hob_nsect, io_ports->nsect_addr);
152         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
153                 hwif->OUTB(tf->hob_lbal, io_ports->lbal_addr);
154         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
155                 hwif->OUTB(tf->hob_lbam, io_ports->lbam_addr);
156         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
157                 hwif->OUTB(tf->hob_lbah, io_ports->lbah_addr);
158
159         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
160                 hwif->OUTB(tf->feature, io_ports->feature_addr);
161         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
162                 hwif->OUTB(tf->nsect, io_ports->nsect_addr);
163         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
164                 hwif->OUTB(tf->lbal, io_ports->lbal_addr);
165         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
166                 hwif->OUTB(tf->lbam, io_ports->lbam_addr);
167         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
168                 hwif->OUTB(tf->lbah, io_ports->lbah_addr);
169
170         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
171                 hwif->OUTB((tf->device & HIHI) | drive->select.all,
172                            io_ports->device_addr);
173 }
174
175 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
176 {
177         ide_hwif_t *hwif = drive->hwif;
178         struct ide_io_ports *io_ports = &hwif->io_ports;
179         struct ide_taskfile *tf = &task->tf;
180
181         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
182                 u16 data = hwif->INW(io_ports->data_addr);
183
184                 tf->data = data & 0xff;
185                 tf->hob_data = (data >> 8) & 0xff;
186         }
187
188         /* be sure we're looking at the low order bits */
189         hwif->OUTB(drive->ctl & ~0x80, io_ports->ctl_addr);
190
191         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
192                 tf->nsect  = hwif->INB(io_ports->nsect_addr);
193         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
194                 tf->lbal   = hwif->INB(io_ports->lbal_addr);
195         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
196                 tf->lbam   = hwif->INB(io_ports->lbam_addr);
197         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
198                 tf->lbah   = hwif->INB(io_ports->lbah_addr);
199         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
200                 tf->device = hwif->INB(io_ports->device_addr);
201
202         if (task->tf_flags & IDE_TFLAG_LBA48) {
203                 hwif->OUTB(drive->ctl | 0x80, io_ports->ctl_addr);
204
205                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
206                         tf->hob_feature = hwif->INB(io_ports->feature_addr);
207                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
208                         tf->hob_nsect   = hwif->INB(io_ports->nsect_addr);
209                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
210                         tf->hob_lbal    = hwif->INB(io_ports->lbal_addr);
211                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
212                         tf->hob_lbam    = hwif->INB(io_ports->lbam_addr);
213                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
214                         tf->hob_lbah    = hwif->INB(io_ports->lbah_addr);
215         }
216 }
217
218 /*
219  * Some localbus EIDE interfaces require a special access sequence
220  * when using 32-bit I/O instructions to transfer data.  We call this
221  * the "vlb_sync" sequence, which consists of three successive reads
222  * of the sector count register location, with interrupts disabled
223  * to ensure that the reads all happen together.
224  */
225 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
226 {
227         (void) HWIF(drive)->INB(port);
228         (void) HWIF(drive)->INB(port);
229         (void) HWIF(drive)->INB(port);
230 }
231
232 /*
233  * This is used for most PIO data transfers *from* the IDE interface
234  *
235  * These routines will round up any request for an odd number of bytes,
236  * so if an odd len is specified, be sure that there's at least one
237  * extra byte allocated for the buffer.
