]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/svm.c
KVM: Set exit_reason to KVM_EXIT_MMIO where run->mmio is initialized.
[linux-2.6-omap-h63xx.git] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/vmalloc.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define KVM_EFER_LMA (1 << 10)
46 #define KVM_EFER_LME (1 << 8)
47
48 #define SVM_FEATURE_NPT  (1 << 0)
49 #define SVM_FEATURE_LBRV (1 << 1)
50 #define SVM_DEATURE_SVML (1 << 2)
51
52 unsigned long iopm_base;
53 unsigned long msrpm_base;
54
55 struct kvm_ldttss_desc {
56         u16 limit0;
57         u16 base0;
58         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
59         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
60         u32 base3;
61         u32 zero1;
62 } __attribute__((packed));
63
64 struct svm_cpu_data {
65         int cpu;
66
67         u64 asid_generation;
68         u32 max_asid;
69         u32 next_asid;
70         struct kvm_ldttss_desc *tss_desc;
71
72         struct page *save_area;
73 };
74
75 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
76 static uint32_t svm_features;
77
78 struct svm_init_data {
79         int cpu;
80         int r;
81 };
82
83 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
84
85 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
86 #define MSRS_RANGE_SIZE 2048
87 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
88
89 #define MAX_INST_SIZE 15
90
91 static inline u32 svm_has(u32 feat)
92 {
93         return svm_features & feat;
94 }
95
96 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
97 {
98         struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
99         u16 cs_attrib;
100
101         if (!(sa->cr0 & X86_CR0_PE) || (sa->rflags & X86_EFLAGS_VM))
102                 return 2;
103
104         cs_attrib = sa->cs.attrib;
105
106         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
107                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
108 }
109
110 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
111 {
112         int word_index = __ffs(vcpu->irq_summary);
113         int bit_index = __ffs(vcpu->irq_pending[word_index]);
114         int irq = word_index * BITS_PER_LONG + bit_index;
115
116         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
117         if (!vcpu->irq_pending[word_index])
118                 clear_bit(word_index, &vcpu->irq_summary);
119         return irq;
120 }
121
122 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
123 {
124         set_bit(irq, vcpu->irq_pending);
125         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
126 }
127
128 static inline void clgi(void)
129 {
130         asm volatile (SVM_CLGI);
131 }
132
133 static inline void stgi(void)
134 {
135         asm volatile (SVM_STGI);
136 }
137
138 static inline void invlpga(unsigned long addr, u32 asid)
139 {
140         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
141 }
142
143 static inline unsigned long kvm_read_cr2(void)
144 {
145         unsigned long cr2;
146
147         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
148         return cr2;
149 }
150
151 static inline void kvm_write_cr2(unsigned long val)
152 {
153         asm volatile ("mov %0, %%cr2" :: "r" (val));
154 }
155
156 static inline unsigned long read_dr6(void)
157 {
158         unsigned long dr6;
159
160         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
161         return dr6;
162 }
163
164 static inline void write_dr6(unsigned long val)
165 {
166         asm volatile ("mov %0, %%dr6" :: "r" (val));
167 }
168
169 static inline unsigned long read_dr7(void)
170 {
171         unsigned long dr7;
172
173         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
174         return dr7;
175 }
176
177 static inline void write_dr7(unsigned long val)
178 {
179         asm volatile ("mov %0, %%dr7" :: "r" (val));
180 }
181
182 static inline void force_new_asid(struct kvm_vcpu *vcpu)
183 {
184         vcpu->svm->asid_generation--;
185 }
186
187 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
188 {
189         force_new_asid(vcpu);
190 }
191
192 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
193 {
194         if (!(efer & KVM_EFER_LMA))
195                 efer &= ~KVM_EFER_LME;
196
197         vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
198         vcpu->shadow_efer = efer;
199 }
200
201 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
202 {
203         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
204                                                 SVM_EVTINJ_VALID_ERR |
205                                                 SVM_EVTINJ_TYPE_EXEPT |
206                                                 GP_VECTOR;
207         vcpu->svm->vmcb->control.event_inj_err = error_code;
208 }
209
210 static void inject_ud(struct kvm_vcpu *vcpu)
211 {
212         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
213                                                 SVM_EVTINJ_TYPE_EXEPT |
214                                                 UD_VECTOR;
215 }
216
217 static int is_page_fault(uint32_t info)
218 {
219         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
220         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
221 }
222
223 static int is_external_interrupt(u32 info)
224 {
225         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
226         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
227 }
228
229 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
230 {
231         if (!vcpu->svm->next_rip) {
232                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
233                 return;
234         }
235         if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
236                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
237                        __FUNCTION__,
238                        vcpu->svm->vmcb->save.rip,
239                        vcpu->svm->next_rip);
240         }
241
242         vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
243         vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
244
245         vcpu->interrupt_window_open = 1;
246 }
247
248 static int has_svm(void)
249 {
250         uint32_t eax, ebx, ecx, edx;
251
252         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
253                 printk(KERN_INFO "has_svm: not amd\n");
254                 return 0;
255         }
256
257         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
258         if (eax < SVM_CPUID_FUNC) {
259                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
260                 return 0;
261         }
262
263         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
264         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
265                 printk(KERN_DEBUG "has_svm: svm not available\n");
266                 return 0;
267         }
268         return 1;
269 }
270
271 static void svm_hardware_disable(void *garbage)
272 {
273         struct svm_cpu_data *svm_data
274                 = per_cpu(svm_data, raw_smp_processor_id());
275
276         if (svm_data) {
277                 uint64_t efer;
278
279                 wrmsrl(MSR_VM_HSAVE_PA, 0);
280                 rdmsrl(MSR_EFER, efer);
281                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
282                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
283                 __free_page(svm_data->save_area);
284                 kfree(svm_data);
