]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/vmx.c
7b742901e783ae3deb836486ed09a8900f1d79ce
[linux-2.6-omap-h63xx.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "irq.h"
21 #include "vmx.h"
22 #include "segment_descriptor.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30
31 #include <asm/io.h>
32 #include <asm/desc.h>
33
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
36
37 static int bypass_guest_pf = 1;
38 module_param(bypass_guest_pf, bool, 0);
39
40 struct vmcs {
41         u32 revision_id;
42         u32 abort;
43         char data[0];
44 };
45
46 struct vcpu_vmx {
47         struct kvm_vcpu       vcpu;
48         int                   launched;
49         u8                    fail;
50         struct kvm_msr_entry *guest_msrs;
51         struct kvm_msr_entry *host_msrs;
52         int                   nmsrs;
53         int                   save_nmsrs;
54         int                   msr_offset_efer;
55 #ifdef CONFIG_X86_64
56         int                   msr_offset_kernel_gs_base;
57 #endif
58         struct vmcs          *vmcs;
59         struct {
60                 int           loaded;
61                 u16           fs_sel, gs_sel, ldt_sel;
62                 int           gs_ldt_reload_needed;
63                 int           fs_reload_needed;
64                 int           guest_efer_loaded;
65         }host_state;
66
67 };
68
69 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
70 {
71         return container_of(vcpu, struct vcpu_vmx, vcpu);
72 }
73
74 static int init_rmode_tss(struct kvm *kvm);
75
76 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
77 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
78
79 static struct page *vmx_io_bitmap_a;
80 static struct page *vmx_io_bitmap_b;
81
82 static struct vmcs_config {
83         int size;
84         int order;
85         u32 revision_id;
86         u32 pin_based_exec_ctrl;
87         u32 cpu_based_exec_ctrl;
88         u32 vmexit_ctrl;
89         u32 vmentry_ctrl;
90 } vmcs_config;
91
92 #define VMX_SEGMENT_FIELD(seg)                                  \
93         [VCPU_SREG_##seg] = {                                   \
94                 .selector = GUEST_##seg##_SELECTOR,             \
95                 .base = GUEST_##seg##_BASE,                     \
96                 .limit = GUEST_##seg##_LIMIT,                   \
97                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
98         }
99
100 static struct kvm_vmx_segment_field {
101         unsigned selector;
102         unsigned base;
103         unsigned limit;
104         unsigned ar_bytes;
105 } kvm_vmx_segment_fields[] = {
106         VMX_SEGMENT_FIELD(CS),
107         VMX_SEGMENT_FIELD(DS),
108         VMX_SEGMENT_FIELD(ES),
109         VMX_SEGMENT_FIELD(FS),
110         VMX_SEGMENT_FIELD(GS),
111         VMX_SEGMENT_FIELD(SS),
112         VMX_SEGMENT_FIELD(TR),
113         VMX_SEGMENT_FIELD(LDTR),
114 };
115
116 /*
117  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
118  * away by decrementing the array size.
119  */
120 static const u32 vmx_msr_index[] = {
121 #ifdef CONFIG_X86_64
122         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
123 #endif
124         MSR_EFER, MSR_K6_STAR,
125 };
126 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
127
128 static void load_msrs(struct kvm_msr_entry *e, int n)
129 {
130         int i;
131
132         for (i = 0; i < n; ++i)
133                 wrmsrl(e[i].index, e[i].data);
134 }
135
136 static void save_msrs(struct kvm_msr_entry *e, int n)
137 {
138         int i;
139
140         for (i = 0; i < n; ++i)
141                 rdmsrl(e[i].index, e[i].data);
142 }
143
144 static inline int is_page_fault(u32 intr_info)
145 {
146         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
147                              INTR_INFO_VALID_MASK)) ==
148                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
149 }
150
151 static inline int is_no_device(u32 intr_info)
152 {
153         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
154                              INTR_INFO_VALID_MASK)) ==
155                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
156 }
157
158 static inline int is_invalid_opcode(u32 intr_info)
159 {
160         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
161                              INTR_INFO_VALID_MASK)) ==
162                 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
163 }
164
165 static inline int is_external_interrupt(u32 intr_info)
166 {
167         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
168                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
169 }
170
171 static inline int cpu_has_vmx_tpr_shadow(void)
172 {
173         return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
174 }
175
176 static inline int vm_need_tpr_shadow(struct kvm *kvm)
177 {
178         return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
179 }
180
181 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
182 {
183         int i;
184
185         for (i = 0; i < vmx->nmsrs; ++i)
186                 if (vmx->guest_msrs[i].index == msr)
187                         return i;
188         return -1;
189 }
190
191 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
192 {
193         int i;
194
195         i = __find_msr_index(vmx, msr);
196         if (i >= 0)
197                 return &vmx->guest_msrs[i];
198         return NULL;
199 }
200
201 static void vmcs_clear(struct vmcs *vmcs)
202 {
203         u64 phys_addr = __pa(vmcs);
204         u8 error;
205
206         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
207                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
208                       : "cc", "memory");
209         if (error)
210                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
211                        vmcs, phys_addr);
212 }
213
214 static void __vcpu_clear(void *arg)
215 {
216         struct vcpu_vmx *vmx = arg;
217         int cpu = raw_smp_processor_id();
218
219         if (vmx->vcpu.cpu == cpu)
220                 vmcs_clear(vmx->vmcs);
221         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
222                 per_cpu(current_vmcs, cpu) = NULL;
223         rdtscll(vmx->vcpu.host_tsc);
224 }
225
226 static void vcpu_clear(struct vcpu_vmx *vmx)
227 {
228         if (vmx->vcpu.cpu == -1)
229                 return;
230         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
231         vmx->launched = 0;
232 }
233
234 static unsigned long vmcs_readl(unsigned long field)
235 {
236         unsigned long value;
237
238         asm volatile (ASM_VMX_VMREAD_RDX_RAX
239                       : "=a"(value) : "d"(field) : "cc");
240         return value;
241 }
242
243 static u16 vmcs_read16(unsigned long field)
244 {
245         return vmcs_readl(field);
246 }
247
248 static u32 vmcs_read32(unsigned long field)
249 {
250         return vmcs_readl(field);
251 }
252
253 static u64 vmcs_read64(unsigned long field)
254 {
255 #ifdef CONFIG_X86_64
256         return vmcs_readl(field);
257 #else
258         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
259 #endif
260 }
261
262 static noinline void vmwrite_error(unsigned long field, unsigned long value)
263 {
264         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
265                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
266         dump_stack();
267 }
268
269 static void vmcs_writel(unsigned long field, unsigned long value)
270 {
271         u8 error;
272
273         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
274                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
275         if (unlikely(error))
276                 vmwrite_error(field, value);
277 }
278
279 static void vmcs_write16(unsigned long field, u16 value)
280 {
281         vmcs_writel(field, value);
282 }
283
284 static void vmcs_write32(unsigned long field, u32 value)
285 {
286         vmcs_writel(field, value);
287 }
288
289 static void vmcs_write64(unsigned long field, u64 value)
290 {
291 #ifdef CONFIG_X86_64
292         vmcs_writel(field, value);
293 #else
294         vmcs_writel(field, value);
295         asm volatile ("");
296         vmcs_writel(field+1, value >> 32);
297 #endif
298 }
299
300 static void vmcs_clear_bits(unsigned long field, u32 mask)
301 {
302         vmcs_writel(field, vmcs_readl(field) & ~mask);
303 }
304
305 static void vmcs_set_bits(unsigned long field, u32 mask)
306 {
307         vmcs_writel(field, vmcs_readl(field) | mask);
308 }
309
310 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
311 {
312         u32 eb;
313
314         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
315         if (!vcpu->fpu_active)
316                 eb |= 1u << NM_VECTOR;
317         if (vcpu->guest_debug.enabled)
318                 eb |= 1u << 1;
319         if (vcpu->rmode.active)
320                 eb = ~0;
321         vmcs_write32(EXCEPTION_BITMAP, eb);
322 }
323
324 static void reload_tss(void)
325 {
326 #ifndef CONFIG_X86_64
327
328         /*
329          * VT restores TR but not its size.  Useless.
330          */
331         struct descriptor_table gdt;
332         struct segment_descriptor *descs;
333
334         get_gdt(&gdt);
335         descs = (void *)gdt.base;
336         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
337         load_TR_desc();
338 #endif
339 }
340
341 static void load_transition_efer(struct vcpu_vmx *vmx)
342 {
343         int efer_offset = vmx->msr_offset_efer;
344         u64 host_efer = vmx->host_msrs[efer_offset].data;
345         u64 guest_efer = vmx->guest_msrs[efer_offset].data;
346         u64 ignore_bits;
347
348         if (efer_offset < 0)
349                 return;
350         /*
351          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
352          * outside long mode
353          */
354         ignore_bits = EFER_NX | EFER_SCE;
355 #ifdef CONFIG_X86_64
356         ignore_bits |= EFER_LMA | EFER_LME;
357         /* SCE is meaningful only in long mode on Intel */
358         if (guest_efer & EFER_LMA)
359                 ignore_bits &= ~(u64)EFER_SCE;
360 #endif
361         if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
362                 return;
363
364         vmx->host_state.guest_efer_loaded = 1;
365         guest_efer &= ~ignore_bits;
366         guest_efer |= host_efer & ignore_bits;
367         wrmsrl(MSR_EFER, guest_efer);
368         vmx->vcpu.stat.efer_reload++;
369 }
370
371 static void reload_host_efer(struct vcpu_vmx *vmx)
372 {
373         if (vmx->host_state.guest_efer_loaded) {
374                 vmx->host_state.guest_efer_loaded = 0;
375                 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
376         }
377 }
378
379 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
380 {
381         struct vcpu_vmx *vmx = to_vmx(vcpu);
382
383         if (vmx->host_state.loaded)
384                 return;
385
386         vmx->host_state.loaded = 1;
387         /*
388          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
389          * allow segment selectors with cpl > 0 or ti == 1.
