]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/md/md.c
[PATCH] md: remove nuisance message at shutdown
[linux-2.6-omap-h63xx.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 #include <linux/mutex.h>
47 #include <linux/ctype.h>
48
49 #include <linux/init.h>
50
51 #include <linux/file.h>
52
53 #ifdef CONFIG_KMOD
54 #include <linux/kmod.h>
55 #endif
56
57 #include <asm/unaligned.h>
58
59 #define MAJOR_NR MD_MAJOR
60 #define MD_DRIVER
61
62 /* 63 partitions with the alternate major number (mdp) */
63 #define MdpMinorShift 6
64
65 #define DEBUG 0
66 #define dprintk(x...) ((void)(DEBUG && printk(x)))
67
68
69 #ifndef MODULE
70 static void autostart_arrays (int part);
71 #endif
72
73 static LIST_HEAD(pers_list);
74 static DEFINE_SPINLOCK(pers_lock);
75
76 /*
77  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
78  * is 1000 KB/sec, so the extra system load does not show up that much.
79  * Increase it if you want to have more _guaranteed_ speed. Note that
80  * the RAID driver will use the maximum available bandwidth if the IO
81  * subsystem is idle. There is also an 'absolute maximum' reconstruction
82  * speed limit - in case reconstruction slows down your system despite
83  * idle IO detection.
84  *
85  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
86  * or /sys/block/mdX/md/sync_speed_{min,max}
87  */
88
89 static int sysctl_speed_limit_min = 1000;
90 static int sysctl_speed_limit_max = 200000;
91 static inline int speed_min(mddev_t *mddev)
92 {
93         return mddev->sync_speed_min ?
94                 mddev->sync_speed_min : sysctl_speed_limit_min;
95 }
96
97 static inline int speed_max(mddev_t *mddev)
98 {
99         return mddev->sync_speed_max ?
100                 mddev->sync_speed_max : sysctl_speed_limit_max;
101 }
102
103 static struct ctl_table_header *raid_table_header;
104
105 static ctl_table raid_table[] = {
106         {
107                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MIN,
108                 .procname       = "speed_limit_min",
109                 .data           = &sysctl_speed_limit_min,
110                 .maxlen         = sizeof(int),
111                 .mode           = 0644,
112                 .proc_handler   = &proc_dointvec,
113         },
114         {
115                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MAX,
116                 .procname       = "speed_limit_max",
117                 .data           = &sysctl_speed_limit_max,
118                 .maxlen         = sizeof(int),
119                 .mode           = 0644,
120                 .proc_handler   = &proc_dointvec,
121         },
122         { .ctl_name = 0 }
123 };
124
125 static ctl_table raid_dir_table[] = {
126         {
127                 .ctl_name       = DEV_RAID,
128                 .procname       = "raid",
129                 .maxlen         = 0,
130                 .mode           = 0555,
131                 .child          = raid_table,
132         },
133         { .ctl_name = 0 }
134 };
135
136 static ctl_table raid_root_table[] = {
137         {
138                 .ctl_name       = CTL_DEV,
139                 .procname       = "dev",
140                 .maxlen         = 0,
141                 .mode           = 0555,
142                 .child          = raid_dir_table,
143         },
144         { .ctl_name = 0 }
145 };
146
147 static struct block_device_operations md_fops;
148
149 static int start_readonly;
150
151 /*
152  * We have a system wide 'event count' that is incremented
153  * on any 'interesting' event, and readers of /proc/mdstat
154  * can use 'poll' or 'select' to find out when the event
155  * count increases.
156  *
157  * Events are:
158  *  start array, stop array, error, add device, remove device,
159  *  start build, activate spare
160  */
161 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
162 static atomic_t md_event_count;
163 void md_new_event(mddev_t *mddev)
164 {
165         atomic_inc(&md_event_count);
166         wake_up(&md_event_waiters);
167         sysfs_notify(&mddev->kobj, NULL, "sync_action");
168 }
169 EXPORT_SYMBOL_GPL(md_new_event);
170
171 /* Alternate version that can be called from interrupts
172  * when calling sysfs_notify isn't needed.
173  */
174 void md_new_event_inintr(mddev_t *mddev)
175 {
176         atomic_inc(&md_event_count);
177         wake_up(&md_event_waiters);
178 }
179
180 /*
181  * Enables to iterate over all existing md arrays
182  * all_mddevs_lock protects this list.
