]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/kvm_main.c
[PATCH] kvm: Two-way apic tpr synchronization
[linux-2.6-omap-h63xx.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
47
48 static struct kvm_stats_debugfs_item {
49         const char *name;
50         u32 *data;
51         struct dentry *dentry;
52 } debugfs_entries[] = {
53         { "pf_fixed", &kvm_stat.pf_fixed },
54         { "pf_guest", &kvm_stat.pf_guest },
55         { "tlb_flush", &kvm_stat.tlb_flush },
56         { "invlpg", &kvm_stat.invlpg },
57         { "exits", &kvm_stat.exits },
58         { "io_exits", &kvm_stat.io_exits },
59         { "mmio_exits", &kvm_stat.mmio_exits },
60         { "signal_exits", &kvm_stat.signal_exits },
61         { "irq_window", &kvm_stat.irq_window_exits },
62         { "halt_exits", &kvm_stat.halt_exits },
63         { "request_irq", &kvm_stat.request_irq_exits },
64         { "irq_exits", &kvm_stat.irq_exits },
65         { NULL, NULL }
66 };
67
68 static struct dentry *debugfs_dir;
69
70 #define MAX_IO_MSRS 256
71
72 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
73 #define LMSW_GUEST_MASK 0x0eULL
74 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
75 #define CR8_RESEVED_BITS (~0x0fULL)
76 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
77
78 #ifdef CONFIG_X86_64
79 // LDT or TSS descriptor in the GDT. 16 bytes.
80 struct segment_descriptor_64 {
81         struct segment_descriptor s;
82         u32 base_higher;
83         u32 pad_zero;
84 };
85
86 #endif
87
88 unsigned long segment_base(u16 selector)
89 {
90         struct descriptor_table gdt;
91         struct segment_descriptor *d;
92         unsigned long table_base;
93         typedef unsigned long ul;
94         unsigned long v;
95
96         if (selector == 0)
97                 return 0;
98
99         asm ("sgdt %0" : "=m"(gdt));
100         table_base = gdt.base;
101
102         if (selector & 4) {           /* from ldt */
103                 u16 ldt_selector;
104
105                 asm ("sldt %0" : "=g"(ldt_selector));
106                 table_base = segment_base(ldt_selector);
107         }
108         d = (struct segment_descriptor *)(table_base + (selector & ~7));
109         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
110 #ifdef CONFIG_X86_64
111         if (d->system == 0
112             && (d->type == 2 || d->type == 9 || d->type == 11))
113                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
114 #endif
115         return v;
116 }
117 EXPORT_SYMBOL_GPL(segment_base);
118
119 static inline int valid_vcpu(int n)
120 {
121         return likely(n >= 0 && n < KVM_MAX_VCPUS);
122 }
123
124 int kvm_read_guest(struct kvm_vcpu *vcpu,
125                              gva_t addr,
126                              unsigned long size,
127                              void *dest)
128 {
129         unsigned char *host_buf = dest;
130         unsigned long req_size = size;
131
132         while (size) {
133                 hpa_t paddr;
134                 unsigned now;
135                 unsigned offset;
136                 hva_t guest_buf;
137
138                 paddr = gva_to_hpa(vcpu, addr);
139
140                 if (is_error_hpa(paddr))
141                         break;
142
143                 guest_buf = (hva_t)kmap_atomic(
144                                         pfn_to_page(paddr >> PAGE_SHIFT),
145                                         KM_USER0);
146                 offset = addr & ~PAGE_MASK;
147                 guest_buf |= offset;
148                 now = min(size, PAGE_SIZE - offset);
149                 memcpy(host_buf, (void*)guest_buf, now);
150                 host_buf += now;
151                 addr += now;
152                 size -= now;
153                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
154         }
155         return req_size - size;
156 }
157 EXPORT_SYMBOL_GPL(kvm_read_guest);
158
159 int kvm_write_guest(struct kvm_vcpu *vcpu,
160                              gva_t addr,
161                              unsigned long size,
162                              void *data)
163 {
164         unsigned char *host_buf = data;
165         unsigned long req_size = size;
166
167         while (size) {
168                 hpa_t paddr;
169                 unsigned now;
170                 unsigned offset;
171                 hva_t guest_buf;
172
173                 paddr = gva_to_hpa(vcpu, addr);
174
175                 if (is_error_hpa(paddr))
176                         break;
177
178                 guest_buf = (hva_t)kmap_atomic(
179                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
180                 offset = addr & ~PAGE_MASK;
181                 guest_buf |= offset;
182                 now = min(size, PAGE_SIZE - offset);
183                 memcpy((void*)guest_buf, host_buf, now);
184                 host_buf += now;
185                 addr += now;
186                 size -= now;
187                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
188         }
189         return req_size - size;
190 }
191 EXPORT_SYMBOL_GPL(kvm_write_guest);
192
193 static int vcpu_slot(struct kvm_vcpu *vcpu)
194 {
195         return vcpu - vcpu->kvm->vcpus;
196 }
197
198 /*
199  * Switches to specified vcpu, until a matching vcpu_put()
200  */
201 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
202 {
203         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
204
205         mutex_lock(&vcpu->mutex);
206         if (unlikely(!vcpu->vmcs)) {
207                 mutex_unlock(&vcpu->mutex);
208                 return NULL;
209         }
210         return kvm_arch_ops->vcpu_load(vcpu);
211 }
212
213 static void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215         kvm_arch_ops->vcpu_put(vcpu);
216         mutex_unlock(&vcpu->mutex);
217 }
218
219 static int kvm_dev_open(struct inode *inode, struct file *filp)
220 {
221         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
222         int i;
223
224         if (!kvm)
225                 return -ENOMEM;
226
227         spin_lock_init(&kvm->lock);
228         INIT_LIST_HEAD(&kvm->active_mmu_pages);
229         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
230                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
231
232                 mutex_init(&vcpu->mutex);
233                 vcpu->kvm = kvm;
234                 vcpu->mmu.root_hpa = INVALID_PAGE;
235                 INIT_LIST_HEAD(&vcpu->free_pages);
236         }
237         filp->private_data = kvm;
238         return 0;
239 }
240
241 /*
242  * Free any memory in @free but not in @dont.
243  */
244 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
245                                   struct kvm_memory_slot *dont)
246 {
247         int i;
248
249         if (!dont || free->phys_mem != dont->phys_mem)
250                 if (free->phys_mem) {
251                         for (i = 0; i < free->npages; ++i)
252                                 if (free->phys_mem[i])
253                                         __free_page(free->phys_mem[i]);
254                         vfree(free->phys_mem);
255                 }
256
257         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
258                 vfree(free->dirty_bitmap);
259
260         free->phys_mem = NULL;
261         free->npages = 0;
262         free->dirty_bitmap = NULL;
263 }
264
265 static void kvm_free_physmem(struct kvm *kvm)
266 {
267         int i;
268
269         for (i = 0; i < kvm->nmemslots; ++i)
270                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
271 }
272
273 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
274 {
275         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
276         kvm_mmu_destroy(vcpu);
277         vcpu_put(vcpu);
278         kvm_arch_ops->vcpu_free(vcpu);
279 }
280
281 static void kvm_free_vcpus(struct kvm *kvm)
282 {
283         unsigned int i;
284
285         for (i = 0; i < KVM_MAX_VCPUS; ++i)
286                 kvm_free_vcpu(&kvm->vcpus[i]);
287 }
288
289 static int kvm_dev_release(struct inode *inode, struct file *filp)
290 {
291         struct kvm *kvm = filp->private_data;
292
293         kvm_free_vcpus(kvm);
294         kvm_free_physmem(kvm);
295         kfree(kvm);
296         return 0;
297 }
298
299 static void inject_gp(struct kvm_vcpu *vcpu)
300 {
301         kvm_arch_ops->inject_gp(vcpu, 0);
302 }
303
304 /*
305  * Load the pae pdptrs.  Return true is they are all valid.
