]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-tape.c
ide-tape: remove dead USE_IOTRACE code
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-tape.c
1 /*
2  * linux/drivers/ide/ide-tape.c         Version 1.19    Nov, 2003
3  *
4  * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
5  *
6  * $Header$
7  *
8  * This driver was constructed as a student project in the software laboratory
9  * of the faculty of electrical engineering in the Technion - Israel's
10  * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11  *
12  * It is hereby placed under the terms of the GNU general public license.
13  * (See linux/COPYING).
14  */
15  
16 /*
17  * IDE ATAPI streaming tape driver.
18  *
19  * This driver is a part of the Linux ide driver and works in co-operation
20  * with linux/drivers/block/ide.c.
21  *
22  * The driver, in co-operation with ide.c, basically traverses the 
23  * request-list for the block device interface. The character device
24  * interface, on the other hand, creates new requests, adds them
25  * to the request-list of the block device, and waits for their completion.
26  *
27  * Pipelined operation mode is now supported on both reads and writes.
28  *
29  * The block device major and minor numbers are determined from the
30  * tape's relative position in the ide interfaces, as explained in ide.c.
31  *
32  * The character device interface consists of the following devices:
33  *
34  * ht0          major 37, minor 0       first  IDE tape, rewind on close.
35  * ht1          major 37, minor 1       second IDE tape, rewind on close.
36  * ...
37  * nht0         major 37, minor 128     first  IDE tape, no rewind on close.
38  * nht1         major 37, minor 129     second IDE tape, no rewind on close.
39  * ...
40  *
41  * Run linux/scripts/MAKEDEV.ide to create the above entries.
42  *
43  * The general magnetic tape commands compatible interface, as defined by
44  * include/linux/mtio.h, is accessible through the character device.
45  *
46  * General ide driver configuration options, such as the interrupt-unmask
47  * flag, can be configured by issuing an ioctl to the block device interface,
48  * as any other ide device.
49  *
50  * Our own ide-tape ioctl's can be issued to either the block device or
51  * the character device interface.
52  *
53  * Maximal throughput with minimal bus load will usually be achieved in the
54  * following scenario:
55  *
56  *      1.      ide-tape is operating in the pipelined operation mode.
57  *      2.      No buffering is performed by the user backup program.
58  *
59  * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
60  * 
61  * Ver 0.1   Nov  1 95   Pre-working code :-)
62  * Ver 0.2   Nov 23 95   A short backup (few megabytes) and restore procedure
63  *                        was successful ! (Using tar cvf ... on the block
64  *                        device interface).
65  *                       A longer backup resulted in major swapping, bad
66  *                        overall Linux performance and eventually failed as
67  *                        we received non serial read-ahead requests from the
68  *                        buffer cache.
69  * Ver 0.3   Nov 28 95   Long backups are now possible, thanks to the
70  *                        character device interface. Linux's responsiveness
71  *                        and performance doesn't seem to be much affected
72  *                        from the background backup procedure.
73  *                       Some general mtio.h magnetic tape operations are
74  *                        now supported by our character device. As a result,
75  *                        popular tape utilities are starting to work with
76  *                        ide tapes :-)
77  *                       The following configurations were tested:
78  *                              1. An IDE ATAPI TAPE shares the same interface
79  *                                 and irq with an IDE ATAPI CDROM.
80  *                              2. An IDE ATAPI TAPE shares the same interface
81  *                                 and irq with a normal IDE disk.
82  *                        Both configurations seemed to work just fine !
83  *                        However, to be on the safe side, it is meanwhile
84  *                        recommended to give the IDE TAPE its own interface
85  *                        and irq.
86  *                       The one thing which needs to be done here is to
87  *                        add a "request postpone" feature to ide.c,
88  *                        so that we won't have to wait for the tape to finish
89  *                        performing a long media access (DSC) request (such
90  *                        as a rewind) before we can access the other device
91  *                        on the same interface. This effect doesn't disturb
92  *                        normal operation most of the time because read/write
93  *                        requests are relatively fast, and once we are
94  *                        performing one tape r/w request, a lot of requests
95  *                        from the other device can be queued and ide.c will
96  *                        service all of them after this single tape request.
97  * Ver 1.0   Dec 11 95   Integrated into Linux 1.3.46 development tree.
98  *                       On each read / write request, we now ask the drive
99  *                        if we can transfer a constant number of bytes
100  *                        (a parameter of the drive) only to its buffers,
101  *                        without causing actual media access. If we can't,
102  *                        we just wait until we can by polling the DSC bit.
103  *                        This ensures that while we are not transferring
104  *                        more bytes than the constant referred to above, the
105  *                        interrupt latency will not become too high and
106  *                        we won't cause an interrupt timeout, as happened
107  *                        occasionally in the previous version.
108  *                       While polling for DSC, the current request is
109  *                        postponed and ide.c is free to handle requests from
110  *                        the other device. This is handled transparently to
111  *                        ide.c. The hwgroup locking method which was used
112  *                        in the previous version was removed.
113  *                       Use of new general features which are provided by
114  *                        ide.c for use with atapi devices.
115  *                        (Programming done by Mark Lord)
116  *                       Few potential bug fixes (Again, suggested by Mark)
117  *                       Single character device data transfers are now
118  *                        not limited in size, as they were before.
119  *                       We are asking the tape about its recommended
120  *                        transfer unit and send a larger data transfer
121  *                        as several transfers of the above size.
122  *                        For best results, use an integral number of this
123  *                        basic unit (which is shown during driver
124  *                        initialization). I will soon add an ioctl to get
125  *                        this important parameter.
126  *                       Our data transfer buffer is allocated on startup,
127  *                        rather than before each data transfer. This should
128  *                        ensure that we will indeed have a data buffer.
129  * Ver 1.1   Dec 14 95   Fixed random problems which occurred when the tape
130  *                        shared an interface with another device.
131  *                        (poll_for_dsc was a complete mess).
132  *                       Removed some old (non-active) code which had
133  *                        to do with supporting buffer cache originated
134  *                        requests.
135  *                       The block device interface can now be opened, so
136  *                        that general ide driver features like the unmask
137  *                        interrupts flag can be selected with an ioctl.
138  *                        This is the only use of the block device interface.
139  *                       New fast pipelined operation mode (currently only on
140  *                        writes). When using the pipelined mode, the
141  *                        throughput can potentially reach the maximum
142  *                        tape supported throughput, regardless of the
143  *                        user backup program. On my tape drive, it sometimes
144  *                        boosted performance by a factor of 2. Pipelined
145  *                        mode is enabled by default, but since it has a few
146  *                        downfalls as well, you may want to disable it.
147  *                        A short explanation of the pipelined operation mode
148  *                        is available below.
149  * Ver 1.2   Jan  1 96   Eliminated pipelined mode race condition.
150  *                       Added pipeline read mode. As a result, restores
151  *                        are now as fast as backups.
152  *                       Optimized shared interface behavior. The new behavior
153  *                        typically results in better IDE bus efficiency and
154  *                        higher tape throughput.
155  *                       Pre-calculation of the expected read/write request
156  *                        service time, based on the tape's parameters. In
157  *                        the pipelined operation mode, this allows us to
158  *                        adjust our polling frequency to a much lower value,
159  *                        and thus to dramatically reduce our load on Linux,
160  *                        without any decrease in performance.
161  *                       Implemented additional mtio.h operations.
162  *                       The recommended user block size is returned by
163  *                        the MTIOCGET ioctl.
164  *                       Additional minor changes.
165  * Ver 1.3   Feb  9 96   Fixed pipelined read mode bug which prevented the
166  *                        use of some block sizes during a restore procedure.
167  *                       The character device interface will now present a
168  *                        continuous view of the media - any mix of block sizes
169  *                        during a backup/restore procedure is supported. The
170  *                        driver will buffer the requests internally and
171  *                        convert them to the tape's recommended transfer
172  *                        unit, making performance almost independent of the
173  *                        chosen user block size.
174  *                       Some improvements in error recovery.
175  *                       By cooperating with ide-dma.c, bus mastering DMA can
176  *                        now sometimes be used with IDE tape drives as well.
177  *                        Bus mastering DMA has the potential to dramatically
178  *                        reduce the CPU's overhead when accessing the device,
179  *                        and can be enabled by using hdparm -d1 on the tape's
180  *                        block device interface. For more info, read the
181  *                        comments in ide-dma.c.
182  * Ver 1.4   Mar 13 96   Fixed serialize support.
183  * Ver 1.5   Apr 12 96   Fixed shared interface operation, broken in 1.3.85.
184  *                       Fixed pipelined read mode inefficiency.
185  *                       Fixed nasty null dereferencing bug.
186  * Ver 1.6   Aug 16 96   Fixed FPU usage in the driver.
187  *                       Fixed end of media bug.
188  * Ver 1.7   Sep 10 96   Minor changes for the CONNER CTT8000-A model.
189  * Ver 1.8   Sep 26 96   Attempt to find a better balance between good
190  *                        interactive response and high system throughput.
191  * Ver 1.9   Nov  5 96   Automatically cross encountered filemarks rather
192  *                        than requiring an explicit FSF command.
193  *                       Abort pending requests at end of media.
194  *                       MTTELL was sometimes returning incorrect results.
195  *                       Return the real block size in the MTIOCGET ioctl.
196  *                       Some error recovery bug fixes.
197  * Ver 1.10  Nov  5 96   Major reorganization.
198  *                       Reduced CPU overhead a bit by eliminating internal
199  *                        bounce buffers.
200  *                       Added module support.
201  *                       Added multiple tape drives support.
202  *                       Added partition support.
203  *                       Rewrote DSC handling.
204  *                       Some portability fixes.
205  *                       Removed ide-tape.h.
206  *                       Additional minor changes.
207  * Ver 1.11  Dec  2 96   Bug fix in previous DSC timeout handling.
208  *                       Use ide_stall_queue() for DSC overlap.
209  *                       Use the maximum speed rather than the current speed
210  *                        to compute the request service time.
211  * Ver 1.12  Dec  7 97   Fix random memory overwriting and/or last block data
212  *                        corruption, which could occur if the total number
213  *                        of bytes written to the tape was not an integral
214  *                        number of tape blocks.
215  *                       Add support for INTERRUPT DRQ devices.
216  * Ver 1.13  Jan  2 98   Add "speed == 0" work-around for HP COLORADO 5GB
217  * Ver 1.14  Dec 30 98   Partial fixes for the Sony/AIWA tape drives.
218  *                       Replace cli()/sti() with hwgroup spinlocks.
219  * Ver 1.15  Mar 25 99   Fix SMP race condition by replacing hwgroup
220  *                        spinlock with private per-tape spinlock.
221  * Ver 1.16  Sep  1 99   Add OnStream tape support.
222  *                       Abort read pipeline on EOD.
223  *                       Wait for the tape to become ready in case it returns
224  *                        "in the process of becoming ready" on open().
225  *                       Fix zero padding of the last written block in
226  *                        case the tape block size is larger than PAGE_SIZE.
227  *                       Decrease the default disconnection time to tn.
228  * Ver 1.16e Oct  3 99   Minor fixes.
229  * Ver 1.16e1 Oct 13 99  Patches by Arnold Niessen,
230  *                          niessen@iae.nl / arnold.niessen@philips.com
231  *                   GO-1)  Undefined code in idetape_read_position
232  *                              according to Gadi's email
233  *                   AJN-1) Minor fix asc == 11 should be asc == 0x11
234  *                               in idetape_issue_packet_command (did effect
235  *                               debugging output only)
236  *                   AJN-2) Added more debugging output, and
237  *                              added ide-tape: where missing. I would also
238  *                              like to add tape->name where possible
239  *                   AJN-3) Added different debug_level's 
240  *                              via /proc/ide/hdc/settings
241  *                              "debug_level" determines amount of debugging output;
242  *                              can be changed using /proc/ide/hdx/settings
243  *                              0 : almost no debugging output
244  *                              1 : 0+output errors only
245  *                              2 : 1+output all sensekey/asc
246  *                              3 : 2+follow all chrdev related procedures
247  *                              4 : 3+follow all procedures
248  *                              5 : 4+include pc_stack rq_stack info
249  *                              6 : 5+USE_COUNT updates
250  *                   AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251  *                              from 5 to 10 minutes
252  *                   AJN-5) Changed maximum number of blocks to skip when
253  *                              reading tapes with multiple consecutive write
254  *                              errors from 100 to 1000 in idetape_get_logical_blk
255  *                   Proposed changes to code:
256  *                   1) output "logical_blk_num" via /proc
257  *                   2) output "current_operation" via /proc
258  *                   3) Either solve or document the fact that `mt rewind' is
259  *                      required after reading from /dev/nhtx to be
260  *                      able to rmmod the idetape module;
261  *                      Also, sometimes an application finishes but the
262  *                      device remains `busy' for some time. Same cause ?
263  *                   Proposed changes to release-notes:
264  *                   4) write a simple `quickstart' section in the
265  *                      release notes; I volunteer if you don't want to
266  *                   5) include a pointer to video4linux in the doc
267  *                      to stimulate video applications
268  *                   6) release notes lines 331 and 362: explain what happens
269  *                      if the application data rate is higher than 1100 KB/s; 
270  *                      similar approach to lower-than-500 kB/s ?
271  *                   7) 6.6 Comparison; wouldn't it be better to allow different 
272  *                      strategies for read and write ?
273  *                      Wouldn't it be better to control the tape buffer
274  *                      contents instead of the bandwidth ?
275  *                   8) line 536: replace will by would (if I understand
276  *                      this section correctly, a hypothetical and unwanted situation
277  *                       is being described)
278  * Ver 1.16f Dec 15 99   Change place of the secondary OnStream header frames.
279  * Ver 1.17  Nov 2000 / Jan 2001  Marcel Mol, marcel@mesa.nl
280  *                      - Add idetape_onstream_mode_sense_tape_parameter_page
281  *                        function to get tape capacity in frames: tape->capacity.
282  *                      - Add support for DI-50 drives( or any DI- drive).
283  *                      - 'workaround' for read error/blank block around block 3000.
284  *                      - Implement Early warning for end of media for Onstream.
285  *                      - Cosmetic code changes for readability.
286  *                      - Idetape_position_tape should not use SKIP bit during
287  *                        Onstream read recovery.
288  *                      - Add capacity, logical_blk_num and first/last_frame_position
289  *                        to /proc/ide/hd?/settings.
290  *                      - Module use count was gone in the Linux 2.4 driver.
291  * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292  *                      - Get drive's actual block size from mode sense block descriptor
293  *                      - Limit size of pipeline
294  * Ver 1.17b Oct 2002   Alan Stern <stern@rowland.harvard.edu>
295  *                      Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
296  *                       it in the code!
297  *                      Actually removed aborted stages in idetape_abort_pipeline
298  *                       instead of just changing the command code.
299  *                      Made the transfer byte count for Request Sense equal to the
300  *                       actual length of the data transfer.
301  *                      Changed handling of partial data transfers: they do not
302  *                       cause DMA errors.
303  *                      Moved initiation of DMA transfers to the correct place.
304  *                      Removed reference to unallocated memory.
305  *                      Made __idetape_discard_read_pipeline return the number of
306  *                       sectors skipped, not the number of stages.
307  *                      Replaced errant kfree() calls with __idetape_kfree_stage().
308  *                      Fixed off-by-one error in testing the pipeline length.
309  *                      Fixed handling of filemarks in the read pipeline.
310  *                      Small code optimization for MTBSF and MTBSFM ioctls.
311  *                      Don't try to unlock the door during device close if is
312  *                       already unlocked!
313  *                      Cosmetic fixes to miscellaneous debugging output messages.
314  *                      Set the minimum /proc/ide/hd?/settings values for "pipeline",
315  *                       "pipeline_min", and "pipeline_max" to 1.
316  *
317  * Here are some words from the first releases of hd.c, which are quoted
318  * in ide.c and apply here as well:
319  *
320  * | Special care is recommended.  Have Fun!
321  *
322  */
323
324 /*
325  * An overview of the pipelined operation mode.
326  *
327  * In the pipelined write mode, we will usually just add requests to our
328  * pipeline and return immediately, before we even start to service them. The
329  * user program will then have enough time to prepare the next request while
330  * we are still busy servicing previous requests. In the pipelined read mode,
331  * the situation is similar - we add read-ahead requests into the pipeline,
332  * before the user even requested them.
333  *
334  * The pipeline can be viewed as a "safety net" which will be activated when
335  * the system load is high and prevents the user backup program from keeping up
336  * with the current tape speed. At this point, the pipeline will get
337  * shorter and shorter but the tape will still be streaming at the same speed.
338  * Assuming we have enough pipeline stages, the system load will hopefully
339  * decrease before the pipeline is completely empty, and the backup program
340  * will be able to "catch up" and refill the pipeline again.
341  * 
342  * When using the pipelined mode, it would be best to disable any type of
343  * buffering done by the user program, as ide-tape already provides all the
344  * benefits in the kernel, where it can be done in a more efficient way.
345  * As we will usually not block the user program on a request, the most
346  * efficient user code will then be a simple read-write-read-... cycle.
347  * Any additional logic will usually just slow down the backup process.
348  *
349  * Using the pipelined mode, I get a constant over 400 KBps throughput,
350  * which seems to be the maximum throughput supported by my tape.
351  *
352  * However, there are some downfalls:
353  *
354  *      1.      We use memory (for data buffers) in proportional to the number
355  *              of pipeline stages (each stage is about 26 KB with my tape).
356  *      2.      In the pipelined write mode, we cheat and postpone error codes
357  *              to the user task. In read mode, the actual tape position
358  *              will be a bit further than the last requested block.
359  *
360  * Concerning (1):
361  *
362  *      1.      We allocate stages dynamically only when we need them. When
363  *              we don't need them, we don't consume additional memory. In
364  *              case we can't allocate stages, we just manage without them
365  *              (at the expense of decreased throughput) so when Linux is
366  *              tight in memory, we will not pose additional difficulties.
367  *
368  *      2.      The maximum number of stages (which is, in fact, the maximum
369  *              amount of memory) which we allocate is limited by the compile
370  *              time parameter IDETAPE_MAX_PIPELINE_STAGES.
371  *
372  *      3.      The maximum number of stages is a controlled parameter - We
373  *              don't start from the user defined maximum number of stages
374  *              but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375  *              will not even allocate this amount of stages if the user
376  *              program can't handle the speed). We then implement a feedback
377  *              loop which checks if the pipeline is empty, and if it is, we
378  *              increase the maximum number of stages as necessary until we
379  *              reach the optimum value which just manages to keep the tape
380  *              busy with minimum allocated memory or until we reach
381  *              IDETAPE_MAX_PIPELINE_STAGES.
382  *
383  * Concerning (2):
384  *
385  *      In pipelined write mode, ide-tape can not return accurate error codes
386  *      to the user program since we usually just add the request to the
387  *      pipeline without waiting for it to be serviced. In case an error
388  *      occurs, I will report it on the next user request.
389  *
390  *      In the pipelined read mode, subsequent read requests or forward
391  *      filemark spacing will perform correctly, as we preserve all blocks
392  *      and filemarks which we encountered during our excess read-ahead.
393  * 
394  *      For accurate tape positioning and error reporting, disabling
395  *      pipelined mode might be the best option.
396  *
397  * You can enable/disable/tune the pipelined operation mode by adjusting
398  * the compile time parameters below.
399  */
400
401 /*
402  *      Possible improvements.
403  *
404  *      1.      Support for the ATAPI overlap protocol.
405  *
406  *              In order to maximize bus throughput, we currently use the DSC
407  *              overlap method which enables ide.c to service requests from the
408  *              other device while the tape is busy executing a command. The
409  *              DSC overlap method involves polling the tape's status register
410  *              for the DSC bit, and servicing the other device while the tape
411  *              isn't ready.
412  *
413  *              In the current QIC development standard (December 1995),
414  *              it is recommended that new tape drives will *in addition* 
415  *              implement the ATAPI overlap protocol, which is used for the
416  *              same purpose - efficient use of the IDE bus, but is interrupt
417  *              driven and thus has much less CPU overhead.
418  *
419  *              ATAPI overlap is likely to be supported in most new ATAPI
420  *              devices, including new ATAPI cdroms, and thus provides us
421  *              a method by which we can achieve higher throughput when
422  *              sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
423  */
424
425 #define IDETAPE_VERSION "1.19"
426
427 #include <linux/module.h>
428 #include <linux/types.h>
429 #include <linux/string.h>
430 #include <linux/kernel.h>
431 #include <linux/delay.h>
432 #include <linux/timer.h>
433 #include <linux/mm.h>
434 #include <linux/interrupt.h>
435 #include <linux/jiffies.h>
436 #include <linux/major.h>
437 #include <linux/errno.h>
438 #include <linux/genhd.h>
439 #include <linux/slab.h>
440 #include <linux/pci.h>
441 #include <linux/ide.h>
442 #include <linux/smp_lock.h>
443 #include <linux/completion.h>
444 #include <linux/bitops.h>
445 #include <linux/mutex.h>
446
447 #include <asm/byteorder.h>
448 #include <asm/irq.h>
449 #include <asm/uaccess.h>
450 #include <asm/io.h>
451 #include <asm/unaligned.h>
452
453 /*
454  * partition
455  */
456 typedef struct os_partition_s {
457         __u8    partition_num;
458         __u8    par_desc_ver;
459         __u16   wrt_pass_cntr;
460         __u32   first_frame_addr;
461         __u32   last_frame_addr;
462         __u32   eod_frame_addr;
463 } os_partition_t;
464
465 /*
466  * DAT entry
467  */
468 typedef struct os_dat_entry_s {
469         __u32   blk_sz;
470         __u16   blk_cnt;
471         __u8    flags;
472         __u8    reserved;
473 } os_dat_entry_t;
474
475 /*
476  * DAT
477  */
478 #define OS_DAT_FLAGS_DATA       (0xc)
479 #define OS_DAT_FLAGS_MARK       (0x1)
480
481 typedef struct os_dat_s {
482         __u8            dat_sz;
483         __u8            reserved1;
484         __u8            entry_cnt;
485         __u8            reserved3;
486         os_dat_entry_t  dat_list[16];
487 } os_dat_t;
488
489 #include <linux/mtio.h>
490
491 /**************************** Tunable parameters *****************************/
492
493
494 /*
495  *      Pipelined mode parameters.
496  *
497  *      We try to use the minimum number of stages which is enough to
498  *      keep the tape constantly streaming. To accomplish that, we implement
499  *      a feedback loop around the maximum number of stages:
500  *
501  *      We start from MIN maximum stages (we will not even use MIN stages
502  *      if we don't need them), increment it by RATE*(MAX-MIN)
503  *      whenever we sense that the pipeline is empty, until we reach
504  *      the optimum value or until we reach MAX.