285         }
286 }
287
288 static void svm_hardware_enable(void *garbage)
289 {
290
291         struct svm_cpu_data *svm_data;
292         uint64_t efer;
293 #ifdef CONFIG_X86_64
294         struct desc_ptr gdt_descr;
295 #else
296         struct Xgt_desc_struct gdt_descr;
297 #endif
298         struct desc_struct *gdt;
299         int me = raw_smp_processor_id();
300
301         if (!has_svm()) {
302                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
303                 return;
304         }
305         svm_data = per_cpu(svm_data, me);
306
307         if (!svm_data) {
308                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
309                        me);
310                 return;
311         }
312
313         svm_data->asid_generation = 1;
314         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
315         svm_data->next_asid = svm_data->max_asid + 1;
316         svm_features = cpuid_edx(SVM_CPUID_FUNC);
317
318         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
319         gdt = (struct desc_struct *)gdt_descr.address;
320         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
321
322         rdmsrl(MSR_EFER, efer);
323         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
324
325         wrmsrl(MSR_VM_HSAVE_PA,
326                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
327 }
328
329 static int svm_cpu_init(int cpu)
330 {
331         struct svm_cpu_data *svm_data;
332         int r;
333
334         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
335         if (!svm_data)
336                 return -ENOMEM;
337         svm_data->cpu = cpu;
338         svm_data->save_area = alloc_page(GFP_KERNEL);
339         r = -ENOMEM;
340         if (!svm_data->save_area)
341                 goto err_1;
342
343         per_cpu(svm_data, cpu) = svm_data;
344
345         return 0;
346
347 err_1:
348         kfree(svm_data);
349         return r;
350
351 }
352
353 static int set_msr_interception(u32 *msrpm, unsigned msr,
354                                 int read, int write)
355 {
356         int i;
357
358         for (i = 0; i < NUM_MSR_MAPS; i++) {
359                 if (msr >= msrpm_ranges[i] &&
360                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
361                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
362                                           msrpm_ranges[i]) * 2;
363
364                         u32 *base = msrpm + (msr_offset / 32);
365                         u32 msr_shift = msr_offset % 32;
366                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
367                         *base = (*base & ~(0x3 << msr_shift)) |
368                                 (mask << msr_shift);
369                         return 1;
370                 }
371         }
372         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
373         return 0;
374 }
375
376 static __init int svm_hardware_setup(void)
377 {
378         int cpu;
379         struct page *iopm_pages;
380         struct page *msrpm_pages;
381         void *iopm_va, *msrpm_va;
382         int r;
383
384         kvm_emulator_want_group7_invlpg();
385
386         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
387
388         if (!iopm_pages)
389                 return -ENOMEM;
390
391         iopm_va = page_address(iopm_pages);
392         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
393         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
394         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
395
396
397         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
398
399         r = -ENOMEM;
400         if (!msrpm_pages)
401                 goto err_1;
402
403         msrpm_va = page_address(msrpm_pages);
404         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
405         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
406
407 #ifdef CONFIG_X86_64
408         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
409         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
410         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
411         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
412         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
413         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
414 #endif
415         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
416         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
417         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
418         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
419
420         for_each_online_cpu(cpu) {
421                 r = svm_cpu_init(cpu);
422                 if (r)
423                         goto err_2;
424         }
425         return 0;
426
427 err_2:
428         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
429         msrpm_base = 0;
430 err_1:
431         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
432         iopm_base = 0;
433         return r;
434 }
435
436 static __exit void svm_hardware_unsetup(void)
437 {
438         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
439         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
440         iopm_base = msrpm_base = 0;
441 }
442
443 static void init_seg(struct vmcb_seg *seg)
444 {
445         seg->selector = 0;
446         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
447                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
448         seg->limit = 0xffff;
449         seg->base = 0;
450 }
451
452 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
453 {
454         seg->selector = 0;
455         seg->attrib = SVM_SELECTOR_P_MASK | type;
456         seg->limit = 0xffff;
457         seg->base = 0;
458 }
459
460 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
461 {
462         return 0;
463 }
464
465 static void init_vmcb(struct vmcb *vmcb)
466 {
467         struct vmcb_control_area *control = &vmcb->control;
468         struct vmcb_save_area *save = &vmcb->save;
469
470         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
471                                         INTERCEPT_CR3_MASK |
472                                         INTERCEPT_CR4_MASK;
473
474         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
475                                         INTERCEPT_CR3_MASK |
476                                         INTERCEPT_CR4_MASK;
477
478         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
479                                         INTERCEPT_DR1_MASK |
480                                         INTERCEPT_DR2_MASK |
481                                         INTERCEPT_DR3_MASK;
482
483         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
484                                         INTERCEPT_DR1_MASK |
485                                         INTERCEPT_DR2_MASK |
486                                         INTERCEPT_DR3_MASK |
487                                         INTERCEPT_DR5_MASK |
488                                         INTERCEPT_DR7_MASK;
489
490         control->intercept_exceptions = 1 << PF_VECTOR;
491
492
493         control->intercept =    (1ULL << INTERCEPT_INTR) |
494                                 (1ULL << INTERCEPT_NMI) |
495                                 (1ULL << INTERCEPT_SMI) |
496                 /*
497                  * selective cr0 intercept bug?