306  */
307 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
308 {
309         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
310         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
311         int i;
312         u64 pdpte;
313         u64 *pdpt;
314         int ret;
315         struct kvm_memory_slot *memslot;
316
317         spin_lock(&vcpu->kvm->lock);
318         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
319         /* FIXME: !memslot - emulate? 0xff? */
320         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
321
322         ret = 1;
323         for (i = 0; i < 4; ++i) {
324                 pdpte = pdpt[offset + i];
325                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
326                         ret = 0;
327                         goto out;
328                 }
329         }
330
331         for (i = 0; i < 4; ++i)
332                 vcpu->pdptrs[i] = pdpt[offset + i];
333
334 out:
335         kunmap_atomic(pdpt, KM_USER0);
336         spin_unlock(&vcpu->kvm->lock);
337
338         return ret;
339 }
340
341 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
342 {
343         if (cr0 & CR0_RESEVED_BITS) {
344                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
345                        cr0, vcpu->cr0);
346                 inject_gp(vcpu);
347                 return;
348         }
349
350         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
351                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
352                 inject_gp(vcpu);
353                 return;
354         }
355
356         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
357                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
358                        "and a clear PE flag\n");
359                 inject_gp(vcpu);
360                 return;
361         }
362
363         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
364 #ifdef CONFIG_X86_64
365                 if ((vcpu->shadow_efer & EFER_LME)) {
366                         int cs_db, cs_l;
367
368                         if (!is_pae(vcpu)) {
369                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
370                                        "in long mode while PAE is disabled\n");
371                                 inject_gp(vcpu);
372                                 return;
373                         }
374                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
375                         if (cs_l) {
376                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
377                                        "in long mode while CS.L == 1\n");
378                                 inject_gp(vcpu);
379                                 return;
380
381                         }
382                 } else
383 #endif
384                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
385                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
386                                "reserved bits\n");
387                         inject_gp(vcpu);
388                         return;
389                 }
390
391         }
392
393         kvm_arch_ops->set_cr0(vcpu, cr0);
394         vcpu->cr0 = cr0;
395
396         spin_lock(&vcpu->kvm->lock);
397         kvm_mmu_reset_context(vcpu);
398         spin_unlock(&vcpu->kvm->lock);
399         return;
400 }
401 EXPORT_SYMBOL_GPL(set_cr0);
402
403 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
404 {
405         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
406         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
407 }
408 EXPORT_SYMBOL_GPL(lmsw);
409
410 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
411 {
412         if (cr4 & CR4_RESEVED_BITS) {
413                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
414                 inject_gp(vcpu);
415                 return;
416         }
417
418         if (is_long_mode(vcpu)) {
419                 if (!(cr4 & CR4_PAE_MASK)) {
420                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
421                                "in long mode\n");
422                         inject_gp(vcpu);
423                         return;
424                 }
425         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
426                    && !load_pdptrs(vcpu, vcpu->cr3)) {
427                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
428                 inject_gp(vcpu);
429         }
430
431         if (cr4 & CR4_VMXE_MASK) {
432                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
433                 inject_gp(vcpu);
434                 return;
435         }
436         kvm_arch_ops->set_cr4(vcpu, cr4);
437         spin_lock(&vcpu->kvm->lock);
438         kvm_mmu_reset_context(vcpu);
439         spin_unlock(&vcpu->kvm->lock);
440 }
441 EXPORT_SYMBOL_GPL(set_cr4);
442
443 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
444 {
445         if (is_long_mode(vcpu)) {
446                 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
447                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
448                         inject_gp(vcpu);
449                         return;
450                 }
451         } else {
452                 if (cr3 & CR3_RESEVED_BITS) {
453                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
454                         inject_gp(vcpu);
455                         return;
456                 }
457                 if (is_paging(vcpu) && is_pae(vcpu) &&
458                     !load_pdptrs(vcpu, cr3)) {
459                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
460                                "reserved bits\n");
461                         inject_gp(vcpu);
462                         return;
463                 }
464         }
465
466         vcpu->cr3 = cr3;
467         spin_lock(&vcpu->kvm->lock);
468         /*
469          * Does the new cr3 value map to physical memory? (Note, we
470          * catch an invalid cr3 even in real-mode, because it would
471          * cause trouble later on when we turn on paging anyway.)
472          *
473          * A real CPU would silently accept an invalid cr3 and would
474          * attempt to use it - with largely undefined (and often hard
475          * to debug) behavior on the guest side.
476          */
477         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
478                 inject_gp(vcpu);
479         else
480                 vcpu->mmu.new_cr3(vcpu);
481         spin_unlock(&vcpu->kvm->lock);
482 }
483 EXPORT_SYMBOL_GPL(set_cr3);
484
485 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
486 {
487         if ( cr8 & CR8_RESEVED_BITS) {
488                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
489                 inject_gp(vcpu);
490                 return;
491         }
492         vcpu->cr8 = cr8;
493 }
494 EXPORT_SYMBOL_GPL(set_cr8);
495
496 void fx_init(struct kvm_vcpu *vcpu)
497 {
498         struct __attribute__ ((__packed__)) fx_image_s {
499                 u16 control; //fcw
500                 u16 status; //fsw
501                 u16 tag; // ftw
502                 u16 opcode; //fop
503                 u64 ip; // fpu ip
504                 u64 operand;// fpu dp
505                 u32 mxcsr;
506                 u32 mxcsr_mask;
507
508         } *fx_image;
509
510         fx_save(vcpu->host_fx_image);
511         fpu_init();
512         fx_save(vcpu->guest_fx_image);
513         fx_restore(vcpu->host_fx_image);
514
515         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
516         fx_image->mxcsr = 0x1f80;
517         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
518                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
519 }
520 EXPORT_SYMBOL_GPL(fx_init);
521
522 /*
523  * Creates some virtual cpus.  Good luck creating more than one.
524  */
525 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
526 {
527         int r;
528         struct kvm_vcpu *vcpu;
529
530         r = -EINVAL;
531         if (!valid_vcpu(n))
532                 goto out;
533
534         vcpu = &kvm->vcpus[n];
535
536         mutex_lock(&vcpu->mutex);
537
538         if (vcpu->vmcs) {
539                 mutex_unlock(&vcpu->mutex);
540                 return -EEXIST;
541         }
542
543         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
544                                            FX_IMAGE_ALIGN);
545         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
546
547         vcpu->cpu = -1;  /* First load will set up TR */
548         r = kvm_arch_ops->vcpu_create(vcpu);
549         if (r < 0)
550                 goto out_free_vcpus;
551
552         r = kvm_mmu_create(vcpu);
553         if (r < 0)
554                 goto out_free_vcpus;
555
556         kvm_arch_ops->vcpu_load(vcpu);
557         r = kvm_mmu_setup(vcpu);
558         if (r >= 0)
559                 r = kvm_arch_ops->vcpu_setup(vcpu);
560         vcpu_put(vcpu);
561
562         if (r < 0)
563                 goto out_free_vcpus;
564
565         return 0;
566
567 out_free_vcpus:
568         kvm_free_vcpu(vcpu);
569         mutex_unlock(&vcpu->mutex);
570 out:
571         return r;
572 }
573
574 /*
575  * Allocate some memory and give it an address in the guest physical address
576  * space.