238  */
239 static void ata_input_data(ide_drive_t *drive, struct request *rq,
240                            void *buf, unsigned int len)
241 {
242         ide_hwif_t *hwif = drive->hwif;
243         struct ide_io_ports *io_ports = &hwif->io_ports;
244         unsigned long data_addr = io_ports->data_addr;
245         u8 io_32bit = drive->io_32bit;
246         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
247
248         len++;
249
250         if (io_32bit) {
251                 unsigned long uninitialized_var(flags);
252
253                 if (io_32bit & 2) {
254                         local_irq_save(flags);
255                         ata_vlb_sync(drive, io_ports->nsect_addr);
256                 }
257
258                 if (mmio)
259                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
260                 else
261                         insl(data_addr, buf, len / 4);
262
263                 if (io_32bit & 2)
264                         local_irq_restore(flags);
265
266                 if ((len & 3) >= 2) {
267                         if (mmio)
268                                 __ide_mm_insw((void __iomem *)data_addr,
269                                                 (u8 *)buf + (len & ~3), 1);
270                         else
271                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
272                 }
273         } else {
274                 if (mmio)
275                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
276                 else
277                         insw(data_addr, buf, len / 2);
278         }
279 }
280
281 /*
282  * This is used for most PIO data transfers *to* the IDE interface
283  */
284 static void ata_output_data(ide_drive_t *drive, struct request *rq,
285                             void *buf, unsigned int len)
286 {
287         ide_hwif_t *hwif = drive->hwif;
288         struct ide_io_ports *io_ports = &hwif->io_ports;
289         unsigned long data_addr = io_ports->data_addr;
290         u8 io_32bit = drive->io_32bit;
291         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
292
293         if (io_32bit) {
294                 unsigned long uninitialized_var(flags);
295
296                 if (io_32bit & 2) {
297                         local_irq_save(flags);
298                         ata_vlb_sync(drive, io_ports->nsect_addr);
299                 }
300
301                 if (mmio)
302                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
303                 else
304                         outsl(data_addr, buf, len / 4);
305
306                 if (io_32bit & 2)
307                         local_irq_restore(flags);
308
309                 if ((len & 3) >= 2) {
310                         if (mmio)
311                                 __ide_mm_outsw((void __iomem *)data_addr,
312                                                  (u8 *)buf + (len & ~3), 1);
313                         else
314                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
315                 }
316         } else {
317                 if (mmio)
318                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
319                 else
320                         outsw(data_addr, buf, len / 2);
321         }
322 }
323
324 void default_hwif_transport(ide_hwif_t *hwif)
325 {
326         hwif->input_data  = ata_input_data;
327         hwif->output_data = ata_output_data;
328 }
329
330 void ide_fix_driveid (struct hd_driveid *id)
331 {
332 #ifndef __LITTLE_ENDIAN
333 # ifdef __BIG_ENDIAN
334         int i;
335         u16 *stringcast;
336
337         id->config         = __le16_to_cpu(id->config);
338         id->cyls           = __le16_to_cpu(id->cyls);
339         id->reserved2      = __le16_to_cpu(id->reserved2);
340         id->heads          = __le16_to_cpu(id->heads);
341         id->track_bytes    = __le16_to_cpu(id->track_bytes);
342         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
343         id->sectors        = __le16_to_cpu(id->sectors);
344         id->vendor0        = __le16_to_cpu(id->vendor0);
345         id->vendor1        = __le16_to_cpu(id->vendor1);
346         id->vendor2        = __le16_to_cpu(id->vendor2);
347         stringcast = (u16 *)&id->serial_no[0];
348         for (i = 0; i < (20/2); i++)
349                 stringcast[i] = __le16_to_cpu(stringcast[i]);
350         id->buf_type       = __le16_to_cpu(id->buf_type);
351         id->buf_size       = __le16_to_cpu(id->buf_size);
352         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
353         stringcast = (u16 *)&id->fw_rev[0];
354         for (i = 0; i < (8/2); i++)
355                 stringcast[i] = __le16_to_cpu(stringcast[i]);
356         stringcast = (u16 *)&id->model[0];
357         for (i = 0; i < (40/2); i++)
358                 stringcast[i] = __le16_to_cpu(stringcast[i]);
359         id->dword_io       = __le16_to_cpu(id->dword_io);
360         id->reserved50     = __le16_to_cpu(id->reserved50);
361         id->field_valid    = __le16_to_cpu(id->field_valid);
362         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
363         id->cur_heads      = __le16_to_cpu(id->cur_heads);
364         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
365         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
366         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
367         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
368         id->dma_1word      = __le16_to_cpu(id->dma_1word);
369         id->dma_mword      = __le16_to_cpu(id->dma_mword);
370         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
371         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