505  *
506  *      Setting the following parameter to 0 is illegal: the pipelined mode
507  *      cannot be disabled (calculate_speeds() divides by tape->max_stages.)
508  */
509 #define IDETAPE_MIN_PIPELINE_STAGES       1
510 #define IDETAPE_MAX_PIPELINE_STAGES     400
511 #define IDETAPE_INCREASE_STAGES_RATE     20
512
513 /*
514  *      The following are used to debug the driver:
515  *
516  *      Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517  *      Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518  *      Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
519  *      some places.
520  *
521  *      Setting them to 0 will restore normal operation mode:
522  *
523  *              1.      Disable logging normal successful operations.
524  *              2.      Disable self-sanity checks.
525  *              3.      Errors will still be logged, of course.
526  *
527  *      All the #if DEBUG code will be removed some day, when the driver
528  *      is verified to be stable enough. This will make it much more
529  *      esthetic.
530  */
531 #define IDETAPE_DEBUG_INFO              0
532 #define IDETAPE_DEBUG_LOG               0
533 #define IDETAPE_DEBUG_BUGS              1
534
535 /*
536  *      After each failed packet command we issue a request sense command
537  *      and retry the packet command IDETAPE_MAX_PC_RETRIES times.
538  *
539  *      Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
540  */
541 #define IDETAPE_MAX_PC_RETRIES          3
542
543 /*
544  *      With each packet command, we allocate a buffer of
545  *      IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546  *      commands (Not for READ/WRITE commands).
547  */
548 #define IDETAPE_PC_BUFFER_SIZE          256
549
550 /*
551  *      In various places in the driver, we need to allocate storage
552  *      for packet commands and requests, which will remain valid while
553  *      we leave the driver to wait for an interrupt or a timeout event.
554  */
555 #define IDETAPE_PC_STACK                (10 + IDETAPE_MAX_PC_RETRIES)
556
557 /*
558  * Some drives (for example, Seagate STT3401A Travan) require a very long
559  * timeout, because they don't return an interrupt or clear their busy bit
560  * until after the command completes (even retension commands).
561  */
562 #define IDETAPE_WAIT_CMD                (900*HZ)
563
564 /*
565  *      The following parameter is used to select the point in the internal
566  *      tape fifo in which we will start to refill the buffer. Decreasing
567  *      the following parameter will improve the system's latency and
568  *      interactive response, while using a high value might improve system
569  *      throughput.
570  */
571 #define IDETAPE_FIFO_THRESHOLD          2
572
573 /*
574  *      DSC polling parameters.
575  *
576  *      Polling for DSC (a single bit in the status register) is a very
577  *      important function in ide-tape. There are two cases in which we
578  *      poll for DSC:
579  *
580  *      1.      Before a read/write packet command, to ensure that we
581  *              can transfer data from/to the tape's data buffers, without
582  *              causing an actual media access. In case the tape is not
583  *              ready yet, we take out our request from the device
584  *              request queue, so that ide.c will service requests from
585  *              the other device on the same interface meanwhile.
586  *
587  *      2.      After the successful initialization of a "media access
588  *              packet command", which is a command which can take a long
589  *              time to complete (it can be several seconds or even an hour).
590  *
591  *              Again, we postpone our request in the middle to free the bus
592  *              for the other device. The polling frequency here should be
593  *              lower than the read/write frequency since those media access
594  *              commands are slow. We start from a "fast" frequency -
595  *              IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596  *              after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597  *              lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
598  *
599  *      We also set a timeout for the timer, in case something goes wrong.
600  *      The timeout should be longer then the maximum execution time of a
601  *      tape operation.
602  */
603  
604 /*
605  *      DSC timings.
606  */
607 #define IDETAPE_DSC_RW_MIN              5*HZ/100        /* 50 msec */
608 #define IDETAPE_DSC_RW_MAX              40*HZ/100       /* 400 msec */
609 #define IDETAPE_DSC_RW_TIMEOUT          2*60*HZ         /* 2 minutes */
610 #define IDETAPE_DSC_MA_FAST             2*HZ            /* 2 seconds */
611 #define IDETAPE_DSC_MA_THRESHOLD        5*60*HZ         /* 5 minutes */
612 #define IDETAPE_DSC_MA_SLOW             30*HZ           /* 30 seconds */
613 #define IDETAPE_DSC_MA_TIMEOUT          2*60*60*HZ      /* 2 hours */
614
615 /*************************** End of tunable parameters ***********************/
616
617 /*
618  *      Read/Write error simulation
619  */
620 #define SIMULATE_ERRORS                 0
621
622 /*
623  *      For general magnetic tape device compatibility.
624  */
625 typedef enum {
626         idetape_direction_none,
627         idetape_direction_read,
628         idetape_direction_write
629 } idetape_chrdev_direction_t;
630
631 struct idetape_bh {
632         u32 b_size;
633         atomic_t b_count;
634         struct idetape_bh *b_reqnext;
635         char *b_data;
636 };
637
638 /*
639  *      Our view of a packet command.
640  */
641 typedef struct idetape_packet_command_s {
642         u8 c[12];                               /* Actual packet bytes */
643         int retries;                            /* On each retry, we increment retries */
644         int error;                              /* Error code */
645         int request_transfer;                   /* Bytes to transfer */
646         int actually_transferred;               /* Bytes actually transferred */
647         int buffer_size;                        /* Size of our data buffer */
648         struct idetape_bh *bh;
649         char *b_data;
650         int b_count;
651         u8 *buffer;                             /* Data buffer */
652         u8 *current_position;                   /* Pointer into the above buffer */
653         ide_startstop_t (*callback) (ide_drive_t *);    /* Called when this packet command is completed */
654         u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE];   /* Temporary buffer */
655         unsigned long flags;                    /* Status/Action bit flags: long for set_bit */
656 } idetape_pc_t;
657
658 /*
659  *      Packet command flag bits.
660  */
661 /* Set when an error is considered normal - We won't retry */
662 #define PC_ABORT                        0
663 /* 1 When polling for DSC on a media access command */
664 #define PC_WAIT_FOR_DSC                 1
665 /* 1 when we prefer to use DMA if possible */
666 #define PC_DMA_RECOMMENDED              2
667 /* 1 while DMA in progress */
668 #define PC_DMA_IN_PROGRESS              3
669 /* 1 when encountered problem during DMA */
670 #define PC_DMA_ERROR                    4
671 /* Data direction */
672 #define PC_WRITING                      5
673
674 /*
675  *      Capabilities and Mechanical Status Page
676  */
677 typedef struct {
678         unsigned        page_code       :6;     /* Page code - Should be 0x2a */
679         __u8            reserved0_6     :1;
680         __u8            ps              :1;     /* parameters saveable */
681         __u8            page_length;            /* Page Length - Should be 0x12 */
682         __u8            reserved2, reserved3;
683         unsigned        ro              :1;     /* Read Only Mode */
684         unsigned        reserved4_1234  :4;
685         unsigned        sprev           :1;     /* Supports SPACE in the reverse direction */
686         unsigned        reserved4_67    :2;
687         unsigned        reserved5_012   :3;
688         unsigned        efmt            :1;     /* Supports ERASE command initiated formatting */
689         unsigned        reserved5_4     :1;
690         unsigned        qfa             :1;     /* Supports the QFA two partition formats */
691         unsigned        reserved5_67    :2;
692         unsigned        lock            :1;     /* Supports locking the volume */
693         unsigned        locked          :1;     /* The volume is locked */
694         unsigned        prevent         :1;     /* The device defaults in the prevent state after power up */   
695         unsigned        eject           :1;     /* The device can eject the volume */
696         __u8            disconnect      :1;     /* The device can break request > ctl */        
697         __u8            reserved6_5     :1;
698         unsigned        ecc             :1;     /* Supports error correction */
699         unsigned        cmprs           :1;     /* Supports data compression */
700         unsigned        reserved7_0     :1;
701         unsigned        blk512          :1;     /* Supports 512 bytes block size */
702         unsigned        blk1024         :1;     /* Supports 1024 bytes block size */
703         unsigned        reserved7_3_6   :4;
704         unsigned        blk32768        :1;     /* slowb - the device restricts the byte count for PIO */
705                                                 /* transfers for slow buffer memory ??? */
706                                                 /* Also 32768 block size in some cases */
707         __u16           max_speed;              /* Maximum speed supported in KBps */
708         __u8            reserved10, reserved11;
709         __u16           ctl;                    /* Continuous Transfer Limit in blocks */
710         __u16           speed;                  /* Current Speed, in KBps */
711         __u16           buffer_size;            /* Buffer Size, in 512 bytes */
712         __u8            reserved18, reserved19;
713 } idetape_capabilities_page_t;
714
715 /*
716  *      Block Size Page
717  */
718 typedef struct {
719         unsigned        page_code       :6;     /* Page code - Should be 0x30 */
720         unsigned        reserved1_6     :1;
721         unsigned        ps              :1;
722         __u8            page_length;            /* Page Length - Should be 2 */
723         __u8            reserved2;
724         unsigned        play32          :1;
725         unsigned        play32_5        :1;
726         unsigned        reserved2_23    :2;
727         unsigned        record32        :1;
728         unsigned        record32_5      :1;
729         unsigned        reserved2_6     :1;
730         unsigned        one             :1;
731 } idetape_block_size_page_t;
732
733 /*
734  *      A pipeline stage.
735  */
736 typedef struct idetape_stage_s {
737         struct request rq;                      /* The corresponding request */
738         struct idetape_bh *bh;                  /* The data buffers */
739         struct idetape_stage_s *next;           /* Pointer to the next stage */
740 } idetape_stage_t;
741
742 /*
743  *      REQUEST SENSE packet command result - Data Format.
744  */
745 typedef struct {
746         unsigned        error_code      :7;     /* Current of deferred errors */
747         unsigned        valid           :1;     /* The information field conforms to QIC-157C */
748         __u8            reserved1       :8;     /* Segment Number - Reserved */
749         unsigned        sense_key       :4;     /* Sense Key */
750         unsigned        reserved2_4     :1;     /* Reserved */
751         unsigned        ili             :1;     /* Incorrect Length Indicator */
752         unsigned        eom             :1;     /* End Of Medium */
753         unsigned        filemark        :1;     /* Filemark */
754         __u32           information __attribute__ ((packed));
755         __u8            asl;                    /* Additional sense length (n-7) */
756         __u32           command_specific;       /* Additional command specific information */
757         __u8            asc;                    /* Additional Sense Code */
758         __u8            ascq;                   /* Additional Sense Code Qualifier */
759         __u8            replaceable_unit_code;  /* Field Replaceable Unit Code */
760         unsigned        sk_specific1    :7;     /* Sense Key Specific */
761         unsigned        sksv            :1;     /* Sense Key Specific information is valid */
762         __u8            sk_specific2;           /* Sense Key Specific */
763         __u8            sk_specific3;           /* Sense Key Specific */
764         __u8            pad[2];                 /* Padding to 20 bytes */
765 } idetape_request_sense_result_t;
766
767
768 /*
769  *      Most of our global data which we need to save even as we leave the
770  *      driver due to an interrupt or a timer event is stored in a variable
771  *      of type idetape_tape_t, defined below.
772  */
773 typedef struct ide_tape_obj {
774         ide_drive_t     *drive;
775         ide_driver_t    *driver;
776         struct gendisk  *disk;
777         struct kref     kref;
778
779         /*
780          *      Since a typical character device operation requires more
781          *      than one packet command, we provide here enough memory
782          *      for the maximum of interconnected packet commands.
783          *      The packet commands are stored in the circular array pc_stack.
784          *      pc_stack_index points to the last used entry, and warps around
785          *      to the start when we get to the last array entry.
786          *
787          *      pc points to the current processed packet command.
788          *
789          *      failed_pc points to the last failed packet command, or contains
790          *      NULL if we do not need to retry any packet command. This is
791          *      required since an additional packet command is needed before the
792          *      retry, to get detailed information on what went wrong.
793          */
794         /* Current packet command */
795         idetape_pc_t *pc;
796         /* Last failed packet command */
797         idetape_pc_t *failed_pc;
798         /* Packet command stack */
799         idetape_pc_t pc_stack[IDETAPE_PC_STACK];
800         /* Next free packet command storage space */
801         int pc_stack_index;
802         struct request rq_stack[IDETAPE_PC_STACK];
803         /* We implement a circular array */
804         int rq_stack_index;
805
806         /*
807          *      DSC polling variables.
808          *
809          *      While polling for DSC we use postponed_rq to postpone the
810          *      current request so that ide.c will be able to service
811          *      pending requests on the other device. Note that at most
812          *      we will have only one DSC (usually data transfer) request
813          *      in the device request queue. Additional requests can be
814          *      queued in our internal pipeline, but they will be visible
815          *      to ide.c only one at a time.
816          */
817         struct request *postponed_rq;
818         /* The time in which we started polling for DSC */
819         unsigned long dsc_polling_start;
820         /* Timer used to poll for dsc */
821         struct timer_list dsc_timer;
822         /* Read/Write dsc polling frequency */
823         unsigned long best_dsc_rw_frequency;
824         /* The current polling frequency */
825         unsigned long dsc_polling_frequency;
826         /* Maximum waiting time */
827         unsigned long dsc_timeout;
828
829         /*
830          *      Read position information
831          */
832         u8 partition;
833         /* Current block */
834         unsigned int first_frame_position;
835         unsigned int last_frame_position;
836         unsigned int blocks_in_buffer;
837
838         /*
839          *      Last error information
840          */
841         u8 sense_key, asc, ascq;
842
843         /*
844          *      Character device operation
845          */
846         unsigned int minor;
847         /* device name */
848         char name[4];
849         /* Current character device data transfer direction */
850         idetape_chrdev_direction_t chrdev_direction;
851
852         /*
853          *      Device information
854          */
855         /* Usually 512 or 1024 bytes */
856         unsigned short tape_block_size;
857         int user_bs_factor;
858         /* Copy of the tape's Capabilities and Mechanical Page */
859         idetape_capabilities_page_t capabilities;
860
861         /*
862          *      Active data transfer request parameters.
863          *
864          *      At most, there is only one ide-tape originated data transfer
865          *      request in the device request queue. This allows ide.c to
866          *      easily service requests from the other device when we
867          *      postpone our active request. In the pipelined operation
868          *      mode, we use our internal pipeline structure to hold
869          *      more data requests.
870          *
871          *      The data buffer size is chosen based on the tape's
872          *      recommendation.
873          */
874         /* Pointer to the request which is waiting in the device request queue */
875         struct request *active_data_request;
876         /* Data buffer size (chosen based on the tape's recommendation */
877         int stage_size;
878         idetape_stage_t *merge_stage;
879         int merge_stage_size;
880         struct idetape_bh *bh;
881         char *b_data;
882         int b_count;
883         
884         /*
885          *      Pipeline parameters.
886          *
887          *      To accomplish non-pipelined mode, we simply set the following
888          *      variables to zero (or NULL, where appropriate).
889          */
890         /* Number of currently used stages */
891         int nr_stages;
892         /* Number of pending stages */
893         int nr_pending_stages;
894         /* We will not allocate more than this number of stages */
895         int max_stages, min_pipeline, max_pipeline;
896         /* The first stage which will be removed from the pipeline */
897         idetape_stage_t *first_stage;
898         /* The currently active stage */
899         idetape_stage_t *active_stage;
900         /* Will be serviced after the currently active request */
901         idetape_stage_t *next_stage;
902         /* New requests will be added to the pipeline here */
903         idetape_stage_t *last_stage;
904         /* Optional free stage which we can use */
905         idetape_stage_t *cache_stage;
906         int pages_per_stage;
907         /* Wasted space in each stage */
908         int excess_bh_size;
909
910         /* Status/Action flags: long for set_bit */
911         unsigned long flags;
912         /* protects the ide-tape queue */
913         spinlock_t spinlock;
914
915         /*
916          * Measures average tape speed
917          */
918         unsigned long avg_time;
919         int avg_size;
920         int avg_speed;
921
922         /* last sense information */
923         idetape_request_sense_result_t sense;
924
925         char vendor_id[10];
926         char product_id[18];
927         char firmware_revision[6];
928         int firmware_revision_num;
929
930         /* the door is currently locked */
931         int door_locked;
932         /* the tape hardware is write protected */
933         char drv_write_prot;
934         /* the tape is write protected (hardware or opened as read-only) */
935         char write_prot;
936
937         /*
938          * Limit the number of times a request can
939          * be postponed, to avoid an infinite postpone
940          * deadlock.
941          */
942         /* request postpone count limit */
943         int postpone_cnt;
944
945         /*
946          * Measures number of frames:
947          *
948          * 1. written/read to/from the driver pipeline (pipeline_head).
949          * 2. written/read to/from the tape buffers (idetape_bh).
950          * 3. written/read by the tape to/from the media (tape_head).
951          */
952         int pipeline_head;
953         int buffer_head;
954         int tape_head;
955         int last_tape_head;
956
957         /*
958          * Speed control at the tape buffers input/output
959          */
960         unsigned long insert_time;
961         int insert_size;
962         int insert_speed;
963         int max_insert_speed;
964         int measure_insert_time;
965
966         /*
967          * Measure tape still time, in milliseconds
968          */
969         unsigned long tape_still_time_begin;
970         int tape_still_time;
971
972         /*
973          * Speed regulation negative feedback loop
974          */
975         int speed_control;
976         int pipeline_head_speed;
977         int controlled_pipeline_head_speed;
978         int uncontrolled_pipeline_head_speed;
979         int controlled_last_pipeline_head;
980         int uncontrolled_last_pipeline_head;
981         unsigned long uncontrolled_pipeline_head_time;
982         unsigned long controlled_pipeline_head_time;
983         int controlled_previous_pipeline_head;
984         int uncontrolled_previous_pipeline_head;
985         unsigned long controlled_previous_head_time;
986         unsigned long uncontrolled_previous_head_time;
987         int restart_speed_control_req;
988
989         /*
990          * Debug_level determines amount of debugging output;
991          * can be changed using /proc/ide/hdx/settings
992          * 0 : almost no debugging output
993          * 1 : 0+output errors only
994          * 2 : 1+output all sensekey/asc
995          * 3 : 2+follow all chrdev related procedures
996          * 4 : 3+follow all procedures
997          * 5 : 4+include pc_stack rq_stack info
998          * 6 : 5+USE_COUNT updates
999          */
1000          int debug_level; 
1001 } idetape_tape_t;
1002
1003 static DEFINE_MUTEX(idetape_ref_mutex);
1004
1005 static struct class *idetape_sysfs_class;
1006
1007 #define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1008
1009 #define ide_tape_g(disk) \
1010         container_of((disk)->private_data, struct ide_tape_obj, driver)
1011
1012 static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
1013 {
1014         struct ide_tape_obj *tape = NULL;
1015
1016         mutex_lock(&idetape_ref_mutex);
1017         tape = ide_tape_g(disk);
1018         if (tape)
1019                 kref_get(&tape->kref);
1020         mutex_unlock(&idetape_ref_mutex);
1021         return tape;
1022 }
1023
1024 static void ide_tape_release(struct kref *);
1025
1026 static void ide_tape_put(struct ide_tape_obj *tape)
1027 {
1028         mutex_lock(&idetape_ref_mutex);
1029         kref_put(&tape->kref, ide_tape_release);
1030         mutex_unlock(&idetape_ref_mutex);
1031 }
1032
1033 /*
1034  *      Tape door status
1035  */
1036 #define DOOR_UNLOCKED                   0
1037 #define DOOR_LOCKED                     1
1038 #define DOOR_EXPLICITLY_LOCKED          2
1039
1040 /*
1041  *      Tape flag bits values.
1042  */
1043 #define IDETAPE_IGNORE_DSC              0
1044 #define IDETAPE_ADDRESS_VALID           1       /* 0 When the tape position is unknown */
1045 #define IDETAPE_BUSY                    2       /* Device already opened */
1046 #define IDETAPE_PIPELINE_ERROR          3       /* Error detected in a pipeline stage */
1047 #define IDETAPE_DETECT_BS               4       /* Attempt to auto-detect the current user block size */
1048 #define IDETAPE_FILEMARK                5       /* Currently on a filemark */
1049 #define IDETAPE_DRQ_INTERRUPT           6       /* DRQ interrupt device */
1050 #define IDETAPE_READ_ERROR              7
1051 #define IDETAPE_PIPELINE_ACTIVE         8       /* pipeline active */
1052 /* 0 = no tape is loaded, so we don't rewind after ejecting */
1053 #define IDETAPE_MEDIUM_PRESENT          9
1054
1055 /*
1056  *      Supported ATAPI tape drives packet commands
1057  */
1058 #define IDETAPE_TEST_UNIT_READY_CMD     0x00
1059 #define IDETAPE_REWIND_CMD              0x01
1060 #define IDETAPE_REQUEST_SENSE_CMD       0x03
1061 #define IDETAPE_READ_CMD                0x08
1062 #define IDETAPE_WRITE_CMD               0x0a
1063 #define IDETAPE_WRITE_FILEMARK_CMD      0x10
1064 #define IDETAPE_SPACE_CMD               0x11
1065 #define IDETAPE_INQUIRY_CMD             0x12
1066 #define IDETAPE_ERASE_CMD               0x19
1067 #define IDETAPE_MODE_SENSE_CMD          0x1a
1068 #define IDETAPE_MODE_SELECT_CMD         0x15
1069 #define IDETAPE_LOAD_UNLOAD_CMD         0x1b
1070 #define IDETAPE_PREVENT_CMD             0x1e
1071 #define IDETAPE_LOCATE_CMD              0x2b
1072 #define IDETAPE_READ_POSITION_CMD       0x34
1073 #define IDETAPE_READ_BUFFER_CMD         0x3c
1074 #define IDETAPE_SET_SPEED_CMD           0xbb
1075
1076 /*
1077  *      Some defines for the READ BUFFER command
1078  */
1079 #define IDETAPE_RETRIEVE_FAULTY_BLOCK   6
1080
1081 /*
1082  *      Some defines for the SPACE command
1083  */
1084 #define IDETAPE_SPACE_OVER_FILEMARK     1
1085 #define IDETAPE_SPACE_TO_EOD            3
1086
1087 /*
1088  *      Some defines for the LOAD UNLOAD command
1089  */
1090 #define IDETAPE_LU_LOAD_MASK            1
1091 #define IDETAPE_LU_RETENSION_MASK       2
1092 #define IDETAPE_LU_EOT_MASK             4
1093
1094 /*
1095  *      Special requests for our block device strategy routine.
1096  *
1097  *      In order to service a character device command, we add special
1098  *      requests to the tail of our block device request queue and wait
1099  *      for their completion.