498                  *      0:   0f 22 d8                mov    %eax,%cr3
499                  *      3:   0f 20 c0                mov    %cr0,%eax
500                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
501                  *      b:   0f 22 c0                mov    %eax,%cr0
502                  * set cr3 ->interception
503                  * get cr0 ->interception
504                  * set cr0 -> no interception
505                  */
506                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
507                                 (1ULL << INTERCEPT_CPUID) |
508                                 (1ULL << INTERCEPT_HLT) |
509                                 (1ULL << INTERCEPT_INVLPGA) |
510                                 (1ULL << INTERCEPT_IOIO_PROT) |
511                                 (1ULL << INTERCEPT_MSR_PROT) |
512                                 (1ULL << INTERCEPT_TASK_SWITCH) |
513                                 (1ULL << INTERCEPT_SHUTDOWN) |
514                                 (1ULL << INTERCEPT_VMRUN) |
515                                 (1ULL << INTERCEPT_VMMCALL) |
516                                 (1ULL << INTERCEPT_VMLOAD) |
517                                 (1ULL << INTERCEPT_VMSAVE) |
518                                 (1ULL << INTERCEPT_STGI) |
519                                 (1ULL << INTERCEPT_CLGI) |
520                                 (1ULL << INTERCEPT_SKINIT) |
521                                 (1ULL << INTERCEPT_MONITOR) |
522                                 (1ULL << INTERCEPT_MWAIT);
523
524         control->iopm_base_pa = iopm_base;
525         control->msrpm_base_pa = msrpm_base;
526         control->tsc_offset = 0;
527         control->int_ctl = V_INTR_MASKING_MASK;
528
529         init_seg(&save->es);
530         init_seg(&save->ss);
531         init_seg(&save->ds);
532         init_seg(&save->fs);
533         init_seg(&save->gs);
534
535         save->cs.selector = 0xf000;
536         /* Executable/Readable Code Segment */
537         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
538                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
539         save->cs.limit = 0xffff;
540         /*
541          * cs.base should really be 0xffff0000, but vmx can't handle that, so
542          * be consistent with it.
543          *
544          * Replace when we have real mode working for vmx.
545          */
546         save->cs.base = 0xf0000;
547
548         save->gdtr.limit = 0xffff;
549         save->idtr.limit = 0xffff;
550
551         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
552         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
553
554         save->efer = MSR_EFER_SVME_MASK;
555
556         save->dr6 = 0xffff0ff0;
557         save->dr7 = 0x400;
558         save->rflags = 2;
559         save->rip = 0x0000fff0;
560
561         /*
562          * cr0 val on cpu init should be 0x60000010, we enable cpu
563          * cache by default. the orderly way is to enable cache in bios.
564          */
565         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
566         save->cr4 = X86_CR4_PAE;
567         /* rdx = ?? */
568 }
569
570 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
571 {
572         struct page *page;
573         int r;
574
575         r = -ENOMEM;
576         vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
577         if (!vcpu->svm)
578                 goto out1;
579         page = alloc_page(GFP_KERNEL);
580         if (!page)
581                 goto out2;
582
583         vcpu->svm->vmcb = page_address(page);
584         clear_page(vcpu->svm->vmcb);
585         vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
586         vcpu->svm->asid_generation = 0;
587         memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
588         init_vmcb(vcpu->svm->vmcb);
589
590         fx_init(vcpu);
591         vcpu->fpu_active = 1;
592         vcpu->apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
593         if (vcpu->vcpu_id == 0)
594                 vcpu->apic_base |= MSR_IA32_APICBASE_BSP;
595
596         return 0;
597
598 out2:
599         kfree(vcpu->svm);
600 out1:
601         return r;
602 }
603
604 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
605 {
606         if (!vcpu->svm)
607                 return;
608         if (vcpu->svm->vmcb)
609                 __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
610         kfree(vcpu->svm);
611 }
612
613 static void svm_vcpu_load(struct kvm_vcpu *vcpu)
614 {
615         int cpu, i;
616
617         cpu = get_cpu();
618         if (unlikely(cpu != vcpu->cpu)) {
619                 u64 tsc_this, delta;
620
621                 /*
622                  * Make sure that the guest sees a monotonically
623                  * increasing TSC.
624                  */
625                 rdtscll(tsc_this);
626                 delta = vcpu->host_tsc - tsc_this;
627                 vcpu->svm->vmcb->control.tsc_offset += delta;
628                 vcpu->cpu = cpu;
629         }
630
631         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
632                 rdmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
633 }
634
635 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
636 {
637         int i;
638
639         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
640                 wrmsrl(host_save_user_msrs[i], vcpu->svm->host_user_msrs[i]);
641
642         rdtscll(vcpu->host_tsc);
643         put_cpu();
644 }
645
646 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
647 {
648 }
649
650 static void svm_cache_regs(struct kvm_vcpu *vcpu)
651 {
652         vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
653         vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
654         vcpu->rip = vcpu->svm->vmcb->save.rip;
655 }
656
657 static void svm_decache_regs(struct kvm_vcpu *vcpu)
658 {
659         vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
660         vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
661         vcpu->svm->vmcb->save.rip = vcpu->rip;
662 }
663
664 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
665 {
666         return vcpu->svm->vmcb->save.rflags;
667 }
668
669 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
670 {
671         vcpu->svm->vmcb->save.rflags = rflags;
672 }
673
674 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
675 {
676         struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
677
678         switch (seg) {
679         case VCPU_SREG_CS: return &save->cs;
680         case VCPU_SREG_DS: return &save->ds;
681         case VCPU_SREG_ES: return &save->es;
682         case VCPU_SREG_FS: return &save->fs;
683         case VCPU_SREG_GS: return &save->gs;
684         case VCPU_SREG_SS: return &save->ss;
685         case VCPU_SREG_TR: return &save->tr;
686         case VCPU_SREG_LDTR: return &save->ldtr;
687         }
688         BUG();
689         return NULL;
690 }
691
692 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
693 {
694         struct vmcb_seg *s = svm_seg(vcpu, seg);
695
696         return s->base;
697 }
698
699 static void svm_get_segment(struct kvm_vcpu *vcpu,
700                             struct kvm_segment *var, int seg)
701 {
702         struct vmcb_seg *s = svm_seg(vcpu, seg);
703
704         var->base = s->base;
705         var->limit = s->limit;
706         var->selector = s->selector;
707         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
708         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
709         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
710         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
711         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
712         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
713         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
714         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
715         var->unusable = !var->present;
716 }
717
718 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
719 {