372         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
373         id->eide_pio       = __le16_to_cpu(id->eide_pio);
374         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
375         for (i = 0; i < 2; ++i)
376                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
377         for (i = 0; i < 4; ++i)
378                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
379         id->queue_depth    = __le16_to_cpu(id->queue_depth);
380         for (i = 0; i < 4; ++i)
381                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
382         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
383         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
384         id->command_set_1  = __le16_to_cpu(id->command_set_1);
385         id->command_set_2  = __le16_to_cpu(id->command_set_2);
386         id->cfsse          = __le16_to_cpu(id->cfsse);
387         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
388         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
389         id->csf_default    = __le16_to_cpu(id->csf_default);
390         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
391         id->trseuc         = __le16_to_cpu(id->trseuc);
392         id->trsEuc         = __le16_to_cpu(id->trsEuc);
393         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
394         id->mprc           = __le16_to_cpu(id->mprc);
395         id->hw_config      = __le16_to_cpu(id->hw_config);
396         id->acoustic       = __le16_to_cpu(id->acoustic);
397         id->msrqs          = __le16_to_cpu(id->msrqs);
398         id->sxfert         = __le16_to_cpu(id->sxfert);
399         id->sal            = __le16_to_cpu(id->sal);
400         id->spg            = __le32_to_cpu(id->spg);
401         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
402         for (i = 0; i < 22; i++)
403                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
404         id->last_lun       = __le16_to_cpu(id->last_lun);
405         id->word127        = __le16_to_cpu(id->word127);
406         id->dlf            = __le16_to_cpu(id->dlf);
407         id->csfo           = __le16_to_cpu(id->csfo);
408         for (i = 0; i < 26; i++)
409                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
410         id->word156        = __le16_to_cpu(id->word156);
411         for (i = 0; i < 3; i++)
412                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
413         id->cfa_power      = __le16_to_cpu(id->cfa_power);
414         for (i = 0; i < 14; i++)
415                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
416         for (i = 0; i < 31; i++)
417                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
418         for (i = 0; i < 48; i++)
419                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
420         id->integrity_word  = __le16_to_cpu(id->integrity_word);
421 # else
422 #  error "Please fix <asm/byteorder.h>"
423 # endif
424 #endif
425 }
426
427 /*
428  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
429  * removing leading/trailing blanks and compressing internal blanks.
430  * It is primarily used to tidy up the model name/number fields as
431  * returned by the WIN_[P]IDENTIFY commands.
432  */
433
434 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
435 {
436         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
437
438         if (byteswap) {
439                 /* convert from big-endian to host byte order */
440                 for (p = end ; p != s;) {
441                         unsigned short *pp = (unsigned short *) (p -= 2);
442                         *pp = ntohs(*pp);
443                 }
444         }
445         /* strip leading blanks */
446         while (s != end && *s == ' ')
447                 ++s;
448         /* compress internal blanks and strip trailing blanks */
449         while (s != end && *s) {
450                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
451                         *p++ = *(s-1);
452         }
453         /* wipe out trailing garbage */
454         while (p != end)
455                 *p++ = '\0';
456 }
457
458 EXPORT_SYMBOL(ide_fixstring);
459
460 /*
461  * Needed for PCI irq sharing
462  */
463 int drive_is_ready (ide_drive_t *drive)
464 {
465         ide_hwif_t *hwif        = HWIF(drive);
466         u8 stat                 = 0;
467
468         if (drive->waiting_for_dma)
469                 return hwif->dma_ops->dma_test_irq(drive);
470
471 #if 0
472         /* need to guarantee 400ns since last command was issued */
473         udelay(1);
474 #endif
475
476         /*
477          * We do a passive status test under shared PCI interrupts on
478          * cards that truly share the ATA side interrupt, but may also share
479          * an interrupt with another pci card/device.  We make no assumptions
480          * about possible isa-pnp and pci-pnp issues yet.
481          */
482         if (hwif->io_ports.ctl_addr)
483                 stat = ide_read_altstatus(drive);
484         else
485                 /* Note: this may clear a pending IRQ!! */
486                 stat = ide_read_status(drive);
487
488         if (stat & BUSY_STAT)
489                 /* drive busy:  definitely not interrupting */
490                 return 0;
491
492         /* drive ready: *might* be interrupting */
493         return 1;
494 }
495
496 EXPORT_SYMBOL(drive_is_ready);
497
498 /*
499  * This routine busy-waits for the drive status to be not "busy".
500  * It then checks the status for all of the "good" bits and none
501  * of the "bad" bits, and if all is okay it returns 0.  All other
502  * cases return error -- caller may then invoke ide_error().