390          */
391         vmx->host_state.ldt_sel = read_ldt();
392         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
393         vmx->host_state.fs_sel = read_fs();
394         if (!(vmx->host_state.fs_sel & 7)) {
395                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
396                 vmx->host_state.fs_reload_needed = 0;
397         } else {
398                 vmcs_write16(HOST_FS_SELECTOR, 0);
399                 vmx->host_state.fs_reload_needed = 1;
400         }
401         vmx->host_state.gs_sel = read_gs();
402         if (!(vmx->host_state.gs_sel & 7))
403                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
404         else {
405                 vmcs_write16(HOST_GS_SELECTOR, 0);
406                 vmx->host_state.gs_ldt_reload_needed = 1;
407         }
408
409 #ifdef CONFIG_X86_64
410         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
411         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
412 #else
413         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
414         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
415 #endif
416
417 #ifdef CONFIG_X86_64
418         if (is_long_mode(&vmx->vcpu)) {
419                 save_msrs(vmx->host_msrs +
420                           vmx->msr_offset_kernel_gs_base, 1);
421         }
422 #endif
423         load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
424         load_transition_efer(vmx);
425 }
426
427 static void vmx_load_host_state(struct vcpu_vmx *vmx)
428 {
429         unsigned long flags;
430
431         if (!vmx->host_state.loaded)
432                 return;
433
434         vmx->host_state.loaded = 0;
435         if (vmx->host_state.fs_reload_needed)
436                 load_fs(vmx->host_state.fs_sel);
437         if (vmx->host_state.gs_ldt_reload_needed) {
438                 load_ldt(vmx->host_state.ldt_sel);
439                 /*
440                  * If we have to reload gs, we must take care to
441                  * preserve our gs base.
442                  */
443                 local_irq_save(flags);
444                 load_gs(vmx->host_state.gs_sel);
445 #ifdef CONFIG_X86_64
446                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
447 #endif
448                 local_irq_restore(flags);
449         }
450         reload_tss();
451         save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
452         load_msrs(vmx->host_msrs, vmx->save_nmsrs);
453         reload_host_efer(vmx);
454 }
455
456 /*
457  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
458  * vcpu mutex is already taken.
459  */
460 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
461 {
462         struct vcpu_vmx *vmx = to_vmx(vcpu);
463         u64 phys_addr = __pa(vmx->vmcs);
464         u64 tsc_this, delta;
465
466         if (vcpu->cpu != cpu) {
467                 vcpu_clear(vmx);
468                 kvm_migrate_apic_timer(vcpu);
469         }
470
471         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
472                 u8 error;
473
474                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
475                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
476                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
477                               : "cc");
478                 if (error)
479                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
480                                vmx->vmcs, phys_addr);
481         }
482
483         if (vcpu->cpu != cpu) {
484                 struct descriptor_table dt;
485                 unsigned long sysenter_esp;
486
487                 vcpu->cpu = cpu;
488                 /*
489                  * Linux uses per-cpu TSS and GDT, so set these when switching
490                  * processors.
491                  */
492                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
493                 get_gdt(&dt);
494                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
495
496                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
497                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
498
499                 /*
500                  * Make sure the time stamp counter is monotonous.
501                  */
502                 rdtscll(tsc_this);
503                 delta = vcpu->host_tsc - tsc_this;
504                 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
505         }
506 }
507
508 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
509 {
510         vmx_load_host_state(to_vmx(vcpu));
511         kvm_put_guest_fpu(vcpu);
512 }
513
514 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
515 {
516         if (vcpu->fpu_active)
517                 return;
518         vcpu->fpu_active = 1;
519         vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
520         if (vcpu->cr0 & X86_CR0_TS)
521                 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
522         update_exception_bitmap(vcpu);
523 }
524
525 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
526 {
527         if (!vcpu->fpu_active)
528                 return;
529         vcpu->fpu_active = 0;
530         vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
531         update_exception_bitmap(vcpu);
532 }
533
534 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
535 {
536         vcpu_clear(to_vmx(vcpu));
537 }
538
539 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
540 {
541         return vmcs_readl(GUEST_RFLAGS);
542 }
543
544 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
545 {
546         if (vcpu->rmode.active)
547                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
548         vmcs_writel(GUEST_RFLAGS, rflags);
549 }
550
551 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
552 {
553         unsigned long rip;
554         u32 interruptibility;
555
556         rip = vmcs_readl(GUEST_RIP);
557         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
558         vmcs_writel(GUEST_RIP, rip);
559
560         /*
561          * We emulated an instruction, so temporary interrupt blocking
562          * should be removed, if set.
563          */
564         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
565         if (interruptibility & 3)
566                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
567                              interruptibility & ~3);
568         vcpu->interrupt_window_open = 1;
569 }
570
571 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
572 {
573         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
574                vmcs_readl(GUEST_RIP));
575         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
576         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
577                      GP_VECTOR |
578                      INTR_TYPE_EXCEPTION |
579                      INTR_INFO_DELIEVER_CODE_MASK |
580                      INTR_INFO_VALID_MASK);
581 }
582
583 static void vmx_inject_ud(struct kvm_vcpu *vcpu)
584 {
585         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
586                      UD_VECTOR |
587                      INTR_TYPE_EXCEPTION |
588                      INTR_INFO_VALID_MASK);
589 }
590
591 /*
592  * Swap MSR entry in host/guest MSR entry array.
593  */
594 #ifdef CONFIG_X86_64
595 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
596 {
597         struct kvm_msr_entry tmp;
598
599         tmp = vmx->guest_msrs[to];
600         vmx->guest_msrs[to] = vmx->guest_msrs[from];
601         vmx->guest_msrs[from] = tmp;
602         tmp = vmx->host_msrs[to];
603         vmx->host_msrs[to] = vmx->host_msrs[from];
604         vmx->host_msrs[from] = tmp;
605 }
606 #endif
607
608 /*
609  * Set up the vmcs to automatically save and restore system
610  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
611  * mode, as fiddling with msrs is very expensive.
612  */
613 static void setup_msrs(struct vcpu_vmx *vmx)
614 {
615         int save_nmsrs;
616
617         save_nmsrs = 0;
618 #ifdef CONFIG_X86_64
619         if (is_long_mode(&vmx->vcpu)) {
620                 int index;
621
622                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
623                 if (index >= 0)
624                         move_msr_up(vmx, index, save_nmsrs++);
625                 index = __find_msr_index(vmx, MSR_LSTAR);
626                 if (index >= 0)
627                         move_msr_up(vmx, index, save_nmsrs++);
628                 index = __find_msr_index(vmx, MSR_CSTAR);
629                 if (index >= 0)
630                         move_msr_up(vmx, index, save_nmsrs++);
631                 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
632                 if (index >= 0)
633                         move_msr_up(vmx, index, save_nmsrs++);
634                 /*
635                  * MSR_K6_STAR is only needed on long mode guests, and only
636                  * if efer.sce is enabled.
637                  */
638                 index = __find_msr_index(vmx, MSR_K6_STAR);
639                 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
640                         move_msr_up(vmx, index, save_nmsrs++);
641         }
642 #endif
643         vmx->save_nmsrs = save_nmsrs;
644
645 #ifdef CONFIG_X86_64
646         vmx->msr_offset_kernel_gs_base =
647                 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
648 #endif
649         vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
650 }
651
652 /*
653  * reads and returns guest's timestamp counter "register"
654  * guest_tsc = host_tsc + tsc_offset    -- 21.3
655  */
656 static u64 guest_read_tsc(void)
657 {
658         u64 host_tsc, tsc_offset;
659
660         rdtscll(host_tsc);
661         tsc_offset = vmcs_read64(TSC_OFFSET);
662         return host_tsc + tsc_offset;
663 }
664
665 /*
666  * writes 'guest_tsc' into guest's timestamp counter "register"
667  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
668  */
669 static void guest_write_tsc(u64 guest_tsc)
670 {
671         u64 host_tsc;
672
673         rdtscll(host_tsc);
674         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
675 }
676
677 /*
678  * Reads an msr value (of 'msr_index') into 'pdata'.
679  * Returns 0 on success, non-0 otherwise.
680  * Assumes vcpu_load() was already called.
