2 * HP i8042-based System Device Controller driver.
4 * Copyright (c) 2001 Brian S. Julin
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
32 * Helge Deller's original hilkbd.c port for PA-RISC.
35 * Driver theory of operation:
37 * hp_sdc_put does all writing to the SDC. ISR can run on a different
38 * CPU than hp_sdc_put, but only one CPU runs hp_sdc_put at a time
39 * (it cannot really benefit from SMP anyway.) A tasket fit this perfectly.
41 * All data coming back from the SDC is sent via interrupt and can be read
42 * fully in the ISR, so there are no latency/throughput problems there.
43 * The problem is with output, due to the slow clock speed of the SDC
44 * compared to the CPU. This should not be too horrible most of the time,
45 * but if used with HIL devices that support the multibyte transfer command,
46 * keeping outbound throughput flowing at the 6500KBps that the HIL is
47 * capable of is more than can be done at HZ=100.
49 * Busy polling for IBF clear wastes CPU cycles and bus cycles. hp_sdc.ibf
50 * is set to 0 when the IBF flag in the status register has cleared. ISR
51 * may do this, and may also access the parts of queued transactions related
52 * to reading data back from the SDC, but otherwise will not touch the
53 * hp_sdc state. Whenever a register is written hp_sdc.ibf is set to 1.
55 * The i8042 write index and the values in the 4-byte input buffer
56 * starting at 0x70 are kept track of in hp_sdc.wi, and .r7[], respectively,
57 * to minimize the amount of IO needed to the SDC. However these values
58 * do not need to be locked since they are only ever accessed by hp_sdc_put.
60 * A timer task schedules the tasklet once per second just to make
61 * sure it doesn't freeze up and to allow for bad reads to time out.
64 #include <linux/hp_sdc.h>
65 #include <linux/errno.h>
66 #include <linux/init.h>
67 #include <linux/module.h>
68 #include <linux/ioport.h>
69 #include <linux/time.h>
70 #include <linux/semaphore.h>
71 #include <linux/slab.h>
72 #include <linux/hil.h>
74 #include <asm/system.h>
76 /* Machine-specific abstraction */
79 # include <asm/parisc-device.h>
80 # define sdc_readb(p) gsc_readb(p)
81 # define sdc_writeb(v,p) gsc_writeb((v),(p))
82 #elif defined(__mc68000__)
83 # include <asm/uaccess.h>
84 # define sdc_readb(p) in_8(p)
85 # define sdc_writeb(v,p) out_8((p),(v))
87 # error "HIL is not supported on this platform"
90 #define PREFIX "HP SDC: "
92 MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
93 MODULE_DESCRIPTION("HP i8042-based SDC Driver");
94 MODULE_LICENSE("Dual BSD/GPL");
96 EXPORT_SYMBOL(hp_sdc_request_timer_irq);
97 EXPORT_SYMBOL(hp_sdc_request_hil_irq);
98 EXPORT_SYMBOL(hp_sdc_request_cooked_irq);
100 EXPORT_SYMBOL(hp_sdc_release_timer_irq);
101 EXPORT_SYMBOL(hp_sdc_release_hil_irq);
102 EXPORT_SYMBOL(hp_sdc_release_cooked_irq);
104 EXPORT_SYMBOL(__hp_sdc_enqueue_transaction);
105 EXPORT_SYMBOL(hp_sdc_enqueue_transaction);
106 EXPORT_SYMBOL(hp_sdc_dequeue_transaction);
108 static unsigned int hp_sdc_disabled;
109 module_param_named(no_hpsdc, hp_sdc_disabled, bool, 0);
110 MODULE_PARM_DESC(no_hpsdc, "Do not enable HP SDC driver.");
112 static hp_i8042_sdc hp_sdc; /* All driver state is kept in here. */
114 /*************** primitives for use in any context *********************/
115 static inline uint8_t hp_sdc_status_in8(void)
120 write_lock_irqsave(&hp_sdc.ibf_lock, flags);
121 status = sdc_readb(hp_sdc.status_io);
122 if (!(status & HP_SDC_STATUS_IBF))
124 write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
129 static inline uint8_t hp_sdc_data_in8(void)
131 return sdc_readb(hp_sdc.data_io);
134 static inline void hp_sdc_status_out8(uint8_t val)
138 write_lock_irqsave(&hp_sdc.ibf_lock, flags);
140 if ((val & 0xf0) == 0xe0)
142 sdc_writeb(val, hp_sdc.status_io);
143 write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
146 static inline void hp_sdc_data_out8(uint8_t val)
150 write_lock_irqsave(&hp_sdc.ibf_lock, flags);
152 sdc_writeb(val, hp_sdc.data_io);
153 write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
156 /* Care must be taken to only invoke hp_sdc_spin_ibf when
157 * absolutely needed, or in rarely invoked subroutines.