503  *
504  * This routine should get fixed to not hog the cpu during extra long waits..
505  * That could be done by busy-waiting for the first jiffy or two, and then
506  * setting a timer to wake up at half second intervals thereafter,
507  * until timeout is achieved, before timing out.
508  */
509 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
510 {
511         unsigned long flags;
512         int i;
513         u8 stat;
514
515         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
516         stat = ide_read_status(drive);
517
518         if (stat & BUSY_STAT) {
519                 local_irq_set(flags);
520                 timeout += jiffies;
521                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
522                         if (time_after(jiffies, timeout)) {
523                                 /*
524                                  * One last read after the timeout in case
525                                  * heavy interrupt load made us not make any
526                                  * progress during the timeout..
527                                  */
528                                 stat = ide_read_status(drive);
529                                 if (!(stat & BUSY_STAT))
530                                         break;
531
532                                 local_irq_restore(flags);
533                                 *rstat = stat;
534                                 return -EBUSY;
535                         }
536                 }
537                 local_irq_restore(flags);
538         }
539         /*
540          * Allow status to settle, then read it again.
541          * A few rare drives vastly violate the 400ns spec here,
542          * so we'll wait up to 10usec for a "good" status
543          * rather than expensively fail things immediately.
544          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
545          */
546         for (i = 0; i < 10; i++) {
547                 udelay(1);
548                 stat = ide_read_status(drive);
549
550                 if (OK_STAT(stat, good, bad)) {
551                         *rstat = stat;
552                         return 0;
553                 }
554         }
555         *rstat = stat;
556         return -EFAULT;
557 }
558
559 /*
560  * In case of error returns error value after doing "*startstop = ide_error()".
561  * The caller should return the updated value of "startstop" in this case,
562  * "startstop" is unchanged when the function returns 0.
563  */
564 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
565 {
566         int err;
567         u8 stat;
568
569         /* bail early if we've exceeded max_failures */
570         if (drive->max_failures && (drive->failures > drive->max_failures)) {
571                 *startstop = ide_stopped;
572                 return 1;
573         }
574
575         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
576
577         if (err) {
578                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
579                 *startstop = ide_error(drive, s, stat);
580         }
581
582         return err;
583 }
584
585 EXPORT_SYMBOL(ide_wait_stat);
586
587 /**
588  *      ide_in_drive_list       -       look for drive in black/white list
589  *      @id: drive identifier
590  *      @drive_table: list to inspect
591  *
592  *      Look for a drive in the blacklist and the whitelist tables
593  *      Returns 1 if the drive is found in the table.
594  */
595
596 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
597 {
598         for ( ; drive_table->id_model; drive_table++)
599                 if ((!strcmp(drive_table->id_model, id->model)) &&
600                     (!drive_table->id_firmware ||
601                      strstr(id->fw_rev, drive_table->id_firmware)))
602                         return 1;
603         return 0;
604 }
605
606 EXPORT_SYMBOL_GPL(ide_in_drive_list);
607
608 /*
609  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
610  * We list them here and depend on the device side cable detection for them.
611  *
612  * Some optical devices with the buggy firmwares have the same problem.
613  */
614 static const struct drive_list_entry ivb_list[] = {
615         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
616         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
617         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
618         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
619         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
620         { NULL                          , NULL          }
621 };
622
623 /*
624  *  All hosts that use the 80c ribbon must use!
625  *  The name is derived from upper byte of word 93 and the 80c ribbon.