681  */
682 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
683 {
684         u64 data;
685         struct kvm_msr_entry *msr;
686
687         if (!pdata) {
688                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
689                 return -EINVAL;
690         }
691
692         switch (msr_index) {
693 #ifdef CONFIG_X86_64
694         case MSR_FS_BASE:
695                 data = vmcs_readl(GUEST_FS_BASE);
696                 break;
697         case MSR_GS_BASE:
698                 data = vmcs_readl(GUEST_GS_BASE);
699                 break;
700         case MSR_EFER:
701                 return kvm_get_msr_common(vcpu, msr_index, pdata);
702 #endif
703         case MSR_IA32_TIME_STAMP_COUNTER:
704                 data = guest_read_tsc();
705                 break;
706         case MSR_IA32_SYSENTER_CS:
707                 data = vmcs_read32(GUEST_SYSENTER_CS);
708                 break;
709         case MSR_IA32_SYSENTER_EIP:
710                 data = vmcs_readl(GUEST_SYSENTER_EIP);
711                 break;
712         case MSR_IA32_SYSENTER_ESP:
713                 data = vmcs_readl(GUEST_SYSENTER_ESP);
714                 break;
715         default:
716                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
717                 if (msr) {
718                         data = msr->data;
719                         break;
720                 }
721                 return kvm_get_msr_common(vcpu, msr_index, pdata);
722         }
723
724         *pdata = data;
725         return 0;
726 }
727
728 /*
729  * Writes msr value into into the appropriate "register".
730  * Returns 0 on success, non-0 otherwise.
731  * Assumes vcpu_load() was already called.
732  */
733 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
734 {
735         struct vcpu_vmx *vmx = to_vmx(vcpu);
736         struct kvm_msr_entry *msr;
737         int ret = 0;
738
739         switch (msr_index) {
740 #ifdef CONFIG_X86_64
741         case MSR_EFER:
742                 ret = kvm_set_msr_common(vcpu, msr_index, data);
743                 if (vmx->host_state.loaded) {
744                         reload_host_efer(vmx);
745                         load_transition_efer(vmx);
746                 }
747                 break;
748         case MSR_FS_BASE:
749                 vmcs_writel(GUEST_FS_BASE, data);
750                 break;
751         case MSR_GS_BASE:
752                 vmcs_writel(GUEST_GS_BASE, data);
753                 break;
754 #endif
755         case MSR_IA32_SYSENTER_CS:
756                 vmcs_write32(GUEST_SYSENTER_CS, data);
757                 break;
758         case MSR_IA32_SYSENTER_EIP:
759                 vmcs_writel(GUEST_SYSENTER_EIP, data);
760                 break;
761         case MSR_IA32_SYSENTER_ESP:
762                 vmcs_writel(GUEST_SYSENTER_ESP, data);
763                 break;
764         case MSR_IA32_TIME_STAMP_COUNTER:
765                 guest_write_tsc(data);
766                 break;
767         default:
768                 msr = find_msr_entry(vmx, msr_index);
769                 if (msr) {
770                         msr->data = data;
771                         if (vmx->host_state.loaded)
772                                 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
773                         break;
774                 }
775                 ret = kvm_set_msr_common(vcpu, msr_index, data);
776         }
777
778         return ret;
779 }
780
781 /*
782  * Sync the rsp and rip registers into the vcpu structure.  This allows
783  * registers to be accessed by indexing vcpu->regs.
784  */
785 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
786 {
787         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
788         vcpu->rip = vmcs_readl(GUEST_RIP);
789 }
790
791 /*
792  * Syncs rsp and rip back into the vmcs.  Should be called after possible
793  * modification.
794  */
795 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
796 {
797         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
798         vmcs_writel(GUEST_RIP, vcpu->rip);
799 }
800
801 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
802 {
803         unsigned long dr7 = 0x400;
804         int old_singlestep;
805
806         old_singlestep = vcpu->guest_debug.singlestep;
807
808         vcpu->guest_debug.enabled = dbg->enabled;
809         if (vcpu->guest_debug.enabled) {
810                 int i;
811
812                 dr7 |= 0x200;  /* exact */
813                 for (i = 0; i < 4; ++i) {
814                         if (!dbg->breakpoints[i].enabled)
815                                 continue;
816                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
817                         dr7 |= 2 << (i*2);    /* global enable */
818                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
819                 }
820
821                 vcpu->guest_debug.singlestep = dbg->singlestep;
822         } else
823                 vcpu->guest_debug.singlestep = 0;
824
825         if (old_singlestep && !vcpu->guest_debug.singlestep) {
826                 unsigned long flags;
827
828                 flags = vmcs_readl(GUEST_RFLAGS);
829                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
830                 vmcs_writel(GUEST_RFLAGS, flags);
831         }
832
833         update_exception_bitmap(vcpu);
834         vmcs_writel(GUEST_DR7, dr7);
835
836         return 0;
837 }
838
839 static int vmx_get_irq(struct kvm_vcpu *vcpu)
840 {
841         u32 idtv_info_field;
842
843         idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
844         if (idtv_info_field & INTR_INFO_VALID_MASK) {
845                 if (is_external_interrupt(idtv_info_field))
846                         return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
847                 else
848                         printk("pending exception: not handled yet\n");
849         }
850         return -1;
851 }
852
853 static __init int cpu_has_kvm_support(void)
854 {
855         unsigned long ecx = cpuid_ecx(1);
856         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
857 }
858
859 static __init int vmx_disabled_by_bios(void)
860 {
861         u64 msr;
862
863         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
864         return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
865                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
866             == MSR_IA32_FEATURE_CONTROL_LOCKED;
867         /* locked but not enabled */
868 }
869
870 static void hardware_enable(void *garbage)
871 {
872         int cpu = raw_smp_processor_id();
873         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
874         u64 old;
875
876         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
877         if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
878                     MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
879             != (MSR_IA32_FEATURE_CONTROL_LOCKED |
880                 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
881                 /* enable and lock */
882                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
883                        MSR_IA32_FEATURE_CONTROL_LOCKED |
884                        MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
885         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
886         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
887                       : "memory", "cc");
888 }
889
890 static void hardware_disable(void *garbage)
891 {
892         asm volatile (ASM_VMX_VMXOFF : : : "cc");
893 }
894
895 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
896                                       u32 msr, u32* result)
897 {
898         u32 vmx_msr_low, vmx_msr_high;
899         u32 ctl = ctl_min | ctl_opt;
900
901         rdmsr(msr, vmx_msr_low, vmx_msr_high);
902
903         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
904         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
905
906         /* Ensure minimum (required) set of control bits are supported. */
907         if (ctl_min & ~ctl)
908                 return -EIO;
909
910         *result = ctl;
911         return 0;
912 }
913
914 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
915 {
916         u32 vmx_msr_low, vmx_msr_high;
917         u32 min, opt;
918         u32 _pin_based_exec_control = 0;
919         u32 _cpu_based_exec_control = 0;
920         u32 _vmexit_control = 0;
921         u32 _vmentry_control = 0;
922
923         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
924         opt = 0;
925         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
926                                 &_pin_based_exec_control) < 0)
927                 return -EIO;
928
929         min = CPU_BASED_HLT_EXITING |
930 #ifdef CONFIG_X86_64
931               CPU_BASED_CR8_LOAD_EXITING |
932               CPU_BASED_CR8_STORE_EXITING |
933 #endif
934               CPU_BASED_USE_IO_BITMAPS |
935               CPU_BASED_MOV_DR_EXITING |
936               CPU_BASED_USE_TSC_OFFSETING;
937 #ifdef CONFIG_X86_64
938         opt = CPU_BASED_TPR_SHADOW;
939 #else
940         opt = 0;
941 #endif
942         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
943                                 &_cpu_based_exec_control) < 0)
944                 return -EIO;
945 #ifdef CONFIG_X86_64
946         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
947                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
948                                            ~CPU_BASED_CR8_STORE_EXITING;
949 #endif
950
951         min = 0;
952 #ifdef CONFIG_X86_64
953         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
954 #endif
955         opt = 0;
956         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
957                                 &_vmexit_control) < 0)
958                 return -EIO;
959
960         min = opt = 0;
961         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
962                                 &_vmentry_control) < 0)
963                 return -EIO;
964
965         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
966
967         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
968         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
969                 return -EIO;
970
971 #ifdef CONFIG_X86_64
972         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
973         if (vmx_msr_high & (1u<<16))
974                 return -EIO;
975 #endif
976
977         /* Require Write-Back (WB) memory type for VMCS accesses. */
978         if (((vmx_msr_high >> 18) & 15) != 6)
979                 return -EIO;
980
981         vmcs_conf->size = vmx_msr_high & 0x1fff;
982         vmcs_conf->order = get_order(vmcs_config.size);
983         vmcs_conf->revision_id = vmx_msr_low;
984
985         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
986         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
987         vmcs_conf->vmexit_ctrl         = _vmexit_control;
988         vmcs_conf->vmentry_ctrl        = _vmentry_control;
989
990         return 0;
991 }
992
993 static struct vmcs *alloc_vmcs_cpu(int cpu)
994 {
995         int node = cpu_to_node(cpu);
996         struct page *pages;
997         struct vmcs *vmcs;
998
999         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1000         if (!pages)
1001                 return NULL;
1002         vmcs = page_address(pages);
1003         memset(vmcs, 0, vmcs_config.size);
1004         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1005         return vmcs;
1006 }
1007
1008 static struct vmcs *alloc_vmcs(void)
1009 {
1010         return alloc_vmcs_cpu(raw_smp_processor_id());
1011 }
1012
1013 static void free_vmcs(struct vmcs *vmcs)
1014 {
1015         free_pages((unsigned long)vmcs, vmcs_config.order);