720         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
721
722         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
723         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
724 }
725
726 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
727 {
728         dt->limit = vcpu->svm->vmcb->save.idtr.limit;
729         dt->base = vcpu->svm->vmcb->save.idtr.base;
730 }
731
732 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
733 {
734         vcpu->svm->vmcb->save.idtr.limit = dt->limit;
735         vcpu->svm->vmcb->save.idtr.base = dt->base ;
736 }
737
738 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
739 {
740         dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
741         dt->base = vcpu->svm->vmcb->save.gdtr.base;
742 }
743
744 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
745 {
746         vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
747         vcpu->svm->vmcb->save.gdtr.base = dt->base ;
748 }
749
750 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
751 {
752 }
753
754 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
755 {
756 #ifdef CONFIG_X86_64
757         if (vcpu->shadow_efer & KVM_EFER_LME) {
758                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
759                         vcpu->shadow_efer |= KVM_EFER_LMA;
760                         vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
761                 }
762
763                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
764                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
765                         vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
766                 }
767         }
768 #endif
769         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
770                 vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
771                 vcpu->fpu_active = 1;
772         }
773
774         vcpu->cr0 = cr0;
775         cr0 |= X86_CR0_PG | X86_CR0_WP;
776         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
777         vcpu->svm->vmcb->save.cr0 = cr0;
778 }
779
780 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
781 {
782        vcpu->cr4 = cr4;
783        vcpu->svm->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
784 }
785
786 static void svm_set_segment(struct kvm_vcpu *vcpu,
787                             struct kvm_segment *var, int seg)
788 {
789         struct vmcb_seg *s = svm_seg(vcpu, seg);
790
791         s->base = var->base;
792         s->limit = var->limit;
793         s->selector = var->selector;
794         if (var->unusable)
795                 s->attrib = 0;
796         else {
797                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
798                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
799                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
800                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
801                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
802                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
803                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
804                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
805         }
806         if (seg == VCPU_SREG_CS)
807                 vcpu->svm->vmcb->save.cpl
808                         = (vcpu->svm->vmcb->save.cs.attrib
809                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
810
811 }
812
813 /* FIXME:
814
815         vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
816         vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
817
818 */
819
820 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
821 {
822         return -EOPNOTSUPP;
823 }
824
825 static void load_host_msrs(struct kvm_vcpu *vcpu)
826 {
827 #ifdef CONFIG_X86_64
828         wrmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
829 #endif
830 }
831
832 static void save_host_msrs(struct kvm_vcpu *vcpu)
833 {
834 #ifdef CONFIG_X86_64
835         rdmsrl(MSR_GS_BASE, vcpu->svm->host_gs_base);
836 #endif
837 }
838
839 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
840 {
841         if (svm_data->next_asid > svm_data->max_asid) {
842                 ++svm_data->asid_generation;
843                 svm_data->next_asid = 1;
844                 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
845         }
846
847         vcpu->cpu = svm_data->cpu;
848         vcpu->svm->asid_generation = svm_data->asid_generation;
849         vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
850 }
851
852 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
853 {
854         invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
855 }
856
857 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
858 {
859         return vcpu->svm->db_regs[dr];
860 }
861
862 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
863                        int *exception)
864 {
865         *exception = 0;
866
867         if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
868                 vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
869                 vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
870                 *exception = DB_VECTOR;
871                 return;
872         }
873
874         switch (dr) {
875         case 0 ... 3:
876                 vcpu->svm->db_regs[dr] = value;
877                 return;
878         case 4 ... 5:
879                 if (vcpu->cr4 & X86_CR4_DE) {
880                         *exception = UD_VECTOR;
881                         return;
882                 }
883         case 7: {
884                 if (value & ~((1ULL << 32) - 1)) {
885                         *exception = GP_VECTOR;
886                         return;
887                 }
888                 vcpu->svm->vmcb->save.dr7 = value;
889                 return;
890         }
891         default:
892                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
893                        __FUNCTION__, dr);
894                 *exception = UD_VECTOR;
895                 return;
896         }
897 }
898
899 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
900 {
901         u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
902         u64 fault_address;
903         u32 error_code;
904         enum emulation_result er;
905         int r;
906
907         if (is_external_interrupt(exit_int_info))
908                 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
909
910         spin_lock(&vcpu->kvm->lock);
911
912         fault_address  = vcpu->svm->vmcb->control.exit_info_2;
913         error_code = vcpu->svm->vmcb->control.exit_info_1;
914         r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
915         if (r < 0) {
916                 spin_unlock(&vcpu->kvm->lock);
917                 return r;
918         }
919         if (!r) {
920                 spin_unlock(&vcpu->kvm->lock);
921                 return 1;
922         }
923         er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
924         spin_unlock(&vcpu->kvm->lock);
925
926         switch (er) {
927         case EMULATE_DONE:
928                 return 1;
929         case EMULATE_DO_MMIO:
930                 ++vcpu->stat.mmio_exits;
931                 return 0;
932         case EMULATE_FAIL:
933                 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
934                 break;
935         default:
936                 BUG();
937         }
938
939         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
940         return 0;
941 }
942
943 static int nm_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
944 {
945        vcpu->svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
946        if (!(vcpu->cr0 & X86_CR0_TS))
947                vcpu->svm->vmcb->save.cr0 &= ~X86_CR0_TS;
948        vcpu->fpu_active = 1;
949
950        return 1;
951 }
952
953 static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
954 {
955         /*
956          * VMCB is undefined after a SHUTDOWN intercept
957          * so reinitialize it.