1100  */
1101
1102 enum {
1103         REQ_IDETAPE_PC1         = (1 << 0), /* packet command (first stage) */
1104         REQ_IDETAPE_PC2         = (1 << 1), /* packet command (second stage) */
1105         REQ_IDETAPE_READ        = (1 << 2),
1106         REQ_IDETAPE_WRITE       = (1 << 3),
1107         REQ_IDETAPE_READ_BUFFER = (1 << 4),
1108 };
1109
1110 /*
1111  *      Error codes which are returned in rq->errors to the higher part
1112  *      of the driver.
1113  */
1114 #define IDETAPE_ERROR_GENERAL           101
1115 #define IDETAPE_ERROR_FILEMARK          102
1116 #define IDETAPE_ERROR_EOD               103
1117
1118 /*
1119  *      The following is used to format the general configuration word of
1120  *      the ATAPI IDENTIFY DEVICE command.
1121  */
1122 struct idetape_id_gcw { 
1123         unsigned packet_size            :2;     /* Packet Size */
1124         unsigned reserved234            :3;     /* Reserved */
1125         unsigned drq_type               :2;     /* Command packet DRQ type */
1126         unsigned removable              :1;     /* Removable media */
1127         unsigned device_type            :5;     /* Device type */
1128         unsigned reserved13             :1;     /* Reserved */
1129         unsigned protocol               :2;     /* Protocol type */
1130 };
1131
1132 /*
1133  *      INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1134  */
1135 typedef struct {
1136         unsigned        device_type     :5;     /* Peripheral Device Type */
1137         unsigned        reserved0_765   :3;     /* Peripheral Qualifier - Reserved */
1138         unsigned        reserved1_6t0   :7;     /* Reserved */
1139         unsigned        rmb             :1;     /* Removable Medium Bit */
1140         unsigned        ansi_version    :3;     /* ANSI Version */
1141         unsigned        ecma_version    :3;     /* ECMA Version */
1142         unsigned        iso_version     :2;     /* ISO Version */
1143         unsigned        response_format :4;     /* Response Data Format */
1144         unsigned        reserved3_45    :2;     /* Reserved */
1145         unsigned        reserved3_6     :1;     /* TrmIOP - Reserved */
1146         unsigned        reserved3_7     :1;     /* AENC - Reserved */
1147         __u8            additional_length;      /* Additional Length (total_length-4) */
1148         __u8            rsv5, rsv6, rsv7;       /* Reserved */
1149         __u8            vendor_id[8];           /* Vendor Identification */
1150         __u8            product_id[16];         /* Product Identification */
1151         __u8            revision_level[4];      /* Revision Level */
1152         __u8            vendor_specific[20];    /* Vendor Specific - Optional */
1153         __u8            reserved56t95[40];      /* Reserved - Optional */
1154                                                 /* Additional information may be returned */
1155 } idetape_inquiry_result_t;
1156
1157 /*
1158  *      READ POSITION packet command - Data Format (From Table 6-57)
1159  */
1160 typedef struct {
1161         unsigned        reserved0_10    :2;     /* Reserved */
1162         unsigned        bpu             :1;     /* Block Position Unknown */    
1163         unsigned        reserved0_543   :3;     /* Reserved */
1164         unsigned        eop             :1;     /* End Of Partition */
1165         unsigned        bop             :1;     /* Beginning Of Partition */
1166         u8              partition;              /* Partition Number */
1167         u8              reserved2, reserved3;   /* Reserved */
1168         u32             first_block;            /* First Block Location */
1169         u32             last_block;             /* Last Block Location (Optional) */
1170         u8              reserved12;             /* Reserved */
1171         u8              blocks_in_buffer[3];    /* Blocks In Buffer - (Optional) */
1172         u32             bytes_in_buffer;        /* Bytes In Buffer (Optional) */
1173 } idetape_read_position_result_t;
1174
1175 /*
1176  *      Follows structures which are related to the SELECT SENSE / MODE SENSE
1177  *      packet commands. Those packet commands are still not supported
1178  *      by ide-tape.
1179  */
1180 #define IDETAPE_BLOCK_DESCRIPTOR        0
1181 #define IDETAPE_CAPABILITIES_PAGE       0x2a
1182 #define IDETAPE_PARAMTR_PAGE            0x2b   /* Onstream DI-x0 only */
1183 #define IDETAPE_BLOCK_SIZE_PAGE         0x30
1184 #define IDETAPE_BUFFER_FILLING_PAGE     0x33
1185
1186 /*
1187  *      Mode Parameter Header for the MODE SENSE packet command
1188  */
1189 typedef struct {
1190         __u8    mode_data_length;       /* Length of the following data transfer */
1191         __u8    medium_type;            /* Medium Type */
1192         __u8    dsp;                    /* Device Specific Parameter */
1193         __u8    bdl;                    /* Block Descriptor Length */
1194 #if 0
1195         /* data transfer page */
1196         __u8    page_code       :6;
1197         __u8    reserved0_6     :1;
1198         __u8    ps              :1;     /* parameters saveable */
1199         __u8    page_length;            /* page Length == 0x02 */
1200         __u8    reserved2;
1201         __u8    read32k         :1;     /* 32k blk size (data only) */
1202         __u8    read32k5        :1;     /* 32.5k blk size (data&AUX) */
1203         __u8    reserved3_23    :2;
1204         __u8    write32k        :1;     /* 32k blk size (data only) */
1205         __u8    write32k5       :1;     /* 32.5k blk size (data&AUX) */
1206         __u8    reserved3_6     :1;
1207         __u8    streaming       :1;     /* streaming mode enable */
1208 #endif
1209 } idetape_mode_parameter_header_t;
1210
1211 /*
1212  *      Mode Parameter Block Descriptor the MODE SENSE packet command
1213  *
1214  *      Support for block descriptors is optional.
1215  */
1216 typedef struct {
1217         __u8            density_code;           /* Medium density code */
1218         __u8            blocks[3];              /* Number of blocks */
1219         __u8            reserved4;              /* Reserved */
1220         __u8            length[3];              /* Block Length */
1221 } idetape_parameter_block_descriptor_t;
1222
1223 /*
1224  *      The Data Compression Page, as returned by the MODE SENSE packet command.
1225  */
1226 typedef struct {
1227         unsigned        page_code       :6;     /* Page Code - Should be 0xf */
1228         unsigned        reserved0       :1;     /* Reserved */
1229         unsigned        ps              :1;
1230         __u8            page_length;            /* Page Length - Should be 14 */
1231         unsigned        reserved2       :6;     /* Reserved */
1232         unsigned        dcc             :1;     /* Data Compression Capable */
1233         unsigned        dce             :1;     /* Data Compression Enable */
1234         unsigned        reserved3       :5;     /* Reserved */
1235         unsigned        red             :2;     /* Report Exception on Decompression */
1236         unsigned        dde             :1;     /* Data Decompression Enable */
1237         __u32           ca;                     /* Compression Algorithm */
1238         __u32           da;                     /* Decompression Algorithm */
1239         __u8            reserved[4];            /* Reserved */
1240 } idetape_data_compression_page_t;
1241
1242 /*
1243  *      The Medium Partition Page, as returned by the MODE SENSE packet command.
1244  */
1245 typedef struct {
1246         unsigned        page_code       :6;     /* Page Code - Should be 0x11 */
1247         unsigned        reserved1_6     :1;     /* Reserved */
1248         unsigned        ps              :1;
1249         __u8            page_length;            /* Page Length - Should be 6 */
1250         __u8            map;                    /* Maximum Additional Partitions - Should be 0 */
1251         __u8            apd;                    /* Additional Partitions Defined - Should be 0 */
1252         unsigned        reserved4_012   :3;     /* Reserved */
1253         unsigned        psum            :2;     /* Should be 0 */
1254         unsigned        idp             :1;     /* Should be 0 */
1255         unsigned        sdp             :1;     /* Should be 0 */
1256         unsigned        fdp             :1;     /* Fixed Data Partitions */
1257         __u8            mfr;                    /* Medium Format Recognition */
1258         __u8            reserved[2];            /* Reserved */
1259 } idetape_medium_partition_page_t;
1260
1261 /*
1262  *      Run time configurable parameters.
1263  */
1264 typedef struct {
1265         int     dsc_rw_frequency;
1266         int     dsc_media_access_frequency;
1267         int     nr_stages;
1268 } idetape_config_t;
1269
1270 /*
1271  *      The variables below are used for the character device interface.
1272  *      Additional state variables are defined in our ide_drive_t structure.
1273  */
1274 static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
1275
1276 #define ide_tape_f(file) ((file)->private_data)
1277
1278 static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
1279 {
1280         struct ide_tape_obj *tape = NULL;
1281
1282         mutex_lock(&idetape_ref_mutex);
1283         tape = idetape_devs[i];
1284         if (tape)
1285                 kref_get(&tape->kref);
1286         mutex_unlock(&idetape_ref_mutex);
1287         return tape;
1288 }
1289
1290 /*
1291  *      Function declarations
1292  *
1293  */
1294 static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1295 static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1296
1297 /*
1298  * Too bad. The drive wants to send us data which we are not ready to accept.
1299  * Just throw it away.
1300  */
1301 static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1302 {
1303         while (bcount--)
1304                 (void) HWIF(drive)->INB(IDE_DATA_REG);
1305 }
1306
1307 static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1308 {
1309         struct idetape_bh *bh = pc->bh;
1310         int count;
1311
1312         while (bcount) {
1313 #if IDETAPE_DEBUG_BUGS
1314                 if (bh == NULL) {
1315                         printk(KERN_ERR "ide-tape: bh == NULL in "
1316                                 "idetape_input_buffers\n");
1317                         idetape_discard_data(drive, bcount);
1318                         return;
1319                 }
1320 #endif /* IDETAPE_DEBUG_BUGS */
1321                 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1322                 HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1323                 bcount -= count;
1324                 atomic_add(count, &bh->b_count);
1325                 if (atomic_read(&bh->b_count) == bh->b_size) {
1326                         bh = bh->b_reqnext;
1327                         if (bh)
1328                                 atomic_set(&bh->b_count, 0);
1329                 }
1330         }
1331         pc->bh = bh;
1332 }
1333
1334 static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1335 {
1336         struct idetape_bh *bh = pc->bh;
1337         int count;
1338
1339         while (bcount) {
1340 #if IDETAPE_DEBUG_BUGS
1341                 if (bh == NULL) {
1342                         printk(KERN_ERR "ide-tape: bh == NULL in "
1343                                 "idetape_output_buffers\n");
1344                         return;
1345                 }
1346 #endif /* IDETAPE_DEBUG_BUGS */
1347                 count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1348                 HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1349                 bcount -= count;
1350                 pc->b_data += count;
1351                 pc->b_count -= count;
1352                 if (!pc->b_count) {
1353                         pc->bh = bh = bh->b_reqnext;
1354                         if (bh) {
1355                                 pc->b_data = bh->b_data;
1356                                 pc->b_count = atomic_read(&bh->b_count);
1357                         }
1358                 }
1359         }
1360 }
1361
1362 static void idetape_update_buffers (idetape_pc_t *pc)
1363 {
1364         struct idetape_bh *bh = pc->bh;
1365         int count;
1366         unsigned int bcount = pc->actually_transferred;
1367
1368         if (test_bit(PC_WRITING, &pc->flags))
1369                 return;
1370         while (bcount) {
1371 #if IDETAPE_DEBUG_BUGS
1372                 if (bh == NULL) {
1373                         printk(KERN_ERR "ide-tape: bh == NULL in "
1374                                 "idetape_update_buffers\n");
1375                         return;
1376                 }
1377 #endif /* IDETAPE_DEBUG_BUGS */
1378                 count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1379                 atomic_set(&bh->b_count, count);
1380                 if (atomic_read(&bh->b_count) == bh->b_size)
1381                         bh = bh->b_reqnext;
1382                 bcount -= count;
1383         }
1384         pc->bh = bh;
1385 }
1386
1387 /*
1388  *      idetape_next_pc_storage returns a pointer to a place in which we can
1389  *      safely store a packet command, even though we intend to leave the
1390  *      driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1391  *      commands is allocated at initialization time.
1392  */
1393 static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1394 {
1395         idetape_tape_t *tape = drive->driver_data;
1396
1397 #if IDETAPE_DEBUG_LOG
1398         if (tape->debug_level >= 5)
1399                 printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1400                         tape->pc_stack_index);
1401 #endif /* IDETAPE_DEBUG_LOG */
1402         if (tape->pc_stack_index == IDETAPE_PC_STACK)
1403                 tape->pc_stack_index=0;
1404         return (&tape->pc_stack[tape->pc_stack_index++]);
1405 }
1406
1407 /*
1408  *      idetape_next_rq_storage is used along with idetape_next_pc_storage.
1409  *      Since we queue packet commands in the request queue, we need to
1410  *      allocate a request, along with the allocation of a packet command.
1411  */
1412  
1413 /**************************************************************
1414  *                                                            *
1415  *  This should get fixed to use kmalloc(.., GFP_ATOMIC)      *
1416  *  followed later on by kfree().   -ml                       *
1417  *                                                            *
1418  **************************************************************/
1419  
1420 static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1421 {
1422         idetape_tape_t *tape = drive->driver_data;
1423
1424 #if IDETAPE_DEBUG_LOG
1425         if (tape->debug_level >= 5)
1426                 printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1427                         tape->rq_stack_index);
1428 #endif /* IDETAPE_DEBUG_LOG */
1429         if (tape->rq_stack_index == IDETAPE_PC_STACK)
1430                 tape->rq_stack_index=0;
1431         return (&tape->rq_stack[tape->rq_stack_index++]);
1432 }
1433
1434 /*
1435  *      idetape_init_pc initializes a packet command.
1436  */
1437 static void idetape_init_pc (idetape_pc_t *pc)
1438 {
1439         memset(pc->c, 0, 12);
1440         pc->retries = 0;
1441         pc->flags = 0;
1442         pc->request_transfer = 0;
1443         pc->buffer = pc->pc_buffer;
1444         pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1445         pc->bh = NULL;
1446         pc->b_data = NULL;
1447 }
1448
1449 /*
1450  *      idetape_analyze_error is called on each failed packet command retry
1451  *      to analyze the request sense. We currently do not utilize this
1452  *      information.
1453  */
1454 static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1455 {
1456         idetape_tape_t *tape = drive->driver_data;
1457         idetape_pc_t *pc = tape->failed_pc;
1458
1459         tape->sense     = *result;
1460         tape->sense_key = result->sense_key;
1461         tape->asc       = result->asc;
1462         tape->ascq      = result->ascq;
1463 #if IDETAPE_DEBUG_LOG
1464         /*
1465          *      Without debugging, we only log an error if we decided to
1466          *      give up retrying.
1467          */
1468         if (tape->debug_level >= 1)
1469                 printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1470                         "asc = %x, ascq = %x\n",
1471                         pc->c[0], result->sense_key,
1472                         result->asc, result->ascq);
1473 #endif /* IDETAPE_DEBUG_LOG */
1474
1475         /*
1476          *      Correct pc->actually_transferred by asking the tape.
1477          */
1478         if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1479                 pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1480                 idetape_update_buffers(pc);
1481         }
1482
1483         /*
1484          * If error was the result of a zero-length read or write command,
1485          * with sense key=5, asc=0x22, ascq=0, let it slide.  Some drives
1486          * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1487          */
1488         if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1489             && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1490                 if (result->sense_key == 5) {
1491                         /* don't report an error, everything's ok */
1492                         pc->error = 0;
1493                         /* don't retry read/write */
1494                         set_bit(PC_ABORT, &pc->flags);
1495                 }
1496         }
1497         if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1498                 pc->error = IDETAPE_ERROR_FILEMARK;
1499                 set_bit(PC_ABORT, &pc->flags);
1500         }
1501         if (pc->c[0] == IDETAPE_WRITE_CMD) {
1502                 if (result->eom ||
1503                     (result->sense_key == 0xd && result->asc == 0x0 &&
1504                      result->ascq == 0x2)) {
1505                         pc->error = IDETAPE_ERROR_EOD;
1506                         set_bit(PC_ABORT, &pc->flags);
1507                 }
1508         }
1509         if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1510                 if (result->sense_key == 8) {
1511                         pc->error = IDETAPE_ERROR_EOD;
1512                         set_bit(PC_ABORT, &pc->flags);
1513                 }
1514                 if (!test_bit(PC_ABORT, &pc->flags) &&
1515                     pc->actually_transferred)
1516                         pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1517         }
1518 }
1519
1520 /*
1521  * idetape_active_next_stage will declare the next stage as "active".
1522  */
1523 static void idetape_active_next_stage (ide_drive_t *drive)
1524 {
1525         idetape_tape_t *tape = drive->driver_data;
1526         idetape_stage_t *stage = tape->next_stage;
1527         struct request *rq = &stage->rq;
1528
1529 #if IDETAPE_DEBUG_LOG
1530         if (tape->debug_level >= 4)
1531                 printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1532 #endif /* IDETAPE_DEBUG_LOG */
1533 #if IDETAPE_DEBUG_BUGS
1534         if (stage == NULL) {
1535                 printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1536                 return;
1537         }
1538 #endif /* IDETAPE_DEBUG_BUGS */ 
1539
1540         rq->rq_disk = tape->disk;
1541         rq->buffer = NULL;
1542         rq->special = (void *)stage->bh;
1543         tape->active_data_request = rq;
1544         tape->active_stage = stage;
1545         tape->next_stage = stage->next;
1546 }
1547
1548 /*
1549  *      idetape_increase_max_pipeline_stages is a part of the feedback
1550  *      loop which tries to find the optimum number of stages. In the
1551  *      feedback loop, we are starting from a minimum maximum number of
1552  *      stages, and if we sense that the pipeline is empty, we try to
1553  *      increase it, until we reach the user compile time memory limit.
1554  */
1555 static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1556 {
1557         idetape_tape_t *tape = drive->driver_data;
1558         int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1559         
1560 #if IDETAPE_DEBUG_LOG
1561         if (tape->debug_level >= 4)
1562                 printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1563 #endif /* IDETAPE_DEBUG_LOG */
1564
1565         tape->max_stages += max(increase, 1);
1566         tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1567         tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1568 }
1569
1570 /*
1571  *      idetape_kfree_stage calls kfree to completely free a stage, along with
1572  *      its related buffers.
1573  */
1574 static void __idetape_kfree_stage (idetape_stage_t *stage)
1575 {
1576         struct idetape_bh *prev_bh, *bh = stage->bh;
1577         int size;
1578
1579         while (bh != NULL) {
1580                 if (bh->b_data != NULL) {
1581                         size = (int) bh->b_size;
1582                         while (size > 0) {
1583                                 free_page((unsigned long) bh->b_data);
1584                                 size -= PAGE_SIZE;
1585                                 bh->b_data += PAGE_SIZE;
1586                         }
1587                 }
1588                 prev_bh = bh;
1589                 bh = bh->b_reqnext;
1590                 kfree(prev_bh);
1591         }
1592         kfree(stage);
1593 }
1594
1595 static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1596 {
1597         __idetape_kfree_stage(stage);
1598 }
1599
1600 /*
1601  *      idetape_remove_stage_head removes tape->first_stage from the pipeline.
1602  *      The caller should avoid race conditions.
1603  */
1604 static void idetape_remove_stage_head (ide_drive_t *drive)
1605 {
1606         idetape_tape_t *tape = drive->driver_data;
1607         idetape_stage_t *stage;
1608         
1609 #if IDETAPE_DEBUG_LOG
1610         if (tape->debug_level >= 4)
1611                 printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1612 #endif /* IDETAPE_DEBUG_LOG */
1613 #if IDETAPE_DEBUG_BUGS
1614         if (tape->first_stage == NULL) {
1615                 printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1616                 return;         
1617         }
1618         if (tape->active_stage == tape->first_stage) {
1619                 printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1620                 return;
1621         }
1622 #endif /* IDETAPE_DEBUG_BUGS */
1623         stage = tape->first_stage;
1624         tape->first_stage = stage->next;
1625         idetape_kfree_stage(tape, stage);
1626         tape->nr_stages--;
1627         if (tape->first_stage == NULL) {
1628                 tape->last_stage = NULL;
1629 #if IDETAPE_DEBUG_BUGS
1630                 if (tape->next_stage != NULL)
1631                         printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1632                 if (tape->nr_stages)
1633                         printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1634 #endif /* IDETAPE_DEBUG_BUGS */
1635         }
1636 }
1637
1638 /*
1639  * This will free all the pipeline stages starting from new_last_stage->next
1640  * to the end of the list, and point tape->last_stage to new_last_stage.
1641  */
1642 static void idetape_abort_pipeline(ide_drive_t *drive,
1643                                    idetape_stage_t *new_last_stage)
1644 {
1645         idetape_tape_t *tape = drive->driver_data;
1646         idetape_stage_t *stage = new_last_stage->next;
1647         idetape_stage_t *nstage;
1648
1649 #if IDETAPE_DEBUG_LOG
1650         if (tape->debug_level >= 4)
1651                 printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1652 #endif
1653         while (stage) {
1654                 nstage = stage->next;
1655                 idetape_kfree_stage(tape, stage);
1656                 --tape->nr_stages;
1657                 --tape->nr_pending_stages;
1658                 stage = nstage;
1659         }
1660         if (new_last_stage)
1661                 new_last_stage->next = NULL;
1662         tape->last_stage = new_last_stage;
1663         tape->next_stage = NULL;
1664 }
1665
1666 /*
1667  *      idetape_end_request is used to finish servicing a request, and to
1668  *      insert a pending pipeline request into the main device queue.
1669  */
1670 static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1671 {
1672         struct request *rq = HWGROUP(drive)->rq;
1673         idetape_tape_t *tape = drive->driver_data;
1674         unsigned long flags;
1675         int error;
1676         int remove_stage = 0;
1677         idetape_stage_t *active_stage;
1678
1679 #if IDETAPE_DEBUG_LOG
1680         if (tape->debug_level >= 4)
1681         printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1682 #endif /* IDETAPE_DEBUG_LOG */
1683
1684         switch (uptodate) {
1685                 case 0: error = IDETAPE_ERROR_GENERAL; break;
1686                 case 1: error = 0; break;
1687                 default: error = uptodate;
1688         }
1689         rq->errors = error;
1690         if (error)
1691                 tape->failed_pc = NULL;
1692
1693         spin_lock_irqsave(&tape->spinlock, flags);
1694
1695         /* The request was a pipelined data transfer request */
1696         if (tape->active_data_request == rq) {
1697                 active_stage = tape->active_stage;
1698                 tape->active_stage = NULL;
1699                 tape->active_data_request = NULL;
1700                 tape->nr_pending_stages--;
1701                 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1702                         remove_stage = 1;
1703                         if (error) {
1704                                 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1705                                 if (error == IDETAPE_ERROR_EOD)
1706                                         idetape_abort_pipeline(drive, active_stage);
1707                         }
1708                 } else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1709                         if (error == IDETAPE_ERROR_EOD) {
1710                                 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1711                                 idetape_abort_pipeline(drive, active_stage);
1712                         }
1713                 }
1714                 if (tape->next_stage != NULL) {
1715                         idetape_active_next_stage(drive);
1716
1717                         /*
1718                          * Insert the next request into the request queue.