158 * Not only does it waste CPU cycles, it also wastes bus cycles.
160 static inline void hp_sdc_spin_ibf(void)
165 lock = &hp_sdc.ibf_lock;
167 read_lock_irqsave(lock, flags);
169 read_unlock_irqrestore(lock, flags);
174 while (sdc_readb(hp_sdc.status_io) & HP_SDC_STATUS_IBF)
177 write_unlock_irqrestore(lock, flags);
181 /************************ Interrupt context functions ************************/
182 static void hp_sdc_take(int irq, void *dev_id, uint8_t status, uint8_t data)
184 hp_sdc_transaction *curr;
186 read_lock(&hp_sdc.rtq_lock);
187 if (hp_sdc.rcurr < 0) {
188 read_unlock(&hp_sdc.rtq_lock);
191 curr = hp_sdc.tq[hp_sdc.rcurr];
192 read_unlock(&hp_sdc.rtq_lock);
194 curr->seq[curr->idx++] = status;
195 curr->seq[curr->idx++] = data;
197 do_gettimeofday(&hp_sdc.rtv);
199 if (hp_sdc.rqty <= 0) {
200 /* All data has been gathered. */
201 if (curr->seq[curr->actidx] & HP_SDC_ACT_SEMAPHORE)
202 if (curr->act.semaphore)
203 up(curr->act.semaphore);
205 if (curr->seq[curr->actidx] & HP_SDC_ACT_CALLBACK)
206 if (curr->act.irqhook)
207 curr->act.irqhook(irq, dev_id, status, data);
209 curr->actidx = curr->idx;
211 /* Return control of this transaction */
212 write_lock(&hp_sdc.rtq_lock);
215 write_unlock(&hp_sdc.rtq_lock);
216 tasklet_schedule(&hp_sdc.task);
220 static irqreturn_t hp_sdc_isr(int irq, void *dev_id)
222 uint8_t status, data;
224 status = hp_sdc_status_in8();
225 /* Read data unconditionally to advance i8042. */
226 data = hp_sdc_data_in8();
228 /* For now we are ignoring these until we get the SDC to behave. */
229 if (((status & 0xf1) == 0x51) && data == 0x82)
232 switch (status & HP_SDC_STATUS_IRQMASK) {
233 case 0: /* This case is not documented. */
236 case HP_SDC_STATUS_USERTIMER:
237 case HP_SDC_STATUS_PERIODIC:
238 case HP_SDC_STATUS_TIMER:
239 read_lock(&hp_sdc.hook_lock);
240 if (hp_sdc.timer != NULL)
241 hp_sdc.timer(irq, dev_id, status, data);
242 read_unlock(&hp_sdc.hook_lock);
245 case HP_SDC_STATUS_REG:
246 hp_sdc_take(irq, dev_id, status, data);
249 case HP_SDC_STATUS_HILCMD:
250 case HP_SDC_STATUS_HILDATA:
251 read_lock(&hp_sdc.hook_lock);
252 if (hp_sdc.hil != NULL)
253 hp_sdc.hil(irq, dev_id, status, data);
254 read_unlock(&hp_sdc.hook_lock);
257 case HP_SDC_STATUS_PUP:
258 read_lock(&hp_sdc.hook_lock);
259 if (hp_sdc.pup != NULL)
260 hp_sdc.pup(irq, dev_id, status, data);
262 printk(KERN_INFO PREFIX "HP SDC reports successful PUP.\n");
263 read_unlock(&hp_sdc.hook_lock);
267 read_lock(&hp_sdc.hook_lock);
268 if (hp_sdc.cooked != NULL)
269 hp_sdc.cooked(irq, dev_id, status, data);
270 read_unlock(&hp_sdc.hook_lock);
278 static irqreturn_t hp_sdc_nmisr(int irq, void *dev_id)
282 status = hp_sdc_status_in8();
283 printk(KERN_WARNING PREFIX "NMI !\n");
286 if (status & HP_SDC_NMISTATUS_FHS) {