958          */
959         clear_page(vcpu->svm->vmcb);
960         init_vmcb(vcpu->svm->vmcb);
961
962         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
963         return 0;
964 }
965
966 static int io_get_override(struct kvm_vcpu *vcpu,
967                           struct vmcb_seg **seg,
968                           int *addr_override)
969 {
970         u8 inst[MAX_INST_SIZE];
971         unsigned ins_length;
972         gva_t rip;
973         int i;
974
975         rip =  vcpu->svm->vmcb->save.rip;
976         ins_length = vcpu->svm->next_rip - rip;
977         rip += vcpu->svm->vmcb->save.cs.base;
978
979         if (ins_length > MAX_INST_SIZE)
980                 printk(KERN_DEBUG
981                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
982                        "next rip 0x%llx ins_length %u\n",
983                        __FUNCTION__,
984                        vcpu->svm->vmcb->save.cs.base,
985                        vcpu->svm->vmcb->save.rip,
986                        vcpu->svm->vmcb->control.exit_info_2,
987                        ins_length);
988
989         if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
990                 /* #PF */
991                 return 0;
992
993         *addr_override = 0;
994         *seg = NULL;
995         for (i = 0; i < ins_length; i++)
996                 switch (inst[i]) {
997                 case 0xf0:
998                 case 0xf2:
999                 case 0xf3:
1000                 case 0x66:
1001                         continue;
1002                 case 0x67:
1003                         *addr_override = 1;
1004                         continue;
1005                 case 0x2e:
1006                         *seg = &vcpu->svm->vmcb->save.cs;
1007                         continue;
1008                 case 0x36:
1009                         *seg = &vcpu->svm->vmcb->save.ss;
1010                         continue;
1011                 case 0x3e:
1012                         *seg = &vcpu->svm->vmcb->save.ds;
1013                         continue;
1014                 case 0x26:
1015                         *seg = &vcpu->svm->vmcb->save.es;
1016                         continue;
1017                 case 0x64:
1018                         *seg = &vcpu->svm->vmcb->save.fs;
1019                         continue;
1020                 case 0x65:
1021                         *seg = &vcpu->svm->vmcb->save.gs;
1022                         continue;
1023                 default:
1024                         return 1;
1025                 }
1026         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
1027         return 0;
1028 }
1029
1030 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
1031 {
1032         unsigned long addr_mask;
1033         unsigned long *reg;
1034         struct vmcb_seg *seg;
1035         int addr_override;
1036         struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
1037         u16 cs_attrib = save_area->cs.attrib;
1038         unsigned addr_size = get_addr_size(vcpu);
1039
1040         if (!io_get_override(vcpu, &seg, &addr_override))
1041                 return 0;
1042
1043         if (addr_override)
1044                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1045
1046         if (ins) {
1047                 reg = &vcpu->regs[VCPU_REGS_RDI];
1048                 seg = &vcpu->svm->vmcb->save.es;
1049         } else {
1050                 reg = &vcpu->regs[VCPU_REGS_RSI];
1051                 seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
1052         }
1053
1054         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1055
1056         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1057             !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1058                 *address = (*reg & addr_mask);
1059                 return addr_mask;
1060         }
1061
1062         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1063                 svm_inject_gp(vcpu, 0);
1064                 return 0;
1065         }
1066
1067         *address = (*reg & addr_mask) + seg->base;
1068         return addr_mask;
1069 }
1070
1071 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1072 {
1073         u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
1074         int size, down, in, string, rep;
1075         unsigned port;
1076         unsigned long count;
1077         gva_t address = 0;
1078
1079         ++vcpu->stat.io_exits;
1080
1081         vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
1082
1083         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1084         port = io_info >> 16;
1085         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1086         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1087         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1088         count = 1;
1089         down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1090
1091         if (string) {
1092                 unsigned addr_mask;
1093
1094                 addr_mask = io_adress(vcpu, in, &address);
1095                 if (!addr_mask) {
1096                         printk(KERN_DEBUG "%s: get io address failed\n",
1097                                __FUNCTION__);
1098                         return 1;
1099                 }
1100
1101                 if (rep)
1102                         count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1103         }
1104         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1105                              address, rep, port);
1106 }
1107
1108 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1109 {
1110         return 1;
1111 }
1112
1113 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1114 {
1115         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
1116         skip_emulated_instruction(vcpu);
1117         return kvm_emulate_halt(vcpu);
1118 }
1119
1120 static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1121 {
1122         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
1123         skip_emulated_instruction(vcpu);
1124         return kvm_hypercall(vcpu, kvm_run);
1125 }
1126
1127 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1128 {
1129         inject_ud(vcpu);
1130         return 1;
1131 }
1132
1133 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1134 {
1135         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1136         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1137         return 0;
1138 }
1139
1140 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1141 {
1142         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1143         kvm_emulate_cpuid(vcpu);
1144         return 1;
1145 }
1146
1147 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1148 {
1149         if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
1150                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1151         return 1;
1152 }
1153
1154 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1155 {
1156         switch (ecx) {
1157         case MSR_IA32_TIME_STAMP_COUNTER: {
1158                 u64 tsc;
1159
1160                 rdtscll(tsc);
1161                 *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
1162                 break;
1163         }
1164         case MSR_K6_STAR:
1165                 *data = vcpu->svm->vmcb->save.star;
1166                 break;
1167 #ifdef CONFIG_X86_64
1168         case MSR_LSTAR:
1169                 *data = vcpu->svm->vmcb->save.lstar;
1170                 break;
1171         case MSR_CSTAR:
1172                 *data = vcpu->svm->vmcb->save.cstar;
1173                 break;
1174         case MSR_KERNEL_GS_BASE:
1175                 *data = vcpu->svm->vmcb->save.kernel_gs_base;
1176                 break;
1177         case MSR_SYSCALL_MASK:
1178                 *data = vcpu->svm->vmcb->save.sfmask;
1179                 break;
1180 #endif
1181         case MSR_IA32_SYSENTER_CS:
1182                 *data = vcpu->svm->vmcb->save.sysenter_cs;
1183                 break;
1184         case MSR_IA32_SYSENTER_EIP:
1185                 *data = vcpu->svm->vmcb->save.sysenter_eip;
1186                 break;
1187         case MSR_IA32_SYSENTER_ESP:
1188                 *data = vcpu->svm->vmcb->save.sysenter_esp;
1189                 break;
1190         default:
1191                 return kvm_get_msr_common(vcpu, ecx, data);
1192         }
1193         return 0;
1194 }
1195
1196 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1197 {
1198         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1199         u64 data;
1200
1201         if (svm_get_msr(vcpu, ecx, &data))
1202                 svm_inject_gp(vcpu, 0);
1203         else {
1204                 vcpu->svm->vmcb->save.rax = data & 0xffffffff;
1205                 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1206                 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1207                 skip_emulated_instruction(vcpu);
1208         }
1209         return 1;