1719                          */
1720                         (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1721                 } else if (!error) {
1722                                 idetape_increase_max_pipeline_stages(drive);
1723                 }
1724         }
1725         ide_end_drive_cmd(drive, 0, 0);
1726 //      blkdev_dequeue_request(rq);
1727 //      drive->rq = NULL;
1728 //      end_that_request_last(rq);
1729
1730         if (remove_stage)
1731                 idetape_remove_stage_head(drive);
1732         if (tape->active_data_request == NULL)
1733                 clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1734         spin_unlock_irqrestore(&tape->spinlock, flags);
1735         return 0;
1736 }
1737
1738 static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1739 {
1740         idetape_tape_t *tape = drive->driver_data;
1741
1742 #if IDETAPE_DEBUG_LOG
1743         if (tape->debug_level >= 4)
1744                 printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1745 #endif /* IDETAPE_DEBUG_LOG */
1746         if (!tape->pc->error) {
1747                 idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1748                 idetape_end_request(drive, 1, 0);
1749         } else {
1750                 printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1751                 idetape_end_request(drive, 0, 0);
1752         }
1753         return ide_stopped;
1754 }
1755
1756 static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1757 {
1758         idetape_init_pc(pc);    
1759         pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1760         pc->c[4] = 20;
1761         pc->request_transfer = 20;
1762         pc->callback = &idetape_request_sense_callback;
1763 }
1764
1765 static void idetape_init_rq(struct request *rq, u8 cmd)
1766 {
1767         memset(rq, 0, sizeof(*rq));
1768         rq->cmd_type = REQ_TYPE_SPECIAL;
1769         rq->cmd[0] = cmd;
1770 }
1771
1772 /*
1773  *      idetape_queue_pc_head generates a new packet command request in front
1774  *      of the request queue, before the current request, so that it will be
1775  *      processed immediately, on the next pass through the driver.
1776  *
1777  *      idetape_queue_pc_head is called from the request handling part of
1778  *      the driver (the "bottom" part). Safe storage for the request should
1779  *      be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1780  *      before calling idetape_queue_pc_head.
1781  *
1782  *      Memory for those requests is pre-allocated at initialization time, and
1783  *      is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1784  *      space for the maximum possible number of inter-dependent packet commands.
1785  *
1786  *      The higher level of the driver - The ioctl handler and the character
1787  *      device handling functions should queue request to the lower level part
1788  *      and wait for their completion using idetape_queue_pc_tail or
1789  *      idetape_queue_rw_tail.
1790  */
1791 static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1792 {
1793         struct ide_tape_obj *tape = drive->driver_data;
1794
1795         idetape_init_rq(rq, REQ_IDETAPE_PC1);
1796         rq->buffer = (char *) pc;
1797         rq->rq_disk = tape->disk;
1798         (void) ide_do_drive_cmd(drive, rq, ide_preempt);
1799 }
1800
1801 /*
1802  *      idetape_retry_pc is called when an error was detected during the
1803  *      last packet command. We queue a request sense packet command in
1804  *      the head of the request list.
1805  */
1806 static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1807 {
1808         idetape_tape_t *tape = drive->driver_data;
1809         idetape_pc_t *pc;
1810         struct request *rq;
1811         atapi_error_t error;
1812
1813         error.all = HWIF(drive)->INB(IDE_ERROR_REG);
1814         pc = idetape_next_pc_storage(drive);
1815         rq = idetape_next_rq_storage(drive);
1816         idetape_create_request_sense_cmd(pc);
1817         set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1818         idetape_queue_pc_head(drive, pc, rq);
1819         return ide_stopped;
1820 }
1821
1822 /*
1823  *      idetape_postpone_request postpones the current request so that
1824  *      ide.c will be able to service requests from another device on
1825  *      the same hwgroup while we are polling for DSC.
1826  */
1827 static void idetape_postpone_request (ide_drive_t *drive)
1828 {
1829         idetape_tape_t *tape = drive->driver_data;
1830
1831 #if IDETAPE_DEBUG_LOG
1832         if (tape->debug_level >= 4)
1833                 printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1834 #endif
1835         tape->postponed_rq = HWGROUP(drive)->rq;
1836         ide_stall_queue(drive, tape->dsc_polling_frequency);
1837 }
1838
1839 /*
1840  *      idetape_pc_intr is the usual interrupt handler which will be called
1841  *      during a packet command. We will transfer some of the data (as
1842  *      requested by the drive) and will re-point interrupt handler to us.
1843  *      When data transfer is finished, we will act according to the
1844  *      algorithm described before idetape_issue_packet_command.
1845  *
1846  */
1847 static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1848 {
1849         ide_hwif_t *hwif = drive->hwif;
1850         idetape_tape_t *tape = drive->driver_data;
1851         atapi_status_t status;
1852         atapi_bcount_t bcount;
1853         atapi_ireason_t ireason;
1854         idetape_pc_t *pc = tape->pc;
1855
1856         unsigned int temp;
1857 #if SIMULATE_ERRORS
1858         static int error_sim_count = 0;
1859 #endif
1860
1861 #if IDETAPE_DEBUG_LOG
1862         if (tape->debug_level >= 4)
1863                 printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1864                                 "interrupt handler\n");
1865 #endif /* IDETAPE_DEBUG_LOG */  
1866
1867         /* Clear the interrupt */
1868         status.all = HWIF(drive)->INB(IDE_STATUS_REG);
1869
1870         if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1871                 if (HWIF(drive)->ide_dma_end(drive) || status.b.check) {
1872                         /*
1873                          * A DMA error is sometimes expected. For example,
1874                          * if the tape is crossing a filemark during a
1875                          * READ command, it will issue an irq and position
1876                          * itself before the filemark, so that only a partial
1877                          * data transfer will occur (which causes the DMA
1878                          * error). In that case, we will later ask the tape
1879                          * how much bytes of the original request were
1880                          * actually transferred (we can't receive that
1881                          * information from the DMA engine on most chipsets).
1882                          */
1883
1884                         /*
1885                          * On the contrary, a DMA error is never expected;
1886                          * it usually indicates a hardware error or abort.
1887                          * If the tape crosses a filemark during a READ
1888                          * command, it will issue an irq and position itself
1889                          * after the filemark (not before). Only a partial
1890                          * data transfer will occur, but no DMA error.
1891                          * (AS, 19 Apr 2001)
1892                          */
1893                         set_bit(PC_DMA_ERROR, &pc->flags);
1894                 } else {
1895                         pc->actually_transferred = pc->request_transfer;
1896                         idetape_update_buffers(pc);
1897                 }
1898 #if IDETAPE_DEBUG_LOG
1899                 if (tape->debug_level >= 4)
1900                         printk(KERN_INFO "ide-tape: DMA finished\n");
1901 #endif /* IDETAPE_DEBUG_LOG */
1902         }
1903
1904         /* No more interrupts */
1905         if (!status.b.drq) {
1906 #if IDETAPE_DEBUG_LOG
1907                 if (tape->debug_level >= 2)
1908                         printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1909 #endif /* IDETAPE_DEBUG_LOG */
1910                 clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1911
1912                 local_irq_enable();
1913
1914 #if SIMULATE_ERRORS
1915                 if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1916                      pc->c[0] == IDETAPE_READ_CMD) &&
1917                     (++error_sim_count % 100) == 0) {
1918                         printk(KERN_INFO "ide-tape: %s: simulating error\n",
1919                                 tape->name);
1920                         status.b.check = 1;
1921                 }
1922 #endif
1923                 if (status.b.check && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1924                         status.b.check = 0;
1925                 if (status.b.check || test_bit(PC_DMA_ERROR, &pc->flags)) {     /* Error detected */
1926 #if IDETAPE_DEBUG_LOG
1927                         if (tape->debug_level >= 1)
1928                                 printk(KERN_INFO "ide-tape: %s: I/O error\n",
1929                                         tape->name);
1930 #endif /* IDETAPE_DEBUG_LOG */
1931                         if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1932                                 printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1933                                 return ide_do_reset(drive);
1934                         }
1935 #if IDETAPE_DEBUG_LOG
1936                         if (tape->debug_level >= 1)
1937                                 printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1938 #endif
1939                         /* Retry operation */
1940                         return idetape_retry_pc(drive);
1941                 }
1942                 pc->error = 0;
1943                 if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1944                     !status.b.dsc) {
1945                         /* Media access command */
1946                         tape->dsc_polling_start = jiffies;
1947                         tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1948                         tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1949                         /* Allow ide.c to handle other requests */
1950                         idetape_postpone_request(drive);
1951                         return ide_stopped;
1952                 }
1953                 if (tape->failed_pc == pc)
1954                         tape->failed_pc = NULL;
1955                 /* Command finished - Call the callback function */
1956                 return pc->callback(drive);
1957         }
1958         if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1959                 printk(KERN_ERR "ide-tape: The tape wants to issue more "
1960                                 "interrupts in DMA mode\n");
1961                 printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1962                 ide_dma_off(drive);
1963                 return ide_do_reset(drive);
1964         }
1965         /* Get the number of bytes to transfer on this interrupt. */
1966         bcount.b.high = hwif->INB(IDE_BCOUNTH_REG);
1967         bcount.b.low = hwif->INB(IDE_BCOUNTL_REG);
1968
1969         ireason.all = hwif->INB(IDE_IREASON_REG);
1970
1971         if (ireason.b.cod) {
1972                 printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1973                 return ide_do_reset(drive);
1974         }
1975         if (ireason.b.io == test_bit(PC_WRITING, &pc->flags)) {
1976                 /* Hopefully, we will never get here */
1977                 printk(KERN_ERR "ide-tape: We wanted to %s, ",
1978                         ireason.b.io ? "Write":"Read");
1979                 printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1980                         ireason.b.io ? "Read":"Write");
1981                 return ide_do_reset(drive);
1982         }
1983         if (!test_bit(PC_WRITING, &pc->flags)) {
1984                 /* Reading - Check that we have enough space */
1985                 temp = pc->actually_transferred + bcount.all;
1986                 if (temp > pc->request_transfer) {
1987                         if (temp > pc->buffer_size) {
1988                                 printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
1989                                 idetape_discard_data(drive, bcount.all);
1990                                 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1991                                 return ide_started;
1992                         }
1993 #if IDETAPE_DEBUG_LOG
1994                         if (tape->debug_level >= 2)
1995                                 printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
1996 #endif /* IDETAPE_DEBUG_LOG */
1997                 }
1998         }
1999         if (test_bit(PC_WRITING, &pc->flags)) {
2000                 if (pc->bh != NULL)
2001                         idetape_output_buffers(drive, pc, bcount.all);
2002                 else
2003                         /* Write the current buffer */
2004                         HWIF(drive)->atapi_output_bytes(drive, pc->current_position, bcount.all);
2005         } else {
2006                 if (pc->bh != NULL)
2007                         idetape_input_buffers(drive, pc, bcount.all);
2008                 else
2009                         /* Read the current buffer */
2010                         HWIF(drive)->atapi_input_bytes(drive, pc->current_position, bcount.all);
2011         }
2012         /* Update the current position */
2013         pc->actually_transferred += bcount.all;
2014         pc->current_position += bcount.all;
2015 #if IDETAPE_DEBUG_LOG
2016         if (tape->debug_level >= 2)
2017                 printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc->c[0], bcount.all);
2018 #endif
2019         /* And set the interrupt handler again */
2020         ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2021         return ide_started;
2022 }
2023
2024 /*
2025  *      Packet Command Interface
2026  *
2027  *      The current Packet Command is available in tape->pc, and will not
2028  *      change until we finish handling it. Each packet command is associated
2029  *      with a callback function that will be called when the command is
2030  *      finished.
2031  *
2032  *      The handling will be done in three stages:
2033  *
2034  *      1.      idetape_issue_packet_command will send the packet command to the
2035  *              drive, and will set the interrupt handler to idetape_pc_intr.
2036  *
2037  *      2.      On each interrupt, idetape_pc_intr will be called. This step
2038  *              will be repeated until the device signals us that no more
2039  *              interrupts will be issued.
2040  *
2041  *      3.      ATAPI Tape media access commands have immediate status with a
2042  *              delayed process. In case of a successful initiation of a
2043  *              media access packet command, the DSC bit will be set when the
2044  *              actual execution of the command is finished. 
2045  *              Since the tape drive will not issue an interrupt, we have to
2046  *              poll for this event. In this case, we define the request as
2047  *              "low priority request" by setting rq_status to
2048  *              IDETAPE_RQ_POSTPONED,   set a timer to poll for DSC and exit
2049  *              the driver.
2050  *
2051  *              ide.c will then give higher priority to requests which
2052  *              originate from the other device, until will change rq_status
2053  *              to RQ_ACTIVE.
2054  *
2055  *      4.      When the packet command is finished, it will be checked for errors.
2056  *
2057  *      5.      In case an error was found, we queue a request sense packet
2058  *              command in front of the request queue and retry the operation
2059  *              up to IDETAPE_MAX_PC_RETRIES times.
2060  *
2061  *      6.      In case no error was found, or we decided to give up and not
2062  *              to retry again, the callback function will be called and then
2063  *              we will handle the next request.
2064  *
2065  */
2066 static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2067 {
2068         ide_hwif_t *hwif = drive->hwif;
2069         idetape_tape_t *tape = drive->driver_data;
2070         idetape_pc_t *pc = tape->pc;
2071         atapi_ireason_t ireason;
2072         int retries = 100;
2073         ide_startstop_t startstop;
2074
2075         if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2076                 printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2077                 return startstop;
2078         }
2079         ireason.all = hwif->INB(IDE_IREASON_REG);
2080         while (retries-- && (!ireason.b.cod || ireason.b.io)) {
2081                 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2082                                 "a packet command, retrying\n");
2083                 udelay(100);
2084                 ireason.all = hwif->INB(IDE_IREASON_REG);
2085                 if (retries == 0) {
2086                         printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2087                                         "issuing a packet command, ignoring\n");
2088                         ireason.b.cod = 1;
2089                         ireason.b.io = 0;
2090                 }
2091         }
2092         if (!ireason.b.cod || ireason.b.io) {
2093                 printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2094                                 "a packet command\n");
2095                 return ide_do_reset(drive);
2096         }
2097         /* Set the interrupt routine */
2098         ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2099 #ifdef CONFIG_BLK_DEV_IDEDMA
2100         /* Begin DMA, if necessary */
2101         if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2102                 hwif->dma_start(drive);
2103 #endif
2104         /* Send the actual packet */
2105         HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2106         return ide_started;
2107 }
2108
2109 static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2110 {
2111         ide_hwif_t *hwif = drive->hwif;
2112         idetape_tape_t *tape = drive->driver_data;
2113         atapi_bcount_t bcount;
2114         int dma_ok = 0;
2115
2116 #if IDETAPE_DEBUG_BUGS
2117         if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2118             pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2119                 printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2120                         "Two request sense in serial were issued\n");
2121         }
2122 #endif /* IDETAPE_DEBUG_BUGS */
2123
2124         if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2125                 tape->failed_pc = pc;
2126         /* Set the current packet command */
2127         tape->pc = pc;
2128
2129         if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2130             test_bit(PC_ABORT, &pc->flags)) {
2131                 /*
2132                  *      We will "abort" retrying a packet command in case
2133                  *      a legitimate error code was received (crossing a
2134                  *      filemark, or end of the media, for example).
2135                  */
2136                 if (!test_bit(PC_ABORT, &pc->flags)) {
2137                         if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2138                               tape->sense_key == 2 && tape->asc == 4 &&
2139                              (tape->ascq == 1 || tape->ascq == 8))) {
2140                                 printk(KERN_ERR "ide-tape: %s: I/O error, "
2141                                                 "pc = %2x, key = %2x, "
2142                                                 "asc = %2x, ascq = %2x\n",
2143                                                 tape->name, pc->c[0],
2144                                                 tape->sense_key, tape->asc,
2145                                                 tape->ascq);
2146                         }
2147                         /* Giving up */
2148                         pc->error = IDETAPE_ERROR_GENERAL;
2149                 }
2150                 tape->failed_pc = NULL;
2151                 return pc->callback(drive);
2152         }
2153 #if IDETAPE_DEBUG_LOG
2154         if (tape->debug_level >= 2)
2155                 printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2156 #endif /* IDETAPE_DEBUG_LOG */
2157
2158         pc->retries++;
2159         /* We haven't transferred any data yet */
2160         pc->actually_transferred = 0;
2161         pc->current_position = pc->buffer;
2162         /* Request to transfer the entire buffer at once */
2163         bcount.all = pc->request_transfer;
2164
2165         if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2166                 printk(KERN_WARNING "ide-tape: DMA disabled, "
2167                                 "reverting to PIO\n");
2168                 ide_dma_off(drive);
2169         }
2170         if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2171                 dma_ok = !hwif->dma_setup(drive);
2172
2173         if (IDE_CONTROL_REG)
2174                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
2175         hwif->OUTB(dma_ok ? 1 : 0, IDE_FEATURE_REG);    /* Use PIO/DMA */
2176         hwif->OUTB(bcount.b.high, IDE_BCOUNTH_REG);
2177         hwif->OUTB(bcount.b.low, IDE_BCOUNTL_REG);
2178         hwif->OUTB(drive->select.all, IDE_SELECT_REG);
2179         if (dma_ok)                     /* Will begin DMA later */
2180                 set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2181         if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2182                 ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL);
2183                 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2184                 return ide_started;
2185         } else {
2186                 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2187                 return idetape_transfer_pc(drive);
2188         }
2189 }
2190
2191 /*
2192  *      General packet command callback function.
2193  */
2194 static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2195 {
2196         idetape_tape_t *tape = drive->driver_data;
2197         
2198 #if IDETAPE_DEBUG_LOG
2199         if (tape->debug_level >= 4)
2200                 printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2201 #endif /* IDETAPE_DEBUG_LOG */
2202
2203         idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2204         return ide_stopped;
2205 }
2206
2207 /*
2208  *      A mode sense command is used to "sense" tape parameters.
2209  */
2210 static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2211 {
2212         idetape_init_pc(pc);
2213         pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2214         if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2215                 pc->c[1] = 8;   /* DBD = 1 - Don't return block descriptors */
2216         pc->c[2] = page_code;
2217         /*
2218          * Changed pc->c[3] to 0 (255 will at best return unused info).
2219          *
2220          * For SCSI this byte is defined as subpage instead of high byte
2221          * of length and some IDE drives seem to interpret it this way
2222          * and return an error when 255 is used.
2223          */
2224         pc->c[3] = 0;
2225         pc->c[4] = 255;         /* (We will just discard data in that case) */
2226         if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2227                 pc->request_transfer = 12;
2228         else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2229                 pc->request_transfer = 24;
2230         else
2231                 pc->request_transfer = 50;
2232         pc->callback = &idetape_pc_callback;
2233 }
2234
2235 static void calculate_speeds(ide_drive_t *drive)
2236 {
2237         idetape_tape_t *tape = drive->driver_data;
2238         int full = 125, empty = 75;
2239
2240         if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2241                 tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2242                 tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2243                 tape->controlled_last_pipeline_head = tape->pipeline_head;
2244                 tape->controlled_pipeline_head_time = jiffies;
2245         }
2246         if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2247                 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2248         else if (time_after(jiffies, tape->controlled_previous_head_time))
2249                 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2250
2251         if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2252                 /* -1 for read mode error recovery */
2253                 if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2254                         tape->uncontrolled_pipeline_head_time = jiffies;
2255                         tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2256                 }
2257         } else {
2258                 tape->uncontrolled_previous_head_time = jiffies;
2259                 tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2260                 if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2261                         tape->uncontrolled_pipeline_head_time = jiffies;
2262                 }
2263         }
2264         tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2265         if (tape->speed_control == 0) {
2266                 tape->max_insert_speed = 5000;
2267         } else if (tape->speed_control == 1) {
2268                 if (tape->nr_pending_stages >= tape->max_stages / 2)
2269                         tape->max_insert_speed = tape->pipeline_head_speed +
2270                                 (1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2271                 else
2272                         tape->max_insert_speed = 500 +
2273                                 (tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2274                 if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2275                         tape->max_insert_speed = 5000;
2276         } else if (tape->speed_control == 2) {
2277                 tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2278                         (tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2279         } else
2280                 tape->max_insert_speed = tape->speed_control;
2281         tape->max_insert_speed = max(tape->max_insert_speed, 500);
2282 }
2283
2284 static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2285 {
2286         idetape_tape_t *tape = drive->driver_data;
2287         idetape_pc_t *pc = tape->pc;
2288         atapi_status_t status;
2289
2290         status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2291         if (status.b.dsc) {
2292                 if (status.b.check) {
2293                         /* Error detected */
2294                         if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2295                                 printk(KERN_ERR "ide-tape: %s: I/O error, ",
2296                                                 tape->name);
2297                         /* Retry operation */
2298                         return idetape_retry_pc(drive);
2299                 }
2300                 pc->error = 0;
2301                 if (tape->failed_pc == pc)
2302                         tape->failed_pc = NULL;
2303         } else {
2304                 pc->error = IDETAPE_ERROR_GENERAL;
2305                 tape->failed_pc = NULL;
2306         }
2307         return pc->callback(drive);
2308 }
2309
2310 static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2311 {
2312         idetape_tape_t *tape = drive->driver_data;
2313         struct request *rq = HWGROUP(drive)->rq;
2314         int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2315
2316         tape->avg_size += blocks * tape->tape_block_size;
2317         tape->insert_size += blocks * tape->tape_block_size;
2318         if (tape->insert_size > 1024 * 1024)
2319                 tape->measure_insert_time = 1;
2320         if (tape->measure_insert_time) {
2321                 tape->measure_insert_time = 0;
2322                 tape->insert_time = jiffies;
2323                 tape->insert_size = 0;
2324         }
2325         if (time_after(jiffies, tape->insert_time))
2326                 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2327         if (time_after_eq(jiffies, tape->avg_time + HZ)) {
2328                 tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2329                 tape->avg_size = 0;
2330                 tape->avg_time = jiffies;
2331         }
2332
2333 #if IDETAPE_DEBUG_LOG   
2334         if (tape->debug_level >= 4)
2335                 printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2336 #endif /* IDETAPE_DEBUG_LOG */
2337
2338         tape->first_frame_position += blocks;
2339         rq->current_nr_sectors -= blocks;
2340
2341         if (!tape->pc->error)
2342                 idetape_end_request(drive, 1, 0);
2343         else
2344                 idetape_end_request(drive, tape->pc->error, 0);
2345         return ide_stopped;
2346 }
2347
2348 static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2349 {
2350         idetape_init_pc(pc);
2351         pc->c[0] = IDETAPE_READ_CMD;
2352         put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2353         pc->c[1] = 1;
2354         pc->callback = &idetape_rw_callback;
2355         pc->bh = bh;
2356         atomic_set(&bh->b_count, 0);
2357         pc->buffer = NULL;
2358         pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2359         if (pc->request_transfer == tape->stage_size)
2360                 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2361 }
2362
2363 static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2364 {
2365         int size = 32768;
2366         struct idetape_bh *p = bh;
2367
2368         idetape_init_pc(pc);
2369         pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2370         pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2371         pc->c[7] = size >> 8;
2372         pc->c[8] = size & 0xff;
2373         pc->callback = &idetape_pc_callback;
2374         pc->bh = bh;
2375         atomic_set(&bh->b_count, 0);
2376         pc->buffer = NULL;
2377         while (p) {
2378                 atomic_set(&p->b_count, 0);
2379                 p = p->b_reqnext;
2380         }
2381         pc->request_transfer = pc->buffer_size = size;
2382 }
2383
2384 static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2385 {
2386         idetape_init_pc(pc);
2387         pc->c[0] = IDETAPE_WRITE_CMD;
2388         put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2389         pc->c[1] = 1;
2390         pc->callback = &idetape_rw_callback;
2391         set_bit(PC_WRITING, &pc->flags);
2392         pc->bh = bh;
2393         pc->b_data = bh->b_data;
2394         pc->b_count = atomic_read(&bh->b_count);
2395         pc->buffer = NULL;
2396         pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2397         if (pc->request_transfer == tape->stage_size)
2398                 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2399 }
2400
2401 /*
2402  * idetape_do_request is our request handling function. 