1016 }
1017
1018 static void free_kvm_area(void)
1019 {
1020         int cpu;
1021
1022         for_each_online_cpu(cpu)
1023                 free_vmcs(per_cpu(vmxarea, cpu));
1024 }
1025
1026 static __init int alloc_kvm_area(void)
1027 {
1028         int cpu;
1029
1030         for_each_online_cpu(cpu) {
1031                 struct vmcs *vmcs;
1032
1033                 vmcs = alloc_vmcs_cpu(cpu);
1034                 if (!vmcs) {
1035                         free_kvm_area();
1036                         return -ENOMEM;
1037                 }
1038
1039                 per_cpu(vmxarea, cpu) = vmcs;
1040         }
1041         return 0;
1042 }
1043
1044 static __init int hardware_setup(void)
1045 {
1046         if (setup_vmcs_config(&vmcs_config) < 0)
1047                 return -EIO;
1048         return alloc_kvm_area();
1049 }
1050
1051 static __exit void hardware_unsetup(void)
1052 {
1053         free_kvm_area();
1054 }
1055
1056 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1057 {
1058         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1059
1060         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1061                 vmcs_write16(sf->selector, save->selector);
1062                 vmcs_writel(sf->base, save->base);
1063                 vmcs_write32(sf->limit, save->limit);
1064                 vmcs_write32(sf->ar_bytes, save->ar);
1065         } else {
1066                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1067                         << AR_DPL_SHIFT;
1068                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1069         }
1070 }
1071
1072 static void enter_pmode(struct kvm_vcpu *vcpu)
1073 {
1074         unsigned long flags;
1075
1076         vcpu->rmode.active = 0;
1077
1078         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1079         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1080         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1081
1082         flags = vmcs_readl(GUEST_RFLAGS);
1083         flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1084         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1085         vmcs_writel(GUEST_RFLAGS, flags);
1086
1087         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1088                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1089
1090         update_exception_bitmap(vcpu);
1091
1092         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1093         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1094         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1095         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1096
1097         vmcs_write16(GUEST_SS_SELECTOR, 0);
1098         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1099
1100         vmcs_write16(GUEST_CS_SELECTOR,
1101                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1102         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1103 }
1104
1105 static gva_t rmode_tss_base(struct kvm* kvm)
1106 {
1107         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1108         return base_gfn << PAGE_SHIFT;
1109 }
1110
1111 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1112 {
1113         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1114
1115         save->selector = vmcs_read16(sf->selector);
1116         save->base = vmcs_readl(sf->base);
1117         save->limit = vmcs_read32(sf->limit);
1118         save->ar = vmcs_read32(sf->ar_bytes);
1119         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1120         vmcs_write32(sf->limit, 0xffff);
1121         vmcs_write32(sf->ar_bytes, 0xf3);
1122 }
1123
1124 static void enter_rmode(struct kvm_vcpu *vcpu)
1125 {
1126         unsigned long flags;
1127
1128         vcpu->rmode.active = 1;
1129
1130         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1131         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1132
1133         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1134         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1135
1136         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1137         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1138
1139         flags = vmcs_readl(GUEST_RFLAGS);
1140         vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1141
1142         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1143
1144         vmcs_writel(GUEST_RFLAGS, flags);
1145         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1146         update_exception_bitmap(vcpu);
1147
1148         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1149         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1150         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1151
1152         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1153         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1154         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1155                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1156         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1157
1158         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1159         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1160         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1161         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1162
1163         kvm_mmu_reset_context(vcpu);
1164         init_rmode_tss(vcpu->kvm);
1165 }
1166
1167 #ifdef CONFIG_X86_64
1168
1169 static void enter_lmode(struct kvm_vcpu *vcpu)
1170 {
1171         u32 guest_tr_ar;
1172
1173         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1174         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1175                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1176                        __FUNCTION__);
1177                 vmcs_write32(GUEST_TR_AR_BYTES,
1178                              (guest_tr_ar & ~AR_TYPE_MASK)
1179                              | AR_TYPE_BUSY_64_TSS);
1180         }
1181
1182         vcpu->shadow_efer |= EFER_LMA;
1183
1184         find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1185         vmcs_write32(VM_ENTRY_CONTROLS,
1186                      vmcs_read32(VM_ENTRY_CONTROLS)
1187                      | VM_ENTRY_IA32E_MODE);
1188 }
1189
1190 static void exit_lmode(struct kvm_vcpu *vcpu)
1191 {
1192         vcpu->shadow_efer &= ~EFER_LMA;
1193
1194         vmcs_write32(VM_ENTRY_CONTROLS,
1195                      vmcs_read32(VM_ENTRY_CONTROLS)
1196                      & ~VM_ENTRY_IA32E_MODE);
1197 }
1198
1199 #endif
1200
1201 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1202 {
1203         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1204         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1205 }
1206
1207 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1208 {
1209         vmx_fpu_deactivate(vcpu);
1210
1211         if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1212                 enter_pmode(vcpu);
1213
1214         if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1215                 enter_rmode(vcpu);
1216
1217 #ifdef CONFIG_X86_64
1218         if (vcpu->shadow_efer & EFER_LME) {
1219                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1220                         enter_lmode(vcpu);
1221                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1222                         exit_lmode(vcpu);
1223         }
1224 #endif
1225
1226         vmcs_writel(CR0_READ_SHADOW, cr0);
1227         vmcs_writel(GUEST_CR0,
1228                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1229         vcpu->cr0 = cr0;
1230
1231         if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1232                 vmx_fpu_activate(vcpu);
1233 }
1234
1235 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1236 {
1237         vmcs_writel(GUEST_CR3, cr3);
1238         if (vcpu->cr0 & X86_CR0_PE)
1239                 vmx_fpu_deactivate(vcpu);
1240 }
1241
1242 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1243 {
1244         vmcs_writel(CR4_READ_SHADOW, cr4);
1245         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1246                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1247         vcpu->cr4 = cr4;
1248 }
1249
1250 #ifdef CONFIG_X86_64
1251
1252 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1253 {
1254         struct vcpu_vmx *vmx = to_vmx(vcpu);
1255         struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1256
1257         vcpu->shadow_efer = efer;
1258         if (efer & EFER_LMA) {
1259                 vmcs_write32(VM_ENTRY_CONTROLS,
1260                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1261                                      VM_ENTRY_IA32E_MODE);
1262                 msr->data = efer;
1263
1264         } else {
1265                 vmcs_write32(VM_ENTRY_CONTROLS,
1266                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1267                                      ~VM_ENTRY_IA32E_MODE);
1268
1269                 msr->data = efer & ~EFER_LME;
1270         }
1271         setup_msrs(vmx);
1272 }
1273
1274 #endif
1275
1276 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1277 {
1278         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1279
1280         return vmcs_readl(sf->base);
1281 }
1282
1283 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1284                             struct kvm_segment *var, int seg)
1285 {
1286         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1287         u32 ar;
1288
1289         var->base = vmcs_readl(sf->base);
1290         var->limit = vmcs_read32(sf->limit);
1291         var->selector = vmcs_read16(sf->selector);
1292         ar = vmcs_read32(sf->ar_bytes);
1293         if (ar & AR_UNUSABLE_MASK)
1294                 ar = 0;
1295         var->type = ar & 15;
1296         var->s = (ar >> 4) & 1;
1297         var->dpl = (ar >> 5) & 3;
1298         var->present = (ar >> 7) & 1;
1299         var->avl = (ar >> 12) & 1;
1300         var->l = (ar >> 13) & 1;
1301         var->db = (ar >> 14) & 1;
1302         var->g = (ar >> 15) & 1;
1303         var->unusable = (ar >> 16) & 1;
1304 }
1305
1306 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1307 {
1308         u32 ar;
1309
1310         if (var->unusable)
1311                 ar = 1 << 16;
1312         else {
1313                 ar = var->type & 15;
1314                 ar |= (var->s & 1) << 4;
1315                 ar |= (var->dpl & 3) << 5;
1316                 ar |= (var->present & 1) << 7;
1317                 ar |= (var->avl & 1) << 12;
1318                 ar |= (var->l & 1) << 13;
1319                 ar |= (var->db & 1) << 14;
1320                 ar |= (var->g & 1) << 15;
1321         }
1322         if (ar == 0) /* a 0 value means unusable */
1323                 ar = AR_UNUSABLE_MASK;
1324
1325         return ar;
1326 }
1327
1328 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1329                             struct kvm_segment *var, int seg)
1330 {
1331         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1332         u32 ar;
1333
1334         if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1335                 vcpu->rmode.tr.selector = var->selector;
1336                 vcpu->rmode.tr.base = var->base;
1337                 vcpu->rmode.tr.limit = var->limit;
1338                 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1339                 return;
1340         }
1341         vmcs_writel(sf->base, var->base);
1342         vmcs_write32(sf->limit, var->limit);
1343         vmcs_write16(sf->selector, var->selector);
1344         if (vcpu->rmode.active && var->s) {
1345                 /*
1346                  * Hack real-mode segments into vm86 compatibility.