183  */
184 static LIST_HEAD(all_mddevs);
185 static DEFINE_SPINLOCK(all_mddevs_lock);
186
187
188 /*
189  * iterates through all used mddevs in the system.
190  * We take care to grab the all_mddevs_lock whenever navigating
191  * the list, and to always hold a refcount when unlocked.
192  * Any code which breaks out of this loop while own
193  * a reference to the current mddev and must mddev_put it.
194  */
195 #define ITERATE_MDDEV(mddev,tmp)                                        \
196                                                                         \
197         for (({ spin_lock(&all_mddevs_lock);                            \
198                 tmp = all_mddevs.next;                                  \
199                 mddev = NULL;});                                        \
200              ({ if (tmp != &all_mddevs)                                 \
201                         mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
202                 spin_unlock(&all_mddevs_lock);                          \
203                 if (mddev) mddev_put(mddev);                            \
204                 mddev = list_entry(tmp, mddev_t, all_mddevs);           \
205                 tmp != &all_mddevs;});                                  \
206              ({ spin_lock(&all_mddevs_lock);                            \
207                 tmp = tmp->next;})                                      \
208                 )
209
210
211 static int md_fail_request (request_queue_t *q, struct bio *bio)
212 {
213         bio_io_error(bio, bio->bi_size);
214         return 0;
215 }
216
217 static inline mddev_t *mddev_get(mddev_t *mddev)
218 {
219         atomic_inc(&mddev->active);
220         return mddev;
221 }
222
223 static void mddev_put(mddev_t *mddev)
224 {
225         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
226                 return;
227         if (!mddev->raid_disks && list_empty(&mddev->disks)) {
228                 list_del(&mddev->all_mddevs);
229                 spin_unlock(&all_mddevs_lock);
230                 blk_cleanup_queue(mddev->queue);
231                 kobject_unregister(&mddev->kobj);
232         } else
233                 spin_unlock(&all_mddevs_lock);
234 }
235
236 static mddev_t * mddev_find(dev_t unit)
237 {
238         mddev_t *mddev, *new = NULL;
239
240  retry:
241         spin_lock(&all_mddevs_lock);
242         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
243                 if (mddev->unit == unit) {
244                         mddev_get(mddev);
245                         spin_unlock(&all_mddevs_lock);
246                         kfree(new);
247                         return mddev;
248                 }
249
250         if (new) {
251                 list_add(&new->all_mddevs, &all_mddevs);
252                 spin_unlock(&all_mddevs_lock);
253                 return new;
254         }
255         spin_unlock(&all_mddevs_lock);
256
257         new = kzalloc(sizeof(*new), GFP_KERNEL);
258         if (!new)
259                 return NULL;
260
261         new->unit = unit;
262         if (MAJOR(unit) == MD_MAJOR)
263                 new->md_minor = MINOR(unit);
264         else
265                 new->md_minor = MINOR(unit) >> MdpMinorShift;
266
267         mutex_init(&new->reconfig_mutex);
268         INIT_LIST_HEAD(&new->disks);
269         INIT_LIST_HEAD(&new->all_mddevs);
270         init_timer(&new->safemode_timer);
271         atomic_set(&new->active, 1);
272         spin_lock_init(&new->write_lock);
273         init_waitqueue_head(&new->sb_wait);
274
275         new->queue = blk_alloc_queue(GFP_KERNEL);
276         if (!new->queue) {
277                 kfree(new);
278                 return NULL;
279         }
280         set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
281
282         blk_queue_make_request(new->queue, md_fail_request);
283
284         goto retry;
285 }
286
287 static inline int mddev_lock(mddev_t * mddev)
288 {
289         return mutex_lock_interruptible(&mddev->reconfig_mutex);
290 }
291
292 static inline int mddev_trylock(mddev_t * mddev)
293 {
294         return mutex_trylock(&mddev->reconfig_mutex);
295 }
296
297 static inline void mddev_unlock(mddev_t * mddev)
298 {
299         mutex_unlock(&mddev->reconfig_mutex);
300
301         md_wakeup_thread(mddev->thread);
302 }
303
304 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
305 {
306         mdk_rdev_t * rdev;
307         struct list_head *tmp;
308
309         ITERATE_RDEV(mddev,rdev,tmp) {
310                 if (rdev->desc_nr == nr)
311                         return rdev;
312         }
313         return NULL;
314 }
315
316 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
317 {
318         struct list_head *tmp;
319         mdk_rdev_t *rdev;
320