2403  */
2404 static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2405                                           struct request *rq, sector_t block)
2406 {
2407         idetape_tape_t *tape = drive->driver_data;
2408         idetape_pc_t *pc = NULL;
2409         struct request *postponed_rq = tape->postponed_rq;
2410         atapi_status_t status;
2411
2412 #if IDETAPE_DEBUG_LOG
2413 #if 0
2414         if (tape->debug_level >= 5)
2415                 printk(KERN_INFO "ide-tape:  %d, "
2416                         "dev: %s, cmd: %ld, errors: %d\n",
2417                          rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2418 #endif
2419         if (tape->debug_level >= 2)
2420                 printk(KERN_INFO "ide-tape: sector: %ld, "
2421                         "nr_sectors: %ld, current_nr_sectors: %d\n",
2422                         rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2423 #endif /* IDETAPE_DEBUG_LOG */
2424
2425         if (!blk_special_request(rq)) {
2426                 /*
2427                  * We do not support buffer cache originated requests.
2428                  */
2429                 printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
2430                         "request queue (%d)\n", drive->name, rq->cmd_type);
2431                 ide_end_request(drive, 0, 0);
2432                 return ide_stopped;
2433         }
2434
2435         /*
2436          *      Retry a failed packet command
2437          */
2438         if (tape->failed_pc != NULL &&
2439             tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2440                 return idetape_issue_packet_command(drive, tape->failed_pc);
2441         }
2442 #if IDETAPE_DEBUG_BUGS
2443         if (postponed_rq != NULL)
2444                 if (rq != postponed_rq) {
2445                         printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2446                                         "Two DSC requests were queued\n");
2447                         idetape_end_request(drive, 0, 0);
2448                         return ide_stopped;
2449                 }
2450 #endif /* IDETAPE_DEBUG_BUGS */
2451
2452         tape->postponed_rq = NULL;
2453
2454         /*
2455          * If the tape is still busy, postpone our request and service
2456          * the other device meanwhile.
2457          */
2458         status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2459
2460         if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2461                 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2462
2463         if (drive->post_reset == 1) {
2464                 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2465                 drive->post_reset = 0;
2466         }
2467
2468         if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2469                 tape->measure_insert_time = 1;
2470         if (time_after(jiffies, tape->insert_time))
2471                 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2472         calculate_speeds(drive);
2473         if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
2474             !status.b.dsc) {
2475                 if (postponed_rq == NULL) {
2476                         tape->dsc_polling_start = jiffies;
2477                         tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2478                         tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2479                 } else if (time_after(jiffies, tape->dsc_timeout)) {
2480                         printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2481                                 tape->name);
2482                         if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2483                                 idetape_media_access_finished(drive);
2484                                 return ide_stopped;
2485                         } else {
2486                                 return ide_do_reset(drive);
2487                         }
2488                 } else if (time_after(jiffies, tape->dsc_polling_start + IDETAPE_DSC_MA_THRESHOLD))
2489                         tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2490                 idetape_postpone_request(drive);
2491                 return ide_stopped;
2492         }
2493         if (rq->cmd[0] & REQ_IDETAPE_READ) {
2494                 tape->buffer_head++;
2495                 tape->postpone_cnt = 0;
2496                 pc = idetape_next_pc_storage(drive);
2497                 idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2498                 goto out;
2499         }
2500         if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2501                 tape->buffer_head++;
2502                 tape->postpone_cnt = 0;
2503                 pc = idetape_next_pc_storage(drive);
2504                 idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2505                 goto out;
2506         }
2507         if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2508                 tape->postpone_cnt = 0;
2509                 pc = idetape_next_pc_storage(drive);
2510                 idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2511                 goto out;
2512         }
2513         if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2514                 pc = (idetape_pc_t *) rq->buffer;
2515                 rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2516                 rq->cmd[0] |= REQ_IDETAPE_PC2;
2517                 goto out;
2518         }
2519         if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2520                 idetape_media_access_finished(drive);
2521                 return ide_stopped;
2522         }
2523         BUG();
2524 out:
2525         return idetape_issue_packet_command(drive, pc);
2526 }
2527
2528 /*
2529  *      Pipeline related functions
2530  */
2531 static inline int idetape_pipeline_active (idetape_tape_t *tape)
2532 {
2533         int rc1, rc2;
2534
2535         rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2536         rc2 = (tape->active_data_request != NULL);
2537         return rc1;
2538 }
2539
2540 /*
2541  *      idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2542  *      stage, along with all the necessary small buffers which together make
2543  *      a buffer of size tape->stage_size (or a bit more). We attempt to
2544  *      combine sequential pages as much as possible.
2545  *
2546  *      Returns a pointer to the new allocated stage, or NULL if we
2547  *      can't (or don't want to) allocate a stage.
2548  *
2549  *      Pipeline stages are optional and are used to increase performance.
2550  *      If we can't allocate them, we'll manage without them.
2551  */
2552 static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2553 {
2554         idetape_stage_t *stage;
2555         struct idetape_bh *prev_bh, *bh;
2556         int pages = tape->pages_per_stage;
2557         char *b_data = NULL;
2558
2559         if ((stage = kmalloc(sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
2560                 return NULL;
2561         stage->next = NULL;
2562
2563         bh = stage->bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
2564         if (bh == NULL)
2565                 goto abort;
2566         bh->b_reqnext = NULL;
2567         if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2568                 goto abort;
2569         if (clear)
2570                 memset(bh->b_data, 0, PAGE_SIZE);
2571         bh->b_size = PAGE_SIZE;
2572         atomic_set(&bh->b_count, full ? bh->b_size : 0);
2573
2574         while (--pages) {
2575                 if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2576                         goto abort;
2577                 if (clear)
2578                         memset(b_data, 0, PAGE_SIZE);
2579                 if (bh->b_data == b_data + PAGE_SIZE) {
2580                         bh->b_size += PAGE_SIZE;
2581                         bh->b_data -= PAGE_SIZE;
2582                         if (full)
2583                                 atomic_add(PAGE_SIZE, &bh->b_count);
2584                         continue;
2585                 }
2586                 if (b_data == bh->b_data + bh->b_size) {
2587                         bh->b_size += PAGE_SIZE;
2588                         if (full)
2589                                 atomic_add(PAGE_SIZE, &bh->b_count);
2590                         continue;
2591                 }
2592                 prev_bh = bh;
2593                 if ((bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
2594                         free_page((unsigned long) b_data);
2595                         goto abort;
2596                 }
2597                 bh->b_reqnext = NULL;
2598                 bh->b_data = b_data;
2599                 bh->b_size = PAGE_SIZE;
2600                 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2601                 prev_bh->b_reqnext = bh;
2602         }
2603         bh->b_size -= tape->excess_bh_size;
2604         if (full)
2605                 atomic_sub(tape->excess_bh_size, &bh->b_count);
2606         return stage;
2607 abort:
2608         __idetape_kfree_stage(stage);
2609         return NULL;
2610 }
2611
2612 static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2613 {
2614         idetape_stage_t *cache_stage = tape->cache_stage;
2615
2616 #if IDETAPE_DEBUG_LOG
2617         if (tape->debug_level >= 4)
2618                 printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2619 #endif /* IDETAPE_DEBUG_LOG */
2620
2621         if (tape->nr_stages >= tape->max_stages)
2622                 return NULL;
2623         if (cache_stage != NULL) {
2624                 tape->cache_stage = NULL;
2625                 return cache_stage;
2626         }
2627         return __idetape_kmalloc_stage(tape, 0, 0);
2628 }
2629
2630 static int idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
2631 {
2632         struct idetape_bh *bh = tape->bh;
2633         int count;
2634         int ret = 0;
2635
2636         while (n) {
2637 #if IDETAPE_DEBUG_BUGS
2638                 if (bh == NULL) {
2639                         printk(KERN_ERR "ide-tape: bh == NULL in "
2640                                 "idetape_copy_stage_from_user\n");
2641                         return 1;
2642                 }
2643 #endif /* IDETAPE_DEBUG_BUGS */
2644                 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
2645                 if (copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count))
2646                         ret = 1;
2647                 n -= count;
2648                 atomic_add(count, &bh->b_count);
2649                 buf += count;
2650                 if (atomic_read(&bh->b_count) == bh->b_size) {
2651                         bh = bh->b_reqnext;
2652                         if (bh)
2653                                 atomic_set(&bh->b_count, 0);
2654                 }
2655         }
2656         tape->bh = bh;
2657         return ret;
2658 }
2659
2660 static int idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
2661 {
2662         struct idetape_bh *bh = tape->bh;
2663         int count;
2664         int ret = 0;
2665
2666         while (n) {
2667 #if IDETAPE_DEBUG_BUGS
2668                 if (bh == NULL) {
2669                         printk(KERN_ERR "ide-tape: bh == NULL in "
2670                                 "idetape_copy_stage_to_user\n");
2671                         return 1;
2672                 }
2673 #endif /* IDETAPE_DEBUG_BUGS */
2674                 count = min(tape->b_count, n);
2675                 if  (copy_to_user(buf, tape->b_data, count))
2676                         ret = 1;
2677                 n -= count;
2678                 tape->b_data += count;
2679                 tape->b_count -= count;
2680                 buf += count;
2681                 if (!tape->b_count) {
2682                         tape->bh = bh = bh->b_reqnext;
2683                         if (bh) {
2684                                 tape->b_data = bh->b_data;
2685                                 tape->b_count = atomic_read(&bh->b_count);
2686                         }
2687                 }
2688         }
2689         return ret;
2690 }
2691
2692 static void idetape_init_merge_stage (idetape_tape_t *tape)
2693 {
2694         struct idetape_bh *bh = tape->merge_stage->bh;
2695         
2696         tape->bh = bh;
2697         if (tape->chrdev_direction == idetape_direction_write)
2698                 atomic_set(&bh->b_count, 0);
2699         else {
2700                 tape->b_data = bh->b_data;
2701                 tape->b_count = atomic_read(&bh->b_count);
2702         }
2703 }
2704
2705 static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2706 {
2707         struct idetape_bh *tmp;
2708
2709         tmp = stage->bh;
2710         stage->bh = tape->merge_stage->bh;
2711         tape->merge_stage->bh = tmp;
2712         idetape_init_merge_stage(tape);
2713 }
2714
2715 /*
2716  *      idetape_add_stage_tail adds a new stage at the end of the pipeline.
2717  */
2718 static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2719 {
2720         idetape_tape_t *tape = drive->driver_data;
2721         unsigned long flags;
2722         
2723 #if IDETAPE_DEBUG_LOG
2724         if (tape->debug_level >= 4)
2725                 printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2726 #endif /* IDETAPE_DEBUG_LOG */
2727         spin_lock_irqsave(&tape->spinlock, flags);
2728         stage->next = NULL;
2729         if (tape->last_stage != NULL)
2730                 tape->last_stage->next=stage;
2731         else
2732                 tape->first_stage = tape->next_stage=stage;
2733         tape->last_stage = stage;
2734         if (tape->next_stage == NULL)
2735                 tape->next_stage = tape->last_stage;
2736         tape->nr_stages++;
2737         tape->nr_pending_stages++;
2738         spin_unlock_irqrestore(&tape->spinlock, flags);
2739 }
2740
2741 /*
2742  *      idetape_wait_for_request installs a completion in a pending request
2743  *      and sleeps until it is serviced.
2744  *
2745  *      The caller should ensure that the request will not be serviced
2746  *      before we install the completion (usually by disabling interrupts).
2747  */
2748 static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2749 {
2750         DECLARE_COMPLETION_ONSTACK(wait);
2751         idetape_tape_t *tape = drive->driver_data;
2752
2753 #if IDETAPE_DEBUG_BUGS
2754         if (rq == NULL || !blk_special_request(rq)) {
2755                 printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2756                 return;
2757         }
2758 #endif /* IDETAPE_DEBUG_BUGS */
2759         rq->end_io_data = &wait;
2760         rq->end_io = blk_end_sync_rq;
2761         spin_unlock_irq(&tape->spinlock);
2762         wait_for_completion(&wait);
2763         /* The stage and its struct request have been deallocated */
2764         spin_lock_irq(&tape->spinlock);
2765 }
2766
2767 static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2768 {
2769         idetape_tape_t *tape = drive->driver_data;
2770         idetape_read_position_result_t *result;
2771         
2772 #if IDETAPE_DEBUG_LOG
2773         if (tape->debug_level >= 4)
2774                 printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2775 #endif /* IDETAPE_DEBUG_LOG */
2776
2777         if (!tape->pc->error) {
2778                 result = (idetape_read_position_result_t *) tape->pc->buffer;
2779 #if IDETAPE_DEBUG_LOG
2780                 if (tape->debug_level >= 2)
2781                         printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2782                 if (tape->debug_level >= 2)
2783                         printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2784 #endif /* IDETAPE_DEBUG_LOG */
2785                 if (result->bpu) {
2786                         printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2787                         clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2788                         idetape_end_request(drive, 0, 0);
2789                 } else {
2790 #if IDETAPE_DEBUG_LOG
2791                         if (tape->debug_level >= 2)
2792                                 printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2793 #endif /* IDETAPE_DEBUG_LOG */
2794                         tape->partition = result->partition;
2795                         tape->first_frame_position = ntohl(result->first_block);
2796                         tape->last_frame_position = ntohl(result->last_block);
2797                         tape->blocks_in_buffer = result->blocks_in_buffer[2];
2798                         set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2799                         idetape_end_request(drive, 1, 0);
2800                 }
2801         } else {
2802                 idetape_end_request(drive, 0, 0);
2803         }
2804         return ide_stopped;
2805 }
2806
2807 /*
2808  *      idetape_create_write_filemark_cmd will:
2809  *
2810  *              1.      Write a filemark if write_filemark=1.
2811  *              2.      Flush the device buffers without writing a filemark
2812  *                      if write_filemark=0.
2813  *
2814  */
2815 static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2816 {
2817         idetape_init_pc(pc);
2818         pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2819         pc->c[4] = write_filemark;
2820         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2821         pc->callback = &idetape_pc_callback;
2822 }
2823
2824 static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2825 {
2826         idetape_init_pc(pc);
2827         pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2828         pc->callback = &idetape_pc_callback;
2829 }
2830
2831 /*
2832  *      idetape_queue_pc_tail is based on the following functions:
2833  *
2834  *      ide_do_drive_cmd from ide.c
2835  *      cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2836  *
2837  *      We add a special packet command request to the tail of the request
2838  *      queue, and wait for it to be serviced.
2839  *
2840  *      This is not to be called from within the request handling part
2841  *      of the driver ! We allocate here data in the stack, and it is valid
2842  *      until the request is finished. This is not the case for the bottom
2843  *      part of the driver, where we are always leaving the functions to wait
2844  *      for an interrupt or a timer event.
2845  *
2846  *      From the bottom part of the driver, we should allocate safe memory
2847  *      using idetape_next_pc_storage and idetape_next_rq_storage, and add
2848  *      the request to the request list without waiting for it to be serviced !
2849  *      In that case, we usually use idetape_queue_pc_head.
2850  */
2851 static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2852 {
2853         struct ide_tape_obj *tape = drive->driver_data;
2854         struct request rq;
2855
2856         idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2857         rq.buffer = (char *) pc;
2858         rq.rq_disk = tape->disk;
2859         return ide_do_drive_cmd(drive, &rq, ide_wait);
2860 }
2861
2862 static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2863 {
2864         idetape_init_pc(pc);
2865         pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2866         pc->c[4] = cmd;
2867         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2868         pc->callback = &idetape_pc_callback;
2869 }
2870
2871 static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2872 {
2873         idetape_tape_t *tape = drive->driver_data;
2874         idetape_pc_t pc;
2875         int load_attempted = 0;
2876
2877         /*
2878          * Wait for the tape to become ready
2879          */
2880         set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2881         timeout += jiffies;
2882         while (time_before(jiffies, timeout)) {
2883                 idetape_create_test_unit_ready_cmd(&pc);
2884                 if (!__idetape_queue_pc_tail(drive, &pc))
2885                         return 0;
2886                 if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2887                     || (tape->asc == 0x3A)) {   /* no media */
2888                         if (load_attempted)
2889                                 return -ENOMEDIUM;
2890                         idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2891                         __idetape_queue_pc_tail(drive, &pc);
2892                         load_attempted = 1;
2893                 /* not about to be ready */
2894                 } else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2895                              (tape->ascq == 1 || tape->ascq == 8)))
2896                         return -EIO;
2897                 msleep(100);
2898         }
2899         return -EIO;
2900 }
2901
2902 static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2903 {
2904         return __idetape_queue_pc_tail(drive, pc);
2905 }
2906
2907 static int idetape_flush_tape_buffers (ide_drive_t *drive)
2908 {
2909         idetape_pc_t pc;
2910         int rc;
2911
2912         idetape_create_write_filemark_cmd(drive, &pc, 0);
2913         if ((rc = idetape_queue_pc_tail(drive, &pc)))
2914                 return rc;
2915         idetape_wait_ready(drive, 60 * 5 * HZ);
2916         return 0;
2917 }
2918
2919 static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2920 {
2921         idetape_init_pc(pc);
2922         pc->c[0] = IDETAPE_READ_POSITION_CMD;
2923         pc->request_transfer = 20;
2924         pc->callback = &idetape_read_position_callback;
2925 }
2926
2927 static int idetape_read_position (ide_drive_t *drive)
2928 {
2929         idetape_tape_t *tape = drive->driver_data;
2930         idetape_pc_t pc;
2931         int position;
2932
2933 #if IDETAPE_DEBUG_LOG
2934         if (tape->debug_level >= 4)
2935                 printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2936 #endif /* IDETAPE_DEBUG_LOG */
2937
2938         idetape_create_read_position_cmd(&pc);
2939         if (idetape_queue_pc_tail(drive, &pc))
2940                 return -1;
2941         position = tape->first_frame_position;
2942         return position;
2943 }
2944
2945 static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2946 {
2947         idetape_init_pc(pc);
2948         pc->c[0] = IDETAPE_LOCATE_CMD;
2949         pc->c[1] = 2;
2950         put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2951         pc->c[8] = partition;
2952         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2953         pc->callback = &idetape_pc_callback;
2954 }
2955
2956 static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2957 {
2958         idetape_tape_t *tape = drive->driver_data;
2959
2960         if (!tape->capabilities.lock)
2961                 return 0;
2962
2963         idetape_init_pc(pc);
2964         pc->c[0] = IDETAPE_PREVENT_CMD;
2965         pc->c[4] = prevent;
2966         pc->callback = &idetape_pc_callback;
2967         return 1;
2968 }
2969
2970 static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2971 {
2972         idetape_tape_t *tape = drive->driver_data;
2973         unsigned long flags;
2974         int cnt;
2975
2976         if (tape->chrdev_direction != idetape_direction_read)
2977                 return 0;
2978
2979         /* Remove merge stage. */
2980         cnt = tape->merge_stage_size / tape->tape_block_size;
2981         if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2982                 ++cnt;          /* Filemarks count as 1 sector */
2983         tape->merge_stage_size = 0;
2984         if (tape->merge_stage != NULL) {
2985                 __idetape_kfree_stage(tape->merge_stage);
2986                 tape->merge_stage = NULL;
2987         }
2988
2989         /* Clear pipeline flags. */
2990         clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
2991         tape->chrdev_direction = idetape_direction_none;
2992
2993         /* Remove pipeline stages. */
2994         if (tape->first_stage == NULL)
2995                 return 0;
2996
2997         spin_lock_irqsave(&tape->spinlock, flags);
2998         tape->next_stage = NULL;
2999         if (idetape_pipeline_active(tape))
3000                 idetape_wait_for_request(drive, tape->active_data_request);
3001         spin_unlock_irqrestore(&tape->spinlock, flags);
3002
3003         while (tape->first_stage != NULL) {
3004                 struct request *rq_ptr = &tape->first_stage->rq;
3005
3006                 cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors; 
3007                 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3008                         ++cnt;
3009                 idetape_remove_stage_head(drive);
3010         }
3011         tape->nr_pending_stages = 0;
3012         tape->max_stages = tape->min_pipeline;
3013         return cnt;
3014 }
3015
3016 /*
3017  *      idetape_position_tape positions the tape to the requested block
3018  *      using the LOCATE packet command. A READ POSITION command is then
3019  *      issued to check where we are positioned.
3020  *
3021  *      Like all higher level operations, we queue the commands at the tail
3022  *      of the request queue and wait for their completion.