1347                  */
1348                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1349                         vmcs_writel(sf->base, 0xf0000);
1350                 ar = 0xf3;
1351         } else
1352                 ar = vmx_segment_access_rights(var);
1353         vmcs_write32(sf->ar_bytes, ar);
1354 }
1355
1356 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1357 {
1358         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1359
1360         *db = (ar >> 14) & 1;
1361         *l = (ar >> 13) & 1;
1362 }
1363
1364 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1365 {
1366         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1367         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1368 }
1369
1370 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1371 {
1372         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1373         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1374 }
1375
1376 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1377 {
1378         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1379         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1380 }
1381
1382 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1383 {
1384         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1385         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1386 }
1387
1388 static int init_rmode_tss(struct kvm* kvm)
1389 {
1390         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1391         u16 data = 0;
1392         int r;
1393
1394         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1395         if (r < 0)
1396                 return 0;
1397         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1398         r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1399         if (r < 0)
1400                 return 0;
1401         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1402         if (r < 0)
1403                 return 0;
1404         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1405         if (r < 0)
1406                 return 0;
1407         data = ~0;
1408         r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1409                         sizeof(u8));
1410         if (r < 0)
1411                 return 0;
1412         return 1;
1413 }
1414
1415 static void seg_setup(int seg)
1416 {
1417         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1418
1419         vmcs_write16(sf->selector, 0);
1420         vmcs_writel(sf->base, 0);
1421         vmcs_write32(sf->limit, 0xffff);
1422         vmcs_write32(sf->ar_bytes, 0x93);
1423 }
1424
1425 /*
1426  * Sets up the vmcs for emulated real mode.
1427  */
1428 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1429 {
1430         u32 host_sysenter_cs;
1431         u32 junk;
1432         unsigned long a;
1433         struct descriptor_table dt;
1434         int i;
1435         int ret = 0;
1436         unsigned long kvm_vmx_return;
1437         u64 msr;
1438         u32 exec_control;
1439
1440         if (!init_rmode_tss(vmx->vcpu.kvm)) {
1441                 ret = -ENOMEM;
1442                 goto out;
1443         }
1444
1445         vmx->vcpu.rmode.active = 0;
1446
1447         vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1448         set_cr8(&vmx->vcpu, 0);
1449         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1450         if (vmx->vcpu.vcpu_id == 0)
1451                 msr |= MSR_IA32_APICBASE_BSP;
1452         kvm_set_apic_base(&vmx->vcpu, msr);
1453
1454         fx_init(&vmx->vcpu);
1455
1456         /*
1457          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1458          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1459          */
1460         if (vmx->vcpu.vcpu_id == 0) {
1461                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1462                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1463         } else {
1464                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1465                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1466         }
1467         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1468         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1469
1470         seg_setup(VCPU_SREG_DS);
1471         seg_setup(VCPU_SREG_ES);
1472         seg_setup(VCPU_SREG_FS);
1473         seg_setup(VCPU_SREG_GS);
1474         seg_setup(VCPU_SREG_SS);
1475
1476         vmcs_write16(GUEST_TR_SELECTOR, 0);
1477         vmcs_writel(GUEST_TR_BASE, 0);
1478         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1479         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1480
1481         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1482         vmcs_writel(GUEST_LDTR_BASE, 0);
1483         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1484         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1485
1486         vmcs_write32(GUEST_SYSENTER_CS, 0);
1487         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1488         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1489
1490         vmcs_writel(GUEST_RFLAGS, 0x02);
1491         if (vmx->vcpu.vcpu_id == 0)
1492                 vmcs_writel(GUEST_RIP, 0xfff0);
1493         else
1494                 vmcs_writel(GUEST_RIP, 0);
1495         vmcs_writel(GUEST_RSP, 0);
1496
1497         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1498         vmcs_writel(GUEST_DR7, 0x400);
1499
1500         vmcs_writel(GUEST_GDTR_BASE, 0);
1501         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1502
1503         vmcs_writel(GUEST_IDTR_BASE, 0);
1504         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1505
1506         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1507         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1508         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1509
1510         /* I/O */
1511         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1512         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1513
1514         guest_write_tsc(0);
1515
1516         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1517
1518         /* Special registers */
1519         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1520
1521         /* Control */
1522         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1523                 vmcs_config.pin_based_exec_ctrl);
1524
1525         exec_control = vmcs_config.cpu_based_exec_ctrl;
1526         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1527                 exec_control &= ~CPU_BASED_TPR_SHADOW;
1528 #ifdef CONFIG_X86_64
1529                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1530                                 CPU_BASED_CR8_LOAD_EXITING;
1531 #endif
1532         }
1533         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1534
1535         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1536         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1537         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1538
1539         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1540         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1541         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1542
1543         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1544         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1545         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1546         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1547         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1548         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1549 #ifdef CONFIG_X86_64
1550         rdmsrl(MSR_FS_BASE, a);
1551         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1552         rdmsrl(MSR_GS_BASE, a);
1553         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1554 #else
1555         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1556         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1557 #endif
1558
1559         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1560
1561         get_idt(&dt);
1562         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1563
1564         asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1565         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1566         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1567         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1568         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1569
1570         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1571         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1572         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1573         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1574         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1575         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1576
1577         for (i = 0; i < NR_VMX_MSR; ++i) {
1578                 u32 index = vmx_msr_index[i];
1579                 u32 data_low, data_high;
1580                 u64 data;
1581                 int j = vmx->nmsrs;
1582
1583                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1584                         continue;
1585                 if (wrmsr_safe(index, data_low, data_high) < 0)
1586                         continue;
1587                 data = data_low | ((u64)data_high << 32);
1588                 vmx->host_msrs[j].index = index;
1589                 vmx->host_msrs[j].reserved = 0;
1590                 vmx->host_msrs[j].data = data;
1591                 vmx->guest_msrs[j] = vmx->host_msrs[j];
1592                 ++vmx->nmsrs;
1593         }
1594
1595         setup_msrs(vmx);
1596
1597         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1598
1599         /* 22.2.1, 20.8.1 */
1600         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1601
1602         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1603
1604 #ifdef CONFIG_X86_64
1605         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1606         if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1607                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1608                              page_to_phys(vmx->vcpu.apic->regs_page));
1609         vmcs_write32(TPR_THRESHOLD, 0);
1610 #endif
1611
1612         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1613         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1614
1615         vmx->vcpu.cr0 = 0x60000010;
1616         vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1617         vmx_set_cr4(&vmx->vcpu, 0);
1618 #ifdef CONFIG_X86_64
1619         vmx_set_efer(&vmx->vcpu, 0);
1620 #endif
1621         vmx_fpu_activate(&vmx->vcpu);
1622         update_exception_bitmap(&vmx->vcpu);
1623
1624         return 0;
1625
1626 out:
1627         return ret;
1628 }
1629
1630 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1631 {
1632         struct vcpu_vmx *vmx = to_vmx(vcpu);
1633
1634         vmx_vcpu_setup(vmx);
1635 }
1636
1637 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1638 {
1639         u16 ent[2];
1640         u16 cs;
1641         u16 ip;
1642         unsigned long flags;
1643         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1644         u16 sp =  vmcs_readl(GUEST_RSP);
1645         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1646
1647         if (sp > ss_limit || sp < 6 ) {
1648                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1649                             __FUNCTION__,
1650                             vmcs_readl(GUEST_RSP),
1651                             vmcs_readl(GUEST_SS_BASE),
1652                             vmcs_read32(GUEST_SS_LIMIT));
1653                 return;
1654         }
1655
1656         if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1657                                                         X86EMUL_CONTINUE) {
1658                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1659                 return;
1660         }
1661
1662         flags =  vmcs_readl(GUEST_RFLAGS);
1663         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1664         ip =  vmcs_readl(GUEST_RIP);
1665
1666
1667         if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1668             emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1669             emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1670                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1671                 return;
1672         }
1673
1674         vmcs_writel(GUEST_RFLAGS, flags &
1675                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1676         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1677         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1678         vmcs_writel(GUEST_RIP, ent[0]);
1679         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1680 }
1681
1682 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1683 {
1684         if (vcpu->rmode.active) {
1685                 inject_rmode_irq(vcpu, irq);
1686                 return;
1687         }
1688         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1689                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1690 }
1691
1692 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1693 {
1694         int word_index = __ffs(vcpu->irq_summary);
1695         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1696         int irq = word_index * BITS_PER_LONG + bit_index;
1697
1698         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1699         if (!vcpu->irq_pending[word_index])
1700                 clear_bit(word_index, &vcpu->irq_summary);
1701         vmx_inject_irq(vcpu, irq);
1702 }
1703
1704
1705 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1706                                        struct kvm_run *kvm_run)
1707 {
1708         u32 cpu_based_vm_exec_control;
1709
1710         vcpu->interrupt_window_open =
1711                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1712                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1713
1714         if (vcpu->interrupt_window_open &&
1715             vcpu->irq_summary &&
1716             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1717                 /*
1718                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1719                  */
1720                 kvm_do_inject_irq(vcpu);
1721
1722         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1723         if (!vcpu->interrupt_window_open &&
1724             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1725                 /*
1726                  * Interrupts blocked.  Wait for unblock.