321         ITERATE_RDEV(mddev,rdev,tmp) {
322                 if (rdev->bdev->bd_dev == dev)
323                         return rdev;
324         }
325         return NULL;
326 }
327
328 static struct mdk_personality *find_pers(int level, char *clevel)
329 {
330         struct mdk_personality *pers;
331         list_for_each_entry(pers, &pers_list, list) {
332                 if (level != LEVEL_NONE && pers->level == level)
333                         return pers;
334                 if (strcmp(pers->name, clevel)==0)
335                         return pers;
336         }
337         return NULL;
338 }
339
340 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
341 {
342         sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
343         return MD_NEW_SIZE_BLOCKS(size);
344 }
345
346 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
347 {
348         sector_t size;
349
350         size = rdev->sb_offset;
351
352         if (chunk_size)
353                 size &= ~((sector_t)chunk_size/1024 - 1);
354         return size;
355 }
356
357 static int alloc_disk_sb(mdk_rdev_t * rdev)
358 {
359         if (rdev->sb_page)
360                 MD_BUG();
361
362         rdev->sb_page = alloc_page(GFP_KERNEL);
363         if (!rdev->sb_page) {
364                 printk(KERN_ALERT "md: out of memory.\n");
365                 return -EINVAL;
366         }
367
368         return 0;
369 }
370
371 static void free_disk_sb(mdk_rdev_t * rdev)
372 {
373         if (rdev->sb_page) {
374                 put_page(rdev->sb_page);
375                 rdev->sb_loaded = 0;
376                 rdev->sb_page = NULL;
377                 rdev->sb_offset = 0;
378                 rdev->size = 0;
379         }
380 }
381
382
383 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
384 {
385         mdk_rdev_t *rdev = bio->bi_private;
386         mddev_t *mddev = rdev->mddev;
387         if (bio->bi_size)
388                 return 1;
389
390         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
391                 md_error(mddev, rdev);
392
393         if (atomic_dec_and_test(&mddev->pending_writes))
394                 wake_up(&mddev->sb_wait);
395         bio_put(bio);
396         return 0;
397 }
398
399 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
400 {
401         struct bio *bio2 = bio->bi_private;
402         mdk_rdev_t *rdev = bio2->bi_private;
403         mddev_t *mddev = rdev->mddev;
404         if (bio->bi_size)
405                 return 1;
406
407         if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
408             error == -EOPNOTSUPP) {
409                 unsigned long flags;
410                 /* barriers don't appear to be supported :-( */
411                 set_bit(BarriersNotsupp, &rdev->flags);
412                 mddev->barriers_work = 0;
413                 spin_lock_irqsave(&mddev->write_lock, flags);
414                 bio2->bi_next = mddev->biolist;
415                 mddev->biolist = bio2;
416                 spin_unlock_irqrestore(&mddev->write_lock, flags);
417                 wake_up(&mddev->sb_wait);
418                 bio_put(bio);
419                 return 0;
420         }
421         bio_put(bio2);
422         bio->bi_private = rdev;
423         return super_written(bio, bytes_done, error);
424 }
425
426 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
427                    sector_t sector, int size, struct page *page)
428 {
429         /* write first size bytes of page to sector of rdev
430          * Increment mddev->pending_writes before returning
431          * and decrement it on completion, waking up sb_wait
432          * if zero is reached.
433          * If an error occurred, call md_error
434          *
435          * As we might need to resubmit the request if BIO_RW_BARRIER
436          * causes ENOTSUPP, we allocate a spare bio...
437          */
438         struct bio *bio = bio_alloc(GFP_NOIO, 1);
439         int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
440
441         bio->bi_bdev = rdev->bdev;
442         bio->bi_sector = sector;
443         bio_add_page(bio, page, size, 0);
444         bio->bi_private = rdev;
445         bio->bi_end_io = super_written;
446         bio->bi_rw = rw;
447
448         atomic_inc(&mddev->pending_writes);
449         if (!test_bit(BarriersNotsupp, &rdev->flags)) {
450                 struct bio *rbio;
451                 rw |= (1<<BIO_RW_BARRIER);
452                 rbio = bio_clone(bio, GFP_NOIO);
453                 rbio->bi_private = bio;
454                 rbio->bi_end_io = super_written_barrier;
455                 submit_bio(rw, rbio);
456         } else
457                 submit_bio(rw, bio);
458 }
459
460 void md_super_wait(mddev_t *mddev)
461 {
462         /* wait for all superblock writes that were scheduled to complete.