577  *
578  * Discontiguous memory is allowed, mostly for framebuffers.
579  */
580 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
581                                            struct kvm_memory_region *mem)
582 {
583         int r;
584         gfn_t base_gfn;
585         unsigned long npages;
586         unsigned long i;
587         struct kvm_memory_slot *memslot;
588         struct kvm_memory_slot old, new;
589         int memory_config_version;
590
591         r = -EINVAL;
592         /* General sanity checks */
593         if (mem->memory_size & (PAGE_SIZE - 1))
594                 goto out;
595         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
596                 goto out;
597         if (mem->slot >= KVM_MEMORY_SLOTS)
598                 goto out;
599         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
600                 goto out;
601
602         memslot = &kvm->memslots[mem->slot];
603         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
604         npages = mem->memory_size >> PAGE_SHIFT;
605
606         if (!npages)
607                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
608
609 raced:
610         spin_lock(&kvm->lock);
611
612         memory_config_version = kvm->memory_config_version;
613         new = old = *memslot;
614
615         new.base_gfn = base_gfn;
616         new.npages = npages;
617         new.flags = mem->flags;
618
619         /* Disallow changing a memory slot's size. */
620         r = -EINVAL;
621         if (npages && old.npages && npages != old.npages)
622                 goto out_unlock;
623
624         /* Check for overlaps */
625         r = -EEXIST;
626         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
627                 struct kvm_memory_slot *s = &kvm->memslots[i];
628
629                 if (s == memslot)
630                         continue;
631                 if (!((base_gfn + npages <= s->base_gfn) ||
632                       (base_gfn >= s->base_gfn + s->npages)))
633                         goto out_unlock;
634         }
635         /*
636          * Do memory allocations outside lock.  memory_config_version will
637          * detect any races.
638          */
639         spin_unlock(&kvm->lock);
640
641         /* Deallocate if slot is being removed */
642         if (!npages)
643                 new.phys_mem = NULL;
644
645         /* Free page dirty bitmap if unneeded */
646         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
647                 new.dirty_bitmap = NULL;
648
649         r = -ENOMEM;
650
651         /* Allocate if a slot is being created */
652         if (npages && !new.phys_mem) {
653                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
654
655                 if (!new.phys_mem)
656                         goto out_free;
657
658                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
659                 for (i = 0; i < npages; ++i) {
660                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
661                                                      | __GFP_ZERO);
662                         if (!new.phys_mem[i])
663                                 goto out_free;
664                         new.phys_mem[i]->private = 0;
665                 }
666         }
667
668         /* Allocate page dirty bitmap if needed */
669         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
670                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
671
672                 new.dirty_bitmap = vmalloc(dirty_bytes);
673                 if (!new.dirty_bitmap)
674                         goto out_free;
675                 memset(new.dirty_bitmap, 0, dirty_bytes);
676         }
677
678         spin_lock(&kvm->lock);
679
680         if (memory_config_version != kvm->memory_config_version) {
681                 spin_unlock(&kvm->lock);
682                 kvm_free_physmem_slot(&new, &old);
683                 goto raced;
684         }
685
686         r = -EAGAIN;
687         if (kvm->busy)
688                 goto out_unlock;
689
690         if (mem->slot >= kvm->nmemslots)
691                 kvm->nmemslots = mem->slot + 1;
692
693         *memslot = new;
694         ++kvm->memory_config_version;
695
696         spin_unlock(&kvm->lock);
697
698         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
699                 struct kvm_vcpu *vcpu;
700
701                 vcpu = vcpu_load(kvm, i);
702                 if (!vcpu)
703                         continue;
704                 kvm_mmu_reset_context(vcpu);
705                 vcpu_put(vcpu);
706         }
707
708         kvm_free_physmem_slot(&old, &new);
709         return 0;
710
711 out_unlock:
712         spin_unlock(&kvm->lock);
713 out_free:
714         kvm_free_physmem_slot(&new, &old);
715 out:
716         return r;
717 }
718
719 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
720 {
721         spin_lock(&vcpu->kvm->lock);
722         kvm_mmu_slot_remove_write_access(vcpu, slot);
723         spin_unlock(&vcpu->kvm->lock);
724 }
725
726 /*
727  * Get (and clear) the dirty memory log for a memory slot.
728  */
729 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
730                                        struct kvm_dirty_log *log)
731 {
732         struct kvm_memory_slot *memslot;
733         int r, i;
734         int n;
735         int cleared;
736         unsigned long any = 0;
737
738         spin_lock(&kvm->lock);
739
740         /*
741          * Prevent changes to guest memory configuration even while the lock
742          * is not taken.
