]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/vmx.c
KVM: VMX: Handle #SS faults from real mode
[linux-2.6-omap-h63xx.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 static struct page *vmx_io_bitmap_a;
38 static struct page *vmx_io_bitmap_b;
39
40 #ifdef CONFIG_X86_64
41 #define HOST_IS_64 1
42 #else
43 #define HOST_IS_64 0
44 #endif
45
46 static struct vmcs_descriptor {
47         int size;
48         int order;
49         u32 revision_id;
50 } vmcs_descriptor;
51
52 #define VMX_SEGMENT_FIELD(seg)                                  \
53         [VCPU_SREG_##seg] = {                                   \
54                 .selector = GUEST_##seg##_SELECTOR,             \
55                 .base = GUEST_##seg##_BASE,                     \
56                 .limit = GUEST_##seg##_LIMIT,                   \
57                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
58         }
59
60 static struct kvm_vmx_segment_field {
61         unsigned selector;
62         unsigned base;
63         unsigned limit;
64         unsigned ar_bytes;
65 } kvm_vmx_segment_fields[] = {
66         VMX_SEGMENT_FIELD(CS),
67         VMX_SEGMENT_FIELD(DS),
68         VMX_SEGMENT_FIELD(ES),
69         VMX_SEGMENT_FIELD(FS),
70         VMX_SEGMENT_FIELD(GS),
71         VMX_SEGMENT_FIELD(SS),
72         VMX_SEGMENT_FIELD(TR),
73         VMX_SEGMENT_FIELD(LDTR),
74 };
75
76 /*
77  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
78  * away by decrementing the array size.
79  */
80 static const u32 vmx_msr_index[] = {
81 #ifdef CONFIG_X86_64
82         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
83 #endif
84         MSR_EFER, MSR_K6_STAR,
85 };
86 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
87
88 #ifdef CONFIG_X86_64
89 static unsigned msr_offset_kernel_gs_base;
90 #define NR_64BIT_MSRS 4
91 /*
92  * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
93  * mechanism (cpu bug AA24)
94  */
95 #define NR_BAD_MSRS 2
96 #else
97 #define NR_64BIT_MSRS 0
98 #define NR_BAD_MSRS 0
99 #endif
100
101 static inline int is_page_fault(u32 intr_info)
102 {
103         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
104                              INTR_INFO_VALID_MASK)) ==
105                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
106 }
107
108 static inline int is_no_device(u32 intr_info)
109 {
110         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
111                              INTR_INFO_VALID_MASK)) ==
112                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
113 }
114
115 static inline int is_external_interrupt(u32 intr_info)
116 {
117         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
118                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
119 }
120
121 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
122 {
123         int i;
124
125         for (i = 0; i < vcpu->nmsrs; ++i)
126                 if (vcpu->guest_msrs[i].index == msr)
127                         return &vcpu->guest_msrs[i];
128         return NULL;
129 }
130
131 static void vmcs_clear(struct vmcs *vmcs)
132 {
133         u64 phys_addr = __pa(vmcs);
134         u8 error;
135
136         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
137                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
138                       : "cc", "memory");
139         if (error)
140                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
141                        vmcs, phys_addr);
142 }
143
144 static void __vcpu_clear(void *arg)
145 {
146         struct kvm_vcpu *vcpu = arg;
147         int cpu = raw_smp_processor_id();
148
149         if (vcpu->cpu == cpu)
150                 vmcs_clear(vcpu->vmcs);
151         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
152                 per_cpu(current_vmcs, cpu) = NULL;
153 }
154
155 static void vcpu_clear(struct kvm_vcpu *vcpu)
156 {
157         if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
158                 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
159         else
160                 __vcpu_clear(vcpu);
161         vcpu->launched = 0;
162 }
163
164 static unsigned long vmcs_readl(unsigned long field)
165 {
166         unsigned long value;
167
168         asm volatile (ASM_VMX_VMREAD_RDX_RAX
169                       : "=a"(value) : "d"(field) : "cc");
170         return value;
171 }
172
173 static u16 vmcs_read16(unsigned long field)
174 {
175         return vmcs_readl(field);
176 }
177
178 static u32 vmcs_read32(unsigned long field)
179 {
180         return vmcs_readl(field);
181 }
182
183 static u64 vmcs_read64(unsigned long field)
184 {
185 #ifdef CONFIG_X86_64
186         return vmcs_readl(field);
187 #else
188         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
189 #endif
190 }
191
192 static noinline void vmwrite_error(unsigned long field, unsigned long value)
193 {
194         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
195                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
196         dump_stack();
197 }
198
199 static void vmcs_writel(unsigned long field, unsigned long value)
200 {
201         u8 error;
202
203         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
204                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
205         if (unlikely(error))
206                 vmwrite_error(field, value);
207 }
208
209 static void vmcs_write16(unsigned long field, u16 value)
210 {
211         vmcs_writel(field, value);
212 }
213
214 static void vmcs_write32(unsigned long field, u32 value)
215 {
216         vmcs_writel(field, value);
217 }
218
219 static void vmcs_write64(unsigned long field, u64 value)
220 {
221 #ifdef CONFIG_X86_64
222         vmcs_writel(field, value);
223 #else
224         vmcs_writel(field, value);
225         asm volatile ("");
226         vmcs_writel(field+1, value >> 32);
227 #endif
228 }
229
230 static void vmcs_clear_bits(unsigned long field, u32 mask)
231 {
232         vmcs_writel(field, vmcs_readl(field) & ~mask);
233 }
234
235 static void vmcs_set_bits(unsigned long field, u32 mask)
236 {
237         vmcs_writel(field, vmcs_readl(field) | mask);
238 }
239
240 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
241 {
242         u32 eb;
243
244         eb = 1u << PF_VECTOR;
245         if (!vcpu->fpu_active)
246                 eb |= 1u << NM_VECTOR;
247         if (vcpu->guest_debug.enabled)
248                 eb |= 1u << 1;
249         if (vcpu->rmode.active)
250                 eb = ~0;
251         vmcs_write32(EXCEPTION_BITMAP, eb);
252 }
253
254 static void reload_tss(void)
255 {
256 #ifndef CONFIG_X86_64
257
258         /*
259          * VT restores TR but not its size.  Useless.
260          */
261         struct descriptor_table gdt;
262         struct segment_descriptor *descs;
263
264         get_gdt(&gdt);
265         descs = (void *)gdt.base;
266         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
267         load_TR_desc();
268 #endif
269 }
270
271 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
272 {
273         struct vmx_host_state *hs = &vcpu->vmx_host_state;
274
275         if (hs->loaded)
276                 return;
277
278         hs->loaded = 1;
279         /*
280          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
281          * allow segment selectors with cpl > 0 or ti == 1.
282          */
283         hs->ldt_sel = read_ldt();
284         hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
285         hs->fs_sel = read_fs();
286         if (!(hs->fs_sel & 7))
287                 vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
288         else {
289                 vmcs_write16(HOST_FS_SELECTOR, 0);
290                 hs->fs_gs_ldt_reload_needed = 1;
291         }
292         hs->gs_sel = read_gs();
293         if (!(hs->gs_sel & 7))
294                 vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
295         else {
296                 vmcs_write16(HOST_GS_SELECTOR, 0);
297                 hs->fs_gs_ldt_reload_needed = 1;
298         }
299
300 #ifdef CONFIG_X86_64
301         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
302         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
303 #else
304         vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
305         vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
306 #endif
307
308 #ifdef CONFIG_X86_64
309         if (is_long_mode(vcpu)) {
310                 save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
311                 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
312         }
313 #endif
314 }
315
316 static void vmx_load_host_state(struct kvm_vcpu *vcpu)
317 {
318         struct vmx_host_state *hs = &vcpu->vmx_host_state;
319
320         if (!hs->loaded)
321                 return;
322
323         hs->loaded = 0;
324         if (hs->fs_gs_ldt_reload_needed) {
325                 load_ldt(hs->ldt_sel);
326                 load_fs(hs->fs_sel);
327                 /*
328                  * If we have to reload gs, we must take care to
329                  * preserve our gs base.