626  */
627 u8 eighty_ninty_three (ide_drive_t *drive)
628 {
629         ide_hwif_t *hwif = drive->hwif;
630         struct hd_driveid *id = drive->id;
631         int ivb = ide_in_drive_list(id, ivb_list);
632
633         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
634                 return 1;
635
636         if (ivb)
637                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
638                                   drive->name);
639
640         if (ide_dev_is_sata(id) && !ivb)
641                 return 1;
642
643         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
644                 goto no_80w;
645
646         /*
647          * FIXME:
648          * - change master/slave IDENTIFY order
649          * - force bit13 (80c cable present) check also for !ivb devices
650          *   (unless the slave device is pre-ATA3)
651          */
652         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
653                 return 1;
654
655 no_80w:
656         if (drive->udma33_warned == 1)
657                 return 0;
658
659         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
660                             "limiting max speed to UDMA33\n",
661                             drive->name,
662                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
663
664         drive->udma33_warned = 1;
665
666         return 0;
667 }
668
669 int ide_driveid_update(ide_drive_t *drive)
670 {
671         ide_hwif_t *hwif = drive->hwif;
672         struct hd_driveid *id;
673         unsigned long timeout, flags;
674         u8 stat;
675
676         /*
677          * Re-read drive->id for possible DMA mode
678          * change (copied from ide-probe.c)
679          */
680
681         SELECT_MASK(drive, 1);
682         ide_set_irq(drive, 1);
683         msleep(50);
684         hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
685         timeout = jiffies + WAIT_WORSTCASE;
686         do {
687                 if (time_after(jiffies, timeout)) {
688                         SELECT_MASK(drive, 0);
689                         return 0;       /* drive timed-out */
690                 }
691
692                 msleep(50);     /* give drive a breather */
693                 stat = ide_read_altstatus(drive);
694         } while (stat & BUSY_STAT);
695
696         msleep(50);     /* wait for IRQ and DRQ_STAT */
697         stat = ide_read_status(drive);
698
699         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
700                 SELECT_MASK(drive, 0);
701                 printk("%s: CHECK for good STATUS\n", drive->name);
702                 return 0;
703         }
704         local_irq_save(flags);
705         SELECT_MASK(drive, 0);
706         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
707         if (!id) {
708                 local_irq_restore(flags);
709                 return 0;
710         }
711         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
712         (void)ide_read_status(drive);   /* clear drive IRQ */
713         local_irq_enable();
714         local_irq_restore(flags);
715         ide_fix_driveid(id);
716         if (id) {
717                 drive->id->dma_ultra = id->dma_ultra;
718                 drive->id->dma_mword = id->dma_mword;
719                 drive->id->dma_1word = id->dma_1word;
720                 /* anything more ? */
721                 kfree(id);
722
723                 if (drive->using_dma && ide_id_dma_bug(drive))
724                         ide_dma_off(drive);
725         }
726
727         return 1;
728 }
729
730 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
731 {
732         ide_hwif_t *hwif = drive->hwif;
733         struct ide_io_ports *io_ports = &hwif->io_ports;
734         int error = 0;
735         u8 stat;
736
737 //      while (HWGROUP(drive)->busy)
738 //              msleep(50);
739
740 #ifdef CONFIG_BLK_DEV_IDEDMA
741         if (hwif->dma_ops)      /* check if host supports DMA */
742                 hwif->dma_ops->dma_host_set(drive, 0);
743 #endif
744
745         /* Skip setting PIO flow-control modes on pre-EIDE drives */
746         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
747                 goto skip;
748
749         /*
750          * Don't use ide_wait_cmd here - it will
751          * attempt to set_geometry and recalibrate,
752          * but for some reason these don't work at
753          * this point (lost interrupt).
754          */
755         /*
756          * Select the drive, and issue the SETFEATURES command
757          */
758         disable_irq_nosync(hwif->irq);
759         
760         /*
761          *      FIXME: we race against the running IRQ here if
762          *      this is called from non IRQ context. If we use
763          *      disable_irq() we hang on the error path. Work
764          *      is needed.
765          */
766          
767         udelay(1);
768         SELECT_DRIVE(drive);
769         SELECT_MASK(drive, 0);
770         udelay(1);
771         ide_set_irq(drive, 0);
772         hwif->OUTB(speed, io_ports->nsect_addr);
773         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
774         hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
775         if (drive->quirk_list == 2)
776                 ide_set_irq(drive, 1);
777
778         error = __ide_wait_stat(drive, drive->ready_stat,
779                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
780                                 WAIT_CMD, &stat);
781
782         SELECT_MASK(drive, 0);
783
784         enable_irq(hwif->irq);
785
786         if (error) {
787                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
788                 return error;
789         }
790
791         drive->id->dma_ultra &= ~0xFF00;
792         drive->id->dma_mword &= ~0x0F00;
793         drive->id->dma_1word &= ~0x0F00;
794
795  skip:
796 #ifdef CONFIG_BLK_DEV_IDEDMA
797         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
798             drive->using_dma)
799                 hwif->dma_ops->dma_host_set(drive, 1);
800         else if (hwif->dma_ops) /* check if host supports DMA */
801                 ide_dma_off_quietly(drive);
802 #endif
803
804         switch(speed) {
805                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
806                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
807                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
808                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
809                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
810                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
811                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
812                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
813                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
814                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
815                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
816                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
817                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
818                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
819                 default: break;
820         }
821         if (!drive->init_speed)
822                 drive->init_speed = speed;
823         drive->current_speed = speed;
824         return error;
825 }
826
827 /*
828  * This should get invoked any time we exit the driver to
829  * wait for an interrupt response from a drive.  handler() points
830  * at the appropriate code to handle the next interrupt, and a
831  * timer is started to prevent us from waiting forever in case
832  * something goes wrong (see the ide_timer_expiry() handler later on).