743          */
744         ++kvm->busy;
745         spin_unlock(&kvm->lock);
746         r = -EINVAL;
747         if (log->slot >= KVM_MEMORY_SLOTS)
748                 goto out;
749
750         memslot = &kvm->memslots[log->slot];
751         r = -ENOENT;
752         if (!memslot->dirty_bitmap)
753                 goto out;
754
755         n = ALIGN(memslot->npages, 8) / 8;
756
757         for (i = 0; !any && i < n; ++i)
758                 any = memslot->dirty_bitmap[i];
759
760         r = -EFAULT;
761         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
762                 goto out;
763
764
765         if (any) {
766                 cleared = 0;
767                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
768                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
769
770                         if (!vcpu)
771                                 continue;
772                         if (!cleared) {
773                                 do_remove_write_access(vcpu, log->slot);
774                                 memset(memslot->dirty_bitmap, 0, n);
775                                 cleared = 1;
776                         }
777                         kvm_arch_ops->tlb_flush(vcpu);
778                         vcpu_put(vcpu);
779                 }
780         }
781
782         r = 0;
783
784 out:
785         spin_lock(&kvm->lock);
786         --kvm->busy;
787         spin_unlock(&kvm->lock);
788         return r;
789 }
790
791 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
792 {
793         int i;
794
795         for (i = 0; i < kvm->nmemslots; ++i) {
796                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
797
798                 if (gfn >= memslot->base_gfn
799                     && gfn < memslot->base_gfn + memslot->npages)
800                         return memslot;
801         }
802         return NULL;
803 }
804 EXPORT_SYMBOL_GPL(gfn_to_memslot);
805
806 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
807 {
808         int i;
809         struct kvm_memory_slot *memslot = NULL;
810         unsigned long rel_gfn;
811
812         for (i = 0; i < kvm->nmemslots; ++i) {
813                 memslot = &kvm->memslots[i];
814
815                 if (gfn >= memslot->base_gfn
816                     && gfn < memslot->base_gfn + memslot->npages) {
817
818                         if (!memslot || !memslot->dirty_bitmap)
819                                 return;
820
821                         rel_gfn = gfn - memslot->base_gfn;
822
823                         /* avoid RMW */
824                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
825                                 set_bit(rel_gfn, memslot->dirty_bitmap);
826                         return;
827                 }
828         }
829 }
830
831 static int emulator_read_std(unsigned long addr,
832                              unsigned long *val,
833                              unsigned int bytes,
834                              struct x86_emulate_ctxt *ctxt)
835 {
836         struct kvm_vcpu *vcpu = ctxt->vcpu;
837         void *data = val;
838
839         while (bytes) {
840                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
841                 unsigned offset = addr & (PAGE_SIZE-1);
842                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
843                 unsigned long pfn;
844                 struct kvm_memory_slot *memslot;
845                 void *page;
846
847                 if (gpa == UNMAPPED_GVA)
848                         return X86EMUL_PROPAGATE_FAULT;
849                 pfn = gpa >> PAGE_SHIFT;
850                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
851                 if (!memslot)
852                         return X86EMUL_UNHANDLEABLE;
853                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
854
855                 memcpy(data, page + offset, tocopy);
856
857                 kunmap_atomic(page, KM_USER0);
858
859                 bytes -= tocopy;
860                 data += tocopy;
861                 addr += tocopy;
862         }
863
864         return X86EMUL_CONTINUE;
865 }
866
867 static int emulator_write_std(unsigned long addr,
868                               unsigned long val,
869                               unsigned int bytes,
870                               struct x86_emulate_ctxt *ctxt)
871 {
872         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
873                addr, bytes);
874         return X86EMUL_UNHANDLEABLE;
875 }
876
877 static int emulator_read_emulated(unsigned long addr,
878                                   unsigned long *val,
879                                   unsigned int bytes,
880                                   struct x86_emulate_ctxt *ctxt)
881 {
882         struct kvm_vcpu *vcpu = ctxt->vcpu;
883
884         if (vcpu->mmio_read_completed) {
885                 memcpy(val, vcpu->mmio_data, bytes);
886                 vcpu->mmio_read_completed = 0;
887                 return X86EMUL_CONTINUE;
888         } else if (emulator_read_std(addr, val, bytes, ctxt)
889                    == X86EMUL_CONTINUE)
890                 return X86EMUL_CONTINUE;
891         else {
892                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
893                 if (gpa == UNMAPPED_GVA)
894                         return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
895                 vcpu->mmio_needed = 1;
896                 vcpu->mmio_phys_addr = gpa;
897                 vcpu->mmio_size = bytes;
898                 vcpu->mmio_is_write = 0;
899
900                 return X86EMUL_UNHANDLEABLE;
901         }
902 }
903
904 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
905                                unsigned long val, int bytes)
906 {
907         struct kvm_memory_slot *m;
908         struct page *page;
909         void *virt;
910
911         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
912                 return 0;
913         m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
914         if (!m)
915                 return 0;
916         page = gfn_to_page(m, gpa >> PAGE_SHIFT);
917         kvm_mmu_pre_write(vcpu, gpa, bytes);
918         virt = kmap_atomic(page, KM_USER0);
919         memcpy(virt + offset_in_page(gpa), &val, bytes);
920         kunmap_atomic(virt, KM_USER0);
921         kvm_mmu_post_write(vcpu, gpa, bytes);
922         return 1;
923 }
924
925 static int emulator_write_emulated(unsigned long addr,
926                                    unsigned long val,
927                                    unsigned int bytes,
928                                    struct x86_emulate_ctxt *ctxt)
929 {
930         struct kvm_vcpu *vcpu = ctxt->vcpu;
931         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
932
933         if (gpa == UNMAPPED_GVA)
934                 return X86EMUL_PROPAGATE_FAULT;
935
936         if (emulator_write_phys(vcpu, gpa, val, bytes))
937                 return X86EMUL_CONTINUE;
938
939         vcpu->mmio_needed = 1;
940         vcpu->mmio_phys_addr = gpa;
941         vcpu->mmio_size = bytes;
942         vcpu->mmio_is_write = 1;
943         memcpy(vcpu->mmio_data, &val, bytes);
944
945         return X86EMUL_CONTINUE;
946 }
947
948 static int emulator_cmpxchg_emulated(unsigned long addr,
949                                      unsigned long old,
950                                      unsigned long new,
951                                      unsigned int bytes,
952                                      struct x86_emulate_ctxt *ctxt)
953 {
954         static int reported;
955
956         if (!reported) {
957                 reported = 1;
958                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
959         }
960         return emulator_write_emulated(addr, new, bytes, ctxt);
961 }
962
963 #ifdef CONFIG_X86_32
964
965 static int emulator_cmpxchg8b_emulated(unsigned long addr,
966                                        unsigned long old_lo,
967                                        unsigned long old_hi,
968                                        unsigned long new_lo,
969                                        unsigned long new_hi,
970                                        struct x86_emulate_ctxt *ctxt)
971 {
972         static int reported;
973         int r;
974
975         if (!reported) {
976                 reported = 1;
977                 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
978         }
979         r = emulator_write_emulated(addr, new_lo, 4, ctxt);
980         if (r != X86EMUL_CONTINUE)
981                 return r;
982         return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
983 }
984
985 #endif
986
987 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
988 {
989         return kvm_arch_ops->get_segment_base(vcpu, seg);
990 }
991
992 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
993 {
994         return X86EMUL_CONTINUE;
995 }
996
997 int emulate_clts(struct kvm_vcpu *vcpu)
998 {
999         unsigned long cr0;
1000
1001         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1002         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1003         kvm_arch_ops->set_cr0(vcpu, cr0);
1004         return X86EMUL_CONTINUE;
1005 }
1006
1007 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1008 {
1009         struct kvm_vcpu *vcpu = ctxt->vcpu;
1010
1011         switch (dr) {
1012         case 0 ... 3:
1013                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1014                 return X86EMUL_CONTINUE;
1015         default:
1016                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1017                        __FUNCTION__, dr);
1018                 return X86EMUL_UNHANDLEABLE;
1019         }
1020 }
1021
1022 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1023 {
1024         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1025         int exception;
1026
1027         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1028         if (exception) {
1029                 /* FIXME: better handling */
1030                 return X86EMUL_UNHANDLEABLE;
1031         }
1032         return X86EMUL_CONTINUE;
1033 }
1034
1035 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1036 {
1037         static int reported;
1038         u8 opcodes[4];
1039         unsigned long rip = ctxt->vcpu->rip;
1040         unsigned long rip_linear;
1041
1042         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1043
1044         if (reported)
1045                 return;
1046
1047         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1048
1049         printk(KERN_ERR "emulation failed but !mmio_needed?"