463          * if any had to be retried (due to BARRIER problems), retry them
464          */
465         DEFINE_WAIT(wq);
466         for(;;) {
467                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
468                 if (atomic_read(&mddev->pending_writes)==0)
469                         break;
470                 while (mddev->biolist) {
471                         struct bio *bio;
472                         spin_lock_irq(&mddev->write_lock);
473                         bio = mddev->biolist;
474                         mddev->biolist = bio->bi_next ;
475                         bio->bi_next = NULL;
476                         spin_unlock_irq(&mddev->write_lock);
477                         submit_bio(bio->bi_rw, bio);
478                 }
479                 schedule();
480         }
481         finish_wait(&mddev->sb_wait, &wq);
482 }
483
484 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
485 {
486         if (bio->bi_size)
487                 return 1;
488
489         complete((struct completion*)bio->bi_private);
490         return 0;
491 }
492
493 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
494                    struct page *page, int rw)
495 {
496         struct bio *bio = bio_alloc(GFP_NOIO, 1);
497         struct completion event;
498         int ret;
499
500         rw |= (1 << BIO_RW_SYNC);
501
502         bio->bi_bdev = bdev;
503         bio->bi_sector = sector;
504         bio_add_page(bio, page, size, 0);
505         init_completion(&event);
506         bio->bi_private = &event;
507         bio->bi_end_io = bi_complete;
508         submit_bio(rw, bio);
509         wait_for_completion(&event);
510
511         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
512         bio_put(bio);
513         return ret;
514 }
515 EXPORT_SYMBOL_GPL(sync_page_io);
516
517 static int read_disk_sb(mdk_rdev_t * rdev, int size)
518 {
519         char b[BDEVNAME_SIZE];
520         if (!rdev->sb_page) {
521                 MD_BUG();
522                 return -EINVAL;
523         }
524         if (rdev->sb_loaded)
525                 return 0;
526
527
528         if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
529                 goto fail;
530         rdev->sb_loaded = 1;
531         return 0;
532
533 fail:
534         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
535                 bdevname(rdev->bdev,b));
536         return -EINVAL;
537 }
538
539 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
540 {
541         if (    (sb1->set_uuid0 == sb2->set_uuid0) &&
542                 (sb1->set_uuid1 == sb2->set_uuid1) &&
543                 (sb1->set_uuid2 == sb2->set_uuid2) &&
544                 (sb1->set_uuid3 == sb2->set_uuid3))
545
546                 return 1;
547
548         return 0;
549 }
550
551
552 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
553 {
554         int ret;
555         mdp_super_t *tmp1, *tmp2;
556
557         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
558         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
559
560         if (!tmp1 || !tmp2) {
561                 ret = 0;
562                 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
563                 goto abort;
564         }
565
566         *tmp1 = *sb1;
567         *tmp2 = *sb2;
568
569         /*
570          * nr_disks is not constant
571          */
572         tmp1->nr_disks = 0;
573         tmp2->nr_disks = 0;
574
575         if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
576                 ret = 0;
577         else
578                 ret = 1;
579
580 abort:
581         kfree(tmp1);
582         kfree(tmp2);
583         return ret;
584 }
585
586 static unsigned int calc_sb_csum(mdp_super_t * sb)
587 {
588         unsigned int disk_csum, csum;
589
590         disk_csum = sb->sb_csum;
591         sb->sb_csum = 0;
592         csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
593         sb->sb_csum = disk_csum;
594         return csum;
595 }
596
597
598 /*
599  * Handle superblock details.
600  * We want to be able to handle multiple superblock formats
601  * so we have a common interface to them all, and an array of
602  * different handlers.
603  * We rely on user-space to write the initial superblock, and support
604  * reading and updating of superblocks.
605  * Interface methods are:
606  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
607  *      loads and validates a superblock on dev.
608  *      if refdev != NULL, compare superblocks on both devices
609  *    Return:
610  *      0 - dev has a superblock that is compatible with refdev
611  *      1 - dev has a superblock that is compatible and newer than refdev
612  *          so dev should be used as the refdev in future
613  *     -EINVAL superblock incompatible or invalid
614  *     -othererror e.g. -EIO
615  *
616  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
617  *      Verify that dev is acceptable into mddev.