833  *
834  * See also ide_execute_command
835  */
836 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
837                       unsigned int timeout, ide_expiry_t *expiry)
838 {
839         ide_hwgroup_t *hwgroup = HWGROUP(drive);
840
841         BUG_ON(hwgroup->handler);
842         hwgroup->handler        = handler;
843         hwgroup->expiry         = expiry;
844         hwgroup->timer.expires  = jiffies + timeout;
845         hwgroup->req_gen_timer  = hwgroup->req_gen;
846         add_timer(&hwgroup->timer);
847 }
848
849 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
850                       unsigned int timeout, ide_expiry_t *expiry)
851 {
852         unsigned long flags;
853         spin_lock_irqsave(&ide_lock, flags);
854         __ide_set_handler(drive, handler, timeout, expiry);
855         spin_unlock_irqrestore(&ide_lock, flags);
856 }
857
858 EXPORT_SYMBOL(ide_set_handler);
859  
860 /**
861  *      ide_execute_command     -       execute an IDE command
862  *      @drive: IDE drive to issue the command against
863  *      @command: command byte to write
864  *      @handler: handler for next phase
865  *      @timeout: timeout for command
866  *      @expiry:  handler to run on timeout
867  *
868  *      Helper function to issue an IDE command. This handles the
869  *      atomicity requirements, command timing and ensures that the 
870  *      handler and IRQ setup do not race. All IDE command kick off
871  *      should go via this function or do equivalent locking.
872  */
873
874 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
875                          unsigned timeout, ide_expiry_t *expiry)
876 {
877         unsigned long flags;
878         ide_hwif_t *hwif = HWIF(drive);
879
880         spin_lock_irqsave(&ide_lock, flags);
881         __ide_set_handler(drive, handler, timeout, expiry);
882         hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
883         /*
884          * Drive takes 400nS to respond, we must avoid the IRQ being
885          * serviced before that.
886          *
887          * FIXME: we could skip this delay with care on non shared devices
888          */
889         ndelay(400);
890         spin_unlock_irqrestore(&ide_lock, flags);
891 }
892 EXPORT_SYMBOL(ide_execute_command);
893
894 void ide_execute_pkt_cmd(ide_drive_t *drive)
895 {
896         ide_hwif_t *hwif = drive->hwif;
897         unsigned long flags;
898
899         spin_lock_irqsave(&ide_lock, flags);
900         hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
901         ndelay(400);
902         spin_unlock_irqrestore(&ide_lock, flags);
903 }
904 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
905
906 /* needed below */
907 static ide_startstop_t do_reset1 (ide_drive_t *, int);
908
909 /*
910  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
911  * during an atapi drive reset operation. If the drive has not yet responded,
912  * and we have not yet hit our maximum waiting time, then the timer is restarted
913  * for another 50ms.
914  */
915 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
916 {
917         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
918         u8 stat;
919
920         SELECT_DRIVE(drive);
921         udelay (10);
922         stat = ide_read_status(drive);
923
924         if (OK_STAT(stat, 0, BUSY_STAT))
925                 printk("%s: ATAPI reset complete\n", drive->name);
926         else {
927                 if (time_before(jiffies, hwgroup->poll_timeout)) {
928                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
929                         /* continue polling */
930                         return ide_started;
931                 }
932                 /* end of polling */
933                 hwgroup->polling = 0;
934                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
935                                 drive->name, stat);
936                 /* do it the old fashioned way */
937                 return do_reset1(drive, 1);
938         }
939         /* done polling */
940         hwgroup->polling = 0;
941         hwgroup->resetting = 0;
942         return ide_stopped;
943 }
944
945 /*
946  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
947  * during an ide reset operation. If the drives have not yet responded,
948  * and we have not yet hit our maximum waiting time, then the timer is restarted
949  * for another 50ms.