1210 }
1211
1212 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1213 {
1214         switch (ecx) {
1215         case MSR_IA32_TIME_STAMP_COUNTER: {
1216                 u64 tsc;
1217
1218                 rdtscll(tsc);
1219                 vcpu->svm->vmcb->control.tsc_offset = data - tsc;
1220                 break;
1221         }
1222         case MSR_K6_STAR:
1223                 vcpu->svm->vmcb->save.star = data;
1224                 break;
1225 #ifdef CONFIG_X86_64
1226         case MSR_LSTAR:
1227                 vcpu->svm->vmcb->save.lstar = data;
1228                 break;
1229         case MSR_CSTAR:
1230                 vcpu->svm->vmcb->save.cstar = data;
1231                 break;
1232         case MSR_KERNEL_GS_BASE:
1233                 vcpu->svm->vmcb->save.kernel_gs_base = data;
1234                 break;
1235         case MSR_SYSCALL_MASK:
1236                 vcpu->svm->vmcb->save.sfmask = data;
1237                 break;
1238 #endif
1239         case MSR_IA32_SYSENTER_CS:
1240                 vcpu->svm->vmcb->save.sysenter_cs = data;
1241                 break;
1242         case MSR_IA32_SYSENTER_EIP:
1243                 vcpu->svm->vmcb->save.sysenter_eip = data;
1244                 break;
1245         case MSR_IA32_SYSENTER_ESP:
1246                 vcpu->svm->vmcb->save.sysenter_esp = data;
1247                 break;
1248         default:
1249                 return kvm_set_msr_common(vcpu, ecx, data);
1250         }
1251         return 0;
1252 }
1253
1254 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1255 {
1256         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1257         u64 data = (vcpu->svm->vmcb->save.rax & -1u)
1258                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1259         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1260         if (svm_set_msr(vcpu, ecx, data))
1261                 svm_inject_gp(vcpu, 0);
1262         else
1263                 skip_emulated_instruction(vcpu);
1264         return 1;
1265 }
1266
1267 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1268 {
1269         if (vcpu->svm->vmcb->control.exit_info_1)
1270                 return wrmsr_interception(vcpu, kvm_run);
1271         else
1272                 return rdmsr_interception(vcpu, kvm_run);
1273 }
1274
1275 static int interrupt_window_interception(struct kvm_vcpu *vcpu,
1276                                    struct kvm_run *kvm_run)
1277 {
1278         /*
1279          * If the user space waits to inject interrupts, exit as soon as
1280          * possible
1281          */
1282         if (kvm_run->request_interrupt_window &&
1283             !vcpu->irq_summary) {
1284                 ++vcpu->stat.irq_window_exits;
1285                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1286                 return 0;
1287         }
1288
1289         return 1;
1290 }
1291
1292 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1293                                       struct kvm_run *kvm_run) = {
1294         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1295         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1296         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1297         /* for now: */
1298         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1299         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1300         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1301         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1302         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1303         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1304         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1305         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1306         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1307         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1308         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1309         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1310         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1311         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1312         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1313         [SVM_EXIT_INTR]                         = nop_on_interception,
1314         [SVM_EXIT_NMI]                          = nop_on_interception,
1315         [SVM_EXIT_SMI]                          = nop_on_interception,
1316         [SVM_EXIT_INIT]                         = nop_on_interception,
1317         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1318         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1319         [SVM_EXIT_CPUID]                        = cpuid_interception,
1320         [SVM_EXIT_HLT]                          = halt_interception,
1321         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1322         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1323         [SVM_EXIT_IOIO]                         = io_interception,
1324         [SVM_EXIT_MSR]                          = msr_interception,
1325         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1326         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1327         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1328         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1329         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1330         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1331         [SVM_EXIT_STGI]                         = invalid_op_interception,
1332         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1333         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1334         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1335         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1336 };
1337
1338
1339 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1340 {
1341         u32 exit_code = vcpu->svm->vmcb->control.exit_code;
1342
1343         if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
1344             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1345                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1346                        "exit_code 0x%x\n",
1347                        __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
1348                        exit_code);
1349
1350         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1351             || svm_exit_handlers[exit_code] == 0) {
1352                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1353                 kvm_run->hw.hardware_exit_reason = exit_code;
1354                 return 0;
1355         }
1356
1357         return svm_exit_handlers[exit_code](vcpu, kvm_run);
1358 }
1359
1360 static void reload_tss(struct kvm_vcpu *vcpu)
1361 {
1362         int cpu = raw_smp_processor_id();
1363
1364         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1365         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1366         load_TR_desc();
1367 }
1368
1369 static void pre_svm_run(struct kvm_vcpu *vcpu)
1370 {
1371         int cpu = raw_smp_processor_id();
1372
1373         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1374
1375         vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1376         if (vcpu->cpu != cpu ||
1377             vcpu->svm->asid_generation != svm_data->asid_generation)
1378                 new_asid(vcpu, svm_data);
1379 }
1380
1381
1382 static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1383 {
1384         struct vmcb_control_area *control;
1385
1386         control = &vcpu->svm->vmcb->control;
1387         control->int_vector = pop_irq(vcpu);
1388         control->int_ctl &= ~V_INTR_PRIO_MASK;
1389         control->int_ctl |= V_IRQ_MASK |
1390                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1391 }
1392
1393 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1394 {
1395         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1396
1397         if (control->int_ctl & V_IRQ_MASK) {
1398                 control->int_ctl &= ~V_IRQ_MASK;
1399                 push_irq(vcpu, control->int_vector);
1400         }
1401
1402         vcpu->interrupt_window_open =
1403                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1404 }
1405
1406 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1407                                        struct kvm_run *kvm_run)
1408 {
1409         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1410
1411         vcpu->interrupt_window_open =
1412                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1413                  (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1414
1415         if (vcpu->interrupt_window_open && vcpu->irq_summary)
1416                 /*
1417                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1418                  */
1419                 kvm_do_inject_irq(vcpu);
1420
1421         /*
1422          * Interrupts blocked.  Wait for unblock.