287 read_lock(&hp_sdc.hook_lock);
288 if (hp_sdc.timer != NULL)
289 hp_sdc.timer(irq, dev_id, status, 0);
290 read_unlock(&hp_sdc.hook_lock);
292 /* TODO: pass this on to the HIL handler, or do SAK here? */
293 printk(KERN_WARNING PREFIX "HIL NMI\n");
301 /***************** Kernel (tasklet) context functions ****************/
303 unsigned long hp_sdc_put(void);
305 static void hp_sdc_tasklet(unsigned long foo)
307 write_lock_irq(&hp_sdc.rtq_lock);
309 if (hp_sdc.rcurr >= 0) {
312 do_gettimeofday(&tv);
313 if (tv.tv_sec > hp_sdc.rtv.tv_sec)
314 tv.tv_usec += USEC_PER_SEC;
316 if (tv.tv_usec - hp_sdc.rtv.tv_usec > HP_SDC_MAX_REG_DELAY) {
317 hp_sdc_transaction *curr;
320 curr = hp_sdc.tq[hp_sdc.rcurr];
321 /* If this turns out to be a normal failure mode
322 * we'll need to figure out a way to communicate
323 * it back to the application. and be less verbose.
325 printk(KERN_WARNING PREFIX "read timeout (%ius)!\n",
326 tv.tv_usec - hp_sdc.rtv.tv_usec);
327 curr->idx += hp_sdc.rqty;
329 tmp = curr->seq[curr->actidx];
330 curr->seq[curr->actidx] |= HP_SDC_ACT_DEAD;
331 if (tmp & HP_SDC_ACT_SEMAPHORE)
332 if (curr->act.semaphore)
333 up(curr->act.semaphore);
335 if (tmp & HP_SDC_ACT_CALLBACK) {
336 /* Note this means that irqhooks may be called
337 * in tasklet/bh context.
339 if (curr->act.irqhook)
340 curr->act.irqhook(0, NULL, 0, 0);
343 curr->actidx = curr->idx;
348 write_unlock_irq(&hp_sdc.rtq_lock);
352 unsigned long hp_sdc_put(void)
354 hp_sdc_transaction *curr;
360 write_lock(&hp_sdc.lock);
362 /* If i8042 buffers are full, we cannot do anything that
363 requires output, so we skip to the administrativa. */
371 /* See if we are in the middle of a sequence. */
372 if (hp_sdc.wcurr < 0)
374 read_lock_irq(&hp_sdc.rtq_lock);
375 if (hp_sdc.rcurr == hp_sdc.wcurr)
377 read_unlock_irq(&hp_sdc.rtq_lock);
378 if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
380 curridx = hp_sdc.wcurr;
382 if (hp_sdc.tq[curridx] != NULL)
385 while (++curridx != hp_sdc.wcurr) {
386 if (curridx >= HP_SDC_QUEUE_LEN) {
387 curridx = -1; /* Wrap to top */
390 read_lock_irq(&hp_sdc.rtq_lock);
391 if (hp_sdc.rcurr == curridx) {
392 read_unlock_irq(&hp_sdc.rtq_lock);
395 read_unlock_irq(&hp_sdc.rtq_lock);
396 if (hp_sdc.tq[curridx] != NULL)
397 break; /* Found one. */
399 if (curridx == hp_sdc.wcurr) { /* There's nothing queued to do. */
402 hp_sdc.wcurr = curridx;
406 /* Check to see if the interrupt mask needs to be set. */
408 hp_sdc_status_out8(hp_sdc.im | HP_SDC_CMD_SET_IM);
413 if (hp_sdc.wcurr == -1)
416 curr = hp_sdc.tq[curridx];
419 if (curr->actidx >= curr->endidx) {
420 hp_sdc.tq[curridx] = NULL;
421 /* Interleave outbound data between the transactions. */
423 if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
428 act = curr->seq[idx];
431 if (curr->idx >= curr->endidx) {