330                  */
331                 local_irq_disable();
332                 load_gs(hs->gs_sel);
333 #ifdef CONFIG_X86_64
334                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
335 #endif
336                 local_irq_enable();
337
338                 reload_tss();
339         }
340 #ifdef CONFIG_X86_64
341         if (is_long_mode(vcpu)) {
342                 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
343                 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
344         }
345 #endif
346 }
347
348 /*
349  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
350  * vcpu mutex is already taken.
351  */
352 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
353 {
354         u64 phys_addr = __pa(vcpu->vmcs);
355         int cpu;
356
357         cpu = get_cpu();
358
359         if (vcpu->cpu != cpu)
360                 vcpu_clear(vcpu);
361
362         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
363                 u8 error;
364
365                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
366                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
367                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
368                               : "cc");
369                 if (error)
370                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
371                                vcpu->vmcs, phys_addr);
372         }
373
374         if (vcpu->cpu != cpu) {
375                 struct descriptor_table dt;
376                 unsigned long sysenter_esp;
377
378                 vcpu->cpu = cpu;
379                 /*
380                  * Linux uses per-cpu TSS and GDT, so set these when switching
381                  * processors.
382                  */
383                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
384                 get_gdt(&dt);
385                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
386
387                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
388                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
389         }
390 }
391
392 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
393 {
394         vmx_load_host_state(vcpu);
395         kvm_put_guest_fpu(vcpu);
396         put_cpu();
397 }
398
399 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
400 {
401         if (vcpu->fpu_active)
402                 return;
403         vcpu->fpu_active = 1;
404         vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
405         if (vcpu->cr0 & CR0_TS_MASK)
406                 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
407         update_exception_bitmap(vcpu);
408 }
409
410 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
411 {
412         if (!vcpu->fpu_active)
413                 return;
414         vcpu->fpu_active = 0;
415         vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
416         update_exception_bitmap(vcpu);
417 }
418
419 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
420 {
421         vcpu_clear(vcpu);
422 }
423
424 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
425 {
426         return vmcs_readl(GUEST_RFLAGS);
427 }
428
429 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
430 {
431         vmcs_writel(GUEST_RFLAGS, rflags);
432 }
433
434 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
435 {
436         unsigned long rip;
437         u32 interruptibility;
438
439         rip = vmcs_readl(GUEST_RIP);
440         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
441         vmcs_writel(GUEST_RIP, rip);
442
443         /*
444          * We emulated an instruction, so temporary interrupt blocking
445          * should be removed, if set.
446          */
447         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
448         if (interruptibility & 3)
449                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
450                              interruptibility & ~3);
451         vcpu->interrupt_window_open = 1;
452 }
453
454 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
455 {
456         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
457                vmcs_readl(GUEST_RIP));
458         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
459         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
460                      GP_VECTOR |
461                      INTR_TYPE_EXCEPTION |
462                      INTR_INFO_DELIEVER_CODE_MASK |
463                      INTR_INFO_VALID_MASK);
464 }
465
466 /*
467  * Set up the vmcs to automatically save and restore system
468  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
469  * mode, as fiddling with msrs is very expensive.
470  */
471 static void setup_msrs(struct kvm_vcpu *vcpu)
472 {
473         int nr_skip, nr_good_msrs;
474
475         if (is_long_mode(vcpu))
476                 nr_skip = NR_BAD_MSRS;
477         else
478                 nr_skip = NR_64BIT_MSRS;
479         nr_good_msrs = vcpu->nmsrs - nr_skip;
480
481         /*
482          * MSR_K6_STAR is only needed on long mode guests, and only
483          * if efer.sce is enabled.
484          */
485         if (find_msr_entry(vcpu, MSR_K6_STAR)) {
486                 --nr_good_msrs;
487 #ifdef CONFIG_X86_64
488                 if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
489                         ++nr_good_msrs;
490 #endif
491         }
492
493         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
494                     virt_to_phys(vcpu->guest_msrs + nr_skip));
495         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
496                     virt_to_phys(vcpu->guest_msrs + nr_skip));
497         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
498                     virt_to_phys(vcpu->host_msrs + nr_skip));
499         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
500         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
501         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
502 }
503
504 /*
505  * reads and returns guest's timestamp counter "register"
506  * guest_tsc = host_tsc + tsc_offset    -- 21.3
507  */
508 static u64 guest_read_tsc(void)
509 {
510         u64 host_tsc, tsc_offset;
511
512         rdtscll(host_tsc);
513         tsc_offset = vmcs_read64(TSC_OFFSET);
514         return host_tsc + tsc_offset;
515 }
516
517 /*
518  * writes 'guest_tsc' into guest's timestamp counter "register"
519  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
520  */
521 static void guest_write_tsc(u64 guest_tsc)
522 {
523         u64 host_tsc;
524
525         rdtscll(host_tsc);
526         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
527 }
528
529 /*
530  * Reads an msr value (of 'msr_index') into 'pdata'.
531  * Returns 0 on success, non-0 otherwise.
532  * Assumes vcpu_load() was already called.
533  */
534 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
535 {
536         u64 data;
537         struct vmx_msr_entry *msr;
538
539         if (!pdata) {
540                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
541                 return -EINVAL;
542         }
543
544         switch (msr_index) {
545 #ifdef CONFIG_X86_64
546         case MSR_FS_BASE:
547                 data = vmcs_readl(GUEST_FS_BASE);
548                 break;
549         case MSR_GS_BASE:
550                 data = vmcs_readl(GUEST_GS_BASE);
551                 break;
552         case MSR_EFER:
553                 return kvm_get_msr_common(vcpu, msr_index, pdata);
554 #endif
555         case MSR_IA32_TIME_STAMP_COUNTER:
556                 data = guest_read_tsc();
557                 break;
558         case MSR_IA32_SYSENTER_CS:
559                 data = vmcs_read32(GUEST_SYSENTER_CS);
560                 break;
561         case MSR_IA32_SYSENTER_EIP:
562                 data = vmcs_readl(GUEST_SYSENTER_EIP);
563                 break;
564         case MSR_IA32_SYSENTER_ESP:
565                 data = vmcs_readl(GUEST_SYSENTER_ESP);
566                 break;
567         default:
568                 msr = find_msr_entry(vcpu, msr_index);
569                 if (msr) {
570                         data = msr->data;
571                         break;
572                 }
573                 return kvm_get_msr_common(vcpu, msr_index, pdata);
574         }
575
576         *pdata = data;
577         return 0;
578 }
579
580 /*
581  * Writes msr value into into the appropriate "register".
582  * Returns 0 on success, non-0 otherwise.
583  * Assumes vcpu_load() was already called.
584  */
585 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
586 {
587         struct vmx_msr_entry *msr;
588         switch (msr_index) {
589 #ifdef CONFIG_X86_64
590         case MSR_EFER:
591                 return kvm_set_msr_common(vcpu, msr_index, data);
592         case MSR_FS_BASE:
593                 vmcs_writel(GUEST_FS_BASE, data);
594                 break;
595         case MSR_GS_BASE:
596                 vmcs_writel(GUEST_GS_BASE, data);
597                 break;
598         case MSR_LSTAR:
599         case MSR_SYSCALL_MASK:
600                 msr = find_msr_entry(vcpu, msr_index);
601                 if (msr)
602                         msr->data = data;
603                 if (vcpu->vmx_host_state.loaded)
604                         load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
605                 break;
606 #endif
607         case MSR_IA32_SYSENTER_CS:
608                 vmcs_write32(GUEST_SYSENTER_CS, data);
609                 break;
610         case MSR_IA32_SYSENTER_EIP:
611                 vmcs_writel(GUEST_SYSENTER_EIP, data);
612                 break;
613         case MSR_IA32_SYSENTER_ESP:
614                 vmcs_writel(GUEST_SYSENTER_ESP, data);
615                 break;
616         case MSR_IA32_TIME_STAMP_COUNTER:
617                 guest_write_tsc(data);
618                 break;
619         default:
620                 msr = find_msr_entry(vcpu, msr_index);
621                 if (msr) {
622                         msr->data = data;
623                         break;
624                 }
625                 return kvm_set_msr_common(vcpu, msr_index, data);
626                 msr->data = data;
627                 break;
628         }
629
630         return 0;
631 }
632
633 /*
634  * Sync the rsp and rip registers into the vcpu structure.  This allows
635  * registers to be accessed by indexing vcpu->regs.