950  */
951 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
952 {
953         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
954         ide_hwif_t *hwif        = HWIF(drive);
955         const struct ide_port_ops *port_ops = hwif->port_ops;
956         u8 tmp;
957
958         if (port_ops && port_ops->reset_poll) {
959                 if (port_ops->reset_poll(drive)) {
960                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
961                                 hwif->name, drive->name);
962                         return ide_stopped;
963                 }
964         }
965
966         tmp = ide_read_status(drive);
967
968         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
969                 if (time_before(jiffies, hwgroup->poll_timeout)) {
970                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
971                         /* continue polling */
972                         return ide_started;
973                 }
974                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
975                 drive->failures++;
976         } else  {
977                 printk("%s: reset: ", hwif->name);
978                 tmp = ide_read_error(drive);
979
980                 if (tmp == 1) {
981                         printk("success\n");
982                         drive->failures = 0;
983                 } else {
984                         drive->failures++;
985                         printk("master: ");
986                         switch (tmp & 0x7f) {
987                                 case 1: printk("passed");
988                                         break;
989                                 case 2: printk("formatter device error");
990                                         break;
991                                 case 3: printk("sector buffer error");
992                                         break;
993                                 case 4: printk("ECC circuitry error");
994                                         break;
995                                 case 5: printk("controlling MPU error");
996                                         break;
997                                 default:printk("error (0x%02x?)", tmp);
998                         }
999                         if (tmp & 0x80)
1000                                 printk("; slave: failed");
1001                         printk("\n");
1002                 }
1003         }
1004         hwgroup->polling = 0;   /* done polling */
1005         hwgroup->resetting = 0; /* done reset attempt */
1006         return ide_stopped;
1007 }
1008
1009 static void ide_disk_pre_reset(ide_drive_t *drive)
1010 {
1011         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1012
1013         drive->special.all = 0;
1014         drive->special.b.set_geometry = legacy;
1015         drive->special.b.recalibrate  = legacy;
1016         drive->mult_count = 0;
1017         if (!drive->keep_settings && !drive->using_dma)
1018                 drive->mult_req = 0;
1019         if (drive->mult_req != drive->mult_count)
1020                 drive->special.b.set_multmode = 1;
1021 }
1022
1023 static void pre_reset(ide_drive_t *drive)
1024 {
1025         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1026
1027         if (drive->media == ide_disk)
1028                 ide_disk_pre_reset(drive);
1029         else
1030                 drive->post_reset = 1;
1031
1032         if (drive->using_dma) {
1033                 if (drive->crc_count)
1034                         ide_check_dma_crc(drive);
1035                 else
1036                         ide_dma_off(drive);
1037         }
1038
1039         if (!drive->keep_settings) {
1040                 if (!drive->using_dma) {
1041                         drive->unmask = 0;
1042                         drive->io_32bit = 0;
1043                 }
1044                 return;
1045         }
1046
1047         if (port_ops && port_ops->pre_reset)
1048                 port_ops->pre_reset(drive);
1049
1050         if (drive->current_speed != 0xff)
1051                 drive->desired_speed = drive->current_speed;
1052         drive->current_speed = 0xff;
1053 }
1054
1055 /*
1056  * do_reset1() attempts to recover a confused drive by resetting it.
1057  * Unfortunately, resetting a disk drive actually resets all devices on
1058  * the same interface, so it can really be thought of as resetting the
1059  * interface rather than resetting the drive.
1060  *
1061  * ATAPI devices have their own reset mechanism which allows them to be
1062  * individually reset without clobbering other devices on the same interface.
1063  *
1064  * Unfortunately, the IDE interface does not generate an interrupt to let
1065  * us know when the reset operation has finished, so we must poll for this.
1066  * Equally poor, though, is the fact that this may a very long time to complete,
1067  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1068  * we set a timer to poll at 50ms intervals.