432 if (act & HP_SDC_ACT_DEALLOC)
434 hp_sdc.tq[curridx] = NULL;
435 /* Interleave outbound data between the transactions. */
437 if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
442 while (act & HP_SDC_ACT_PRECMD) {
443 if (curr->idx != idx) {
445 act &= ~HP_SDC_ACT_PRECMD;
448 hp_sdc_status_out8(curr->seq[idx]);
451 if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_PRECMD)
453 /* skip quantity field if data-out sequence follows. */
454 if (act & HP_SDC_ACT_DATAOUT)
458 if (act & HP_SDC_ACT_DATAOUT) {
461 qty = curr->seq[idx];
463 if (curr->idx - idx < qty) {
464 hp_sdc_data_out8(curr->seq[curr->idx]);
467 if (curr->idx - idx >= qty &&
468 (act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAOUT)
473 act &= ~HP_SDC_ACT_DATAOUT;
475 while (act & HP_SDC_ACT_DATAREG) {
479 mask = curr->seq[idx];
480 if (idx != curr->idx) {
486 act &= ~HP_SDC_ACT_DATAREG;
490 w7[0] = (mask & 1) ? curr->seq[++idx] : hp_sdc.r7[0];
491 w7[1] = (mask & 2) ? curr->seq[++idx] : hp_sdc.r7[1];
492 w7[2] = (mask & 4) ? curr->seq[++idx] : hp_sdc.r7[2];
493 w7[3] = (mask & 8) ? curr->seq[++idx] : hp_sdc.r7[3];
495 if (hp_sdc.wi > 0x73 || hp_sdc.wi < 0x70 ||
496 w7[hp_sdc.wi - 0x70] == hp_sdc.r7[hp_sdc.wi - 0x70]) {
499 /* Need to point the write index register */
500 while (i < 4 && w7[i] == hp_sdc.r7[i])
504 hp_sdc_status_out8(HP_SDC_CMD_SET_D0 + i);
505 hp_sdc.wi = 0x70 + i;
510 if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAREG)
514 act &= ~HP_SDC_ACT_DATAREG;
518 hp_sdc_data_out8(w7[hp_sdc.wi - 0x70]);
519 hp_sdc.r7[hp_sdc.wi - 0x70] = w7[hp_sdc.wi - 0x70];
520 hp_sdc.wi++; /* write index register autoincrements */
524 while ((i < 4) && w7[i] == hp_sdc.r7[i])
528 if ((act & HP_SDC_ACT_DURING) ==
535 /* We don't go any further in the command if there is a pending read,
536 because we don't want interleaved results. */
537 read_lock_irq(&hp_sdc.rtq_lock);
538 if (hp_sdc.rcurr >= 0) {
539 read_unlock_irq(&hp_sdc.rtq_lock);
542 read_unlock_irq(&hp_sdc.rtq_lock);
545 if (act & HP_SDC_ACT_POSTCMD) {
548 /* curr->idx should == idx at this point. */
549 postcmd = curr->seq[idx];
551 if (act & HP_SDC_ACT_DATAIN) {
553 /* Start a new read */
554 hp_sdc.rqty = curr->seq[curr->idx];
555 do_gettimeofday(&hp_sdc.rtv);
557 /* Still need to lock here in case of spurious irq. */
558 write_lock_irq(&hp_sdc.rtq_lock);
559 hp_sdc.rcurr = curridx;
560 write_unlock_irq(&hp_sdc.rtq_lock);
561 hp_sdc_status_out8(postcmd);
564 hp_sdc_status_out8(postcmd);
569 if (act & HP_SDC_ACT_SEMAPHORE)
570 up(curr->act.semaphore);
571 else if (act & HP_SDC_ACT_CALLBACK)
572 curr->act.irqhook(0,NULL,0,0);
574 if (curr->idx >= curr->endidx) { /* This transaction is over. */
575 if (act & HP_SDC_ACT_DEALLOC)
577 hp_sdc.tq[curridx] = NULL;
579 curr->actidx = idx + 1;