3023  *      
3024  */
3025 static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
3026 {
3027         idetape_tape_t *tape = drive->driver_data;
3028         int retval;
3029         idetape_pc_t pc;
3030
3031         if (tape->chrdev_direction == idetape_direction_read)
3032                 __idetape_discard_read_pipeline(drive);
3033         idetape_wait_ready(drive, 60 * 5 * HZ);
3034         idetape_create_locate_cmd(drive, &pc, block, partition, skip);
3035         retval = idetape_queue_pc_tail(drive, &pc);
3036         if (retval)
3037                 return (retval);
3038
3039         idetape_create_read_position_cmd(&pc);
3040         return (idetape_queue_pc_tail(drive, &pc));
3041 }
3042
3043 static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3044 {
3045         idetape_tape_t *tape = drive->driver_data;
3046         int cnt;
3047         int seek, position;
3048
3049         cnt = __idetape_discard_read_pipeline(drive);
3050         if (restore_position) {
3051                 position = idetape_read_position(drive);
3052                 seek = position > cnt ? position - cnt : 0;
3053                 if (idetape_position_tape(drive, seek, 0, 0)) {
3054                         printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3055                         return;
3056                 }
3057         }
3058 }
3059
3060 /*
3061  * idetape_queue_rw_tail generates a read/write request for the block
3062  * device interface and wait for it to be serviced.
3063  */
3064 static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3065 {
3066         idetape_tape_t *tape = drive->driver_data;
3067         struct request rq;
3068
3069 #if IDETAPE_DEBUG_LOG
3070         if (tape->debug_level >= 2)
3071                 printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3072 #endif /* IDETAPE_DEBUG_LOG */
3073 #if IDETAPE_DEBUG_BUGS
3074         if (idetape_pipeline_active(tape)) {
3075                 printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3076                 return (0);
3077         }
3078 #endif /* IDETAPE_DEBUG_BUGS */ 
3079
3080         idetape_init_rq(&rq, cmd);
3081         rq.rq_disk = tape->disk;
3082         rq.special = (void *)bh;
3083         rq.sector = tape->first_frame_position;
3084         rq.nr_sectors = rq.current_nr_sectors = blocks;
3085         (void) ide_do_drive_cmd(drive, &rq, ide_wait);
3086
3087         if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3088                 return 0;
3089
3090         if (tape->merge_stage)
3091                 idetape_init_merge_stage(tape);
3092         if (rq.errors == IDETAPE_ERROR_GENERAL)
3093                 return -EIO;
3094         return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3095 }
3096
3097 /*
3098  *      idetape_insert_pipeline_into_queue is used to start servicing the
3099  *      pipeline stages, starting from tape->next_stage.
3100  */
3101 static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3102 {
3103         idetape_tape_t *tape = drive->driver_data;
3104
3105         if (tape->next_stage == NULL)
3106                 return;
3107         if (!idetape_pipeline_active(tape)) {
3108                 set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3109                 idetape_active_next_stage(drive);
3110                 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3111         }
3112 }
3113
3114 static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3115 {
3116         idetape_init_pc(pc);
3117         pc->c[0] = IDETAPE_INQUIRY_CMD;
3118         pc->c[4] = pc->request_transfer = 254;
3119         pc->callback = &idetape_pc_callback;
3120 }
3121
3122 static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3123 {
3124         idetape_init_pc(pc);
3125         pc->c[0] = IDETAPE_REWIND_CMD;
3126         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3127         pc->callback = &idetape_pc_callback;
3128 }
3129
3130 #if 0
3131 static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3132 {
3133         idetape_init_pc(pc);
3134         set_bit(PC_WRITING, &pc->flags);
3135         pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3136         pc->c[1] = 0x10;
3137         put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3138         pc->request_transfer = 255;
3139         pc->callback = &idetape_pc_callback;
3140 }
3141 #endif
3142
3143 static void idetape_create_erase_cmd (idetape_pc_t *pc)
3144 {
3145         idetape_init_pc(pc);
3146         pc->c[0] = IDETAPE_ERASE_CMD;
3147         pc->c[1] = 1;
3148         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3149         pc->callback = &idetape_pc_callback;
3150 }
3151
3152 static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3153 {
3154         idetape_init_pc(pc);
3155         pc->c[0] = IDETAPE_SPACE_CMD;
3156         put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3157         pc->c[1] = cmd;
3158         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3159         pc->callback = &idetape_pc_callback;
3160 }
3161
3162 static void idetape_wait_first_stage (ide_drive_t *drive)
3163 {
3164         idetape_tape_t *tape = drive->driver_data;
3165         unsigned long flags;
3166
3167         if (tape->first_stage == NULL)
3168                 return;
3169         spin_lock_irqsave(&tape->spinlock, flags);
3170         if (tape->active_stage == tape->first_stage)
3171                 idetape_wait_for_request(drive, tape->active_data_request);
3172         spin_unlock_irqrestore(&tape->spinlock, flags);
3173 }
3174
3175 /*
3176  *      idetape_add_chrdev_write_request tries to add a character device
3177  *      originated write request to our pipeline. In case we don't succeed,
3178  *      we revert to non-pipelined operation mode for this request.
3179  *
3180  *      1.      Try to allocate a new pipeline stage.
3181  *      2.      If we can't, wait for more and more requests to be serviced
3182  *              and try again each time.
3183  *      3.      If we still can't allocate a stage, fallback to
3184  *              non-pipelined operation mode for this request.
3185  */
3186 static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3187 {
3188         idetape_tape_t *tape = drive->driver_data;
3189         idetape_stage_t *new_stage;
3190         unsigned long flags;
3191         struct request *rq;
3192
3193 #if IDETAPE_DEBUG_LOG
3194         if (tape->debug_level >= 3)
3195                 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3196 #endif /* IDETAPE_DEBUG_LOG */
3197
3198         /*
3199          *      Attempt to allocate a new stage.
3200          *      Pay special attention to possible race conditions.
3201          */
3202         while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3203                 spin_lock_irqsave(&tape->spinlock, flags);
3204                 if (idetape_pipeline_active(tape)) {
3205                         idetape_wait_for_request(drive, tape->active_data_request);
3206                         spin_unlock_irqrestore(&tape->spinlock, flags);
3207                 } else {
3208                         spin_unlock_irqrestore(&tape->spinlock, flags);
3209                         idetape_insert_pipeline_into_queue(drive);
3210                         if (idetape_pipeline_active(tape))
3211                                 continue;
3212                         /*
3213                          *      Linux is short on memory. Fallback to
3214                          *      non-pipelined operation mode for this request.
3215                          */
3216                         return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3217                 }
3218         }
3219         rq = &new_stage->rq;
3220         idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3221         /* Doesn't actually matter - We always assume sequential access */
3222         rq->sector = tape->first_frame_position;
3223         rq->nr_sectors = rq->current_nr_sectors = blocks;
3224
3225         idetape_switch_buffers(tape, new_stage);
3226         idetape_add_stage_tail(drive, new_stage);
3227         tape->pipeline_head++;
3228         calculate_speeds(drive);
3229
3230         /*
3231          *      Estimate whether the tape has stopped writing by checking
3232          *      if our write pipeline is currently empty. If we are not
3233          *      writing anymore, wait for the pipeline to be full enough
3234          *      (90%) before starting to service requests, so that we will
3235          *      be able to keep up with the higher speeds of the tape.
3236          */
3237         if (!idetape_pipeline_active(tape)) {
3238                 if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3239                     tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3240                         tape->measure_insert_time = 1;
3241                         tape->insert_time = jiffies;
3242                         tape->insert_size = 0;
3243                         tape->insert_speed = 0;
3244                         idetape_insert_pipeline_into_queue(drive);
3245                 }
3246         }
3247         if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3248                 /* Return a deferred error */
3249                 return -EIO;
3250         return blocks;
3251 }
3252
3253 /*
3254  *      idetape_wait_for_pipeline will wait until all pending pipeline
3255  *      requests are serviced. Typically called on device close.
3256  */
3257 static void idetape_wait_for_pipeline (ide_drive_t *drive)
3258 {
3259         idetape_tape_t *tape = drive->driver_data;
3260         unsigned long flags;
3261
3262         while (tape->next_stage || idetape_pipeline_active(tape)) {
3263                 idetape_insert_pipeline_into_queue(drive);
3264                 spin_lock_irqsave(&tape->spinlock, flags);
3265                 if (idetape_pipeline_active(tape))
3266                         idetape_wait_for_request(drive, tape->active_data_request);
3267                 spin_unlock_irqrestore(&tape->spinlock, flags);
3268         }
3269 }
3270
3271 static void idetape_empty_write_pipeline (ide_drive_t *drive)
3272 {
3273         idetape_tape_t *tape = drive->driver_data;
3274         int blocks, min;
3275         struct idetape_bh *bh;
3276         
3277 #if IDETAPE_DEBUG_BUGS
3278         if (tape->chrdev_direction != idetape_direction_write) {
3279                 printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3280                 return;
3281         }
3282         if (tape->merge_stage_size > tape->stage_size) {
3283                 printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3284                 tape->merge_stage_size = tape->stage_size;
3285         }
3286 #endif /* IDETAPE_DEBUG_BUGS */
3287         if (tape->merge_stage_size) {
3288                 blocks = tape->merge_stage_size / tape->tape_block_size;
3289                 if (tape->merge_stage_size % tape->tape_block_size) {
3290                         unsigned int i;
3291
3292                         blocks++;
3293                         i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3294                         bh = tape->bh->b_reqnext;
3295                         while (bh) {
3296                                 atomic_set(&bh->b_count, 0);
3297                                 bh = bh->b_reqnext;
3298                         }
3299                         bh = tape->bh;
3300                         while (i) {
3301                                 if (bh == NULL) {
3302
3303                                         printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3304                                         break;
3305                                 }
3306                                 min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3307                                 memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3308                                 atomic_add(min, &bh->b_count);
3309                                 i -= min;
3310                                 bh = bh->b_reqnext;
3311                         }
3312                 }
3313                 (void) idetape_add_chrdev_write_request(drive, blocks);
3314                 tape->merge_stage_size = 0;
3315         }
3316         idetape_wait_for_pipeline(drive);
3317         if (tape->merge_stage != NULL) {
3318                 __idetape_kfree_stage(tape->merge_stage);
3319                 tape->merge_stage = NULL;
3320         }
3321         clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3322         tape->chrdev_direction = idetape_direction_none;
3323
3324         /*
3325          *      On the next backup, perform the feedback loop again.
3326          *      (I don't want to keep sense information between backups,
3327          *       as some systems are constantly on, and the system load
3328          *       can be totally different on the next backup).
3329          */
3330         tape->max_stages = tape->min_pipeline;
3331 #if IDETAPE_DEBUG_BUGS
3332         if (tape->first_stage != NULL ||
3333             tape->next_stage != NULL ||
3334             tape->last_stage != NULL ||
3335             tape->nr_stages != 0) {
3336                 printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3337                         "first_stage %p, next_stage %p, "
3338                         "last_stage %p, nr_stages %d\n",
3339                         tape->first_stage, tape->next_stage,
3340                         tape->last_stage, tape->nr_stages);
3341         }
3342 #endif /* IDETAPE_DEBUG_BUGS */
3343 }
3344
3345 static void idetape_restart_speed_control (ide_drive_t *drive)
3346 {
3347         idetape_tape_t *tape = drive->driver_data;
3348
3349         tape->restart_speed_control_req = 0;
3350         tape->pipeline_head = 0;
3351         tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3352         tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3353         tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3354         tape->uncontrolled_pipeline_head_speed = 0;
3355         tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3356         tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3357 }
3358
3359 static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3360 {
3361         idetape_tape_t *tape = drive->driver_data;
3362         idetape_stage_t *new_stage;
3363         struct request rq;
3364         int bytes_read;
3365         int blocks = tape->capabilities.ctl;
3366
3367         /* Initialize read operation */
3368         if (tape->chrdev_direction != idetape_direction_read) {
3369                 if (tape->chrdev_direction == idetape_direction_write) {
3370                         idetape_empty_write_pipeline(drive);
3371                         idetape_flush_tape_buffers(drive);
3372                 }
3373 #if IDETAPE_DEBUG_BUGS
3374                 if (tape->merge_stage || tape->merge_stage_size) {
3375                         printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3376                         tape->merge_stage_size = 0;
3377                 }
3378 #endif /* IDETAPE_DEBUG_BUGS */
3379                 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3380                         return -ENOMEM;
3381                 tape->chrdev_direction = idetape_direction_read;
3382
3383                 /*
3384                  *      Issue a read 0 command to ensure that DSC handshake
3385                  *      is switched from completion mode to buffer available
3386                  *      mode.
3387                  *      No point in issuing this if DSC overlap isn't supported,
3388                  *      some drives (Seagate STT3401A) will return an error.
3389                  */
3390                 if (drive->dsc_overlap) {
3391                         bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3392                         if (bytes_read < 0) {
3393                                 __idetape_kfree_stage(tape->merge_stage);
3394                                 tape->merge_stage = NULL;
3395                                 tape->chrdev_direction = idetape_direction_none;
3396                                 return bytes_read;
3397                         }
3398                 }
3399         }
3400         if (tape->restart_speed_control_req)
3401                 idetape_restart_speed_control(drive);
3402         idetape_init_rq(&rq, REQ_IDETAPE_READ);
3403         rq.sector = tape->first_frame_position;
3404         rq.nr_sectors = rq.current_nr_sectors = blocks;
3405         if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3406             tape->nr_stages < max_stages) {
3407                 new_stage = idetape_kmalloc_stage(tape);
3408                 while (new_stage != NULL) {
3409                         new_stage->rq = rq;
3410                         idetape_add_stage_tail(drive, new_stage);
3411                         if (tape->nr_stages >= max_stages)
3412                                 break;
3413                         new_stage = idetape_kmalloc_stage(tape);
3414                 }
3415         }
3416         if (!idetape_pipeline_active(tape)) {
3417                 if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3418                         tape->measure_insert_time = 1;
3419                         tape->insert_time = jiffies;
3420                         tape->insert_size = 0;
3421                         tape->insert_speed = 0;
3422                         idetape_insert_pipeline_into_queue(drive);
3423                 }
3424         }
3425         return 0;
3426 }
3427
3428 /*
3429  *      idetape_add_chrdev_read_request is called from idetape_chrdev_read
3430  *      to service a character device read request and add read-ahead
3431  *      requests to our pipeline.
3432  */
3433 static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3434 {
3435         idetape_tape_t *tape = drive->driver_data;
3436         unsigned long flags;
3437         struct request *rq_ptr;
3438         int bytes_read;
3439
3440 #if IDETAPE_DEBUG_LOG
3441         if (tape->debug_level >= 4)
3442                 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3443 #endif /* IDETAPE_DEBUG_LOG */
3444
3445         /*
3446          * If we are at a filemark, return a read length of 0
3447          */
3448         if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3449                 return 0;
3450
3451         /*
3452          * Wait for the next block to be available at the head
3453          * of the pipeline
3454          */
3455         idetape_initiate_read(drive, tape->max_stages);
3456         if (tape->first_stage == NULL) {
3457                 if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3458                         return 0;
3459                 return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3460         }
3461         idetape_wait_first_stage(drive);
3462         rq_ptr = &tape->first_stage->rq;
3463         bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3464         rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3465
3466
3467         if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3468                 return 0;
3469         else {
3470                 idetape_switch_buffers(tape, tape->first_stage);
3471                 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3472                         set_bit(IDETAPE_FILEMARK, &tape->flags);
3473                 spin_lock_irqsave(&tape->spinlock, flags);
3474                 idetape_remove_stage_head(drive);
3475                 spin_unlock_irqrestore(&tape->spinlock, flags);
3476                 tape->pipeline_head++;
3477                 calculate_speeds(drive);
3478         }
3479 #if IDETAPE_DEBUG_BUGS
3480         if (bytes_read > blocks * tape->tape_block_size) {
3481                 printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3482                 bytes_read = blocks * tape->tape_block_size;
3483         }
3484 #endif /* IDETAPE_DEBUG_BUGS */
3485         return (bytes_read);
3486 }
3487
3488 static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3489 {
3490         idetape_tape_t *tape = drive->driver_data;
3491         struct idetape_bh *bh;
3492         int blocks;
3493         
3494         while (bcount) {
3495                 unsigned int count;
3496
3497                 bh = tape->merge_stage->bh;
3498                 count = min(tape->stage_size, bcount);
3499                 bcount -= count;
3500                 blocks = count / tape->tape_block_size;
3501                 while (count) {
3502                         atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3503                         memset(bh->b_data, 0, atomic_read(&bh->b_count));
3504                         count -= atomic_read(&bh->b_count);
3505                         bh = bh->b_reqnext;
3506                 }
3507                 idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3508         }
3509 }
3510
3511 static int idetape_pipeline_size (ide_drive_t *drive)
3512 {
3513         idetape_tape_t *tape = drive->driver_data;
3514         idetape_stage_t *stage;
3515         struct request *rq;
3516         int size = 0;
3517
3518         idetape_wait_for_pipeline(drive);
3519         stage = tape->first_stage;
3520         while (stage != NULL) {
3521                 rq = &stage->rq;
3522                 size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3523                 if (rq->errors == IDETAPE_ERROR_FILEMARK)
3524                         size += tape->tape_block_size;
3525                 stage = stage->next;
3526         }
3527         size += tape->merge_stage_size;
3528         return size;
3529 }
3530
3531 /*
3532  *      Rewinds the tape to the Beginning Of the current Partition (BOP).
3533  *
3534  *      We currently support only one partition.
3535  */ 
3536 static int idetape_rewind_tape (ide_drive_t *drive)
3537 {
3538         int retval;
3539         idetape_pc_t pc;
3540 #if IDETAPE_DEBUG_LOG
3541         idetape_tape_t *tape = drive->driver_data;
3542         if (tape->debug_level >= 2)
3543                 printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3544 #endif /* IDETAPE_DEBUG_LOG */  
3545         
3546         idetape_create_rewind_cmd(drive, &pc);
3547         retval = idetape_queue_pc_tail(drive, &pc);
3548         if (retval)
3549                 return retval;
3550
3551         idetape_create_read_position_cmd(&pc);
3552         retval = idetape_queue_pc_tail(drive, &pc);
3553         if (retval)
3554                 return retval;
3555         return 0;
3556 }
3557
3558 /*
3559  *      Our special ide-tape ioctl's.
3560  *
3561  *      Currently there aren't any ioctl's.
3562  *      mtio.h compatible commands should be issued to the character device
3563  *      interface.
3564  */
3565 static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3566 {
3567         idetape_tape_t *tape = drive->driver_data;
3568         idetape_config_t config;
3569         void __user *argp = (void __user *)arg;
3570
3571 #if IDETAPE_DEBUG_LOG   
3572         if (tape->debug_level >= 4)
3573                 printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3574 #endif /* IDETAPE_DEBUG_LOG */
3575         switch (cmd) {
3576                 case 0x0340:
3577                         if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3578                                 return -EFAULT;
3579                         tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3580                         tape->max_stages = config.nr_stages;
3581                         break;
3582                 case 0x0350:
3583                         config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3584                         config.nr_stages = tape->max_stages; 
3585                         if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3586                                 return -EFAULT;
3587                         break;
3588                 default:
3589                         return -EIO;
3590         }
3591         return 0;
3592 }
3593
3594 /*
3595  *      idetape_space_over_filemarks is now a bit more complicated than just
3596  *      passing the command to the tape since we may have crossed some
3597  *      filemarks during our pipelined read-ahead mode.
3598  *
3599  *      As a minor side effect, the pipeline enables us to support MTFSFM when
3600  *      the filemark is in our internal pipeline even if the tape doesn't
3601  *      support spacing over filemarks in the reverse direction.
3602  */
3603 static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3604 {
3605         idetape_tape_t *tape = drive->driver_data;
3606         idetape_pc_t pc;
3607         unsigned long flags;
3608         int retval,count=0;
3609
3610         if (mt_count == 0)
3611                 return 0;
3612         if (MTBSF == mt_op || MTBSFM == mt_op) {
3613                 if (!tape->capabilities.sprev)
3614                         return -EIO;
3615                 mt_count = - mt_count;
3616         }
3617
3618         if (tape->chrdev_direction == idetape_direction_read) {
3619                 /*
3620                  *      We have a read-ahead buffer. Scan it for crossed
3621                  *      filemarks.
3622                  */
3623                 tape->merge_stage_size = 0;
3624                 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3625                         ++count;
3626                 while (tape->first_stage != NULL) {
3627                         if (count == mt_count) {
3628                                 if (mt_op == MTFSFM)
3629                                         set_bit(IDETAPE_FILEMARK, &tape->flags);
3630                                 return 0;
3631                         }
3632                         spin_lock_irqsave(&tape->spinlock, flags);
3633                         if (tape->first_stage == tape->active_stage) {
3634                                 /*
3635                                  *      We have reached the active stage in the read pipeline.
3636                                  *      There is no point in allowing the drive to continue
3637                                  *      reading any farther, so we stop the pipeline.
3638                                  *
3639                                  *      This section should be moved to a separate subroutine,
3640                                  *      because a similar function is performed in
3641                                  *      __idetape_discard_read_pipeline(), for example.
3642                                  */
3643                                 tape->next_stage = NULL;
3644                                 spin_unlock_irqrestore(&tape->spinlock, flags);
3645                                 idetape_wait_first_stage(drive);
3646                                 tape->next_stage = tape->first_stage->next;
3647                         } else
3648                                 spin_unlock_irqrestore(&tape->spinlock, flags);
3649                         if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3650                                 ++count;
3651                         idetape_remove_stage_head(drive);
3652                 }
3653                 idetape_discard_read_pipeline(drive, 0);
3654         }
3655
3656         /*
3657          *      The filemark was not found in our internal pipeline.
3658          *      Now we can issue the space command.
3659          */
3660         switch (mt_op) {
3661                 case MTFSF:
3662                 case MTBSF:
3663                         idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3664                         return (idetape_queue_pc_tail(drive, &pc));
3665                 case MTFSFM:
3666                 case MTBSFM:
3667                         if (!tape->capabilities.sprev)
3668                                 return (-EIO);
3669                         retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3670                         if (retval) return (retval);
3671                         count = (MTBSFM == mt_op ? 1 : -1);
3672                         return (idetape_space_over_filemarks(drive, MTFSF, count));
3673                 default:
3674                         printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3675                         return (-EIO);
3676         }
3677 }
3678
3679
3680 /*
3681  *      Our character device read / write functions.
3682  *
3683  *      The tape is optimized to maximize throughput when it is transferring
3684  *      an integral number of the "continuous transfer limit", which is
3685  *      a parameter of the specific tape (26 KB on my particular tape).