618  *       The first time, mddev->raid_disks will be 0, and data from
619  *       dev should be merged in.  Subsequent calls check that dev
620  *       is new enough.  Return 0 or -EINVAL
621  *
622  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
623  *     Update the superblock for rdev with data in mddev
624  *     This does not write to disc.
625  *
626  */
627
628 struct super_type  {
629         char            *name;
630         struct module   *owner;
631         int             (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
632         int             (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
633         void            (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
634 };
635
636 /*
637  * load_super for 0.90.0 
638  */
639 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
640 {
641         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
642         mdp_super_t *sb;
643         int ret;
644         sector_t sb_offset;
645
646         /*
647          * Calculate the position of the superblock,
648          * it's at the end of the disk.
649          *
650          * It also happens to be a multiple of 4Kb.
651          */
652         sb_offset = calc_dev_sboffset(rdev->bdev);
653         rdev->sb_offset = sb_offset;
654
655         ret = read_disk_sb(rdev, MD_SB_BYTES);
656         if (ret) return ret;
657
658         ret = -EINVAL;
659
660         bdevname(rdev->bdev, b);
661         sb = (mdp_super_t*)page_address(rdev->sb_page);
662
663         if (sb->md_magic != MD_SB_MAGIC) {
664                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
665                        b);
666                 goto abort;
667         }
668
669         if (sb->major_version != 0 ||
670             sb->minor_version < 90 ||
671             sb->minor_version > 91) {
672                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
673                         sb->major_version, sb->minor_version,
674                         b);
675                 goto abort;
676         }
677
678         if (sb->raid_disks <= 0)
679                 goto abort;
680
681         if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
682                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
683                         b);
684                 goto abort;
685         }
686
687         rdev->preferred_minor = sb->md_minor;
688         rdev->data_offset = 0;
689         rdev->sb_size = MD_SB_BYTES;
690
691         if (sb->level == LEVEL_MULTIPATH)
692                 rdev->desc_nr = -1;
693         else
694                 rdev->desc_nr = sb->this_disk.number;
695
696         if (refdev == 0)
697                 ret = 1;
698         else {
699                 __u64 ev1, ev2;
700                 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
701                 if (!uuid_equal(refsb, sb)) {
702                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
703                                 b, bdevname(refdev->bdev,b2));
704                         goto abort;
705                 }
706                 if (!sb_equal(refsb, sb)) {
707                         printk(KERN_WARNING "md: %s has same UUID"
708                                " but different superblock to %s\n",
709                                b, bdevname(refdev->bdev, b2));
710                         goto abort;
711                 }
712                 ev1 = md_event(sb);
713                 ev2 = md_event(refsb);
714                 if (ev1 > ev2)
715                         ret = 1;
716                 else 
717                         ret = 0;
718         }
719         rdev->size = calc_dev_size(rdev, sb->chunk_size);
720
721         if (rdev->size < sb->size && sb->level > 1)
722                 /* "this cannot possibly happen" ... */
723                 ret = -EINVAL;
724
725  abort:
726         return ret;
727 }
728
729 /*
730  * validate_super for 0.90.0
731  */
732 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
733 {
734         mdp_disk_t *desc;
735         mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
736
737         rdev->raid_disk = -1;
738         rdev->flags = 0;
739         if (mddev->raid_disks == 0) {
740                 mddev->major_version = 0;
741                 mddev->minor_version = sb->minor_version;
742                 mddev->patch_version = sb->patch_version;
743                 mddev->persistent = ! sb->not_persistent;
744                 mddev->chunk_size = sb->chunk_size;
745                 mddev->ctime = sb->ctime;
746                 mddev->utime = sb->utime;
747                 mddev->level = sb->level;
748                 mddev->clevel[0] = 0;
749                 mddev->layout = sb->layout;