1050                " rip %lx %02x %02x %02x %02x\n",
1051                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1052         reported = 1;
1053 }
1054
1055 struct x86_emulate_ops emulate_ops = {
1056         .read_std            = emulator_read_std,
1057         .write_std           = emulator_write_std,
1058         .read_emulated       = emulator_read_emulated,
1059         .write_emulated      = emulator_write_emulated,
1060         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1061 #ifdef CONFIG_X86_32
1062         .cmpxchg8b_emulated  = emulator_cmpxchg8b_emulated,
1063 #endif
1064 };
1065
1066 int emulate_instruction(struct kvm_vcpu *vcpu,
1067                         struct kvm_run *run,
1068                         unsigned long cr2,
1069                         u16 error_code)
1070 {
1071         struct x86_emulate_ctxt emulate_ctxt;
1072         int r;
1073         int cs_db, cs_l;
1074
1075         kvm_arch_ops->cache_regs(vcpu);
1076
1077         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1078
1079         emulate_ctxt.vcpu = vcpu;
1080         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1081         emulate_ctxt.cr2 = cr2;
1082         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1083                 ? X86EMUL_MODE_REAL : cs_l
1084                 ? X86EMUL_MODE_PROT64 : cs_db
1085                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1086
1087         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1088                 emulate_ctxt.cs_base = 0;
1089                 emulate_ctxt.ds_base = 0;
1090                 emulate_ctxt.es_base = 0;
1091                 emulate_ctxt.ss_base = 0;
1092         } else {
1093                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1094                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1095                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1096                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1097         }
1098
1099         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1100         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1101
1102         vcpu->mmio_is_write = 0;
1103         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1104
1105         if ((r || vcpu->mmio_is_write) && run) {
1106                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1107                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1108                 run->mmio.len = vcpu->mmio_size;
1109                 run->mmio.is_write = vcpu->mmio_is_write;
1110         }
1111
1112         if (r) {
1113                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1114                         return EMULATE_DONE;
1115                 if (!vcpu->mmio_needed) {
1116                         report_emulation_failure(&emulate_ctxt);
1117                         return EMULATE_FAIL;
1118                 }
1119                 return EMULATE_DO_MMIO;
1120         }
1121
1122         kvm_arch_ops->decache_regs(vcpu);
1123         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1124
1125         if (vcpu->mmio_is_write)
1126                 return EMULATE_DO_MMIO;
1127
1128         return EMULATE_DONE;
1129 }
1130 EXPORT_SYMBOL_GPL(emulate_instruction);
1131
1132 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1133 {
1134         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1135 }
1136
1137 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1138 {
1139         struct descriptor_table dt = { limit, base };
1140
1141         kvm_arch_ops->set_gdt(vcpu, &dt);
1142 }
1143
1144 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1145 {
1146         struct descriptor_table dt = { limit, base };
1147
1148         kvm_arch_ops->set_idt(vcpu, &dt);
1149 }
1150
1151 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1152                    unsigned long *rflags)
1153 {
1154         lmsw(vcpu, msw);
1155         *rflags = kvm_arch_ops->get_rflags(vcpu);
1156 }
1157
1158 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1159 {
1160         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1161         switch (cr) {
1162         case 0:
1163                 return vcpu->cr0;
1164         case 2:
1165                 return vcpu->cr2;
1166         case 3:
1167                 return vcpu->cr3;
1168         case 4:
1169                 return vcpu->cr4;
1170         default:
1171                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1172                 return 0;
1173         }
1174 }
1175
1176 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1177                      unsigned long *rflags)
1178 {
1179         switch (cr) {
1180         case 0:
1181                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1182                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1183                 break;
1184         case 2:
1185                 vcpu->cr2 = val;
1186                 break;
1187         case 3:
1188                 set_cr3(vcpu, val);
1189                 break;
1190         case 4:
1191                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1192                 break;
1193         default:
1194                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1195         }
1196 }
1197
1198 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1199 {
1200         u64 data;
1201
1202         switch (msr) {
1203         case 0xc0010010: /* SYSCFG */
1204         case 0xc0010015: /* HWCR */
1205         case MSR_IA32_PLATFORM_ID:
1206         case MSR_IA32_P5_MC_ADDR:
1207         case MSR_IA32_P5_MC_TYPE:
1208         case MSR_IA32_MC0_CTL:
1209         case MSR_IA32_MCG_STATUS:
1210         case MSR_IA32_MCG_CAP:
1211         case MSR_IA32_MC0_MISC:
1212         case MSR_IA32_MC0_MISC+4:
1213         case MSR_IA32_MC0_MISC+8:
1214         case MSR_IA32_MC0_MISC+12:
1215         case MSR_IA32_MC0_MISC+16:
1216         case MSR_IA32_UCODE_REV:
1217         case MSR_IA32_PERF_STATUS:
1218                 /* MTRR registers */
1219         case 0xfe:
1220         case 0x200 ... 0x2ff:
1221                 data = 0;
1222                 break;
1223         case 0xcd: /* fsb frequency */
1224                 data = 3;
1225                 break;
1226         case MSR_IA32_APICBASE:
1227                 data = vcpu->apic_base;
1228                 break;
1229         case MSR_IA32_MISC_ENABLE:
1230                 data = vcpu->ia32_misc_enable_msr;
1231                 break;
1232 #ifdef CONFIG_X86_64
1233         case MSR_EFER:
1234                 data = vcpu->shadow_efer;
1235                 break;
1236 #endif
1237         default:
1238                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1239                 return 1;
1240         }
1241         *pdata = data;
1242         return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1245
1246 /*
1247  * Reads an msr value (of 'msr_index') into 'pdata'.
1248  * Returns 0 on success, non-0 otherwise.
1249  * Assumes vcpu_load() was already called.
1250  */
1251 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1252 {
1253         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1254 }
1255
1256 #ifdef CONFIG_X86_64
1257
1258 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1259 {
1260         if (efer & EFER_RESERVED_BITS) {
1261                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1262                        efer);
1263                 inject_gp(vcpu);
1264                 return;
1265         }
1266
1267         if (is_paging(vcpu)
1268             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1269                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1270                 inject_gp(vcpu);
1271                 return;
1272         }
1273
1274         kvm_arch_ops->set_efer(vcpu, efer);
1275
1276         efer &= ~EFER_LMA;
1277         efer |= vcpu->shadow_efer & EFER_LMA;
1278
1279         vcpu->shadow_efer = efer;
1280 }
1281
1282 #endif
1283
1284 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1285 {
1286         switch (msr) {
1287 #ifdef CONFIG_X86_64
1288         case MSR_EFER:
1289                 set_efer(vcpu, data);
1290                 break;
1291 #endif
1292         case MSR_IA32_MC0_STATUS:
1293                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1294                        __FUNCTION__, data);
1295                 break;
1296         case MSR_IA32_UCODE_REV:
1297         case MSR_IA32_UCODE_WRITE:
1298         case 0x200 ... 0x2ff: /* MTRRs */
1299                 break;
1300         case MSR_IA32_APICBASE:
1301                 vcpu->apic_base = data;
1302                 break;
1303         case MSR_IA32_MISC_ENABLE:
1304                 vcpu->ia32_misc_enable_msr = data;
1305                 break;
1306         default:
1307                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1308                 return 1;
1309         }
1310         return 0;
1311 }
1312 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1313
1314 /*
1315  * Writes msr value into into the appropriate "register".
1316  * Returns 0 on success, non-0 otherwise.
1317  * Assumes vcpu_load() was already called.