636  */
637 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
638 {
639         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
640         vcpu->rip = vmcs_readl(GUEST_RIP);
641 }
642
643 /*
644  * Syncs rsp and rip back into the vmcs.  Should be called after possible
645  * modification.
646  */
647 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
648 {
649         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
650         vmcs_writel(GUEST_RIP, vcpu->rip);
651 }
652
653 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
654 {
655         unsigned long dr7 = 0x400;
656         int old_singlestep;
657
658         old_singlestep = vcpu->guest_debug.singlestep;
659
660         vcpu->guest_debug.enabled = dbg->enabled;
661         if (vcpu->guest_debug.enabled) {
662                 int i;
663
664                 dr7 |= 0x200;  /* exact */
665                 for (i = 0; i < 4; ++i) {
666                         if (!dbg->breakpoints[i].enabled)
667                                 continue;
668                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
669                         dr7 |= 2 << (i*2);    /* global enable */
670                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
671                 }
672
673                 vcpu->guest_debug.singlestep = dbg->singlestep;
674         } else
675                 vcpu->guest_debug.singlestep = 0;
676
677         if (old_singlestep && !vcpu->guest_debug.singlestep) {
678                 unsigned long flags;
679
680                 flags = vmcs_readl(GUEST_RFLAGS);
681                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
682                 vmcs_writel(GUEST_RFLAGS, flags);
683         }
684
685         update_exception_bitmap(vcpu);
686         vmcs_writel(GUEST_DR7, dr7);
687
688         return 0;
689 }
690
691 static __init int cpu_has_kvm_support(void)
692 {
693         unsigned long ecx = cpuid_ecx(1);
694         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
695 }
696
697 static __init int vmx_disabled_by_bios(void)
698 {
699         u64 msr;
700
701         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
702         return (msr & 5) == 1; /* locked but not enabled */
703 }
704
705 static void hardware_enable(void *garbage)
706 {
707         int cpu = raw_smp_processor_id();
708         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
709         u64 old;
710
711         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
712         if ((old & 5) != 5)
713                 /* enable and lock */
714                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
715         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
716         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
717                       : "memory", "cc");
718 }
719
720 static void hardware_disable(void *garbage)
721 {
722         asm volatile (ASM_VMX_VMXOFF : : : "cc");
723 }
724
725 static __init void setup_vmcs_descriptor(void)
726 {
727         u32 vmx_msr_low, vmx_msr_high;
728
729         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
730         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
731         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
732         vmcs_descriptor.revision_id = vmx_msr_low;
733 }
734
735 static struct vmcs *alloc_vmcs_cpu(int cpu)
736 {
737         int node = cpu_to_node(cpu);
738         struct page *pages;
739         struct vmcs *vmcs;
740
741         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
742         if (!pages)
743                 return NULL;
744         vmcs = page_address(pages);
745         memset(vmcs, 0, vmcs_descriptor.size);
746         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
747         return vmcs;
748 }
749
750 static struct vmcs *alloc_vmcs(void)
751 {
752         return alloc_vmcs_cpu(raw_smp_processor_id());
753 }
754
755 static void free_vmcs(struct vmcs *vmcs)
756 {
757         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
758 }
759
760 static void free_kvm_area(void)
761 {
762         int cpu;
763
764         for_each_online_cpu(cpu)
765                 free_vmcs(per_cpu(vmxarea, cpu));
766 }
767
768 extern struct vmcs *alloc_vmcs_cpu(int cpu);
769
770 static __init int alloc_kvm_area(void)
771 {
772         int cpu;
773
774         for_each_online_cpu(cpu) {
775                 struct vmcs *vmcs;
776
777                 vmcs = alloc_vmcs_cpu(cpu);
778                 if (!vmcs) {
779                         free_kvm_area();
780                         return -ENOMEM;
781                 }
782
783                 per_cpu(vmxarea, cpu) = vmcs;
784         }
785         return 0;
786 }
787
788 static __init int hardware_setup(void)
789 {
790         setup_vmcs_descriptor();
791         return alloc_kvm_area();
792 }
793
794 static __exit void hardware_unsetup(void)
795 {
796         free_kvm_area();
797 }
798
799 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
800 {
801         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
802
803         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
804                 vmcs_write16(sf->selector, save->selector);
805                 vmcs_writel(sf->base, save->base);
806                 vmcs_write32(sf->limit, save->limit);
807                 vmcs_write32(sf->ar_bytes, save->ar);
808         } else {
809                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
810                         << AR_DPL_SHIFT;
811                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
812         }
813 }
814
815 static void enter_pmode(struct kvm_vcpu *vcpu)
816 {
817         unsigned long flags;
818
819         vcpu->rmode.active = 0;
820
821         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
822         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
823         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
824
825         flags = vmcs_readl(GUEST_RFLAGS);
826         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
827         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
828         vmcs_writel(GUEST_RFLAGS, flags);
829
830         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
831                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
832
833         update_exception_bitmap(vcpu);
834
835         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
836         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
837         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
838         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
839
840         vmcs_write16(GUEST_SS_SELECTOR, 0);
841         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
842
843         vmcs_write16(GUEST_CS_SELECTOR,
844                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
845         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
846 }
847
848 static int rmode_tss_base(struct kvm* kvm)
849 {
850         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
851         return base_gfn << PAGE_SHIFT;
852 }
853
854 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
855 {
856         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
857
858         save->selector = vmcs_read16(sf->selector);
859         save->base = vmcs_readl(sf->base);
860         save->limit = vmcs_read32(sf->limit);
861         save->ar = vmcs_read32(sf->ar_bytes);
862         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
863         vmcs_write32(sf->limit, 0xffff);
864         vmcs_write32(sf->ar_bytes, 0xf3);
865 }
866
867 static void enter_rmode(struct kvm_vcpu *vcpu)
868 {
869         unsigned long flags;
870
871         vcpu->rmode.active = 1;
872
873         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
874         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
875
876         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
877         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
878
879         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
880         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
881
882         flags = vmcs_readl(GUEST_RFLAGS);
883         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
884
885         flags |= IOPL_MASK | X86_EFLAGS_VM;
886
887         vmcs_writel(GUEST_RFLAGS, flags);
888         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
889         update_exception_bitmap(vcpu);
890
891         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
892         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
893         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
894
895         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
896         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
897         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
898                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
899         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
900
901         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
902         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
903         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
904         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
905 }
906
907 #ifdef CONFIG_X86_64