1727                  */
1728                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1729         else
1730                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1731         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1732 }
1733
1734 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1735 {
1736         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1737
1738         set_debugreg(dbg->bp[0], 0);
1739         set_debugreg(dbg->bp[1], 1);
1740         set_debugreg(dbg->bp[2], 2);
1741         set_debugreg(dbg->bp[3], 3);
1742
1743         if (dbg->singlestep) {
1744                 unsigned long flags;
1745
1746                 flags = vmcs_readl(GUEST_RFLAGS);
1747                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1748                 vmcs_writel(GUEST_RFLAGS, flags);
1749         }
1750 }
1751
1752 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1753                                   int vec, u32 err_code)
1754 {
1755         if (!vcpu->rmode.active)
1756                 return 0;
1757
1758         /*
1759          * Instruction with address size override prefix opcode 0x67
1760          * Cause the #SS fault with 0 error code in VM86 mode.
1761          */
1762         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1763                 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1764                         return 1;
1765         return 0;
1766 }
1767
1768 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1769 {
1770         u32 intr_info, error_code;
1771         unsigned long cr2, rip;
1772         u32 vect_info;
1773         enum emulation_result er;
1774         int r;
1775
1776         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1777         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1778
1779         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1780                                                 !is_page_fault(intr_info)) {
1781                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1782                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1783         }
1784
1785         if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1786                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1787                 set_bit(irq, vcpu->irq_pending);
1788                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1789         }
1790
1791         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1792                 return 1;  /* already handled by vmx_vcpu_run() */
1793
1794         if (is_no_device(intr_info)) {
1795                 vmx_fpu_activate(vcpu);
1796                 return 1;
1797         }
1798
1799         if (is_invalid_opcode(intr_info)) {
1800                 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
1801                 if (er != EMULATE_DONE)
1802                         vmx_inject_ud(vcpu);
1803
1804                 return 1;
1805         }
1806
1807         error_code = 0;
1808         rip = vmcs_readl(GUEST_RIP);
1809         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1810                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1811         if (is_page_fault(intr_info)) {
1812                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1813
1814                 mutex_lock(&vcpu->kvm->lock);
1815                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1816                 if (r < 0) {
1817                         mutex_unlock(&vcpu->kvm->lock);
1818                         return r;
1819                 }
1820                 if (!r) {
1821                         mutex_unlock(&vcpu->kvm->lock);
1822                         return 1;
1823                 }
1824
1825                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code, 0);
1826                 mutex_unlock(&vcpu->kvm->lock);
1827
1828                 switch (er) {
1829                 case EMULATE_DONE:
1830                         return 1;
1831                 case EMULATE_DO_MMIO:
1832                         ++vcpu->stat.mmio_exits;
1833                         return 0;
1834                  case EMULATE_FAIL:
1835                         kvm_report_emulation_failure(vcpu, "pagetable");
1836                         break;
1837                 default:
1838                         BUG();
1839                 }
1840         }
1841
1842         if (vcpu->rmode.active &&
1843             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1844                                                                 error_code)) {
1845                 if (vcpu->halt_request) {
1846                         vcpu->halt_request = 0;
1847                         return kvm_emulate_halt(vcpu);
1848                 }
1849                 return 1;
1850         }
1851
1852         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1853                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1854                 return 0;
1855         }
1856         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1857         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1858         kvm_run->ex.error_code = error_code;
1859         return 0;
1860 }
1861
1862 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1863                                      struct kvm_run *kvm_run)
1864 {
1865         ++vcpu->stat.irq_exits;
1866         return 1;
1867 }
1868
1869 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1870 {
1871         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1872         return 0;
1873 }
1874
1875 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1876 {
1877         unsigned long exit_qualification;
1878         int size, down, in, string, rep;
1879         unsigned port;
1880
1881         ++vcpu->stat.io_exits;
1882         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1883         string = (exit_qualification & 16) != 0;
1884
1885         if (string) {
1886                 if (emulate_instruction(vcpu,
1887                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1888                         return 0;
1889                 return 1;
1890         }
1891
1892         size = (exit_qualification & 7) + 1;
1893         in = (exit_qualification & 8) != 0;
1894         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1895         rep = (exit_qualification & 32) != 0;
1896         port = exit_qualification >> 16;
1897
1898         return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1899 }
1900
1901 static void
1902 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1903 {
1904         /*
1905          * Patch in the VMCALL instruction:
1906          */
1907         hypercall[0] = 0x0f;
1908         hypercall[1] = 0x01;
1909         hypercall[2] = 0xc1;
1910 }
1911
1912 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1913 {
1914         unsigned long exit_qualification;
1915         int cr;
1916         int reg;
1917
1918         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1919         cr = exit_qualification & 15;
1920         reg = (exit_qualification >> 8) & 15;
1921         switch ((exit_qualification >> 4) & 3) {
1922         case 0: /* mov to cr */
1923                 switch (cr) {
1924                 case 0:
1925                         vcpu_load_rsp_rip(vcpu);
1926                         set_cr0(vcpu, vcpu->regs[reg]);
1927                         skip_emulated_instruction(vcpu);
1928                         return 1;
1929                 case 3:
1930                         vcpu_load_rsp_rip(vcpu);
1931                         set_cr3(vcpu, vcpu->regs[reg]);
1932                         skip_emulated_instruction(vcpu);
1933                         return 1;
1934                 case 4:
1935                         vcpu_load_rsp_rip(vcpu);
1936                         set_cr4(vcpu, vcpu->regs[reg]);
1937                         skip_emulated_instruction(vcpu);
1938                         return 1;
1939                 case 8:
1940                         vcpu_load_rsp_rip(vcpu);
1941                         set_cr8(vcpu, vcpu->regs[reg]);
1942                         skip_emulated_instruction(vcpu);
1943                         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1944                         return 0;
1945                 };
1946                 break;
1947         case 2: /* clts */
1948                 vcpu_load_rsp_rip(vcpu);
1949                 vmx_fpu_deactivate(vcpu);
1950                 vcpu->cr0 &= ~X86_CR0_TS;
1951                 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1952                 vmx_fpu_activate(vcpu);
1953                 skip_emulated_instruction(vcpu);
1954                 return 1;
1955         case 1: /*mov from cr*/
1956                 switch (cr) {
1957                 case 3:
1958                         vcpu_load_rsp_rip(vcpu);
1959                         vcpu->regs[reg] = vcpu->cr3;
1960                         vcpu_put_rsp_rip(vcpu);
1961                         skip_emulated_instruction(vcpu);
1962                         return 1;
1963                 case 8:
1964                         vcpu_load_rsp_rip(vcpu);
1965                         vcpu->regs[reg] = get_cr8(vcpu);
1966                         vcpu_put_rsp_rip(vcpu);
1967                         skip_emulated_instruction(vcpu);
1968                         return 1;
1969                 }
1970                 break;
1971         case 3: /* lmsw */
1972                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1973
1974                 skip_emulated_instruction(vcpu);
1975                 return 1;
1976         default:
1977                 break;
1978         }
1979         kvm_run->exit_reason = 0;
1980         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1981                (int)(exit_qualification >> 4) & 3, cr);
1982         return 0;
1983 }
1984
1985 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1986 {
1987         unsigned long exit_qualification;
1988         unsigned long val;
1989         int dr, reg;
1990
1991         /*
1992          * FIXME: this code assumes the host is debugging the guest.
1993          *        need to deal with guest debugging itself too.