1423          */
1424         if (!vcpu->interrupt_window_open &&
1425             (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
1426                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1427         } else
1428                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1429 }
1430
1431 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1432                               struct kvm_run *kvm_run)
1433 {
1434         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1435                                                   vcpu->irq_summary == 0);
1436         kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1437         kvm_run->cr8 = vcpu->cr8;
1438         kvm_run->apic_base = vcpu->apic_base;
1439 }
1440
1441 /*
1442  * Check if userspace requested an interrupt window, and that the
1443  * interrupt window is open.
1444  *
1445  * No need to exit to userspace if we already have an interrupt queued.
1446  */
1447 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1448                                           struct kvm_run *kvm_run)
1449 {
1450         return (!vcpu->irq_summary &&
1451                 kvm_run->request_interrupt_window &&
1452                 vcpu->interrupt_window_open &&
1453                 (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1454 }
1455
1456 static void save_db_regs(unsigned long *db_regs)
1457 {
1458         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1459         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1460         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1461         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1462 }
1463
1464 static void load_db_regs(unsigned long *db_regs)
1465 {
1466         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1467         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1468         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1469         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1470 }
1471
1472 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1473 {
1474         force_new_asid(vcpu);
1475 }
1476
1477 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1478 {
1479         u16 fs_selector;
1480         u16 gs_selector;
1481         u16 ldt_selector;
1482         int r;
1483
1484 again:
1485         r = kvm_mmu_reload(vcpu);
1486         if (unlikely(r))
1487                 return r;
1488
1489         if (!vcpu->mmio_read_completed)
1490                 do_interrupt_requests(vcpu, kvm_run);
1491
1492         clgi();
1493
1494         vcpu->guest_mode = 1;
1495         if (vcpu->requests)
1496                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1497                     svm_flush_tlb(vcpu);
1498
1499         pre_svm_run(vcpu);
1500
1501         save_host_msrs(vcpu);
1502         fs_selector = read_fs();
1503         gs_selector = read_gs();
1504         ldt_selector = read_ldt();
1505         vcpu->svm->host_cr2 = kvm_read_cr2();
1506         vcpu->svm->host_dr6 = read_dr6();
1507         vcpu->svm->host_dr7 = read_dr7();
1508         vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
1509
1510         if (vcpu->svm->vmcb->save.dr7 & 0xff) {
1511                 write_dr7(0);
1512                 save_db_regs(vcpu->svm->host_db_regs);
1513                 load_db_regs(vcpu->svm->db_regs);
1514         }
1515
1516         if (vcpu->fpu_active) {
1517                 fx_save(vcpu->host_fx_image);
1518                 fx_restore(vcpu->guest_fx_image);
1519         }
1520
1521         asm volatile (
1522 #ifdef CONFIG_X86_64
1523                 "push %%rbx; push %%rcx; push %%rdx;"
1524                 "push %%rsi; push %%rdi; push %%rbp;"
1525                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1526                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1527 #else
1528                 "push %%ebx; push %%ecx; push %%edx;"
1529                 "push %%esi; push %%edi; push %%ebp;"
1530 #endif
1531
1532 #ifdef CONFIG_X86_64
1533                 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1534                 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1535                 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1536                 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1537                 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1538                 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1539                 "mov %c[r8](%[vcpu]),  %%r8  \n\t"
1540                 "mov %c[r9](%[vcpu]),  %%r9  \n\t"
1541                 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1542                 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1543                 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1544                 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1545                 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1546                 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1547 #else
1548                 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1549                 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1550                 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1551                 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1552                 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1553                 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1554 #endif
1555
1556 #ifdef CONFIG_X86_64
1557                 /* Enter guest mode */
1558                 "push %%rax \n\t"
1559                 "mov %c[svm](%[vcpu]), %%rax \n\t"
1560                 "mov %c[vmcb](%%rax), %%rax \n\t"
1561                 SVM_VMLOAD "\n\t"
1562                 SVM_VMRUN "\n\t"
1563                 SVM_VMSAVE "\n\t"
1564                 "pop %%rax \n\t"
1565 #else
1566                 /* Enter guest mode */
1567                 "push %%eax \n\t"
1568                 "mov %c[svm](%[vcpu]), %%eax \n\t"
1569                 "mov %c[vmcb](%%eax), %%eax \n\t"
1570                 SVM_VMLOAD "\n\t"
1571                 SVM_VMRUN "\n\t"
1572                 SVM_VMSAVE "\n\t"
1573                 "pop %%eax \n\t"
1574 #endif
1575
1576                 /* Save guest registers, load host registers */
1577 #ifdef CONFIG_X86_64
1578                 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1579                 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1580                 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1581                 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1582                 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1583                 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1584                 "mov %%r8,  %c[r8](%[vcpu]) \n\t"
1585                 "mov %%r9,  %c[r9](%[vcpu]) \n\t"
1586                 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1587                 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1588                 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1589                 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1590                 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1591                 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1592
1593                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1594                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1595                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1596                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1597 #else
1598                 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1599                 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1600                 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1601                 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1602                 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1603                 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1604