1318  */
1319 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1320 {
1321         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1322 }
1323
1324 void kvm_resched(struct kvm_vcpu *vcpu)
1325 {
1326         vcpu_put(vcpu);
1327         cond_resched();
1328         /* Cannot fail -  no vcpu unplug yet. */
1329         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_resched);
1332
1333 void load_msrs(struct vmx_msr_entry *e, int n)
1334 {
1335         int i;
1336
1337         for (i = 0; i < n; ++i)
1338                 wrmsrl(e[i].index, e[i].data);
1339 }
1340 EXPORT_SYMBOL_GPL(load_msrs);
1341
1342 void save_msrs(struct vmx_msr_entry *e, int n)
1343 {
1344         int i;
1345
1346         for (i = 0; i < n; ++i)
1347                 rdmsrl(e[i].index, e[i].data);
1348 }
1349 EXPORT_SYMBOL_GPL(save_msrs);
1350
1351 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1352 {
1353         struct kvm_vcpu *vcpu;
1354         int r;
1355
1356         if (!valid_vcpu(kvm_run->vcpu))
1357                 return -EINVAL;
1358
1359         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1360         if (!vcpu)
1361                 return -ENOENT;
1362
1363         /* re-sync apic's tpr */
1364         vcpu->cr8 = kvm_run->cr8;
1365
1366         if (kvm_run->emulated) {
1367                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1368                 kvm_run->emulated = 0;
1369         }
1370
1371         if (kvm_run->mmio_completed) {
1372                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1373                 vcpu->mmio_read_completed = 1;
1374         }
1375
1376         vcpu->mmio_needed = 0;
1377
1378         r = kvm_arch_ops->run(vcpu, kvm_run);
1379
1380         vcpu_put(vcpu);
1381         return r;
1382 }
1383
1384 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1385 {
1386         struct kvm_vcpu *vcpu;
1387
1388         if (!valid_vcpu(regs->vcpu))
1389                 return -EINVAL;
1390
1391         vcpu = vcpu_load(kvm, regs->vcpu);
1392         if (!vcpu)
1393                 return -ENOENT;
1394
1395         kvm_arch_ops->cache_regs(vcpu);
1396
1397         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1398         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1399         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1400         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1401         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1402         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1403         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1404         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1405 #ifdef CONFIG_X86_64
1406         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1407         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1408         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1409         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1410         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1411         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1412         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1413         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1414 #endif
1415
1416         regs->rip = vcpu->rip;
1417         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1418
1419         /*
1420          * Don't leak debug flags in case they were set for guest debugging
1421          */
1422         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1423                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1424
1425         vcpu_put(vcpu);
1426
1427         return 0;
1428 }
1429
1430 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1431 {
1432         struct kvm_vcpu *vcpu;
1433
1434         if (!valid_vcpu(regs->vcpu))
1435                 return -EINVAL;
1436
1437         vcpu = vcpu_load(kvm, regs->vcpu);
1438         if (!vcpu)
1439                 return -ENOENT;
1440
1441         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1442         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1443         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1444         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1445         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1446         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1447         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1448         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1449 #ifdef CONFIG_X86_64
1450         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1451         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1452         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1453         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1454         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1455         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1456         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1457         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1458 #endif
1459
1460         vcpu->rip = regs->rip;
1461         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1462
1463         kvm_arch_ops->decache_regs(vcpu);
1464
1465         vcpu_put(vcpu);
1466
1467         return 0;
1468 }
1469
1470 static void get_segment(struct kvm_vcpu *vcpu,
1471                         struct kvm_segment *var, int seg)
1472 {
1473         return kvm_arch_ops->get_segment(vcpu, var, seg);
1474 }
1475
1476 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1477 {
1478         struct kvm_vcpu *vcpu;
1479         struct descriptor_table dt;
1480
1481         if (!valid_vcpu(sregs->vcpu))
1482                 return -EINVAL;
1483         vcpu = vcpu_load(kvm, sregs->vcpu);
1484         if (!vcpu)
1485                 return -ENOENT;
1486
1487         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1488         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1489         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1490         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1491         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1492         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1493
1494         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1495         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1496
1497         kvm_arch_ops->get_idt(vcpu, &dt);
1498         sregs->idt.limit = dt.limit;
1499         sregs->idt.base = dt.base;
1500         kvm_arch_ops->get_gdt(vcpu, &dt);
1501         sregs->gdt.limit = dt.limit;
1502         sregs->gdt.base = dt.base;
1503
1504         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1505         sregs->cr0 = vcpu->cr0;
1506         sregs->cr2 = vcpu->cr2;
1507         sregs->cr3 = vcpu->cr3;
1508         sregs->cr4 = vcpu->cr4;
1509         sregs->cr8 = vcpu->cr8;
1510         sregs->efer = vcpu->shadow_efer;
1511         sregs->apic_base = vcpu->apic_base;
1512
1513         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1514                sizeof sregs->interrupt_bitmap);
1515
1516         vcpu_put(vcpu);
1517
1518         return 0;
1519 }
1520
1521 static void set_segment(struct kvm_vcpu *vcpu,
1522                         struct kvm_segment *var, int seg)
1523 {
1524         return kvm_arch_ops->set_segment(vcpu, var, seg);
1525 }
1526
1527 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1528 {
1529         struct kvm_vcpu *vcpu;
1530         int mmu_reset_needed = 0;
1531         int i;
1532         struct descriptor_table dt;
1533
1534         if (!valid_vcpu(sregs->vcpu))
1535                 return -EINVAL;
1536         vcpu = vcpu_load(kvm, sregs->vcpu);
1537         if (!vcpu)
1538                 return -ENOENT;
1539
1540         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1541         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1542         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1543         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1544         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1545         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1546
1547         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1548         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1549
1550         dt.limit = sregs->idt.limit;
1551         dt.base = sregs->idt.base;
1552         kvm_arch_ops->set_idt(vcpu, &dt);
1553         dt.limit = sregs->gdt.limit;
1554         dt.base = sregs->gdt.base;
1555         kvm_arch_ops->set_gdt(vcpu, &dt);
1556
1557         vcpu->cr2 = sregs->cr2;
1558         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1559         vcpu->cr3 = sregs->cr3;
1560
1561         vcpu->cr8 = sregs->cr8;
1562
1563         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1564 #ifdef CONFIG_X86_64
1565         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1566 #endif
1567         vcpu->apic_base = sregs->apic_base;
1568
1569         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1570
1571         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1572         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1573
1574         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1575         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1576         if (!is_long_mode(vcpu) && is_pae(vcpu))
1577                 load_pdptrs(vcpu, vcpu->cr3);
1578
1579         if (mmu_reset_needed)
1580                 kvm_mmu_reset_context(vcpu);
1581
1582         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1583                sizeof vcpu->irq_pending);
1584         vcpu->irq_summary = 0;
1585         for (i = 0; i < NR_IRQ_WORDS; ++i)
1586                 if (vcpu->irq_pending[i])
1587                         __set_bit(i, &vcpu->irq_summary);
1588
1589         vcpu_put(vcpu);
1590
1591         return 0;
1592 }
1593
1594 /*
1595  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1596  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1597  *
1598  * This list is modified at module load time to reflect the
1599  * capabilities of the host cpu.