3686  *      (32 kB for Onstream)
3687  *
3688  *      As of version 1.3 of the driver, the character device provides an
3689  *      abstract continuous view of the media - any mix of block sizes (even 1
3690  *      byte) on the same backup/restore procedure is supported. The driver
3691  *      will internally convert the requests to the recommended transfer unit,
3692  *      so that an unmatch between the user's block size to the recommended
3693  *      size will only result in a (slightly) increased driver overhead, but
3694  *      will no longer hit performance.
3695  *      This is not applicable to Onstream.
3696  */
3697 static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3698                                     size_t count, loff_t *ppos)
3699 {
3700         struct ide_tape_obj *tape = ide_tape_f(file);
3701         ide_drive_t *drive = tape->drive;
3702         ssize_t bytes_read,temp, actually_read = 0, rc;
3703         ssize_t ret = 0;
3704
3705 #if IDETAPE_DEBUG_LOG
3706         if (tape->debug_level >= 3)
3707                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3708 #endif /* IDETAPE_DEBUG_LOG */
3709
3710         if (tape->chrdev_direction != idetape_direction_read) {
3711                 if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3712                         if (count > tape->tape_block_size &&
3713                             (count % tape->tape_block_size) == 0)
3714                                 tape->user_bs_factor = count / tape->tape_block_size;
3715         }
3716         if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3717                 return rc;
3718         if (count == 0)
3719                 return (0);
3720         if (tape->merge_stage_size) {
3721                 actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
3722                 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read))
3723                         ret = -EFAULT;
3724                 buf += actually_read;
3725                 tape->merge_stage_size -= actually_read;
3726                 count -= actually_read;
3727         }
3728         while (count >= tape->stage_size) {
3729                 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3730                 if (bytes_read <= 0)
3731                         goto finish;
3732                 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read))
3733                         ret = -EFAULT;
3734                 buf += bytes_read;
3735                 count -= bytes_read;
3736                 actually_read += bytes_read;
3737         }
3738         if (count) {
3739                 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3740                 if (bytes_read <= 0)
3741                         goto finish;
3742                 temp = min((unsigned long)count, (unsigned long)bytes_read);
3743                 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp))
3744                         ret = -EFAULT;
3745                 actually_read += temp;
3746                 tape->merge_stage_size = bytes_read-temp;
3747         }
3748 finish:
3749         if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3750 #if IDETAPE_DEBUG_LOG
3751                 if (tape->debug_level >= 2)
3752                         printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3753 #endif
3754                 idetape_space_over_filemarks(drive, MTFSF, 1);
3755                 return 0;
3756         }
3757
3758         return (ret) ? ret : actually_read;
3759 }
3760
3761 static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3762                                      size_t count, loff_t *ppos)
3763 {
3764         struct ide_tape_obj *tape = ide_tape_f(file);
3765         ide_drive_t *drive = tape->drive;
3766         ssize_t actually_written = 0;
3767         ssize_t ret = 0;
3768
3769         /* The drive is write protected. */
3770         if (tape->write_prot)
3771                 return -EACCES;
3772
3773 #if IDETAPE_DEBUG_LOG
3774         if (tape->debug_level >= 3)
3775                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3776                         "count %Zd\n", count);
3777 #endif /* IDETAPE_DEBUG_LOG */
3778
3779         /* Initialize write operation */
3780         if (tape->chrdev_direction != idetape_direction_write) {
3781                 if (tape->chrdev_direction == idetape_direction_read)
3782                         idetape_discard_read_pipeline(drive, 1);
3783 #if IDETAPE_DEBUG_BUGS
3784                 if (tape->merge_stage || tape->merge_stage_size) {
3785                         printk(KERN_ERR "ide-tape: merge_stage_size "
3786                                 "should be 0 now\n");
3787                         tape->merge_stage_size = 0;
3788                 }
3789 #endif /* IDETAPE_DEBUG_BUGS */
3790                 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3791                         return -ENOMEM;
3792                 tape->chrdev_direction = idetape_direction_write;
3793                 idetape_init_merge_stage(tape);
3794
3795                 /*
3796                  *      Issue a write 0 command to ensure that DSC handshake
3797                  *      is switched from completion mode to buffer available
3798                  *      mode.
3799                  *      No point in issuing this if DSC overlap isn't supported,
3800                  *      some drives (Seagate STT3401A) will return an error.
3801                  */
3802                 if (drive->dsc_overlap) {
3803                         ssize_t retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
3804                         if (retval < 0) {
3805                                 __idetape_kfree_stage(tape->merge_stage);
3806                                 tape->merge_stage = NULL;
3807                                 tape->chrdev_direction = idetape_direction_none;
3808                                 return retval;
3809                         }
3810                 }
3811         }
3812         if (count == 0)
3813                 return (0);
3814         if (tape->restart_speed_control_req)
3815                 idetape_restart_speed_control(drive);
3816         if (tape->merge_stage_size) {
3817 #if IDETAPE_DEBUG_BUGS
3818                 if (tape->merge_stage_size >= tape->stage_size) {
3819                         printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3820                         tape->merge_stage_size = 0;
3821                 }
3822 #endif /* IDETAPE_DEBUG_BUGS */
3823                 actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
3824                 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written))
3825                                 ret = -EFAULT;
3826                 buf += actually_written;
3827                 tape->merge_stage_size += actually_written;
3828                 count -= actually_written;
3829
3830                 if (tape->merge_stage_size == tape->stage_size) {
3831                         ssize_t retval;
3832                         tape->merge_stage_size = 0;
3833                         retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3834                         if (retval <= 0)
3835                                 return (retval);
3836                 }
3837         }
3838         while (count >= tape->stage_size) {
3839                 ssize_t retval;
3840                 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size))
3841                         ret = -EFAULT;
3842                 buf += tape->stage_size;
3843                 count -= tape->stage_size;
3844                 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3845                 actually_written += tape->stage_size;
3846                 if (retval <= 0)
3847                         return (retval);
3848         }
3849         if (count) {
3850                 actually_written += count;
3851                 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count))
3852                         ret = -EFAULT;
3853                 tape->merge_stage_size += count;
3854         }
3855         return (ret) ? ret : actually_written;
3856 }
3857
3858 static int idetape_write_filemark (ide_drive_t *drive)
3859 {
3860         idetape_pc_t pc;
3861
3862         /* Write a filemark */
3863         idetape_create_write_filemark_cmd(drive, &pc, 1);
3864         if (idetape_queue_pc_tail(drive, &pc)) {
3865                 printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3866                 return -EIO;
3867         }
3868         return 0;
3869 }
3870
3871 /*
3872  *      idetape_mtioctop is called from idetape_chrdev_ioctl when
3873  *      the general mtio MTIOCTOP ioctl is requested.
3874  *
3875  *      We currently support the following mtio.h operations:
3876  *
3877  *      MTFSF   -       Space over mt_count filemarks in the positive direction.
3878  *                      The tape is positioned after the last spaced filemark.
3879  *
3880  *      MTFSFM  -       Same as MTFSF, but the tape is positioned before the
3881  *                      last filemark.
3882  *
3883  *      MTBSF   -       Steps background over mt_count filemarks, tape is
3884  *                      positioned before the last filemark.
3885  *
3886  *      MTBSFM  -       Like MTBSF, only tape is positioned after the last filemark.
3887  *
3888  *      Note:
3889  *
3890  *              MTBSF and MTBSFM are not supported when the tape doesn't
3891  *              support spacing over filemarks in the reverse direction.
3892  *              In this case, MTFSFM is also usually not supported (it is
3893  *              supported in the rare case in which we crossed the filemark
3894  *              during our read-ahead pipelined operation mode).
3895  *              
3896  *      MTWEOF  -       Writes mt_count filemarks. Tape is positioned after
3897  *                      the last written filemark.
3898  *
3899  *      MTREW   -       Rewinds tape.
3900  *
3901  *      MTLOAD  -       Loads the tape.
3902  *
3903  *      MTOFFL  -       Puts the tape drive "Offline": Rewinds the tape and
3904  *      MTUNLOAD        prevents further access until the media is replaced.
3905  *
3906  *      MTNOP   -       Flushes tape buffers.
3907  *
3908  *      MTRETEN -       Retension media. This typically consists of one end
3909  *                      to end pass on the media.
3910  *
3911  *      MTEOM   -       Moves to the end of recorded data.
3912  *
3913  *      MTERASE -       Erases tape.
3914  *
3915  *      MTSETBLK -      Sets the user block size to mt_count bytes. If
3916  *                      mt_count is 0, we will attempt to autodetect
3917  *                      the block size.
3918  *
3919  *      MTSEEK  -       Positions the tape in a specific block number, where
3920  *                      each block is assumed to contain which user_block_size
3921  *                      bytes.
3922  *
3923  *      MTSETPART -     Switches to another tape partition.
3924  *
3925  *      MTLOCK -        Locks the tape door.
3926  *
3927  *      MTUNLOCK -      Unlocks the tape door.
3928  *
3929  *      The following commands are currently not supported:
3930  *
3931  *      MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3932  *      MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3933  */
3934 static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3935 {
3936         idetape_tape_t *tape = drive->driver_data;
3937         idetape_pc_t pc;
3938         int i,retval;
3939
3940 #if IDETAPE_DEBUG_LOG
3941         if (tape->debug_level >= 1)
3942                 printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3943                         "mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3944 #endif /* IDETAPE_DEBUG_LOG */
3945         /*
3946          *      Commands which need our pipelined read-ahead stages.
3947          */
3948         switch (mt_op) {
3949                 case MTFSF:
3950                 case MTFSFM:
3951                 case MTBSF:
3952                 case MTBSFM:
3953                         if (!mt_count)
3954                                 return (0);
3955                         return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3956                 default:
3957                         break;
3958         }
3959         switch (mt_op) {
3960                 case MTWEOF:
3961                         if (tape->write_prot)
3962                                 return -EACCES;
3963                         idetape_discard_read_pipeline(drive, 1);
3964                         for (i = 0; i < mt_count; i++) {
3965                                 retval = idetape_write_filemark(drive);
3966                                 if (retval)
3967                                         return retval;
3968                         }
3969                         return (0);
3970                 case MTREW:
3971                         idetape_discard_read_pipeline(drive, 0);
3972                         if (idetape_rewind_tape(drive))
3973                                 return -EIO;
3974                         return 0;
3975                 case MTLOAD:
3976                         idetape_discard_read_pipeline(drive, 0);
3977                         idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3978                         return (idetape_queue_pc_tail(drive, &pc));
3979                 case MTUNLOAD:
3980                 case MTOFFL:
3981                         /*
3982                          * If door is locked, attempt to unlock before
3983                          * attempting to eject.
3984                          */
3985                         if (tape->door_locked) {
3986                                 if (idetape_create_prevent_cmd(drive, &pc, 0))
3987                                         if (!idetape_queue_pc_tail(drive, &pc))
3988                                                 tape->door_locked = DOOR_UNLOCKED;
3989                         }
3990                         idetape_discard_read_pipeline(drive, 0);
3991                         idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3992                         retval = idetape_queue_pc_tail(drive, &pc);
3993                         if (!retval)
3994                                 clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
3995                         return retval;
3996                 case MTNOP:
3997                         idetape_discard_read_pipeline(drive, 0);
3998                         return (idetape_flush_tape_buffers(drive));
3999                 case MTRETEN:
4000                         idetape_discard_read_pipeline(drive, 0);
4001                         idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
4002                         return (idetape_queue_pc_tail(drive, &pc));
4003                 case MTEOM:
4004                         idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
4005                         return (idetape_queue_pc_tail(drive, &pc));
4006                 case MTERASE:
4007                         (void) idetape_rewind_tape(drive);
4008                         idetape_create_erase_cmd(&pc);
4009                         return (idetape_queue_pc_tail(drive, &pc));
4010                 case MTSETBLK:
4011                         if (mt_count) {
4012                                 if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
4013                                         return -EIO;
4014                                 tape->user_bs_factor = mt_count / tape->tape_block_size;
4015                                 clear_bit(IDETAPE_DETECT_BS, &tape->flags);
4016                         } else
4017                                 set_bit(IDETAPE_DETECT_BS, &tape->flags);
4018                         return 0;
4019                 case MTSEEK:
4020                         idetape_discard_read_pipeline(drive, 0);
4021                         return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
4022                 case MTSETPART:
4023                         idetape_discard_read_pipeline(drive, 0);
4024                         return (idetape_position_tape(drive, 0, mt_count, 0));
4025                 case MTFSR:
4026                 case MTBSR:
4027                 case MTLOCK:
4028                         if (!idetape_create_prevent_cmd(drive, &pc, 1))
4029                                 return 0;
4030                         retval = idetape_queue_pc_tail(drive, &pc);
4031                         if (retval) return retval;
4032                         tape->door_locked = DOOR_EXPLICITLY_LOCKED;
4033                         return 0;
4034                 case MTUNLOCK:
4035                         if (!idetape_create_prevent_cmd(drive, &pc, 0))
4036                                 return 0;
4037                         retval = idetape_queue_pc_tail(drive, &pc);
4038                         if (retval) return retval;
4039                         tape->door_locked = DOOR_UNLOCKED;
4040                         return 0;
4041                 default:
4042                         printk(KERN_ERR "ide-tape: MTIO operation %d not "
4043                                 "supported\n", mt_op);
4044                         return (-EIO);
4045         }
4046 }
4047
4048 /*
4049  *      Our character device ioctls.
4050  *
4051  *      General mtio.h magnetic io commands are supported here, and not in
4052  *      the corresponding block interface.
4053  *
4054  *      The following ioctls are supported:
4055  *
4056  *      MTIOCTOP -      Refer to idetape_mtioctop for detailed description.
4057  *
4058  *      MTIOCGET -      The mt_dsreg field in the returned mtget structure
4059  *                      will be set to (user block size in bytes <<
4060  *                      MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4061  *
4062  *                      The mt_blkno is set to the current user block number.
4063  *                      The other mtget fields are not supported.
4064  *
4065  *      MTIOCPOS -      The current tape "block position" is returned. We
4066  *                      assume that each block contains user_block_size
4067  *                      bytes.
4068  *
4069  *      Our own ide-tape ioctls are supported on both interfaces.
4070  */
4071 static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4072 {
4073         struct ide_tape_obj *tape = ide_tape_f(file);
4074         ide_drive_t *drive = tape->drive;
4075         struct mtop mtop;
4076         struct mtget mtget;
4077         struct mtpos mtpos;
4078         int block_offset = 0, position = tape->first_frame_position;
4079         void __user *argp = (void __user *)arg;
4080
4081 #if IDETAPE_DEBUG_LOG
4082         if (tape->debug_level >= 3)
4083                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4084                         "cmd=%u\n", cmd);
4085 #endif /* IDETAPE_DEBUG_LOG */
4086
4087         tape->restart_speed_control_req = 1;
4088         if (tape->chrdev_direction == idetape_direction_write) {
4089                 idetape_empty_write_pipeline(drive);
4090                 idetape_flush_tape_buffers(drive);
4091         }
4092         if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4093                 block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4094                 if ((position = idetape_read_position(drive)) < 0)
4095                         return -EIO;
4096         }
4097         switch (cmd) {
4098                 case MTIOCTOP:
4099                         if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4100                                 return -EFAULT;
4101                         return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4102                 case MTIOCGET:
4103                         memset(&mtget, 0, sizeof (struct mtget));
4104                         mtget.mt_type = MT_ISSCSI2;
4105                         mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4106                         mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4107                         if (tape->drv_write_prot) {
4108                                 mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4109                         }
4110                         if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4111                                 return -EFAULT;
4112                         return 0;
4113                 case MTIOCPOS:
4114                         mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4115                         if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4116                                 return -EFAULT;
4117                         return 0;
4118                 default:
4119                         if (tape->chrdev_direction == idetape_direction_read)
4120                                 idetape_discard_read_pipeline(drive, 1);
4121                         return idetape_blkdev_ioctl(drive, cmd, arg);
4122         }
4123 }
4124
4125 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4126
4127 /*
4128  *      Our character device open function.
4129  */
4130 static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4131 {
4132         unsigned int minor = iminor(inode), i = minor & ~0xc0;
4133         ide_drive_t *drive;
4134         idetape_tape_t *tape;
4135         idetape_pc_t pc;
4136         int retval;
4137
4138         /*
4139          * We really want to do nonseekable_open(inode, filp); here, but some
4140          * versions of tar incorrectly call lseek on tapes and bail out if that
4141          * fails.  So we disallow pread() and pwrite(), but permit lseeks.
4142          */
4143         filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
4144
4145 #if IDETAPE_DEBUG_LOG
4146         printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4147 #endif /* IDETAPE_DEBUG_LOG */
4148         
4149         if (i >= MAX_HWIFS * MAX_DRIVES)
4150                 return -ENXIO;
4151
4152         if (!(tape = ide_tape_chrdev_get(i)))
4153                 return -ENXIO;
4154
4155         drive = tape->drive;
4156
4157         filp->private_data = tape;
4158
4159         if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
4160                 retval = -EBUSY;
4161                 goto out_put_tape;
4162         }
4163
4164         retval = idetape_wait_ready(drive, 60 * HZ);
4165         if (retval) {
4166                 clear_bit(IDETAPE_BUSY, &tape->flags);
4167                 printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4168                 goto out_put_tape;
4169         }
4170
4171         idetape_read_position(drive);
4172         if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4173                 (void)idetape_rewind_tape(drive);
4174
4175         if (tape->chrdev_direction != idetape_direction_read)
4176                 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4177
4178         /* Read block size and write protect status from drive. */
4179         idetape_get_blocksize_from_block_descriptor(drive);
4180
4181         /* Set write protect flag if device is opened as read-only. */
4182         if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4183                 tape->write_prot = 1;
4184         else
4185                 tape->write_prot = tape->drv_write_prot;
4186
4187         /* Make sure drive isn't write protected if user wants to write. */
4188         if (tape->write_prot) {
4189                 if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4190                     (filp->f_flags & O_ACCMODE) == O_RDWR) {
4191                         clear_bit(IDETAPE_BUSY, &tape->flags);
4192                         retval = -EROFS;
4193                         goto out_put_tape;
4194                 }
4195         }
4196
4197         /*
4198          * Lock the tape drive door so user can't eject.
4199          */
4200         if (tape->chrdev_direction == idetape_direction_none) {
4201                 if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4202                         if (!idetape_queue_pc_tail(drive, &pc)) {
4203                                 if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4204                                         tape->door_locked = DOOR_LOCKED;
4205                         }
4206                 }
4207         }
4208         idetape_restart_speed_control(drive);
4209         tape->restart_speed_control_req = 0;
4210         return 0;
4211
4212 out_put_tape:
4213         ide_tape_put(tape);
4214         return retval;
4215 }
4216
4217 static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4218 {
4219         idetape_tape_t *tape = drive->driver_data;
4220
4221         idetape_empty_write_pipeline(drive);
4222         tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4223         if (tape->merge_stage != NULL) {
4224                 idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4225                 __idetape_kfree_stage(tape->merge_stage);
4226                 tape->merge_stage = NULL;
4227         }
4228         idetape_write_filemark(drive);
4229         idetape_flush_tape_buffers(drive);
4230         idetape_flush_tape_buffers(drive);
4231 }
4232
4233 /*
4234  *      Our character device release function.
4235  */
4236 static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4237 {
4238         struct ide_tape_obj *tape = ide_tape_f(filp);
4239         ide_drive_t *drive = tape->drive;
4240         idetape_pc_t pc;
4241         unsigned int minor = iminor(inode);
4242
4243         lock_kernel();
4244         tape = drive->driver_data;
4245 #if IDETAPE_DEBUG_LOG
4246         if (tape->debug_level >= 3)
4247                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4248 #endif /* IDETAPE_DEBUG_LOG */
4249
4250         if (tape->chrdev_direction == idetape_direction_write)
4251                 idetape_write_release(drive, minor);
4252         if (tape->chrdev_direction == idetape_direction_read) {
4253                 if (minor < 128)
4254                         idetape_discard_read_pipeline(drive, 1);
4255                 else
4256                         idetape_wait_for_pipeline(drive);
4257         }
4258         if (tape->cache_stage != NULL) {
4259                 __idetape_kfree_stage(tape->cache_stage);
4260                 tape->cache_stage = NULL;
4261         }
4262         if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4263                 (void) idetape_rewind_tape(drive);
4264         if (tape->chrdev_direction == idetape_direction_none) {
4265                 if (tape->door_locked == DOOR_LOCKED) {
4266                         if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4267                                 if (!idetape_queue_pc_tail(drive, &pc))
4268                                         tape->door_locked = DOOR_UNLOCKED;
4269                         }
4270                 }
4271         }
4272         clear_bit(IDETAPE_BUSY, &tape->flags);
4273         ide_tape_put(tape);
4274         unlock_kernel();
4275         return 0;
4276 }
4277
4278 /*
4279  *      idetape_identify_device is called to check the contents of the
4280  *      ATAPI IDENTIFY command results. We return:
4281  *
4282  *      1       If the tape can be supported by us, based on the information
4283  *              we have so far.
4284  *
4285  *      0       If this tape driver is not currently supported by us.