908
909 static void enter_lmode(struct kvm_vcpu *vcpu)
910 {
911         u32 guest_tr_ar;
912
913         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
914         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
915                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
916                        __FUNCTION__);
917                 vmcs_write32(GUEST_TR_AR_BYTES,
918                              (guest_tr_ar & ~AR_TYPE_MASK)
919                              | AR_TYPE_BUSY_64_TSS);
920         }
921
922         vcpu->shadow_efer |= EFER_LMA;
923
924         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
925         vmcs_write32(VM_ENTRY_CONTROLS,
926                      vmcs_read32(VM_ENTRY_CONTROLS)
927                      | VM_ENTRY_CONTROLS_IA32E_MASK);
928 }
929
930 static void exit_lmode(struct kvm_vcpu *vcpu)
931 {
932         vcpu->shadow_efer &= ~EFER_LMA;
933
934         vmcs_write32(VM_ENTRY_CONTROLS,
935                      vmcs_read32(VM_ENTRY_CONTROLS)
936                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
937 }
938
939 #endif
940
941 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
942 {
943         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
944         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
945 }
946
947 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
948 {
949         vmx_fpu_deactivate(vcpu);
950
951         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
952                 enter_pmode(vcpu);
953
954         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
955                 enter_rmode(vcpu);
956
957 #ifdef CONFIG_X86_64
958         if (vcpu->shadow_efer & EFER_LME) {
959                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
960                         enter_lmode(vcpu);
961                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
962                         exit_lmode(vcpu);
963         }
964 #endif
965
966         vmcs_writel(CR0_READ_SHADOW, cr0);
967         vmcs_writel(GUEST_CR0,
968                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
969         vcpu->cr0 = cr0;
970
971         if (!(cr0 & CR0_TS_MASK) || !(cr0 & CR0_PE_MASK))
972                 vmx_fpu_activate(vcpu);
973 }
974
975 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
976 {
977         vmcs_writel(GUEST_CR3, cr3);
978         if (vcpu->cr0 & CR0_PE_MASK)
979                 vmx_fpu_deactivate(vcpu);
980 }
981
982 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
983 {
984         vmcs_writel(CR4_READ_SHADOW, cr4);
985         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
986                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
987         vcpu->cr4 = cr4;
988 }
989
990 #ifdef CONFIG_X86_64
991
992 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
993 {
994         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
995
996         vcpu->shadow_efer = efer;
997         if (efer & EFER_LMA) {
998                 vmcs_write32(VM_ENTRY_CONTROLS,
999                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1000                                      VM_ENTRY_CONTROLS_IA32E_MASK);
1001                 msr->data = efer;
1002
1003         } else {
1004                 vmcs_write32(VM_ENTRY_CONTROLS,
1005                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1006                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
1007
1008                 msr->data = efer & ~EFER_LME;
1009         }
1010         setup_msrs(vcpu);
1011 }
1012
1013 #endif
1014
1015 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1016 {
1017         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1018
1019         return vmcs_readl(sf->base);
1020 }
1021
1022 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1023                             struct kvm_segment *var, int seg)
1024 {
1025         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1026         u32 ar;
1027
1028         var->base = vmcs_readl(sf->base);
1029         var->limit = vmcs_read32(sf->limit);
1030         var->selector = vmcs_read16(sf->selector);
1031         ar = vmcs_read32(sf->ar_bytes);
1032         if (ar & AR_UNUSABLE_MASK)
1033                 ar = 0;
1034         var->type = ar & 15;
1035         var->s = (ar >> 4) & 1;
1036         var->dpl = (ar >> 5) & 3;
1037         var->present = (ar >> 7) & 1;
1038         var->avl = (ar >> 12) & 1;
1039         var->l = (ar >> 13) & 1;
1040         var->db = (ar >> 14) & 1;
1041         var->g = (ar >> 15) & 1;
1042         var->unusable = (ar >> 16) & 1;
1043 }
1044
1045 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1046 {
1047         u32 ar;
1048
1049         if (var->unusable)
1050                 ar = 1 << 16;
1051         else {
1052                 ar = var->type & 15;
1053                 ar |= (var->s & 1) << 4;
1054                 ar |= (var->dpl & 3) << 5;
1055                 ar |= (var->present & 1) << 7;
1056                 ar |= (var->avl & 1) << 12;
1057                 ar |= (var->l & 1) << 13;
1058                 ar |= (var->db & 1) << 14;
1059                 ar |= (var->g & 1) << 15;
1060         }
1061         if (ar == 0) /* a 0 value means unusable */
1062                 ar = AR_UNUSABLE_MASK;
1063
1064         return ar;
1065 }
1066
1067 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1068                             struct kvm_segment *var, int seg)
1069 {
1070         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1071         u32 ar;
1072
1073         if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1074                 vcpu->rmode.tr.selector = var->selector;
1075                 vcpu->rmode.tr.base = var->base;
1076                 vcpu->rmode.tr.limit = var->limit;
1077                 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1078                 return;
1079         }
1080         vmcs_writel(sf->base, var->base);
1081         vmcs_write32(sf->limit, var->limit);
1082         vmcs_write16(sf->selector, var->selector);
1083         if (vcpu->rmode.active && var->s) {
1084                 /*
1085                  * Hack real-mode segments into vm86 compatibility.
1086                  */
1087                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1088                         vmcs_writel(sf->base, 0xf0000);
1089                 ar = 0xf3;
1090         } else
1091                 ar = vmx_segment_access_rights(var);
1092         vmcs_write32(sf->ar_bytes, ar);
1093 }
1094
1095 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1096 {
1097         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1098
1099         *db = (ar >> 14) & 1;
1100         *l = (ar >> 13) & 1;
1101 }
1102
1103 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1104 {
1105         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1106         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1107 }
1108
1109 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1110 {
1111         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1112         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1113 }
1114
1115 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1116 {
1117         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1118         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1119 }
1120
1121 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1122 {
1123         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1124         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1125 }
1126
1127 static int init_rmode_tss(struct kvm* kvm)
1128 {
1129         struct page *p1, *p2, *p3;
1130         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1131         char *page;
1132
1133         p1 = gfn_to_page(kvm, fn++);
1134         p2 = gfn_to_page(kvm, fn++);
1135         p3 = gfn_to_page(kvm, fn);
1136
1137         if (!p1 || !p2 || !p3) {
1138                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1139                 return 0;
1140         }
1141
1142         page = kmap_atomic(p1, KM_USER0);
1143         memset(page, 0, PAGE_SIZE);
1144         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1145         kunmap_atomic(page, KM_USER0);
1146
1147         page = kmap_atomic(p2, KM_USER0);
1148         memset(page, 0, PAGE_SIZE);
1149         kunmap_atomic(page, KM_USER0);
1150
1151         page = kmap_atomic(p3, KM_USER0);
1152         memset(page, 0, PAGE_SIZE);
1153         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1154         kunmap_atomic(page, KM_USER0);
1155
1156         return 1;
1157 }
1158
1159 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1160 {
1161         u32 msr_high, msr_low;
1162
1163         rdmsr(msr, msr_low, msr_high);
1164
1165         val &= msr_high;
1166         val |= msr_low;
1167         vmcs_write32(vmcs_field, val);
1168 }
1169
1170 static void seg_setup(int seg)
1171 {
1172         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1173
1174         vmcs_write16(sf->selector, 0);
1175         vmcs_writel(sf->base, 0);
1176         vmcs_write32(sf->limit, 0xffff);
1177         vmcs_write32(sf->ar_bytes, 0x93);
1178 }
1179
1180 /*
1181  * Sets up the vmcs for emulated real mode.