1600  */
1601 static u32 msrs_to_save[] = {
1602         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1603         MSR_K6_STAR,
1604 #ifdef CONFIG_X86_64
1605         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1606 #endif
1607         MSR_IA32_TIME_STAMP_COUNTER,
1608 };
1609
1610 static unsigned num_msrs_to_save;
1611
1612 static u32 emulated_msrs[] = {
1613         MSR_IA32_MISC_ENABLE,
1614 };
1615
1616 static __init void kvm_init_msr_list(void)
1617 {
1618         u32 dummy[2];
1619         unsigned i, j;
1620
1621         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1622                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1623                         continue;
1624                 if (j < i)
1625                         msrs_to_save[j] = msrs_to_save[i];
1626                 j++;
1627         }
1628         num_msrs_to_save = j;
1629 }
1630
1631 /*
1632  * Adapt set_msr() to msr_io()'s calling convention
1633  */
1634 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1635 {
1636         return set_msr(vcpu, index, *data);
1637 }
1638
1639 /*
1640  * Read or write a bunch of msrs. All parameters are kernel addresses.
1641  *
1642  * @return number of msrs set successfully.
1643  */
1644 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1645                     struct kvm_msr_entry *entries,
1646                     int (*do_msr)(struct kvm_vcpu *vcpu,
1647                                   unsigned index, u64 *data))
1648 {
1649         struct kvm_vcpu *vcpu;
1650         int i;
1651
1652         if (!valid_vcpu(msrs->vcpu))
1653                 return -EINVAL;
1654
1655         vcpu = vcpu_load(kvm, msrs->vcpu);
1656         if (!vcpu)
1657                 return -ENOENT;
1658
1659         for (i = 0; i < msrs->nmsrs; ++i)
1660                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1661                         break;
1662
1663         vcpu_put(vcpu);
1664
1665         return i;
1666 }
1667
1668 /*
1669  * Read or write a bunch of msrs. Parameters are user addresses.
1670  *
1671  * @return number of msrs set successfully.
1672  */
1673 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1674                   int (*do_msr)(struct kvm_vcpu *vcpu,
1675                                 unsigned index, u64 *data),
1676                   int writeback)
1677 {
1678         struct kvm_msrs msrs;
1679         struct kvm_msr_entry *entries;
1680         int r, n;
1681         unsigned size;
1682
1683         r = -EFAULT;
1684         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1685                 goto out;
1686
1687         r = -E2BIG;
1688         if (msrs.nmsrs >= MAX_IO_MSRS)
1689                 goto out;
1690
1691         r = -ENOMEM;
1692         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1693         entries = vmalloc(size);
1694         if (!entries)
1695                 goto out;
1696
1697         r = -EFAULT;
1698         if (copy_from_user(entries, user_msrs->entries, size))
1699                 goto out_free;
1700
1701         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1702         if (r < 0)
1703                 goto out_free;
1704
1705         r = -EFAULT;
1706         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1707                 goto out_free;
1708
1709         r = n;
1710
1711 out_free:
1712         vfree(entries);
1713 out:
1714         return r;
1715 }
1716
1717 /*
1718  * Translate a guest virtual address to a guest physical address.
1719  */
1720 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1721 {
1722         unsigned long vaddr = tr->linear_address;
1723         struct kvm_vcpu *vcpu;
1724         gpa_t gpa;
1725
1726         vcpu = vcpu_load(kvm, tr->vcpu);
1727         if (!vcpu)
1728                 return -ENOENT;
1729         spin_lock(&kvm->lock);
1730         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1731         tr->physical_address = gpa;
1732         tr->valid = gpa != UNMAPPED_GVA;
1733         tr->writeable = 1;
1734         tr->usermode = 0;
1735         spin_unlock(&kvm->lock);
1736         vcpu_put(vcpu);
1737
1738         return 0;
1739 }
1740
1741 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1742 {
1743         struct kvm_vcpu *vcpu;
1744
1745         if (!valid_vcpu(irq->vcpu))
1746                 return -EINVAL;
1747         if (irq->irq < 0 || irq->irq >= 256)
1748                 return -EINVAL;
1749         vcpu = vcpu_load(kvm, irq->vcpu);
1750         if (!vcpu)
1751                 return -ENOENT;
1752
1753         set_bit(irq->irq, vcpu->irq_pending);
1754         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1755
1756         vcpu_put(vcpu);
1757
1758         return 0;
1759 }
1760
1761 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1762                                      struct kvm_debug_guest *dbg)
1763 {
1764         struct kvm_vcpu *vcpu;
1765         int r;
1766
1767         if (!valid_vcpu(dbg->vcpu))
1768                 return -EINVAL;
1769         vcpu = vcpu_load(kvm, dbg->vcpu);
1770         if (!vcpu)
1771                 return -ENOENT;
1772
1773         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1774
1775         vcpu_put(vcpu);
1776
1777         return r;
1778 }
1779
1780 static long kvm_dev_ioctl(struct file *filp,
1781                           unsigned int ioctl, unsigned long arg)
1782 {
1783         struct kvm *kvm = filp->private_data;
1784         void __user *argp = (void __user *)arg;
1785         int r = -EINVAL;
1786
1787         switch (ioctl) {
1788         case KVM_GET_API_VERSION:
1789                 r = KVM_API_VERSION;
1790                 break;
1791         case KVM_CREATE_VCPU: {
1792                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1793                 if (r)
1794                         goto out;
1795                 break;
1796         }
1797         case KVM_RUN: {
1798                 struct kvm_run kvm_run;
1799
1800                 r = -EFAULT;
1801                 if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
1802                         goto out;
1803                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1804                 if (r < 0 &&  r != -EINTR)
1805                         goto out;
1806                 if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
1807                         r = -EFAULT;
1808                         goto out;
1809                 }
1810                 break;
1811         }
1812         case KVM_GET_REGS: {
1813                 struct kvm_regs kvm_regs;
1814
1815                 r = -EFAULT;
1816                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1817                         goto out;
1818                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1819                 if (r)
1820                         goto out;
1821                 r = -EFAULT;
1822                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
1823                         goto out;
1824                 r = 0;
1825                 break;
1826         }
1827         case KVM_SET_REGS: {
1828                 struct kvm_regs kvm_regs;
1829
1830                 r = -EFAULT;
1831                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1832                         goto out;
1833                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1834                 if (r)
1835                         goto out;
1836                 r = 0;
1837                 break;
1838         }
1839         case KVM_GET_SREGS: {
1840                 struct kvm_sregs kvm_sregs;
1841
1842                 r = -EFAULT;
1843                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1844                         goto out;
1845                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1846                 if (r)
1847                         goto out;
1848                 r = -EFAULT;
1849                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1850                         goto out;
1851                 r = 0;
1852                 break;
1853         }
1854         case KVM_SET_SREGS: {
1855                 struct kvm_sregs kvm_sregs;
1856
1857                 r = -EFAULT;
1858                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1859                         goto out;
1860                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1861                 if (r)
1862                         goto out;
1863                 r = 0;
1864                 break;
1865         }
1866         case KVM_TRANSLATE: {
1867                 struct kvm_translation tr;
1868
1869                 r = -EFAULT;
1870                 if (copy_from_user(&tr, argp, sizeof tr))
1871                         goto out;
1872                 r = kvm_dev_ioctl_translate(kvm, &tr);
1873                 if (r)