582 /* Interleave outbound data between the transactions. */
584 if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
588 /* If by some quirk IBF has cleared and our ISR has run to
589 see that that has happened, do it all again. */
590 if (!hp_sdc.ibf && limit++ < 20)
594 if (hp_sdc.wcurr >= 0)
595 tasklet_schedule(&hp_sdc.task);
596 write_unlock(&hp_sdc.lock);
601 /******* Functions called in either user or kernel context ****/
602 int __hp_sdc_enqueue_transaction(hp_sdc_transaction *this)
611 /* Can't have same transaction on queue twice */
612 for (i = 0; i < HP_SDC_QUEUE_LEN; i++)
613 if (hp_sdc.tq[i] == this)
619 /* Search for empty slot */
620 for (i = 0; i < HP_SDC_QUEUE_LEN; i++)
621 if (hp_sdc.tq[i] == NULL) {
623 tasklet_schedule(&hp_sdc.task);
627 printk(KERN_WARNING PREFIX "No free slot to add transaction.\n");
631 printk(KERN_WARNING PREFIX "Transaction add failed: transaction already queued?\n");
635 int hp_sdc_enqueue_transaction(hp_sdc_transaction *this) {
639 write_lock_irqsave(&hp_sdc.lock, flags);
640 ret = __hp_sdc_enqueue_transaction(this);
641 write_unlock_irqrestore(&hp_sdc.lock,flags);
646 int hp_sdc_dequeue_transaction(hp_sdc_transaction *this)
651 write_lock_irqsave(&hp_sdc.lock, flags);
653 /* TODO: don't remove it if it's not done. */
655 for (i = 0; i < HP_SDC_QUEUE_LEN; i++)
656 if (hp_sdc.tq[i] == this)
659 write_unlock_irqrestore(&hp_sdc.lock, flags);
665 /********************** User context functions **************************/
666 int hp_sdc_request_timer_irq(hp_sdc_irqhook *callback)
668 if (callback == NULL || hp_sdc.dev == NULL)
671 write_lock_irq(&hp_sdc.hook_lock);
672 if (hp_sdc.timer != NULL) {
673 write_unlock_irq(&hp_sdc.hook_lock);
677 hp_sdc.timer = callback;
678 /* Enable interrupts from the timers */
679 hp_sdc.im &= ~HP_SDC_IM_FH;
680 hp_sdc.im &= ~HP_SDC_IM_PT;
681 hp_sdc.im &= ~HP_SDC_IM_TIMERS;
683 write_unlock_irq(&hp_sdc.hook_lock);
685 tasklet_schedule(&hp_sdc.task);
690 int hp_sdc_request_hil_irq(hp_sdc_irqhook *callback)
692 if (callback == NULL || hp_sdc.dev == NULL)
695 write_lock_irq(&hp_sdc.hook_lock);
696 if (hp_sdc.hil != NULL) {
697 write_unlock_irq(&hp_sdc.hook_lock);
701 hp_sdc.hil = callback;
702 hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET);
704 write_unlock_irq(&hp_sdc.hook_lock);
706 tasklet_schedule(&hp_sdc.task);
711 int hp_sdc_request_cooked_irq(hp_sdc_irqhook *callback)
713 if (callback == NULL || hp_sdc.dev == NULL)
716 write_lock_irq(&hp_sdc.hook_lock);
717 if (hp_sdc.cooked != NULL) {
718 write_unlock_irq(&hp_sdc.hook_lock);
722 /* Enable interrupts from the HIL MLC */
723 hp_sdc.cooked = callback;
724 hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET);
726 write_unlock_irq(&hp_sdc.hook_lock);
728 tasklet_schedule(&hp_sdc.task);