1605                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1606                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1607 #endif
1608                 :
1609                 : [vcpu]"a"(vcpu),
1610                   [svm]"i"(offsetof(struct kvm_vcpu, svm)),
1611                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1612                   [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1613                   [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1614                   [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1615                   [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1616                   [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1617                   [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1618 #ifdef CONFIG_X86_64
1619                   ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1620                   [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1621                   [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1622                   [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1623                   [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1624                   [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1625                   [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1626                   [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1627 #endif
1628                 : "cc", "memory" );
1629
1630         vcpu->guest_mode = 0;
1631
1632         if (vcpu->fpu_active) {
1633                 fx_save(vcpu->guest_fx_image);
1634                 fx_restore(vcpu->host_fx_image);
1635         }
1636
1637         if ((vcpu->svm->vmcb->save.dr7 & 0xff))
1638                 load_db_regs(vcpu->svm->host_db_regs);
1639
1640         vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
1641
1642         write_dr6(vcpu->svm->host_dr6);
1643         write_dr7(vcpu->svm->host_dr7);
1644         kvm_write_cr2(vcpu->svm->host_cr2);
1645
1646         load_fs(fs_selector);
1647         load_gs(gs_selector);
1648         load_ldt(ldt_selector);
1649         load_host_msrs(vcpu);
1650
1651         reload_tss(vcpu);
1652
1653         /*
1654          * Profile KVM exit RIPs:
1655          */
1656         if (unlikely(prof_on == KVM_PROFILING))
1657                 profile_hit(KVM_PROFILING,
1658                         (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
1659
1660         stgi();
1661
1662         kvm_reput_irq(vcpu);
1663
1664         vcpu->svm->next_rip = 0;
1665
1666         if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1667                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1668                 kvm_run->fail_entry.hardware_entry_failure_reason
1669                         = vcpu->svm->vmcb->control.exit_code;
1670                 post_kvm_run_save(vcpu, kvm_run);
1671                 return 0;
1672         }
1673
1674         r = handle_exit(vcpu, kvm_run);
1675         if (r > 0) {
1676                 if (signal_pending(current)) {
1677                         ++vcpu->stat.signal_exits;
1678                         post_kvm_run_save(vcpu, kvm_run);
1679                         kvm_run->exit_reason = KVM_EXIT_INTR;
1680                         return -EINTR;
1681                 }
1682
1683                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1684                         ++vcpu->stat.request_irq_exits;
1685                         post_kvm_run_save(vcpu, kvm_run);
1686                         kvm_run->exit_reason = KVM_EXIT_INTR;
1687                         return -EINTR;
1688                 }
1689                 kvm_resched(vcpu);
1690                 goto again;
1691         }
1692         post_kvm_run_save(vcpu, kvm_run);
1693         return r;
1694 }
1695
1696 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1697 {
1698         vcpu->svm->vmcb->save.cr3 = root;
1699         force_new_asid(vcpu);
1700
1701         if (vcpu->fpu_active) {
1702                 vcpu->svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1703                 vcpu->svm->vmcb->save.cr0 |= X86_CR0_TS;
1704                 vcpu->fpu_active = 0;
1705         }
1706 }
1707
1708 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1709                                   unsigned long  addr,
1710                                   uint32_t err_code)
1711 {
1712         uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
1713
1714         ++vcpu->stat.pf_guest;
1715
1716         if (is_page_fault(exit_int_info)) {
1717
1718                 vcpu->svm->vmcb->control.event_inj_err = 0;
1719                 vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1720                                                         SVM_EVTINJ_VALID_ERR |
1721                                                         SVM_EVTINJ_TYPE_EXEPT |
1722                                                         DF_VECTOR;
1723                 return;
1724         }
1725         vcpu->cr2 = addr;
1726         vcpu->svm->vmcb->save.cr2 = addr;
1727         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1728                                                 SVM_EVTINJ_VALID_ERR |
1729                                                 SVM_EVTINJ_TYPE_EXEPT |
1730                                                 PF_VECTOR;
1731         vcpu->svm->vmcb->control.event_inj_err = err_code;
1732 }
1733
1734
1735 static int is_disabled(void)
1736 {
1737         u64 vm_cr;
1738
1739         rdmsrl(MSR_VM_CR, vm_cr);
1740         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1741                 return 1;
1742
1743         return 0;
1744 }
1745
1746 static void
1747 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1748 {
1749         /*
1750          * Patch in the VMMCALL instruction:
1751          */
1752         hypercall[0] = 0x0f;
1753         hypercall[1] = 0x01;
1754         hypercall[2] = 0xd9;
1755         hypercall[3] = 0xc3;
1756 }
1757
1758 static struct kvm_arch_ops svm_arch_ops = {
1759         .cpu_has_kvm_support = has_svm,
1760         .disabled_by_bios = is_disabled,
1761         .hardware_setup = svm_hardware_setup,
1762         .hardware_unsetup = svm_hardware_unsetup,
1763         .hardware_enable = svm_hardware_enable,
1764         .hardware_disable = svm_hardware_disable,
1765
1766         .vcpu_create = svm_create_vcpu,
1767         .vcpu_free = svm_free_vcpu,
1768
1769         .vcpu_load = svm_vcpu_load,
1770         .vcpu_put = svm_vcpu_put,
1771         .vcpu_decache = svm_vcpu_decache,
1772
1773         .set_guest_debug = svm_guest_debug,
1774         .get_msr = svm_get_msr,
1775         .set_msr = svm_set_msr,
1776         .get_segment_base = svm_get_segment_base,
1777         .get_segment = svm_get_segment,
1778         .set_segment = svm_set_segment,
1779         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1780         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1781         .set_cr0 = svm_set_cr0,
1782         .set_cr3 = svm_set_cr3,
1783         .set_cr4 = svm_set_cr4,
1784         .set_efer = svm_set_efer,
1785         .get_idt = svm_get_idt,
1786         .set_idt = svm_set_idt,
1787         .get_gdt = svm_get_gdt,
1788         .set_gdt = svm_set_gdt,
1789         .get_dr = svm_get_dr,
1790         .set_dr = svm_set_dr,
1791         .cache_regs = svm_cache_regs,
1792         .decache_regs = svm_decache_regs,
1793         .get_rflags = svm_get_rflags,
1794         .set_rflags = svm_set_rflags,
1795
1796         .invlpg = svm_invlpg,
1797         .tlb_flush = svm_flush_tlb,
1798         .inject_page_fault = svm_inject_page_fault,
1799
1800         .inject_gp = svm_inject_gp,
1801
1802         .run = svm_vcpu_run,
1803         .skip_emulated_instruction = skip_emulated_instruction,
1804         .vcpu_setup = svm_vcpu_setup,
1805         .patch_hypercall = svm_patch_hypercall,
1806 };
1807
1808 static int __init svm_init(void)
1809 {
1810         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1811 }
1812
1813 static void __exit svm_exit(void)
1814 {
1815         kvm_exit_arch();
1816 }
1817
1818 module_init(svm_init)
1819 module_exit(svm_exit)