750                 mddev->raid_disks = sb->raid_disks;
751                 mddev->size = sb->size;
752                 mddev->events = md_event(sb);
753                 mddev->bitmap_offset = 0;
754                 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
755
756                 if (mddev->minor_version >= 91) {
757                         mddev->reshape_position = sb->reshape_position;
758                         mddev->delta_disks = sb->delta_disks;
759                         mddev->new_level = sb->new_level;
760                         mddev->new_layout = sb->new_layout;
761                         mddev->new_chunk = sb->new_chunk;
762                 } else {
763                         mddev->reshape_position = MaxSector;
764                         mddev->delta_disks = 0;
765                         mddev->new_level = mddev->level;
766                         mddev->new_layout = mddev->layout;
767                         mddev->new_chunk = mddev->chunk_size;
768                 }
769
770                 if (sb->state & (1<<MD_SB_CLEAN))
771                         mddev->recovery_cp = MaxSector;
772                 else {
773                         if (sb->events_hi == sb->cp_events_hi && 
774                                 sb->events_lo == sb->cp_events_lo) {
775                                 mddev->recovery_cp = sb->recovery_cp;
776                         } else
777                                 mddev->recovery_cp = 0;
778                 }
779
780                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
781                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
782                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
783                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
784
785                 mddev->max_disks = MD_SB_DISKS;
786
787                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
788                     mddev->bitmap_file == NULL) {
789                         if (mddev->level != 1 && mddev->level != 4
790                             && mddev->level != 5 && mddev->level != 6
791                             && mddev->level != 10) {
792                                 /* FIXME use a better test */
793                                 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
794                                 return -EINVAL;
795                         }
796                         mddev->bitmap_offset = mddev->default_bitmap_offset;
797                 }
798
799         } else if (mddev->pers == NULL) {
800                 /* Insist on good event counter while assembling */
801                 __u64 ev1 = md_event(sb);
802                 ++ev1;
803                 if (ev1 < mddev->events) 
804                         return -EINVAL;
805         } else if (mddev->bitmap) {
806                 /* if adding to array with a bitmap, then we can accept an
807                  * older device ... but not too old.
808                  */
809                 __u64 ev1 = md_event(sb);
810                 if (ev1 < mddev->bitmap->events_cleared)
811                         return 0;
812         } else /* just a hot-add of a new device, leave raid_disk at -1 */
813                 return 0;
814
815         if (mddev->level != LEVEL_MULTIPATH) {
816                 desc = sb->disks + rdev->desc_nr;
817
818                 if (desc->state & (1<<MD_DISK_FAULTY))
819                         set_bit(Faulty, &rdev->flags);
820                 else if (desc->state & (1<<MD_DISK_SYNC) &&
821                          desc->raid_disk < mddev->raid_disks) {
822                         set_bit(In_sync, &rdev->flags);
823                         rdev->raid_disk = desc->raid_disk;
824                 }
825                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
826                         set_bit(WriteMostly, &rdev->flags);
827         } else /* MULTIPATH are always insync */
828                 set_bit(In_sync, &rdev->flags);
829         return 0;
830 }
831
832 /*
833  * sync_super for 0.90.0
834  */
835 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
836 {
837         mdp_super_t *sb;
838         struct list_head *tmp;
839         mdk_rdev_t *rdev2;
840         int next_spare = mddev->raid_disks;
841
842
843         /* make rdev->sb match mddev data..
844          *
845          * 1/ zero out disks
846          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
847          * 3/ any empty disks < next_spare become removed
848          *
849          * disks[0] gets initialised to REMOVED because
850          * we cannot be sure from other fields if it has
851          * been initialised or not.