733 int hp_sdc_release_timer_irq(hp_sdc_irqhook *callback)
735 write_lock_irq(&hp_sdc.hook_lock);
736 if ((callback != hp_sdc.timer) ||
737 (hp_sdc.timer == NULL)) {
738 write_unlock_irq(&hp_sdc.hook_lock);
742 /* Disable interrupts from the timers */
744 hp_sdc.im |= HP_SDC_IM_TIMERS;
745 hp_sdc.im |= HP_SDC_IM_FH;
746 hp_sdc.im |= HP_SDC_IM_PT;
748 write_unlock_irq(&hp_sdc.hook_lock);
749 tasklet_schedule(&hp_sdc.task);
754 int hp_sdc_release_hil_irq(hp_sdc_irqhook *callback)
756 write_lock_irq(&hp_sdc.hook_lock);
757 if ((callback != hp_sdc.hil) ||
758 (hp_sdc.hil == NULL)) {
759 write_unlock_irq(&hp_sdc.hook_lock);
764 /* Disable interrupts from HIL only if there is no cooked driver. */
765 if(hp_sdc.cooked == NULL) {
766 hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET);
769 write_unlock_irq(&hp_sdc.hook_lock);
770 tasklet_schedule(&hp_sdc.task);
775 int hp_sdc_release_cooked_irq(hp_sdc_irqhook *callback)
777 write_lock_irq(&hp_sdc.hook_lock);
778 if ((callback != hp_sdc.cooked) ||
779 (hp_sdc.cooked == NULL)) {
780 write_unlock_irq(&hp_sdc.hook_lock);
784 hp_sdc.cooked = NULL;
785 /* Disable interrupts from HIL only if there is no raw HIL driver. */
786 if(hp_sdc.hil == NULL) {
787 hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET);
790 write_unlock_irq(&hp_sdc.hook_lock);
791 tasklet_schedule(&hp_sdc.task);
796 /************************* Keepalive timer task *********************/
798 void hp_sdc_kicker (unsigned long data)
800 tasklet_schedule(&hp_sdc.task);
801 /* Re-insert the periodic task. */
802 mod_timer(&hp_sdc.kicker, jiffies + HZ);
805 /************************** Module Initialization ***************************/
807 #if defined(__hppa__)
809 static const struct parisc_device_id hp_sdc_tbl[] = {
812 .hversion_rev = HVERSION_REV_ANY_ID,
813 .hversion = HVERSION_ANY_ID,
819 MODULE_DEVICE_TABLE(parisc, hp_sdc_tbl);
821 static int __init hp_sdc_init_hppa(struct parisc_device *d);
823 static struct parisc_driver hp_sdc_driver = {
825 .id_table = hp_sdc_tbl,
826 .probe = hp_sdc_init_hppa,
829 #endif /* __hppa__ */
831 static int __init hp_sdc_init(void)
834 hp_sdc_transaction t_sync;
836 struct semaphore s_sync;
838 rwlock_init(&hp_sdc.lock);
839 rwlock_init(&hp_sdc.ibf_lock);
840 rwlock_init(&hp_sdc.rtq_lock);
841 rwlock_init(&hp_sdc.hook_lock);
846 hp_sdc.cooked = NULL;
847 hp_sdc.im = HP_SDC_IM_MASK; /* Mask maskable irqs */
856 memset(&hp_sdc.tq, 0, sizeof(hp_sdc.tq));
862 hp_sdc.dev_err = -ENODEV;
864 errstr = "IO not found for";
868 errstr = "IRQ not found for";
872 hp_sdc.dev_err = -EBUSY;
874 #if defined(__hppa__)
875 errstr = "IO not available for";
876 if (request_region(hp_sdc.data_io, 2, hp_sdc_driver.name))
880 errstr = "IRQ not available for";
881 if (request_irq(hp_sdc.irq, &hp_sdc_isr, IRQF_SHARED|IRQF_SAMPLE_RANDOM,