1994          */
1995         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1996         dr = exit_qualification & 7;
1997         reg = (exit_qualification >> 8) & 15;
1998         vcpu_load_rsp_rip(vcpu);
1999         if (exit_qualification & 16) {
2000                 /* mov from dr */
2001                 switch (dr) {
2002                 case 6:
2003                         val = 0xffff0ff0;
2004                         break;
2005                 case 7:
2006                         val = 0x400;
2007                         break;
2008                 default:
2009                         val = 0;
2010                 }
2011                 vcpu->regs[reg] = val;
2012         } else {
2013                 /* mov to dr */
2014         }
2015         vcpu_put_rsp_rip(vcpu);
2016         skip_emulated_instruction(vcpu);
2017         return 1;
2018 }
2019
2020 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2021 {
2022         kvm_emulate_cpuid(vcpu);
2023         return 1;
2024 }
2025
2026 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2027 {
2028         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2029         u64 data;
2030
2031         if (vmx_get_msr(vcpu, ecx, &data)) {
2032                 vmx_inject_gp(vcpu, 0);
2033                 return 1;
2034         }
2035
2036         /* FIXME: handling of bits 32:63 of rax, rdx */
2037         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2038         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2039         skip_emulated_instruction(vcpu);
2040         return 1;
2041 }
2042
2043 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2044 {
2045         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2046         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2047                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2048
2049         if (vmx_set_msr(vcpu, ecx, data) != 0) {
2050                 vmx_inject_gp(vcpu, 0);
2051                 return 1;
2052         }
2053
2054         skip_emulated_instruction(vcpu);
2055         return 1;
2056 }
2057
2058 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2059                                       struct kvm_run *kvm_run)
2060 {
2061         return 1;
2062 }
2063
2064 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2065                                    struct kvm_run *kvm_run)
2066 {
2067         u32 cpu_based_vm_exec_control;
2068
2069         /* clear pending irq */
2070         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2071         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2072         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2073         /*
2074          * If the user space waits to inject interrupts, exit as soon as
2075          * possible
2076          */
2077         if (kvm_run->request_interrupt_window &&
2078             !vcpu->irq_summary) {
2079                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2080                 ++vcpu->stat.irq_window_exits;
2081                 return 0;
2082         }
2083         return 1;
2084 }
2085
2086 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2087 {
2088         skip_emulated_instruction(vcpu);
2089         return kvm_emulate_halt(vcpu);
2090 }
2091
2092 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2093 {
2094         skip_emulated_instruction(vcpu);
2095         kvm_emulate_hypercall(vcpu);
2096         return 1;
2097 }
2098
2099 /*
2100  * The exit handlers return 1 if the exit was handled fully and guest execution
2101  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
2102  * to be done to userspace and return 0.
2103  */
2104 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2105                                       struct kvm_run *kvm_run) = {
2106         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
2107         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
2108         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
2109         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
2110         [EXIT_REASON_CR_ACCESS]               = handle_cr,
2111         [EXIT_REASON_DR_ACCESS]               = handle_dr,
2112         [EXIT_REASON_CPUID]                   = handle_cpuid,
2113         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
2114         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
2115         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
2116         [EXIT_REASON_HLT]                     = handle_halt,
2117         [EXIT_REASON_VMCALL]                  = handle_vmcall,
2118         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold
2119 };
2120
2121 static const int kvm_vmx_max_exit_handlers =
2122         ARRAY_SIZE(kvm_vmx_exit_handlers);
2123
2124 /*
2125  * The guest has exited.  See if we can fix it or if we need userspace
2126  * assistance.
2127  */
2128 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2129 {
2130         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2131         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2132         struct vcpu_vmx *vmx = to_vmx(vcpu);
2133
2134         if (unlikely(vmx->fail)) {
2135                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2136                 kvm_run->fail_entry.hardware_entry_failure_reason
2137                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2138                 return 0;
2139         }
2140
2141         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2142                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2143                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2144                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2145         if (exit_reason < kvm_vmx_max_exit_handlers
2146             && kvm_vmx_exit_handlers[exit_reason])
2147                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2148         else {
2149                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2150                 kvm_run->hw.hardware_exit_reason = exit_reason;
2151         }
2152         return 0;
2153 }
2154
2155 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2156 {
2157 }
2158
2159 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2160 {
2161         int max_irr, tpr;
2162
2163         if (!vm_need_tpr_shadow(vcpu->kvm))
2164                 return;
2165
2166         if (!kvm_lapic_enabled(vcpu) ||
2167             ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2168                 vmcs_write32(TPR_THRESHOLD, 0);
2169                 return;
2170         }
2171
2172         tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2173         vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2174 }
2175
2176 static void enable_irq_window(struct kvm_vcpu *vcpu)
2177 {
2178         u32 cpu_based_vm_exec_control;
2179
2180         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2181         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2182         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2183 }
2184
2185 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2186 {
2187         u32 idtv_info_field, intr_info_field;
2188         int has_ext_irq, interrupt_window_open;
2189         int vector;
2190
2191         kvm_inject_pending_timer_irqs(vcpu);
2192         update_tpr_threshold(vcpu);
2193
2194         has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2195         intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2196         idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2197         if (intr_info_field & INTR_INFO_VALID_MASK) {
2198                 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2199                         /* TODO: fault when IDT_Vectoring */
2200                         printk(KERN_ERR "Fault when IDT_Vectoring\n");
2201                 }
2202                 if (has_ext_irq)
2203                         enable_irq_window(vcpu);
2204                 return;
2205         }
2206         if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2207                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2208                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2209                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2210
2211                 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2212                         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2213                                 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2214                 if (unlikely(has_ext_irq))
2215                         enable_irq_window(vcpu);
2216                 return;
2217         }
2218         if (!has_ext_irq)
2219                 return;
2220         interrupt_window_open =
2221                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2222                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2223         if (interrupt_window_open) {
2224                 vector = kvm_cpu_get_interrupt(vcpu);
2225                 vmx_inject_irq(vcpu, vector);
2226                 kvm_timer_intr_post(vcpu, vector);
2227         } else
2228                 enable_irq_window(vcpu);
2229 }
2230
2231 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2232 {
2233         struct vcpu_vmx *vmx = to_vmx(vcpu);
2234         u32 intr_info;
2235
2236         /*
2237          * Loading guest fpu may have cleared host cr0.ts
2238          */
2239         vmcs_writel(HOST_CR0, read_cr0());
2240
2241         asm (
2242                 /* Store host registers */
2243 #ifdef CONFIG_X86_64
2244                 "push %%rax; push %%rbx; push %%rdx;"
2245                 "push %%rsi; push %%rdi; push %%rbp;"
2246                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
2247                 "push %%r12; push %%r13; push %%r14; push %%r15;"
2248                 "push %%rcx \n\t"
2249                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2250 #else
2251                 "pusha; push %%ecx \n\t"
2252                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2253 #endif
2254                 /* Check if vmlaunch of vmresume is needed */
2255                 "cmp $0, %1 \n\t"
2256                 /* Load guest registers.  Don't clobber flags. */
2257 #ifdef CONFIG_X86_64
2258                 "mov %c[cr2](%3), %%rax \n\t"
2259                 "mov %%rax, %%cr2 \n\t"
2260                 "mov %c[rax](%3), %%rax \n\t"
2261                 "mov %c[rbx](%3), %%rbx \n\t"
2262                 "mov %c[rdx](%3), %%rdx \n\t"
2263                 "mov %c[rsi](%3), %%rsi \n\t"
2264                 "mov %c[rdi](%3), %%rdi \n\t"
2265                 "mov %c[rbp](%3), %%rbp \n\t"
2266                 "mov %c[r8](%3),  %%r8  \n\t"
2267                 "mov %c[r9](%3),  %%r9  \n\t"
2268                 "mov %c[r10](%3), %%r10 \n\t"
2269                 "mov %c[r11](%3), %%r11 \n\t"
2270                 "mov %c[r12](%3), %%r12 \n\t"
2271                 "mov %c[r13](%3), %%r13 \n\t"
2272                 "mov %c[r14](%3), %%r14 \n\t"
2273                 "mov %c[r15](%3), %%r15 \n\t"
2274                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2275 #else
2276                 "mov %c[cr2](%3), %%eax \n\t"
2277                 "mov %%eax,   %%cr2 \n\t"
2278                 "mov %c[rax](%3), %%eax \n\t"
2279                 "mov %c[rbx](%3), %%ebx \n\t"
2280                 "mov %c[rdx](%3), %%edx \n\t"
2281                 "mov %c[rsi](%3), %%esi \n\t"
2282                 "mov %c[rdi](%3), %%edi \n\t"
2283                 "mov %c[rbp](%3), %%ebp \n\t"
2284                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2285 #endif
2286                 /* Enter guest mode */
2287                 "jne .Llaunched \n\t"
2288                 ASM_VMX_VMLAUNCH "\n\t"