852          */
853         int i;
854         int active=0, working=0,failed=0,spare=0,nr_disks=0;
855
856         rdev->sb_size = MD_SB_BYTES;
857
858         sb = (mdp_super_t*)page_address(rdev->sb_page);
859
860         memset(sb, 0, sizeof(*sb));
861
862         sb->md_magic = MD_SB_MAGIC;
863         sb->major_version = mddev->major_version;
864         sb->patch_version = mddev->patch_version;
865         sb->gvalid_words  = 0; /* ignored */
866         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
867         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
868         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
869         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
870
871         sb->ctime = mddev->ctime;
872         sb->level = mddev->level;
873         sb->size  = mddev->size;
874         sb->raid_disks = mddev->raid_disks;
875         sb->md_minor = mddev->md_minor;
876         sb->not_persistent = !mddev->persistent;
877         sb->utime = mddev->utime;
878         sb->state = 0;
879         sb->events_hi = (mddev->events>>32);
880         sb->events_lo = (u32)mddev->events;
881
882         if (mddev->reshape_position == MaxSector)
883                 sb->minor_version = 90;
884         else {
885                 sb->minor_version = 91;
886                 sb->reshape_position = mddev->reshape_position;
887                 sb->new_level = mddev->new_level;
888                 sb->delta_disks = mddev->delta_disks;
889                 sb->new_layout = mddev->new_layout;
890                 sb->new_chunk = mddev->new_chunk;
891         }
892         mddev->minor_version = sb->minor_version;
893         if (mddev->in_sync)
894         {
895                 sb->recovery_cp = mddev->recovery_cp;
896                 sb->cp_events_hi = (mddev->events>>32);
897                 sb->cp_events_lo = (u32)mddev->events;
898                 if (mddev->recovery_cp == MaxSector)
899                         sb->state = (1<< MD_SB_CLEAN);
900         } else
901                 sb->recovery_cp = 0;
902
903         sb->layout = mddev->layout;
904         sb->chunk_size = mddev->chunk_size;
905
906         if (mddev->bitmap && mddev->bitmap_file == NULL)
907                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
908
909         sb->disks[0].state = (1<<MD_DISK_REMOVED);
910         ITERATE_RDEV(mddev,rdev2,tmp) {
911                 mdp_disk_t *d;
912                 int desc_nr;
913                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
914                     && !test_bit(Faulty, &rdev2->flags))
915                         desc_nr = rdev2->raid_disk;
916                 else
917                         desc_nr = next_spare++;
918                 rdev2->desc_nr = desc_nr;
919                 d = &sb->disks[rdev2->desc_nr];
920                 nr_disks++;
921                 d->number = rdev2->desc_nr;
922                 d->major = MAJOR(rdev2->bdev->bd_dev);
923                 d->minor = MINOR(rdev2->bdev->bd_dev);
924                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
925                     && !test_bit(Faulty, &rdev2->flags))
926                         d->raid_disk = rdev2->raid_disk;
927                 else
928                         d->raid_disk = rdev2->desc_nr; /* compatibility */
929                 if (test_bit(Faulty, &rdev2->flags))
930                         d->state = (1<<MD_DISK_FAULTY);
931                 else if (test_bit(In_sync, &rdev2->flags)) {
932                         d->state = (1<<MD_DISK_ACTIVE);
933                         d->state |= (1<<MD_DISK_SYNC);
934                         active++;
935                         working++;
936                 } else {
937                         d->state = 0;
938                         spare++;
939                         working++;
940                 }
941                 if (test_bit(WriteMostly, &rdev2->flags))
942                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
943         }
944         /* now set the "removed" and "faulty" bits on any missing devices */
945         for (i=0 ; i < mddev->raid_disks ; i++) {
946                 mdp_disk_t *d = &sb->disks[i];
947                 if (d->state == 0 && d->number == 0) {
948                         d->number = i;
949                         d->raid_disk = i;
950                         d->state = (1<<MD_DISK_REMOVED);
951                         d->state |= (1<<MD_DISK_FAULTY);
952                         failed++;
953                 }
954         }
955         sb->nr_disks = nr_disks;
956         sb->active_disks = active;
957         sb->working_disks = working;
958         sb->failed_disks = failed;
959         sb->spare_disks = spare;
960
961         sb->this_disk = sb->disks[rdev->desc_nr];
962         sb->sb_csum = calc_sb_csum(sb);
963 }
964
965 /*
966  * version 1 superblock
967  */
968
969 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
970 {
971         unsigned int disk_csum, csum;
972         unsigned long long newcsum;
973         int size = 256 + le32_to_cpu(sb->max_dev)*2;
974         unsigned int *isuper = (unsigned int*)sb;
975         int i;
976
977         disk_csum = sb->sb_csum;
978         sb->sb_csum = 0;
979         newcsum = 0;
980         for (i=0; size>=4; size -= 4 )
981                 newcsum += le32_to_cpu(*isuper++);
982
983         if (size == 2)
984                 newcsum += le16_to_cpu(*(unsigned short*) isuper);
985
986         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
987         sb->sb_csum = disk_csum;
988         return cpu_to_le32(csum);
989 }
990
991 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
992 {
993         struct mdp_superblock_1 *sb;
994         int ret;
995         sector_t sb_offset;
996         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
997         int bmask;
998
999         /*
1000          * Calculate the position of the superblock.
1001          * It is always aligned to a 4K boundary and
1002          * depeding on minor_version, it can be:
1003          * 0: At least 8K, but less than 12K, from end of device
1004          * 1: At start of device
1005          * 2: 4K from start of device.