1874                         goto out;
1875                 r = -EFAULT;
1876                 if (copy_to_user(argp, &tr, sizeof tr))
1877                         goto out;
1878                 r = 0;
1879                 break;
1880         }
1881         case KVM_INTERRUPT: {
1882                 struct kvm_interrupt irq;
1883
1884                 r = -EFAULT;
1885                 if (copy_from_user(&irq, argp, sizeof irq))
1886                         goto out;
1887                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1888                 if (r)
1889                         goto out;
1890                 r = 0;
1891                 break;
1892         }
1893         case KVM_DEBUG_GUEST: {
1894                 struct kvm_debug_guest dbg;
1895
1896                 r = -EFAULT;
1897                 if (copy_from_user(&dbg, argp, sizeof dbg))
1898                         goto out;
1899                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1900                 if (r)
1901                         goto out;
1902                 r = 0;
1903                 break;
1904         }
1905         case KVM_SET_MEMORY_REGION: {
1906                 struct kvm_memory_region kvm_mem;
1907
1908                 r = -EFAULT;
1909                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1910                         goto out;
1911                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1912                 if (r)
1913                         goto out;
1914                 break;
1915         }
1916         case KVM_GET_DIRTY_LOG: {
1917                 struct kvm_dirty_log log;
1918
1919                 r = -EFAULT;
1920                 if (copy_from_user(&log, argp, sizeof log))
1921                         goto out;
1922                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1923                 if (r)
1924                         goto out;
1925                 break;
1926         }
1927         case KVM_GET_MSRS:
1928                 r = msr_io(kvm, argp, get_msr, 1);
1929                 break;
1930         case KVM_SET_MSRS:
1931                 r = msr_io(kvm, argp, do_set_msr, 0);
1932                 break;
1933         case KVM_GET_MSR_INDEX_LIST: {
1934                 struct kvm_msr_list __user *user_msr_list = argp;
1935                 struct kvm_msr_list msr_list;
1936                 unsigned n;
1937
1938                 r = -EFAULT;
1939                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1940                         goto out;
1941                 n = msr_list.nmsrs;
1942                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1943                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1944                         goto out;
1945                 r = -E2BIG;
1946                 if (n < num_msrs_to_save)
1947                         goto out;
1948                 r = -EFAULT;
1949                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1950                                  num_msrs_to_save * sizeof(u32)))
1951                         goto out;
1952                 if (copy_to_user(user_msr_list->indices
1953                                  + num_msrs_to_save * sizeof(u32),
1954                                  &emulated_msrs,
1955                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1956                         goto out;
1957                 r = 0;
1958                 break;
1959         }
1960         default:
1961                 ;
1962         }
1963 out:
1964         return r;
1965 }
1966
1967 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1968                                    unsigned long address,
1969                                    int *type)
1970 {
1971         struct kvm *kvm = vma->vm_file->private_data;
1972         unsigned long pgoff;
1973         struct kvm_memory_slot *slot;
1974         struct page *page;
1975
1976         *type = VM_FAULT_MINOR;
1977         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1978         slot = gfn_to_memslot(kvm, pgoff);
1979         if (!slot)
1980                 return NOPAGE_SIGBUS;
1981         page = gfn_to_page(slot, pgoff);
1982         if (!page)
1983                 return NOPAGE_SIGBUS;
1984         get_page(page);
1985         return page;
1986 }
1987
1988 static struct vm_operations_struct kvm_dev_vm_ops = {
1989         .nopage = kvm_dev_nopage,
1990 };
1991
1992 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1993 {
1994         vma->vm_ops = &kvm_dev_vm_ops;
1995         return 0;
1996 }
1997
1998 static struct file_operations kvm_chardev_ops = {
1999         .open           = kvm_dev_open,
2000         .release        = kvm_dev_release,
2001         .unlocked_ioctl = kvm_dev_ioctl,
2002         .compat_ioctl   = kvm_dev_ioctl,
2003         .mmap           = kvm_dev_mmap,
2004 };
2005
2006 static struct miscdevice kvm_dev = {
2007         MISC_DYNAMIC_MINOR,
2008         "kvm",
2009         &kvm_chardev_ops,
2010 };
2011
2012 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2013                        void *v)
2014 {
2015         if (val == SYS_RESTART) {
2016                 /*
2017                  * Some (well, at least mine) BIOSes hang on reboot if
2018                  * in vmx root mode.
2019                  */
2020                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2021                 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2022         }
2023         return NOTIFY_OK;
2024 }
2025
2026 static struct notifier_block kvm_reboot_notifier = {
2027         .notifier_call = kvm_reboot,
2028         .priority = 0,
2029 };
2030
2031 static __init void kvm_init_debug(void)
2032 {
2033         struct kvm_stats_debugfs_item *p;
2034
2035         debugfs_dir = debugfs_create_dir("kvm", NULL);
2036         for (p = debugfs_entries; p->name; ++p)
2037                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2038                                                p->data);
2039 }
2040
2041 static void kvm_exit_debug(void)
2042 {
2043         struct kvm_stats_debugfs_item *p;
2044
2045         for (p = debugfs_entries; p->name; ++p)
2046                 debugfs_remove(p->dentry);
2047         debugfs_remove(debugfs_dir);
2048 }
2049
2050 hpa_t bad_page_address;
2051
2052 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2053 {
2054         int r;
2055
2056         if (kvm_arch_ops) {
2057                 printk(KERN_ERR "kvm: already loaded the other module\n");
2058                 return -EEXIST;
2059         }
2060
2061         if (!ops->cpu_has_kvm_support()) {
2062                 printk(KERN_ERR "kvm: no hardware support\n");
2063                 return -EOPNOTSUPP;
2064         }
2065         if (ops->disabled_by_bios()) {
2066                 printk(KERN_ERR "kvm: disabled by bios\n");
2067                 return -EOPNOTSUPP;
2068         }
2069
2070         kvm_arch_ops = ops;
2071
2072         r = kvm_arch_ops->hardware_setup();
2073         if (r < 0)
2074             return r;
2075
2076         on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2077         register_reboot_notifier(&kvm_reboot_notifier);
2078
2079         kvm_chardev_ops.owner = module;
2080
2081         r = misc_register(&kvm_dev);
2082         if (r) {
2083                 printk (KERN_ERR "kvm: misc device register failed\n");
2084                 goto out_free;
2085         }
2086
2087         return r;
2088
2089 out_free:
2090         unregister_reboot_notifier(&kvm_reboot_notifier);
2091         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2092         kvm_arch_ops->hardware_unsetup();
2093         return r;
2094 }
2095
2096 void kvm_exit_arch(void)
2097 {
2098         misc_deregister(&kvm_dev);
2099
2100         unregister_reboot_notifier(&kvm_reboot_notifier);
2101         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2102         kvm_arch_ops->hardware_unsetup();
2103         kvm_arch_ops = NULL;
2104 }
2105
2106 static __init int kvm_init(void)
2107 {
2108         static struct page *bad_page;
2109         int r = 0;
2110
2111         kvm_init_debug();
2112
2113         kvm_init_msr_list();
2114
2115         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2116                 r = -ENOMEM;
2117                 goto out;
2118         }
2119
2120         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2121         memset(__va(bad_page_address), 0, PAGE_SIZE);
2122
2123         return r;
2124
2125 out:
2126         kvm_exit_debug();
2127         return r;
2128 }
2129
2130 static __exit void kvm_exit(void)
2131 {
2132         kvm_exit_debug();
2133         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2134 }
2135
2136 module_init(kvm_init)
2137 module_exit(kvm_exit)
2138
2139 EXPORT_SYMBOL_GPL(kvm_init_arch);
2140 EXPORT_SYMBOL_GPL(kvm_exit_arch);