1182  */
1183 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1184 {
1185         u32 host_sysenter_cs;
1186         u32 junk;
1187         unsigned long a;
1188         struct descriptor_table dt;
1189         int i;
1190         int ret = 0;
1191         unsigned long kvm_vmx_return;
1192
1193         if (!init_rmode_tss(vcpu->kvm)) {
1194                 ret = -ENOMEM;
1195                 goto out;
1196         }
1197
1198         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1199         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1200         vcpu->cr8 = 0;
1201         vcpu->apic_base = 0xfee00000 |
1202                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1203                         MSR_IA32_APICBASE_ENABLE;
1204
1205         fx_init(vcpu);
1206
1207         /*
1208          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1209          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1210          */
1211         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1212         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1213         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1214         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1215
1216         seg_setup(VCPU_SREG_DS);
1217         seg_setup(VCPU_SREG_ES);
1218         seg_setup(VCPU_SREG_FS);
1219         seg_setup(VCPU_SREG_GS);
1220         seg_setup(VCPU_SREG_SS);
1221
1222         vmcs_write16(GUEST_TR_SELECTOR, 0);
1223         vmcs_writel(GUEST_TR_BASE, 0);
1224         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1225         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1226
1227         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1228         vmcs_writel(GUEST_LDTR_BASE, 0);
1229         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1230         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1231
1232         vmcs_write32(GUEST_SYSENTER_CS, 0);
1233         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1234         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1235
1236         vmcs_writel(GUEST_RFLAGS, 0x02);
1237         vmcs_writel(GUEST_RIP, 0xfff0);
1238         vmcs_writel(GUEST_RSP, 0);
1239
1240         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1241         vmcs_writel(GUEST_DR7, 0x400);
1242
1243         vmcs_writel(GUEST_GDTR_BASE, 0);
1244         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1245
1246         vmcs_writel(GUEST_IDTR_BASE, 0);
1247         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1248
1249         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1250         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1251         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1252
1253         /* I/O */
1254         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1255         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1256
1257         guest_write_tsc(0);
1258
1259         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1260
1261         /* Special registers */
1262         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1263
1264         /* Control */
1265         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1266                                PIN_BASED_VM_EXEC_CONTROL,
1267                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1268                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1269                         );
1270         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1271                                CPU_BASED_VM_EXEC_CONTROL,
1272                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1273                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1274                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1275                                | CPU_BASED_ACTIVATE_IO_BITMAP  /* 20.6.2 */
1276                                | CPU_BASED_MOV_DR_EXITING
1277                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1278                         );
1279
1280         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1281         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1282         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1283
1284         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1285         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1286         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1287
1288         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1289         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1290         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1291         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1292         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1293         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1294 #ifdef CONFIG_X86_64
1295         rdmsrl(MSR_FS_BASE, a);
1296         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1297         rdmsrl(MSR_GS_BASE, a);
1298         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1299 #else
1300         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1301         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1302 #endif
1303
1304         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1305
1306         get_idt(&dt);
1307         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1308
1309         asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1310         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1311
1312         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1313         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1314         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1315         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1316         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1317         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1318
1319         for (i = 0; i < NR_VMX_MSR; ++i) {
1320                 u32 index = vmx_msr_index[i];
1321                 u32 data_low, data_high;
1322                 u64 data;
1323                 int j = vcpu->nmsrs;
1324
1325                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1326                         continue;
1327                 if (wrmsr_safe(index, data_low, data_high) < 0)
1328                         continue;
1329                 data = data_low | ((u64)data_high << 32);
1330                 vcpu->host_msrs[j].index = index;
1331                 vcpu->host_msrs[j].reserved = 0;
1332                 vcpu->host_msrs[j].data = data;
1333                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1334 #ifdef CONFIG_X86_64
1335                 if (index == MSR_KERNEL_GS_BASE)
1336                         msr_offset_kernel_gs_base = j;
1337 #endif
1338                 ++vcpu->nmsrs;
1339         }
1340
1341         setup_msrs(vcpu);
1342
1343         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1344                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1345
1346         /* 22.2.1, 20.8.1 */
1347         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1348                                VM_ENTRY_CONTROLS, 0);
1349         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1350
1351 #ifdef CONFIG_X86_64
1352         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1353         vmcs_writel(TPR_THRESHOLD, 0);
1354 #endif
1355
1356         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1357         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1358
1359         vcpu->cr0 = 0x60000010;
1360         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1361         vmx_set_cr4(vcpu, 0);
1362 #ifdef CONFIG_X86_64
1363         vmx_set_efer(vcpu, 0);
1364 #endif
1365         vmx_fpu_activate(vcpu);
1366         update_exception_bitmap(vcpu);
1367
1368         return 0;
1369
1370 out:
1371         return ret;
1372 }
1373
1374 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1375 {
1376         u16 ent[2];
1377         u16 cs;
1378         u16 ip;
1379         unsigned long flags;
1380         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1381         u16 sp =  vmcs_readl(GUEST_RSP);
1382         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1383
1384         if (sp > ss_limit || sp < 6 ) {
1385                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1386                             __FUNCTION__,
1387                             vmcs_readl(GUEST_RSP),
1388                             vmcs_readl(GUEST_SS_BASE),
1389                             vmcs_read32(GUEST_SS_LIMIT));
1390                 return;
1391         }
1392
1393         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1394                                                                 sizeof(ent)) {
1395                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1396                 return;
1397         }
1398
1399         flags =  vmcs_readl(GUEST_RFLAGS);
1400         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1401         ip =  vmcs_readl(GUEST_RIP);
1402
1403
1404         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1405             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1406             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1407                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1408                 return;
1409         }
1410
1411         vmcs_writel(GUEST_RFLAGS, flags &
1412                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1413         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1414         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1415         vmcs_writel(GUEST_RIP, ent[0]);
1416         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1417 }
1418
1419 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1420 {
1421         int word_index = __ffs(vcpu->irq_summary);
1422         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1423         int irq = word_index * BITS_PER_LONG + bit_index;
1424
1425         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1426         if (!vcpu->irq_pending[word_index])
1427                 clear_bit(word_index, &vcpu->irq_summary);
1428
1429         if (vcpu->rmode.active) {
1430                 inject_rmode_irq(vcpu, irq);
1431                 return;
1432         }
1433         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1434                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1435 }
1436
1437
1438 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1439                                        struct kvm_run *kvm_run)
1440 {
1441         u32 cpu_based_vm_exec_control;
1442
1443         vcpu->interrupt_window_open =
1444                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1445                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1446
1447         if (vcpu->interrupt_window_open &&
1448             vcpu->irq_summary &&
1449             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1450                 /*
1451                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1452                  */
1453                 kvm_do_inject_irq(vcpu);
1454
1455         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1456         if (!vcpu->interrupt_window_open &&
1457             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1458                 /*
1459                  * Interrupts blocked.  Wait for unblock.
1460                  */
1461                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1462         else
1463                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1464         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1465 }
1466
1467 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1468 {
1469         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1470
1471         set_debugreg(dbg->bp[0], 0);
1472         set_debugreg(dbg->bp[1], 1);
1473         set_debugreg(dbg->bp[2], 2);
1474         set_debugreg(dbg->bp[3], 3);
1475
1476         if (dbg->singlestep) {
1477                 unsigned long flags;
1478
1479                 flags = vmcs_readl(GUEST_RFLAGS);
1480                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1481                 vmcs_writel(GUEST_RFLAGS, flags);
1482         }
1483 }
1484
1485 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1486                                   int vec, u32 err_code)
1487 {
1488         if (!vcpu->rmode.active)
1489                 return 0;
1490
1491         /*
1492          * Instruction with address size override prefix opcode 0x67
1493          * Cause the #SS fault with 0 error code in VM86 mode.