885 errstr = "NMI not available for";
886 if (request_irq(hp_sdc.nmi, &hp_sdc_nmisr, IRQF_SHARED,
887 "HP SDC NMI", &hp_sdc))
890 printk(KERN_INFO PREFIX "HP SDC at 0x%p, IRQ %d (NMI IRQ %d)\n",
891 (void *)hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi);
896 tasklet_init(&hp_sdc.task, hp_sdc_tasklet, 0);
898 /* Sync the output buffer registers, thus scheduling hp_sdc_tasklet. */
902 t_sync.seq = ts_sync;
903 ts_sync[0] = HP_SDC_ACT_DATAREG | HP_SDC_ACT_SEMAPHORE;
905 ts_sync[2] = ts_sync[3] = ts_sync[4] = ts_sync[5] = 0;
906 t_sync.act.semaphore = &s_sync;
907 init_MUTEX_LOCKED(&s_sync);
908 hp_sdc_enqueue_transaction(&t_sync);
909 down(&s_sync); /* Wait for t_sync to complete */
911 /* Create the keepalive task */
912 init_timer(&hp_sdc.kicker);
913 hp_sdc.kicker.expires = jiffies + HZ;
914 hp_sdc.kicker.function = &hp_sdc_kicker;
915 add_timer(&hp_sdc.kicker);
920 free_irq(hp_sdc.irq, &hp_sdc);
922 release_region(hp_sdc.data_io, 2);
924 printk(KERN_WARNING PREFIX ": %s SDC IO=0x%p IRQ=0x%x NMI=0x%x\n",
925 errstr, (void *)hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi);
928 return hp_sdc.dev_err;
931 #if defined(__hppa__)
933 static int __init hp_sdc_init_hppa(struct parisc_device *d)
937 if (hp_sdc.dev != NULL)
938 return 1; /* We only expect one SDC */
942 hp_sdc.nmi = d->aux_irq;
943 hp_sdc.base_io = d->hpa.start;
944 hp_sdc.data_io = d->hpa.start + 0x800;
945 hp_sdc.status_io = d->hpa.start + 0x801;
947 return hp_sdc_init();
950 #endif /* __hppa__ */
952 static void hp_sdc_exit(void)
954 write_lock_irq(&hp_sdc.lock);
956 /* Turn off all maskable "sub-function" irq's. */
958 sdc_writeb(HP_SDC_CMD_SET_IM | HP_SDC_IM_MASK, hp_sdc.status_io);
960 /* Wait until we know this has been processed by the i8042 */
963 free_irq(hp_sdc.nmi, &hp_sdc);
964 free_irq(hp_sdc.irq, &hp_sdc);
965 write_unlock_irq(&hp_sdc.lock);
967 del_timer(&hp_sdc.kicker);
969 tasklet_kill(&hp_sdc.task);
971 #if defined(__hppa__)
972 if (unregister_parisc_driver(&hp_sdc_driver))
973 printk(KERN_WARNING PREFIX "Error unregistering HP SDC");
977 static int __init hp_sdc_register(void)
979 hp_sdc_transaction tq_init;
980 uint8_t tq_init_seq[5];
981 struct semaphore tq_init_sem;
982 #if defined(__mc68000__)
987 if (hp_sdc_disabled) {
988 printk(KERN_WARNING PREFIX "HP SDC driver disabled by no_hpsdc=1.\n");
994 #if defined(__hppa__)
995 if (register_parisc_driver(&hp_sdc_driver)) {
996 printk(KERN_WARNING PREFIX "Error registering SDC with system bus tree.\n");
999 #elif defined(__mc68000__)
1005 hp_sdc.base_io = (unsigned long) 0xf0428000;
1006 hp_sdc.data_io = (unsigned long) hp_sdc.base_io + 1;
1007 hp_sdc.status_io = (unsigned long) hp_sdc.base_io + 3;
1010 if (!get_user(i, (unsigned char *)hp_sdc.data_io))
1011 hp_sdc.dev = (void *)1;