1069  */
1070 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1071 {
1072         unsigned int unit;
1073         unsigned long flags;
1074         ide_hwif_t *hwif;
1075         ide_hwgroup_t *hwgroup;
1076         struct ide_io_ports *io_ports;
1077         const struct ide_port_ops *port_ops;
1078         u8 ctl;
1079
1080         spin_lock_irqsave(&ide_lock, flags);
1081         hwif = HWIF(drive);
1082         hwgroup = HWGROUP(drive);
1083
1084         io_ports = &hwif->io_ports;
1085
1086         /* We must not reset with running handlers */
1087         BUG_ON(hwgroup->handler != NULL);
1088
1089         /* For an ATAPI device, first try an ATAPI SRST. */
1090         if (drive->media != ide_disk && !do_not_try_atapi) {
1091                 hwgroup->resetting = 1;
1092                 pre_reset(drive);
1093                 SELECT_DRIVE(drive);
1094                 udelay (20);
1095                 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1096                 ndelay(400);
1097                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1098                 hwgroup->polling = 1;
1099                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1100                 spin_unlock_irqrestore(&ide_lock, flags);
1101                 return ide_started;
1102         }
1103
1104         /*
1105          * First, reset any device state data we were maintaining
1106          * for any of the drives on this interface.
1107          */
1108         for (unit = 0; unit < MAX_DRIVES; ++unit)
1109                 pre_reset(&hwif->drives[unit]);
1110
1111         if (io_ports->ctl_addr == 0) {
1112                 spin_unlock_irqrestore(&ide_lock, flags);
1113                 return ide_stopped;
1114         }
1115
1116         hwgroup->resetting = 1;
1117         /*
1118          * Note that we also set nIEN while resetting the device,
1119          * to mask unwanted interrupts from the interface during the reset.
1120          * However, due to the design of PC hardware, this will cause an
1121          * immediate interrupt due to the edge transition it produces.
1122          * This single interrupt gives us a "fast poll" for drives that
1123          * recover from reset very quickly, saving us the first 50ms wait time.
1124          */
1125         /* set SRST and nIEN */
1126         hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1127         /* more than enough time */
1128         udelay(10);
1129         if (drive->quirk_list == 2)
1130                 ctl = drive->ctl;       /* clear SRST and nIEN */
1131         else
1132                 ctl = drive->ctl | 2;   /* clear SRST, leave nIEN */
1133         hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1134         /* more than enough time */
1135         udelay(10);
1136         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1137         hwgroup->polling = 1;
1138         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1139
1140         /*
1141          * Some weird controller like resetting themselves to a strange
1142          * state when the disks are reset this way. At least, the Winbond
1143          * 553 documentation says that
1144          */
1145         port_ops = hwif->port_ops;
1146         if (port_ops && port_ops->resetproc)
1147                 port_ops->resetproc(drive);
1148
1149         spin_unlock_irqrestore(&ide_lock, flags);
1150         return ide_started;
1151 }
1152
1153 /*
1154  * ide_do_reset() is the entry point to the drive/interface reset code.
1155  */
1156
1157 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1158 {
1159         return do_reset1(drive, 0);
1160 }
1161
1162 EXPORT_SYMBOL(ide_do_reset);
1163
1164 /*
1165  * ide_wait_not_busy() waits for the currently selected device on the hwif
1166  * to report a non-busy status, see comments in ide_probe_port().
1167  */
1168 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1169 {
1170         u8 stat = 0;
1171
1172         while(timeout--) {
1173                 /*
1174                  * Turn this into a schedule() sleep once I'm sure
1175                  * about locking issues (2.5 work ?).
1176                  */
1177                 mdelay(1);
1178                 stat = hwif->INB(hwif->io_ports.status_addr);
1179                 if ((stat & BUSY_STAT) == 0)
1180                         return 0;
1181                 /*
1182                  * Assume a value of 0xff means nothing is connected to
1183                  * the interface and it doesn't implement the pull-down
1184                  * resistor on D7.
1185                  */
1186                 if (stat == 0xff)
1187                         return -ENODEV;
1188                 touch_softlockup_watchdog();
1189                 touch_nmi_watchdog();
1190         }
1191         return -EBUSY;
1192 }
1193
1194 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1195