1494          */
1495         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1496                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1497                         return 1;
1498         return 0;
1499 }
1500
1501 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1502 {
1503         u32 intr_info, error_code;
1504         unsigned long cr2, rip;
1505         u32 vect_info;
1506         enum emulation_result er;
1507         int r;
1508
1509         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1510         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1511
1512         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1513                                                 !is_page_fault(intr_info)) {
1514                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1515                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1516         }
1517
1518         if (is_external_interrupt(vect_info)) {
1519                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1520                 set_bit(irq, vcpu->irq_pending);
1521                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1522         }
1523
1524         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1525                 asm ("int $2");
1526                 return 1;
1527         }
1528
1529         if (is_no_device(intr_info)) {
1530                 vmx_fpu_activate(vcpu);
1531                 return 1;
1532         }
1533
1534         error_code = 0;
1535         rip = vmcs_readl(GUEST_RIP);
1536         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1537                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1538         if (is_page_fault(intr_info)) {
1539                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1540
1541                 spin_lock(&vcpu->kvm->lock);
1542                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1543                 if (r < 0) {
1544                         spin_unlock(&vcpu->kvm->lock);
1545                         return r;
1546                 }
1547                 if (!r) {
1548                         spin_unlock(&vcpu->kvm->lock);
1549                         return 1;
1550                 }
1551
1552                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1553                 spin_unlock(&vcpu->kvm->lock);
1554
1555                 switch (er) {
1556                 case EMULATE_DONE:
1557                         return 1;
1558                 case EMULATE_DO_MMIO:
1559                         ++vcpu->stat.mmio_exits;
1560                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1561                         return 0;
1562                  case EMULATE_FAIL:
1563                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1564                         break;
1565                 default:
1566                         BUG();
1567                 }
1568         }
1569
1570         if (vcpu->rmode.active &&
1571             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1572                                                                 error_code))
1573                 return 1;
1574
1575         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1576                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1577                 return 0;
1578         }
1579         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1580         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1581         kvm_run->ex.error_code = error_code;
1582         return 0;
1583 }
1584
1585 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1586                                      struct kvm_run *kvm_run)
1587 {
1588         ++vcpu->stat.irq_exits;
1589         return 1;
1590 }
1591
1592 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1593 {
1594         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1595         return 0;
1596 }
1597
1598 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1599 {
1600         u64 inst;
1601         gva_t rip;
1602         int countr_size;
1603         int i, n;
1604
1605         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1606                 countr_size = 2;
1607         } else {
1608                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1609
1610                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1611                               (cs_ar & AR_DB_MASK) ? 4: 2;
1612         }
1613
1614         rip =  vmcs_readl(GUEST_RIP);
1615         if (countr_size != 8)
1616                 rip += vmcs_readl(GUEST_CS_BASE);
1617
1618         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1619
1620         for (i = 0; i < n; i++) {
1621                 switch (((u8*)&inst)[i]) {
1622                 case 0xf0:
1623                 case 0xf2:
1624                 case 0xf3:
1625                 case 0x2e:
1626                 case 0x36:
1627                 case 0x3e:
1628                 case 0x26:
1629                 case 0x64:
1630                 case 0x65:
1631                 case 0x66:
1632                         break;
1633                 case 0x67:
1634                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1635                 default:
1636                         goto done;
1637                 }
1638         }
1639         return 0;
1640 done:
1641         countr_size *= 8;
1642         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1643         //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1644         return 1;
1645 }
1646
1647 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1648 {
1649         u64 exit_qualification;
1650         int size, down, in, string, rep;
1651         unsigned port;
1652         unsigned long count;
1653         gva_t address;
1654
1655         ++vcpu->stat.io_exits;
1656         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1657         in = (exit_qualification & 8) != 0;
1658         size = (exit_qualification & 7) + 1;
1659         string = (exit_qualification & 16) != 0;
1660         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1661         count = 1;
1662         rep = (exit_qualification & 32) != 0;
1663         port = exit_qualification >> 16;
1664         address = 0;
1665         if (string) {
1666                 if (rep && !get_io_count(vcpu, &count))
1667                         return 1;
1668                 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1669         }
1670         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1671                              address, rep, port);
1672 }
1673
1674 static void
1675 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1676 {
1677         /*
1678          * Patch in the VMCALL instruction:
1679          */
1680         hypercall[0] = 0x0f;
1681         hypercall[1] = 0x01;
1682         hypercall[2] = 0xc1;
1683         hypercall[3] = 0xc3;
1684 }
1685
1686 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1687 {
1688         u64 exit_qualification;
1689         int cr;
1690         int reg;
1691
1692         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1693         cr = exit_qualification & 15;
1694         reg = (exit_qualification >> 8) & 15;
1695         switch ((exit_qualification >> 4) & 3) {
1696         case 0: /* mov to cr */
1697                 switch (cr) {
1698                 case 0:
1699                         vcpu_load_rsp_rip(vcpu);
1700                         set_cr0(vcpu, vcpu->regs[reg]);
1701                         skip_emulated_instruction(vcpu);
1702                         return 1;
1703                 case 3:
1704                         vcpu_load_rsp_rip(vcpu);
1705                         set_cr3(vcpu, vcpu->regs[reg]);
1706                         skip_emulated_instruction(vcpu);
1707                         return 1;
1708                 case 4:
1709                         vcpu_load_rsp_rip(vcpu);
1710                         set_cr4(vcpu, vcpu->regs[reg]);
1711                         skip_emulated_instruction(vcpu);
1712                         return 1;
1713                 case 8:
1714                         vcpu_load_rsp_rip(vcpu);
1715                         set_cr8(vcpu, vcpu->regs[reg]);
1716                         skip_emulated_instruction(vcpu);
1717                         return 1;
1718                 };
1719                 break;
1720         case 2: /* clts */
1721                 vcpu_load_rsp_rip(vcpu);
1722                 vmx_fpu_deactivate(vcpu);
1723                 vcpu->cr0 &= ~CR0_TS_MASK;
1724                 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1725                 vmx_fpu_activate(vcpu);
1726                 skip_emulated_instruction(vcpu);
1727                 return 1;
1728         case 1: /*mov from cr*/
1729                 switch (cr) {
1730                 case 3:
1731                         vcpu_load_rsp_rip(vcpu);
1732                         vcpu->regs[reg] = vcpu->cr3;
1733                         vcpu_put_rsp_rip(vcpu);
1734                         skip_emulated_instruction(vcpu);
1735                         return 1;
1736                 case 8:
1737                         vcpu_load_rsp_rip(vcpu);
1738                         vcpu->regs[reg] = vcpu->cr8;
1739                         vcpu_put_rsp_rip(vcpu);
1740                         skip_emulated_instruction(vcpu);
1741                         return 1;
1742                 }
1743                 break;
1744         case 3: /* lmsw */
1745                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1746
1747                 skip_emulated_instruction(vcpu);
1748                 return 1;
1749         default:
1750                 break;
1751         }
1752         kvm_run->exit_reason = 0;
1753         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1754                (int)(exit_qualification >> 4) & 3, cr);
1755         return 0;
1756 }
1757
1758 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1759 {
1760         u64 exit_qualification;
1761         unsigned long val;
1762         int dr, reg;
1763
1764         /*
1765          * FIXME: this code assumes the host is debugging the guest.
1766          *        need to deal with guest debugging itself too.
1767          */
1768         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1769         dr = exit_qualification & 7;
1770         reg = (exit_qualification >> 8) & 15;
1771         vcpu_load_rsp_rip(vcpu);
1772         if (exit_qualification & 16) {
1773                 /* mov from dr */
1774                 switch (dr) {
1775                 case 6:
1776                         val = 0xffff0ff0;
1777                         break;
1778                 case 7:
1779                         val = 0x400;
1780                         break;
1781                 default:
1782                         val = 0;
1783                 }
1784                 vcpu->regs[reg] = val;
1785         } else {
1786                 /* mov to dr */
1787         }
1788         vcpu_put_rsp_rip(vcpu);
1789         skip_emulated_instruction(vcpu);
1790         return 1;
1791 }
1792
1793 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1794 {
1795         kvm_emulate_cpuid(vcpu);
1796         return 1;
1797 }
1798
1799 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1800 {
1801         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1802         u64 data;
1803
1804         if (vmx_get_msr(vcpu, ecx, &data)) {
1805                 vmx_inject_gp(vcpu, 0);
1806                 return 1;
1807         }
1808
1809         /* FIXME: handling of bits 32:63 of rax, rdx */
1810         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1811         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1812         skip_emulated_instruction(vcpu);
1813         return 1;
1814 }
1815
1816 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1817 {
1818         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1819         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1820                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1821
1822         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1823                 vmx_inject_gp(vcpu, 0);
1824                 return 1;
1825         }
1826
1827         skip_emulated_instruction(vcpu);
1828         return 1;
1829 }
1830
1831 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1832                               struct kvm_run *kvm_run)
1833 {
1834         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1835         kvm_run->cr8 = vcpu->cr8;
1836         kvm_run->apic_base = vcpu->apic_base;
1837         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1838                                                   vcpu->irq_summary == 0);
1839 }
1840
1841 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1842                                    struct kvm_run *kvm_run)
1843 {
1844         /*
1845          * If the user space waits to inject interrupts, exit as soon as
1846          * possible
1847          */
1848         if (kvm_run->request_interrupt_window &&
1849             !vcpu->irq_summary) {
1850                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1851                 ++vcpu->stat.irq_window_exits;
1852                 return 0;
1853         }
1854         return 1;
1855 }
1856
1857 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1858 {
1859         skip_emulated_instruction(vcpu);
1860         if (vcpu->irq_summary)
1861                 return 1;
1862
1863         kvm_run->exit_reason = KVM_EXIT_HLT;
1864         ++vcpu->stat.halt_exits;
1865         return 0;
1866 }
1867
1868 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1869 {
1870         skip_emulated_instruction(vcpu);
1871         return kvm_hypercall(vcpu, kvm_run);
1872 }
1873
1874 /*
1875  * The exit handlers return 1 if the exit was handled fully and guest execution
1876  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1877  * to be done to userspace and return 0.