4286  */
4287 static int idetape_identify_device (ide_drive_t *drive)
4288 {
4289         struct idetape_id_gcw gcw;
4290         struct hd_driveid *id = drive->id;
4291 #if IDETAPE_DEBUG_INFO
4292         unsigned short mask,i;
4293 #endif /* IDETAPE_DEBUG_INFO */
4294
4295         if (drive->id_read == 0)
4296                 return 1;
4297
4298         *((unsigned short *) &gcw) = id->config;
4299
4300 #if IDETAPE_DEBUG_INFO
4301         printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4302         printk(KERN_INFO "ide-tape: Protocol Type: ");
4303         switch (gcw.protocol) {
4304                 case 0: case 1: printk("ATA\n");break;
4305                 case 2: printk("ATAPI\n");break;
4306                 case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4307         }
4308         printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);       
4309         switch (gcw.device_type) {
4310                 case 0: printk("Direct-access Device\n");break;
4311                 case 1: printk("Streaming Tape Device\n");break;
4312                 case 2: case 3: case 4: printk("Reserved\n");break;
4313                 case 5: printk("CD-ROM Device\n");break;
4314                 case 6: printk("Reserved\n");
4315                 case 7: printk("Optical memory Device\n");break;
4316                 case 0x1f: printk("Unknown or no Device type\n");break;
4317                 default: printk("Reserved\n");
4318         }
4319         printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");     
4320         printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4321         switch (gcw.drq_type) {
4322                 case 0: printk("Microprocessor DRQ\n");break;
4323                 case 1: printk("Interrupt DRQ\n");break;
4324                 case 2: printk("Accelerated DRQ\n");break;
4325                 case 3: printk("Reserved\n");break;
4326         }
4327         printk(KERN_INFO "ide-tape: Command Packet Size: ");
4328         switch (gcw.packet_size) {
4329                 case 0: printk("12 bytes\n");break;
4330                 case 1: printk("16 bytes\n");break;
4331                 default: printk("Reserved\n");break;
4332         }
4333         printk(KERN_INFO "ide-tape: Model: %.40s\n",id->model);
4334         printk(KERN_INFO "ide-tape: Firmware Revision: %.8s\n",id->fw_rev);
4335         printk(KERN_INFO "ide-tape: Serial Number: %.20s\n",id->serial_no);
4336         printk(KERN_INFO "ide-tape: Write buffer size: %d bytes\n",id->buf_size*512);
4337         printk(KERN_INFO "ide-tape: DMA: %s",id->capability & 0x01 ? "Yes\n":"No\n");
4338         printk(KERN_INFO "ide-tape: LBA: %s",id->capability & 0x02 ? "Yes\n":"No\n");
4339         printk(KERN_INFO "ide-tape: IORDY can be disabled: %s",id->capability & 0x04 ? "Yes\n":"No\n");
4340         printk(KERN_INFO "ide-tape: IORDY supported: %s",id->capability & 0x08 ? "Yes\n":"Unknown\n");
4341         printk(KERN_INFO "ide-tape: ATAPI overlap supported: %s",id->capability & 0x20 ? "Yes\n":"No\n");
4342         printk(KERN_INFO "ide-tape: PIO Cycle Timing Category: %d\n",id->tPIO);
4343         printk(KERN_INFO "ide-tape: DMA Cycle Timing Category: %d\n",id->tDMA);
4344         printk(KERN_INFO "ide-tape: Single Word DMA supported modes: ");
4345         for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4346                 if (id->dma_1word & mask)
4347                         printk("%d ",i);
4348                 if (id->dma_1word & (mask << 8))
4349                         printk("(active) ");
4350         }
4351         printk("\n");
4352         printk(KERN_INFO "ide-tape: Multi Word DMA supported modes: ");
4353         for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4354                 if (id->dma_mword & mask)
4355                         printk("%d ",i);
4356                 if (id->dma_mword & (mask << 8))
4357                         printk("(active) ");
4358         }
4359         printk("\n");
4360         if (id->field_valid & 0x0002) {
4361                 printk(KERN_INFO "ide-tape: Enhanced PIO Modes: %s\n",
4362                         id->eide_pio_modes & 1 ? "Mode 3":"None");
4363                 printk(KERN_INFO "ide-tape: Minimum Multi-word DMA cycle per word: ");
4364                 if (id->eide_dma_min == 0)
4365                         printk("Not supported\n");
4366                 else
4367                         printk("%d ns\n",id->eide_dma_min);
4368
4369                 printk(KERN_INFO "ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4370                 if (id->eide_dma_time == 0)
4371                         printk("Not supported\n");
4372                 else
4373                         printk("%d ns\n",id->eide_dma_time);
4374
4375                 printk(KERN_INFO "ide-tape: Minimum PIO cycle without IORDY: ");
4376                 if (id->eide_pio == 0)
4377                         printk("Not supported\n");
4378                 else
4379                         printk("%d ns\n",id->eide_pio);
4380
4381                 printk(KERN_INFO "ide-tape: Minimum PIO cycle with IORDY: ");
4382                 if (id->eide_pio_iordy == 0)
4383                         printk("Not supported\n");
4384                 else
4385                         printk("%d ns\n",id->eide_pio_iordy);
4386                 
4387         } else
4388                 printk(KERN_INFO "ide-tape: According to the device, fields 64-70 are not valid.\n");
4389 #endif /* IDETAPE_DEBUG_INFO */
4390
4391         /* Check that we can support this device */
4392
4393         if (gcw.protocol !=2 )
4394                 printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4395         else if (gcw.device_type != 1)
4396                 printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4397         else if (!gcw.removable)
4398                 printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4399         else if (gcw.packet_size != 0) {
4400                 printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4401                 if (gcw.packet_size == 1)
4402                         printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4403         } else
4404                 return 1;
4405         return 0;
4406 }
4407
4408 /*
4409  * Use INQUIRY to get the firmware revision
4410  */
4411 static void idetape_get_inquiry_results (ide_drive_t *drive)
4412 {
4413         char *r;
4414         idetape_tape_t *tape = drive->driver_data;
4415         idetape_pc_t pc;
4416         idetape_inquiry_result_t *inquiry;
4417         
4418         idetape_create_inquiry_cmd(&pc);
4419         if (idetape_queue_pc_tail(drive, &pc)) {
4420                 printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4421                 return;
4422         }
4423         inquiry = (idetape_inquiry_result_t *) pc.buffer;
4424         memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4425         memcpy(tape->product_id, inquiry->product_id, 16);
4426         memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4427         ide_fixstring(tape->vendor_id, 10, 0);
4428         ide_fixstring(tape->product_id, 18, 0);
4429         ide_fixstring(tape->firmware_revision, 6, 0);
4430         r = tape->firmware_revision;
4431         if (*(r + 1) == '.')
4432                 tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4433         printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4434 }
4435
4436 /*
4437  *      idetape_get_mode_sense_results asks the tape about its various
4438  *      parameters. In particular, we will adjust our data transfer buffer
4439  *      size to the recommended value as returned by the tape.
4440  */
4441 static void idetape_get_mode_sense_results (ide_drive_t *drive)
4442 {
4443         idetape_tape_t *tape = drive->driver_data;
4444         idetape_pc_t pc;
4445         idetape_mode_parameter_header_t *header;
4446         idetape_capabilities_page_t *capabilities;
4447         
4448         idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4449         if (idetape_queue_pc_tail(drive, &pc)) {
4450                 printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4451                 tape->tape_block_size = 512;
4452                 tape->capabilities.ctl = 52;
4453                 tape->capabilities.speed = 450;
4454                 tape->capabilities.buffer_size = 6 * 52;
4455                 return;
4456         }
4457         header = (idetape_mode_parameter_header_t *) pc.buffer;
4458         capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4459
4460         capabilities->max_speed = ntohs(capabilities->max_speed);
4461         capabilities->ctl = ntohs(capabilities->ctl);
4462         capabilities->speed = ntohs(capabilities->speed);
4463         capabilities->buffer_size = ntohs(capabilities->buffer_size);
4464
4465         if (!capabilities->speed) {
4466                 printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4467                 capabilities->speed = 650;
4468         }
4469         if (!capabilities->max_speed) {
4470                 printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4471                 capabilities->max_speed = 650;
4472         }
4473
4474         tape->capabilities = *capabilities;             /* Save us a copy */
4475         if (capabilities->blk512)
4476                 tape->tape_block_size = 512;
4477         else if (capabilities->blk1024)
4478                 tape->tape_block_size = 1024;
4479
4480 #if IDETAPE_DEBUG_INFO
4481         printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4482         printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4483         printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4484         printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4485         printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4486         printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4487         
4488         printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4489         printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4490         printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4491         printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4492         printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4493         printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4494         printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4495         printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4496         printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4497         printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4498         printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4499         printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4500         printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4501         printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4502         printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4503         printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4504         printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4505         printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4506         printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed); 
4507         printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4508 #endif /* IDETAPE_DEBUG_INFO */
4509 }
4510
4511 /*
4512  *      ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4513  *      and if it succeeds sets the tape block size with the reported value
4514  */
4515 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4516 {
4517
4518         idetape_tape_t *tape = drive->driver_data;
4519         idetape_pc_t pc;
4520         idetape_mode_parameter_header_t *header;
4521         idetape_parameter_block_descriptor_t *block_descrp;
4522         
4523         idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4524         if (idetape_queue_pc_tail(drive, &pc)) {
4525                 printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4526                 if (tape->tape_block_size == 0) {
4527                         printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4528                         tape->tape_block_size =  32768;
4529                 }
4530                 return;
4531         }
4532         header = (idetape_mode_parameter_header_t *) pc.buffer;
4533         block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4534         tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4535         tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4536
4537 #if IDETAPE_DEBUG_INFO
4538         printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4539 #endif /* IDETAPE_DEBUG_INFO */
4540 }
4541
4542 #ifdef CONFIG_IDE_PROC_FS
4543 static void idetape_add_settings (ide_drive_t *drive)
4544 {
4545         idetape_tape_t *tape = drive->driver_data;
4546
4547 /*
4548  *                      drive   setting name            read/write      data type       min                     max                     mul_factor                      div_factor      data pointer                            set function
4549  */
4550         ide_add_setting(drive,  "buffer",               SETTING_READ,   TYPE_SHORT,     0,                      0xffff,                 1,                              2,              &tape->capabilities.buffer_size,        NULL);
4551         ide_add_setting(drive,  "pipeline_min",         SETTING_RW,     TYPE_INT,       1,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->min_pipeline,                    NULL);
4552         ide_add_setting(drive,  "pipeline",             SETTING_RW,     TYPE_INT,       1,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->max_stages,                      NULL);
4553         ide_add_setting(drive,  "pipeline_max",         SETTING_RW,     TYPE_INT,       1,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->max_pipeline,                    NULL);
4554         ide_add_setting(drive,  "pipeline_used",        SETTING_READ,   TYPE_INT,       0,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->nr_stages,                       NULL);
4555         ide_add_setting(drive,  "pipeline_pending",     SETTING_READ,   TYPE_INT,       0,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->nr_pending_stages,               NULL);
4556         ide_add_setting(drive,  "speed",                SETTING_READ,   TYPE_SHORT,     0,                      0xffff,                 1,                              1,              &tape->capabilities.speed,              NULL);
4557         ide_add_setting(drive,  "stage",                SETTING_READ,   TYPE_INT,       0,                      0xffff,                 1,                              1024,           &tape->stage_size,                      NULL);
4558         ide_add_setting(drive,  "tdsc",                 SETTING_RW,     TYPE_INT,       IDETAPE_DSC_RW_MIN,     IDETAPE_DSC_RW_MAX,     1000,                           HZ,             &tape->best_dsc_rw_frequency,           NULL);
4559         ide_add_setting(drive,  "dsc_overlap",          SETTING_RW,     TYPE_BYTE,      0,                      1,                      1,                              1,              &drive->dsc_overlap,                    NULL);
4560         ide_add_setting(drive,  "pipeline_head_speed_c",SETTING_READ,   TYPE_INT,       0,                      0xffff,                 1,                              1,              &tape->controlled_pipeline_head_speed,  NULL);
4561         ide_add_setting(drive,  "pipeline_head_speed_u",SETTING_READ,   TYPE_INT,       0,                      0xffff,                 1,                              1,              &tape->uncontrolled_pipeline_head_speed,NULL);
4562         ide_add_setting(drive,  "avg_speed",            SETTING_READ,   TYPE_INT,       0,                      0xffff,                 1,                              1,              &tape->avg_speed,                       NULL);
4563         ide_add_setting(drive,  "debug_level",          SETTING_RW,     TYPE_INT,       0,                      0xffff,                 1,                              1,              &tape->debug_level,                     NULL);
4564 }
4565 #else
4566 static inline void idetape_add_settings(ide_drive_t *drive) { ; }
4567 #endif
4568
4569 /*
4570  *      ide_setup is called to:
4571  *
4572  *              1.      Initialize our various state variables.
4573  *              2.      Ask the tape for its capabilities.
4574  *              3.      Allocate a buffer which will be used for data
4575  *                      transfer. The buffer size is chosen based on
4576  *                      the recommendation which we received in step (2).
4577  *
4578  *      Note that at this point ide.c already assigned us an irq, so that
4579  *      we can queue requests here and wait for their completion.
4580  */
4581 static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4582 {
4583         unsigned long t1, tmid, tn, t;
4584         int speed;
4585         struct idetape_id_gcw gcw;
4586         int stage_size;
4587         struct sysinfo si;
4588
4589         spin_lock_init(&tape->spinlock);
4590         drive->dsc_overlap = 1;
4591 #ifdef CONFIG_BLK_DEV_IDEPCI
4592         if (HWIF(drive)->pci_dev != NULL) {
4593                 /*
4594                  * These two ide-pci host adapters appear to need DSC overlap disabled.
4595                  * This probably needs further analysis.
4596                  */
4597                 if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) ||
4598                     (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) {
4599                         printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name);
4600                         drive->dsc_overlap = 0;
4601                 }
4602         }
4603 #endif /* CONFIG_BLK_DEV_IDEPCI */
4604         /* Seagate Travan drives do not support DSC overlap. */
4605         if (strstr(drive->id->model, "Seagate STT3401"))
4606                 drive->dsc_overlap = 0;
4607         tape->minor = minor;
4608         tape->name[0] = 'h';
4609         tape->name[1] = 't';
4610         tape->name[2] = '0' + minor;
4611         tape->chrdev_direction = idetape_direction_none;
4612         tape->pc = tape->pc_stack;
4613         tape->max_insert_speed = 10000;
4614         tape->speed_control = 1;
4615         *((unsigned short *) &gcw) = drive->id->config;
4616         if (gcw.drq_type == 1)
4617                 set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4618
4619         tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4620         
4621         idetape_get_inquiry_results(drive);
4622         idetape_get_mode_sense_results(drive);
4623         idetape_get_blocksize_from_block_descriptor(drive);
4624         tape->user_bs_factor = 1;
4625         tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4626         while (tape->stage_size > 0xffff) {
4627                 printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4628                 tape->capabilities.ctl /= 2;
4629                 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4630         }
4631         stage_size = tape->stage_size;
4632         tape->pages_per_stage = stage_size / PAGE_SIZE;
4633         if (stage_size % PAGE_SIZE) {
4634                 tape->pages_per_stage++;
4635                 tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4636         }
4637
4638         /*
4639          *      Select the "best" DSC read/write polling frequency
4640          *      and pipeline size.
4641          */
4642         speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4643
4644         tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4645
4646         /*
4647          *      Limit memory use for pipeline to 10% of physical memory
4648          */
4649         si_meminfo(&si);
4650         if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4651                 tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4652         tape->max_stages   = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4653         tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4654         tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4655         if (tape->max_stages == 0)
4656                 tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4657
4658         t1 = (tape->stage_size * HZ) / (speed * 1000);
4659         tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4660         tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4661
4662         if (tape->max_stages)
4663                 t = tn;
4664         else
4665                 t = t1;
4666
4667         /*
4668          *      Ensure that the number we got makes sense; limit
4669          *      it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4670          */
4671         tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4672         printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4673                 "%dkB pipeline, %lums tDSC%s\n",
4674                 drive->name, tape->name, tape->capabilities.speed,
4675                 (tape->capabilities.buffer_size * 512) / tape->stage_size,
4676                 tape->stage_size / 1024,
4677                 tape->max_stages * tape->stage_size / 1024,
4678                 tape->best_dsc_rw_frequency * 1000 / HZ,
4679                 drive->using_dma ? ", DMA":"");
4680
4681         idetape_add_settings(drive);
4682 }
4683
4684 static void ide_tape_remove(ide_drive_t *drive)
4685 {
4686         idetape_tape_t *tape = drive->driver_data;
4687
4688         ide_proc_unregister_driver(drive, tape->driver);
4689
4690         ide_unregister_region(tape->disk);
4691
4692         ide_tape_put(tape);
4693 }
4694
4695 static void ide_tape_release(struct kref *kref)
4696 {
4697         struct ide_tape_obj *tape = to_ide_tape(kref);
4698         ide_drive_t *drive = tape->drive;
4699         struct gendisk *g = tape->disk;
4700
4701         BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
4702
4703         drive->dsc_overlap = 0;
4704         drive->driver_data = NULL;
4705         device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor));
4706         device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor + 128));
4707         idetape_devs[tape->minor] = NULL;
4708         g->private_data = NULL;
4709         put_disk(g);
4710         kfree(tape);
4711 }
4712
4713 #ifdef CONFIG_IDE_PROC_FS
4714 static int proc_idetape_read_name
4715         (char *page, char **start, off_t off, int count, int *eof, void *data)
4716 {
4717         ide_drive_t     *drive = (ide_drive_t *) data;
4718         idetape_tape_t  *tape = drive->driver_data;
4719         char            *out = page;
4720         int             len;
4721
4722         len = sprintf(out, "%s\n", tape->name);
4723         PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4724 }
4725
4726 static ide_proc_entry_t idetape_proc[] = {
4727         { "capacity",   S_IFREG|S_IRUGO,        proc_ide_read_capacity, NULL },
4728         { "name",       S_IFREG|S_IRUGO,        proc_idetape_read_name, NULL },
4729         { NULL, 0, NULL, NULL }
4730 };
4731 #endif
4732
4733 static int ide_tape_probe(ide_drive_t *);
4734
4735 static ide_driver_t idetape_driver = {
4736         .gen_driver = {
4737                 .owner          = THIS_MODULE,
4738                 .name           = "ide-tape",
4739                 .bus            = &ide_bus_type,
4740         },
4741         .probe                  = ide_tape_probe,
4742         .remove                 = ide_tape_remove,
4743         .version                = IDETAPE_VERSION,
4744         .media                  = ide_tape,
4745         .supports_dsc_overlap   = 1,
4746         .do_request             = idetape_do_request,
4747         .end_request            = idetape_end_request,
4748         .error                  = __ide_error,
4749         .abort                  = __ide_abort,
4750 #ifdef CONFIG_IDE_PROC_FS
4751         .proc                   = idetape_proc,
4752 #endif
4753 };
4754
4755 /*
4756  *      Our character device supporting functions, passed to register_chrdev.
4757  */
4758 static const struct file_operations idetape_fops = {
4759         .owner          = THIS_MODULE,
4760         .read           = idetape_chrdev_read,
4761         .write          = idetape_chrdev_write,
4762         .ioctl          = idetape_chrdev_ioctl,
4763         .open           = idetape_chrdev_open,
4764         .release        = idetape_chrdev_release,
4765 };
4766
4767 static int idetape_open(struct inode *inode, struct file *filp)
4768 {
4769         struct gendisk *disk = inode->i_bdev->bd_disk;
4770         struct ide_tape_obj *tape;
4771
4772         if (!(tape = ide_tape_get(disk)))
4773                 return -ENXIO;
4774
4775         return 0;
4776 }
4777
4778 static int idetape_release(struct inode *inode, struct file *filp)
4779 {
4780         struct gendisk *disk = inode->i_bdev->bd_disk;
4781         struct ide_tape_obj *tape = ide_tape_g(disk);
4782
4783         ide_tape_put(tape);
4784
4785         return 0;
4786 }
4787
4788 static int idetape_ioctl(struct inode *inode, struct file *file,
4789                         unsigned int cmd, unsigned long arg)
4790 {
4791         struct block_device *bdev = inode->i_bdev;
4792         struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
4793         ide_drive_t *drive = tape->drive;
4794         int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
4795         if (err == -EINVAL)
4796                 err = idetape_blkdev_ioctl(drive, cmd, arg);
4797         return err;
4798 }
4799
4800 static struct block_device_operations idetape_block_ops = {
4801         .owner          = THIS_MODULE,
4802         .open           = idetape_open,
4803         .release        = idetape_release,
4804         .ioctl          = idetape_ioctl,
4805 };
4806
4807 static int ide_tape_probe(ide_drive_t *drive)
4808 {
4809         idetape_tape_t *tape;
4810         struct gendisk *g;
4811         int minor;
4812
4813         if (!strstr("ide-tape", drive->driver_req))
4814                 goto failed;
4815         if (!drive->present)
4816                 goto failed;
4817         if (drive->media != ide_tape)
4818                 goto failed;
4819         if (!idetape_identify_device (drive)) {
4820                 printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4821                 goto failed;
4822         }
4823         if (drive->scsi) {
4824                 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4825                 goto failed;
4826         }
4827         if (strstr(drive->id->model, "OnStream DI-")) {
4828                 printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4829                 printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4830         }
4831         tape = kzalloc(sizeof (idetape_tape_t), GFP_KERNEL);
4832         if (tape == NULL) {
4833                 printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4834                 goto failed;
4835         }
4836
4837         g = alloc_disk(1 << PARTN_BITS);
4838         if (!g)
4839                 goto out_free_tape;
4840
4841         ide_init_disk(g, drive);
4842
4843         ide_proc_register_driver(drive, &idetape_driver);
4844
4845         kref_init(&tape->kref);
4846
4847         tape->drive = drive;
4848         tape->driver = &idetape_driver;
4849         tape->disk = g;
4850
4851         g->private_data = &tape->driver;
4852
4853         drive->driver_data = tape;
4854
4855         mutex_lock(&idetape_ref_mutex);
4856         for (minor = 0; idetape_devs[minor]; minor++)
4857                 ;
4858         idetape_devs[minor] = tape;
4859         mutex_unlock(&idetape_ref_mutex);
4860
4861         idetape_setup(drive, tape, minor);
4862
4863         device_create(idetape_sysfs_class, &drive->gendev,
4864                       MKDEV(IDETAPE_MAJOR, minor), "%s", tape->name);
4865         device_create(idetape_sysfs_class, &drive->gendev,
4866                         MKDEV(IDETAPE_MAJOR, minor + 128), "n%s", tape->name);
4867
4868         g->fops = &idetape_block_ops;
4869         ide_register_region(g);
4870
4871         return 0;
4872
4873 out_free_tape:
4874         kfree(tape);
4875 failed:
4876         return -ENODEV;
4877 }
4878
4879 MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4880 MODULE_LICENSE("GPL");
4881
4882 static void __exit idetape_exit (void)
4883 {
4884         driver_unregister(&idetape_driver.gen_driver);
4885         class_destroy(idetape_sysfs_class);
4886         unregister_chrdev(IDETAPE_MAJOR, "ht");
4887 }
4888
4889 static int __init idetape_init(void)
4890 {
4891         int error = 1;
4892         idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
4893         if (IS_ERR(idetape_sysfs_class)) {
4894                 idetape_sysfs_class = NULL;
4895                 printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
4896                 error = -EBUSY;
4897                 goto out;
4898         }
4899
4900         if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4901                 printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
4902                 error = -EBUSY;
4903                 goto out_free_class;
4904         }
4905
4906         error = driver_register(&idetape_driver.gen_driver);
4907         if (error)
4908                 goto out_free_driver;
4909
4910         return 0;
4911
4912 out_free_driver:
4913         driver_unregister(&idetape_driver.gen_driver);
4914 out_free_class:
4915         class_destroy(idetape_sysfs_class);
4916 out:
4917         return error;
4918 }
4919
4920 MODULE_ALIAS("ide:*m-tape*");
4921 module_init(idetape_init);
4922 module_exit(idetape_exit);
4923 MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);