2289                 "jmp .Lkvm_vmx_return \n\t"
2290                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2291                 ".Lkvm_vmx_return: "
2292                 /* Save guest registers, load host registers, keep flags */
2293 #ifdef CONFIG_X86_64
2294                 "xchg %3,     (%%rsp) \n\t"
2295                 "mov %%rax, %c[rax](%3) \n\t"
2296                 "mov %%rbx, %c[rbx](%3) \n\t"
2297                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2298                 "mov %%rdx, %c[rdx](%3) \n\t"
2299                 "mov %%rsi, %c[rsi](%3) \n\t"
2300                 "mov %%rdi, %c[rdi](%3) \n\t"
2301                 "mov %%rbp, %c[rbp](%3) \n\t"
2302                 "mov %%r8,  %c[r8](%3) \n\t"
2303                 "mov %%r9,  %c[r9](%3) \n\t"
2304                 "mov %%r10, %c[r10](%3) \n\t"
2305                 "mov %%r11, %c[r11](%3) \n\t"
2306                 "mov %%r12, %c[r12](%3) \n\t"
2307                 "mov %%r13, %c[r13](%3) \n\t"
2308                 "mov %%r14, %c[r14](%3) \n\t"
2309                 "mov %%r15, %c[r15](%3) \n\t"
2310                 "mov %%cr2, %%rax   \n\t"
2311                 "mov %%rax, %c[cr2](%3) \n\t"
2312                 "mov (%%rsp), %3 \n\t"
2313
2314                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
2315                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
2316                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
2317                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
2318 #else
2319                 "xchg %3, (%%esp) \n\t"
2320                 "mov %%eax, %c[rax](%3) \n\t"
2321                 "mov %%ebx, %c[rbx](%3) \n\t"
2322                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2323                 "mov %%edx, %c[rdx](%3) \n\t"
2324                 "mov %%esi, %c[rsi](%3) \n\t"
2325                 "mov %%edi, %c[rdi](%3) \n\t"
2326                 "mov %%ebp, %c[rbp](%3) \n\t"
2327                 "mov %%cr2, %%eax  \n\t"
2328                 "mov %%eax, %c[cr2](%3) \n\t"
2329                 "mov (%%esp), %3 \n\t"
2330
2331                 "pop %%ecx; popa \n\t"
2332 #endif
2333                 "setbe %0 \n\t"
2334               : "=q" (vmx->fail)
2335               : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2336                 "c"(vcpu),
2337                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2338                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2339                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2340                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2341                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2342                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2343                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2344 #ifdef CONFIG_X86_64
2345                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2346                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2347                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2348                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2349                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2350                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2351                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2352                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2353 #endif
2354                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2355               : "cc", "memory" );
2356
2357         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2358
2359         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2360         vmx->launched = 1;
2361
2362         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2363
2364         /* We need to handle NMIs before interrupts are enabled */
2365         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2366                 asm("int $2");
2367 }
2368
2369 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2370                                   unsigned long addr,
2371                                   u32 err_code)
2372 {
2373         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2374
2375         ++vcpu->stat.pf_guest;
2376
2377         if (is_page_fault(vect_info)) {
2378                 printk(KERN_DEBUG "inject_page_fault: "
2379                        "double fault 0x%lx @ 0x%lx\n",
2380                        addr, vmcs_readl(GUEST_RIP));
2381                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2382                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2383                              DF_VECTOR |
2384                              INTR_TYPE_EXCEPTION |
2385                              INTR_INFO_DELIEVER_CODE_MASK |
2386                              INTR_INFO_VALID_MASK);
2387                 return;
2388         }
2389         vcpu->cr2 = addr;
2390         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2391         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2392                      PF_VECTOR |
2393                      INTR_TYPE_EXCEPTION |
2394                      INTR_INFO_DELIEVER_CODE_MASK |
2395                      INTR_INFO_VALID_MASK);
2396
2397 }
2398
2399 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2400 {
2401         struct vcpu_vmx *vmx = to_vmx(vcpu);
2402
2403         if (vmx->vmcs) {
2404                 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2405                 free_vmcs(vmx->vmcs);
2406                 vmx->vmcs = NULL;
2407         }
2408 }
2409
2410 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2411 {
2412         struct vcpu_vmx *vmx = to_vmx(vcpu);
2413
2414         vmx_free_vmcs(vcpu);
2415         kfree(vmx->host_msrs);
2416         kfree(vmx->guest_msrs);
2417         kvm_vcpu_uninit(vcpu);
2418         kmem_cache_free(kvm_vcpu_cache, vmx);
2419 }
2420
2421 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2422 {
2423         int err;
2424         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2425         int cpu;
2426
2427         if (!vmx)
2428                 return ERR_PTR(-ENOMEM);
2429
2430         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2431         if (err)
2432                 goto free_vcpu;
2433
2434         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2435         if (!vmx->guest_msrs) {
2436                 err = -ENOMEM;
2437                 goto uninit_vcpu;
2438         }
2439
2440         vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2441         if (!vmx->host_msrs)
2442                 goto free_guest_msrs;
2443
2444         vmx->vmcs = alloc_vmcs();
2445         if (!vmx->vmcs)
2446                 goto free_msrs;
2447
2448         vmcs_clear(vmx->vmcs);
2449
2450         cpu = get_cpu();
2451         vmx_vcpu_load(&vmx->vcpu, cpu);
2452         err = vmx_vcpu_setup(vmx);
2453         vmx_vcpu_put(&vmx->vcpu);
2454         put_cpu();
2455         if (err)
2456                 goto free_vmcs;
2457
2458         return &vmx->vcpu;
2459
2460 free_vmcs:
2461         free_vmcs(vmx->vmcs);
2462 free_msrs:
2463         kfree(vmx->host_msrs);
2464 free_guest_msrs:
2465         kfree(vmx->guest_msrs);
2466 uninit_vcpu:
2467         kvm_vcpu_uninit(&vmx->vcpu);
2468 free_vcpu:
2469         kmem_cache_free(kvm_vcpu_cache, vmx);
2470         return ERR_PTR(err);
2471 }
2472
2473 static void __init vmx_check_processor_compat(void *rtn)
2474 {
2475         struct vmcs_config vmcs_conf;
2476
2477         *(int *)rtn = 0;
2478         if (setup_vmcs_config(&vmcs_conf) < 0)
2479                 *(int *)rtn = -EIO;
2480         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2481                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2482                                 smp_processor_id());
2483                 *(int *)rtn = -EIO;
2484         }
2485 }
2486
2487 static struct kvm_x86_ops vmx_x86_ops = {
2488         .cpu_has_kvm_support = cpu_has_kvm_support,
2489         .disabled_by_bios = vmx_disabled_by_bios,
2490         .hardware_setup = hardware_setup,
2491         .hardware_unsetup = hardware_unsetup,
2492         .check_processor_compatibility = vmx_check_processor_compat,
2493         .hardware_enable = hardware_enable,
2494         .hardware_disable = hardware_disable,
2495
2496         .vcpu_create = vmx_create_vcpu,
2497         .vcpu_free = vmx_free_vcpu,
2498         .vcpu_reset = vmx_vcpu_reset,
2499
2500         .prepare_guest_switch = vmx_save_host_state,
2501         .vcpu_load = vmx_vcpu_load,
2502         .vcpu_put = vmx_vcpu_put,
2503         .vcpu_decache = vmx_vcpu_decache,
2504
2505         .set_guest_debug = set_guest_debug,
2506         .guest_debug_pre = kvm_guest_debug_pre,
2507         .get_msr = vmx_get_msr,
2508         .set_msr = vmx_set_msr,
2509         .get_segment_base = vmx_get_segment_base,
2510         .get_segment = vmx_get_segment,
2511         .set_segment = vmx_set_segment,
2512         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2513         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2514         .set_cr0 = vmx_set_cr0,
2515         .set_cr3 = vmx_set_cr3,
2516         .set_cr4 = vmx_set_cr4,
2517 #ifdef CONFIG_X86_64
2518         .set_efer = vmx_set_efer,
2519 #endif
2520         .get_idt = vmx_get_idt,
2521         .set_idt = vmx_set_idt,
2522         .get_gdt = vmx_get_gdt,
2523         .set_gdt = vmx_set_gdt,
2524         .cache_regs = vcpu_load_rsp_rip,
2525         .decache_regs = vcpu_put_rsp_rip,
2526         .get_rflags = vmx_get_rflags,
2527         .set_rflags = vmx_set_rflags,
2528
2529         .tlb_flush = vmx_flush_tlb,
2530         .inject_page_fault = vmx_inject_page_fault,
2531
2532         .inject_gp = vmx_inject_gp,
2533
2534         .run = vmx_vcpu_run,
2535         .handle_exit = kvm_handle_exit,
2536         .skip_emulated_instruction = skip_emulated_instruction,
2537         .patch_hypercall = vmx_patch_hypercall,
2538         .get_irq = vmx_get_irq,
2539         .set_irq = vmx_inject_irq,
2540         .inject_pending_irq = vmx_intr_assist,
2541         .inject_pending_vectors = do_interrupt_requests,
2542 };
2543
2544 static int __init vmx_init(void)
2545 {
2546         void *iova;
2547         int r;
2548
2549         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2550         if (!vmx_io_bitmap_a)
2551                 return -ENOMEM;
2552
2553         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2554         if (!vmx_io_bitmap_b) {
2555                 r = -ENOMEM;
2556                 goto out;
2557         }
2558
2559         /*
2560          * Allow direct access to the PC debug port (it is often used for I/O
2561          * delays, but the vmexits simply slow things down).
2562          */
2563         iova = kmap(vmx_io_bitmap_a);
2564         memset(iova, 0xff, PAGE_SIZE);
2565         clear_bit(0x80, iova);
2566         kunmap(vmx_io_bitmap_a);
2567
2568         iova = kmap(vmx_io_bitmap_b);
2569         memset(iova, 0xff, PAGE_SIZE);
2570         kunmap(vmx_io_bitmap_b);
2571
2572         r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2573         if (r)
2574                 goto out1;
2575
2576         if (bypass_guest_pf)
2577                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2578
2579         return 0;
2580
2581 out1:
2582         __free_page(vmx_io_bitmap_b);
2583 out:
2584         __free_page(vmx_io_bitmap_a);
2585         return r;
2586 }
2587
2588 static void __exit vmx_exit(void)
2589 {
2590         __free_page(vmx_io_bitmap_b);
2591         __free_page(vmx_io_bitmap_a);
2592
2593         kvm_exit_x86();
2594 }
2595
2596 module_init(vmx_init)
2597 module_exit(vmx_exit)