1878  */
1879 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1880                                       struct kvm_run *kvm_run) = {
1881         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1882         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1883         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
1884         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1885         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1886         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1887         [EXIT_REASON_CPUID]                   = handle_cpuid,
1888         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1889         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1890         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1891         [EXIT_REASON_HLT]                     = handle_halt,
1892         [EXIT_REASON_VMCALL]                  = handle_vmcall,
1893 };
1894
1895 static const int kvm_vmx_max_exit_handlers =
1896         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1897
1898 /*
1899  * The guest has exited.  See if we can fix it or if we need userspace
1900  * assistance.
1901  */
1902 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1903 {
1904         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1905         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1906
1907         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1908                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1909                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1910                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1911         if (exit_reason < kvm_vmx_max_exit_handlers
1912             && kvm_vmx_exit_handlers[exit_reason])
1913                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1914         else {
1915                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1916                 kvm_run->hw.hardware_exit_reason = exit_reason;
1917         }
1918         return 0;
1919 }
1920
1921 /*
1922  * Check if userspace requested an interrupt window, and that the
1923  * interrupt window is open.
1924  *
1925  * No need to exit to userspace if we already have an interrupt queued.
1926  */
1927 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1928                                           struct kvm_run *kvm_run)
1929 {
1930         return (!vcpu->irq_summary &&
1931                 kvm_run->request_interrupt_window &&
1932                 vcpu->interrupt_window_open &&
1933                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1934 }
1935
1936 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1937 {
1938         u8 fail;
1939         int r;
1940
1941 preempted:
1942         if (!vcpu->mmio_read_completed)
1943                 do_interrupt_requests(vcpu, kvm_run);
1944
1945         if (vcpu->guest_debug.enabled)
1946                 kvm_guest_debug_pre(vcpu);
1947
1948 again:
1949         vmx_save_host_state(vcpu);
1950         kvm_load_guest_fpu(vcpu);
1951
1952         /*
1953          * Loading guest fpu may have cleared host cr0.ts
1954          */
1955         vmcs_writel(HOST_CR0, read_cr0());
1956
1957         asm (
1958                 /* Store host registers */
1959                 "pushf \n\t"
1960 #ifdef CONFIG_X86_64
1961                 "push %%rax; push %%rbx; push %%rdx;"
1962                 "push %%rsi; push %%rdi; push %%rbp;"
1963                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1964                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1965                 "push %%rcx \n\t"
1966                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1967 #else
1968                 "pusha; push %%ecx \n\t"
1969                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1970 #endif
1971                 /* Check if vmlaunch of vmresume is needed */
1972                 "cmp $0, %1 \n\t"
1973                 /* Load guest registers.  Don't clobber flags. */
1974 #ifdef CONFIG_X86_64
1975                 "mov %c[cr2](%3), %%rax \n\t"
1976                 "mov %%rax, %%cr2 \n\t"
1977                 "mov %c[rax](%3), %%rax \n\t"
1978                 "mov %c[rbx](%3), %%rbx \n\t"
1979                 "mov %c[rdx](%3), %%rdx \n\t"
1980                 "mov %c[rsi](%3), %%rsi \n\t"
1981                 "mov %c[rdi](%3), %%rdi \n\t"
1982                 "mov %c[rbp](%3), %%rbp \n\t"
1983                 "mov %c[r8](%3),  %%r8  \n\t"
1984                 "mov %c[r9](%3),  %%r9  \n\t"
1985                 "mov %c[r10](%3), %%r10 \n\t"
1986                 "mov %c[r11](%3), %%r11 \n\t"
1987                 "mov %c[r12](%3), %%r12 \n\t"
1988                 "mov %c[r13](%3), %%r13 \n\t"
1989                 "mov %c[r14](%3), %%r14 \n\t"
1990                 "mov %c[r15](%3), %%r15 \n\t"
1991                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1992 #else
1993                 "mov %c[cr2](%3), %%eax \n\t"
1994                 "mov %%eax,   %%cr2 \n\t"
1995                 "mov %c[rax](%3), %%eax \n\t"
1996                 "mov %c[rbx](%3), %%ebx \n\t"
1997                 "mov %c[rdx](%3), %%edx \n\t"
1998                 "mov %c[rsi](%3), %%esi \n\t"
1999                 "mov %c[rdi](%3), %%edi \n\t"
2000                 "mov %c[rbp](%3), %%ebp \n\t"
2001                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2002 #endif
2003                 /* Enter guest mode */
2004                 "jne .Llaunched \n\t"
2005                 ASM_VMX_VMLAUNCH "\n\t"
2006                 "jmp .Lkvm_vmx_return \n\t"
2007                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2008                 ".Lkvm_vmx_return: "
2009                 /* Save guest registers, load host registers, keep flags */
2010 #ifdef CONFIG_X86_64
2011                 "xchg %3,     (%%rsp) \n\t"
2012                 "mov %%rax, %c[rax](%3) \n\t"
2013                 "mov %%rbx, %c[rbx](%3) \n\t"
2014                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2015                 "mov %%rdx, %c[rdx](%3) \n\t"
2016                 "mov %%rsi, %c[rsi](%3) \n\t"
2017                 "mov %%rdi, %c[rdi](%3) \n\t"
2018                 "mov %%rbp, %c[rbp](%3) \n\t"
2019                 "mov %%r8,  %c[r8](%3) \n\t"
2020                 "mov %%r9,  %c[r9](%3) \n\t"
2021                 "mov %%r10, %c[r10](%3) \n\t"
2022                 "mov %%r11, %c[r11](%3) \n\t"
2023                 "mov %%r12, %c[r12](%3) \n\t"
2024                 "mov %%r13, %c[r13](%3) \n\t"
2025                 "mov %%r14, %c[r14](%3) \n\t"
2026                 "mov %%r15, %c[r15](%3) \n\t"
2027                 "mov %%cr2, %%rax   \n\t"
2028                 "mov %%rax, %c[cr2](%3) \n\t"
2029                 "mov (%%rsp), %3 \n\t"
2030
2031                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
2032                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
2033                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
2034                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
2035 #else
2036                 "xchg %3, (%%esp) \n\t"
2037                 "mov %%eax, %c[rax](%3) \n\t"
2038                 "mov %%ebx, %c[rbx](%3) \n\t"
2039                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2040                 "mov %%edx, %c[rdx](%3) \n\t"
2041                 "mov %%esi, %c[rsi](%3) \n\t"
2042                 "mov %%edi, %c[rdi](%3) \n\t"
2043                 "mov %%ebp, %c[rbp](%3) \n\t"
2044                 "mov %%cr2, %%eax  \n\t"
2045                 "mov %%eax, %c[cr2](%3) \n\t"
2046                 "mov (%%esp), %3 \n\t"
2047
2048                 "pop %%ecx; popa \n\t"
2049 #endif
2050                 "setbe %0 \n\t"
2051                 "popf \n\t"
2052               : "=q" (fail)
2053               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
2054                 "c"(vcpu),
2055                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2056                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2057                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2058                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2059                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2060                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2061                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2062 #ifdef CONFIG_X86_64