1013 hp_sdc.dev_err = hp_sdc_init();
1015 if (hp_sdc.dev == NULL) {
1016 printk(KERN_WARNING PREFIX "No SDC found.\n");
1017 return hp_sdc.dev_err;
1020 init_MUTEX_LOCKED(&tq_init_sem);
1025 tq_init.seq = tq_init_seq;
1026 tq_init.act.semaphore = &tq_init_sem;
1029 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN | HP_SDC_ACT_SEMAPHORE;
1030 tq_init_seq[1] = HP_SDC_CMD_READ_KCC;
1035 hp_sdc_enqueue_transaction(&tq_init);
1040 if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) {
1041 printk(KERN_WARNING PREFIX "Error reading config byte.\n");
1045 hp_sdc.r11 = tq_init_seq[4];
1046 if (hp_sdc.r11 & HP_SDC_CFG_NEW) {
1048 printk(KERN_INFO PREFIX "New style SDC\n");
1049 tq_init_seq[1] = HP_SDC_CMD_READ_XTD;
1053 hp_sdc_enqueue_transaction(&tq_init);
1056 if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) {
1057 printk(KERN_WARNING PREFIX "Error reading extended config byte.\n");
1060 hp_sdc.r7e = tq_init_seq[4];
1061 HP_SDC_XTD_REV_STRINGS(hp_sdc.r7e & HP_SDC_XTD_REV, str)
1062 printk(KERN_INFO PREFIX "Revision: %s\n", str);
1063 if (hp_sdc.r7e & HP_SDC_XTD_BEEPER)
1064 printk(KERN_INFO PREFIX "TI SN76494 beeper present\n");
1065 if (hp_sdc.r7e & HP_SDC_XTD_BBRTC)
1066 printk(KERN_INFO PREFIX "OKI MSM-58321 BBRTC present\n");
1067 printk(KERN_INFO PREFIX "Spunking the self test register to force PUP "
1068 "on next firmware reset.\n");
1069 tq_init_seq[0] = HP_SDC_ACT_PRECMD |
1070 HP_SDC_ACT_DATAOUT | HP_SDC_ACT_SEMAPHORE;
1071 tq_init_seq[1] = HP_SDC_CMD_SET_STR;
1078 hp_sdc_enqueue_transaction(&tq_init);
1082 printk(KERN_INFO PREFIX "Old style SDC (1820-%s).\n",
1083 (hp_sdc.r11 & HP_SDC_CFG_REV) ? "3300" : "2564/3087");
1088 module_init(hp_sdc_register);
1089 module_exit(hp_sdc_exit);
1091 /* Timing notes: These measurements taken on my 64MHz 7100-LC (715/64)
1092 * cycles cycles-adj time
1093 * between two consecutive mfctl(16)'s: 4 n/a 63ns
1094 * hp_sdc_spin_ibf when idle: 119 115 1.7us
1095 * gsc_writeb status register: 83 79 1.2us
1096 * IBF to clear after sending SET_IM: 6204 6006 93us
1097 * IBF to clear after sending LOAD_RT: 4467 4352 68us
1098 * IBF to clear after sending two LOAD_RTs: 18974 18859 295us
1099 * READ_T1, read status/data, IRQ, call handler: 35564 n/a 556us
1100 * cmd to ~IBF READ_T1 2nd time right after: 5158403 n/a 81ms
1101 * between IRQ received and ~IBF for above: 2578877 n/a 40ms
1103 * Performance stats after a run of this module configuring HIL and
1104 * receiving a few mouse events:
1106 * status in8 282508 cycles 7128 calls
1107 * status out8 8404 cycles 341 calls
1108 * data out8 1734 cycles 78 calls
1109 * isr 174324 cycles 617 calls (includes take)
1110 * take 1241 cycles 2 calls
1111 * put 1411504 cycles 6937 calls
1112 * task 1655209 cycles 6937 calls (includes put)