2063                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2064                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2065                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2066                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2067                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2068                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2069                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2070                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2071 #endif
2072                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2073               : "cc", "memory" );
2074
2075         ++vcpu->stat.exits;
2076
2077         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2078
2079         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2080
2081         if (unlikely(fail)) {
2082                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2083                 kvm_run->fail_entry.hardware_entry_failure_reason
2084                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2085                 r = 0;
2086                 goto out;
2087         }
2088         /*
2089          * Profile KVM exit RIPs:
2090          */
2091         if (unlikely(prof_on == KVM_PROFILING))
2092                 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2093
2094         vcpu->launched = 1;
2095         r = kvm_handle_exit(kvm_run, vcpu);
2096         if (r > 0) {
2097                 /* Give scheduler a change to reschedule. */
2098                 if (signal_pending(current)) {
2099                         r = -EINTR;
2100                         kvm_run->exit_reason = KVM_EXIT_INTR;
2101                         ++vcpu->stat.signal_exits;
2102                         goto out;
2103                 }
2104
2105                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2106                         r = -EINTR;
2107                         kvm_run->exit_reason = KVM_EXIT_INTR;
2108                         ++vcpu->stat.request_irq_exits;
2109                         goto out;
2110                 }
2111                 if (!need_resched()) {
2112                         ++vcpu->stat.light_exits;
2113                         goto again;
2114                 }
2115         }
2116
2117 out:
2118         if (r > 0) {
2119                 kvm_resched(vcpu);
2120                 goto preempted;
2121         }
2122
2123         post_kvm_run_save(vcpu, kvm_run);
2124         return r;
2125 }
2126
2127 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2128 {
2129         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2130 }
2131
2132 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2133                                   unsigned long addr,
2134                                   u32 err_code)
2135 {
2136         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2137
2138         ++vcpu->stat.pf_guest;
2139
2140         if (is_page_fault(vect_info)) {
2141                 printk(KERN_DEBUG "inject_page_fault: "
2142                        "double fault 0x%lx @ 0x%lx\n",
2143                        addr, vmcs_readl(GUEST_RIP));
2144                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2145                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2146                              DF_VECTOR |
2147                              INTR_TYPE_EXCEPTION |
2148                              INTR_INFO_DELIEVER_CODE_MASK |
2149                              INTR_INFO_VALID_MASK);
2150                 return;
2151         }
2152         vcpu->cr2 = addr;
2153         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2154         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2155                      PF_VECTOR |
2156                      INTR_TYPE_EXCEPTION |
2157                      INTR_INFO_DELIEVER_CODE_MASK |
2158                      INTR_INFO_VALID_MASK);
2159
2160 }
2161
2162 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2163 {
2164         if (vcpu->vmcs) {
2165                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2166                 free_vmcs(vcpu->vmcs);
2167                 vcpu->vmcs = NULL;
2168         }
2169 }
2170
2171 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2172 {
2173         vmx_free_vmcs(vcpu);
2174 }
2175
2176 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2177 {
2178         struct vmcs *vmcs;
2179
2180         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2181         if (!vcpu->guest_msrs)
2182                 return -ENOMEM;
2183
2184         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2185         if (!vcpu->host_msrs)
2186                 goto out_free_guest_msrs;
2187
2188         vmcs = alloc_vmcs();
2189         if (!vmcs)
2190                 goto out_free_msrs;
2191
2192         vmcs_clear(vmcs);
2193         vcpu->vmcs = vmcs;
2194         vcpu->launched = 0;
2195
2196         return 0;
2197
2198 out_free_msrs:
2199         kfree(vcpu->host_msrs);
2200         vcpu->host_msrs = NULL;
2201
2202 out_free_guest_msrs:
2203         kfree(vcpu->guest_msrs);
2204         vcpu->guest_msrs = NULL;
2205
2206         return -ENOMEM;
2207 }
2208
2209 static struct kvm_arch_ops vmx_arch_ops = {
2210         .cpu_has_kvm_support = cpu_has_kvm_support,
2211         .disabled_by_bios = vmx_disabled_by_bios,
2212         .hardware_setup = hardware_setup,
2213         .hardware_unsetup = hardware_unsetup,
2214         .hardware_enable = hardware_enable,
2215         .hardware_disable = hardware_disable,
2216
2217         .vcpu_create = vmx_create_vcpu,
2218         .vcpu_free = vmx_free_vcpu,
2219
2220         .vcpu_load = vmx_vcpu_load,
2221         .vcpu_put = vmx_vcpu_put,
2222         .vcpu_decache = vmx_vcpu_decache,
2223
2224         .set_guest_debug = set_guest_debug,
2225         .get_msr = vmx_get_msr,
2226         .set_msr = vmx_set_msr,
2227         .get_segment_base = vmx_get_segment_base,
2228         .get_segment = vmx_get_segment,
2229         .set_segment = vmx_set_segment,
2230         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2231         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2232         .set_cr0 = vmx_set_cr0,
2233         .set_cr3 = vmx_set_cr3,
2234         .set_cr4 = vmx_set_cr4,
2235 #ifdef CONFIG_X86_64
2236         .set_efer = vmx_set_efer,
2237 #endif
2238         .get_idt = vmx_get_idt,
2239         .set_idt = vmx_set_idt,
2240         .get_gdt = vmx_get_gdt,
2241         .set_gdt = vmx_set_gdt,
2242         .cache_regs = vcpu_load_rsp_rip,
2243         .decache_regs = vcpu_put_rsp_rip,
2244         .get_rflags = vmx_get_rflags,
2245         .set_rflags = vmx_set_rflags,
2246
2247         .tlb_flush = vmx_flush_tlb,
2248         .inject_page_fault = vmx_inject_page_fault,
2249
2250         .inject_gp = vmx_inject_gp,
2251
2252         .run = vmx_vcpu_run,
2253         .skip_emulated_instruction = skip_emulated_instruction,
2254         .vcpu_setup = vmx_vcpu_setup,
2255         .patch_hypercall = vmx_patch_hypercall,
2256 };
2257
2258 static int __init vmx_init(void)
2259 {
2260         void *iova;
2261         int r;
2262
2263         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2264         if (!vmx_io_bitmap_a)
2265                 return -ENOMEM;
2266
2267         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2268         if (!vmx_io_bitmap_b) {
2269                 r = -ENOMEM;
2270                 goto out;
2271         }
2272
2273         /*
2274          * Allow direct access to the PC debug port (it is often used for I/O
2275          * delays, but the vmexits simply slow things down).
2276          */
2277         iova = kmap(vmx_io_bitmap_a);
2278         memset(iova, 0xff, PAGE_SIZE);
2279         clear_bit(0x80, iova);
2280         kunmap(vmx_io_bitmap_a);
2281
2282         iova = kmap(vmx_io_bitmap_b);
2283         memset(iova, 0xff, PAGE_SIZE);
2284         kunmap(vmx_io_bitmap_b);
2285
2286         r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2287         if (r)
2288                 goto out1;
2289
2290         return 0;
2291
2292 out1:
2293         __free_page(vmx_io_bitmap_b);
2294 out:
2295         __free_page(vmx_io_bitmap_a);
2296         return r;
2297 }
2298
2299 static void __exit vmx_exit(void)
2300 {
2301         __free_page(vmx_io_bitmap_b);
2302         __free_page(vmx_io_bitmap_a);
2303
2304         kvm_exit_arch();
2305 }
2306
2307 module_init(vmx_init)
2308 module_exit(vmx_exit)