1006          */
1007         switch(minor_version) {
1008         case 0:
1009                 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1010                 sb_offset -= 8*2;
1011                 sb_offset &= ~(sector_t)(4*2-1);
1012                 /* convert from sectors to K */
1013                 sb_offset /= 2;
1014                 break;
1015         case 1:
1016                 sb_offset = 0;
1017                 break;
1018         case 2:
1019                 sb_offset = 4;
1020                 break;
1021         default:
1022                 return -EINVAL;
1023         }
1024         rdev->sb_offset = sb_offset;
1025
1026         /* superblock is rarely larger than 1K, but it can be larger,
1027          * and it is safe to read 4k, so we do that
1028          */
1029         ret = read_disk_sb(rdev, 4096);
1030         if (ret) return ret;
1031
1032
1033         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1034
1035         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1036             sb->major_version != cpu_to_le32(1) ||
1037             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1038             le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1039             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1040                 return -EINVAL;
1041
1042         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1043                 printk("md: invalid superblock checksum on %s\n",
1044                         bdevname(rdev->bdev,b));
1045                 return -EINVAL;
1046         }
1047         if (le64_to_cpu(sb->data_size) < 10) {
1048                 printk("md: data_size too small on %s\n",
1049                        bdevname(rdev->bdev,b));
1050                 return -EINVAL;
1051         }
1052         rdev->preferred_minor = 0xffff;
1053         rdev->data_offset = le64_to_cpu(sb->data_offset);
1054         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1055
1056         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1057         bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1058         if (rdev->sb_size & bmask)
1059                 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1060
1061         if (refdev == 0)
1062                 ret = 1;
1063         else {
1064                 __u64 ev1, ev2;
1065                 struct mdp_superblock_1 *refsb = 
1066                         (struct mdp_superblock_1*)page_address(refdev->sb_page);
1067
1068                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1069                     sb->level != refsb->level ||
1070                     sb->layout != refsb->layout ||
1071                     sb->chunksize != refsb->chunksize) {
1072                         printk(KERN_WARNING "md: %s has strangely different"
1073                                 " superblock to %s\n",
1074                                 bdevname(rdev->bdev,b),
1075                                 bdevname(refdev->bdev,b2));
1076                         return -EINVAL;
1077                 }
1078                 ev1 = le64_to_cpu(sb->events);
1079                 ev2 = le64_to_cpu(refsb->events);
1080
1081                 if (ev1 > ev2)
1082                         ret = 1;
1083                 else
1084                         ret = 0;
1085         }
1086         if (minor_version) 
1087                 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1088         else
1089                 rdev->size = rdev->sb_offset;
1090         if (rdev->size < le64_to_cpu(sb->data_size)/2)
1091                 return -EINVAL;
1092         rdev->size = le64_to_cpu(sb->data_size)/2;
1093         if (le32_to_cpu(sb->chunksize))
1094                 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1095
1096         if (le32_to_cpu(sb->size) > rdev->size*2)
1097                 return -EINVAL;
1098         return ret;
1099 }
1100
1101 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1102 {
1103         struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1104
1105         rdev->raid_disk = -1;
1106         rdev->flags = 0;
1107         if (mddev->raid_disks == 0) {
1108                 mddev->major_version = 1;
1109                 mddev->patch_version = 0;
1110                 mddev->persistent = 1;
1111                 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1112                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1113                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1114                 mddev->level = le32_to_cpu(sb->level);
1115                 mddev->clevel[0] = 0;
1116                 mddev->layout = le32_to_cpu(sb->layout);
1117                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1118                 mddev->size = le64_to_cpu(sb->size)/2;
1119                 mddev->events = le64_to_cpu(sb->events);
1120                 mddev->bitmap_offset = 0;
1121                 mddev->default_bitmap_offset = 1024 >> 9;
1122                 
1123                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1124                 memcpy(mddev->uuid, sb->set_uuid, 16);
1125
1126                 mddev->max_disks =  (4096-256)/2;
1127
1128                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1129                     mddev->bitmap_file == NULL ) {
1130                         if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1131                             && mddev->level != 10) {
1132                                 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1133                                 return -EINVAL;
1134                         }
1135                         mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1136                 }
1137                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1138                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1139                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1140                         mddev->new_level = le32_to_cpu(sb->new_level);
1141                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1142                         mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1143                 } else {
1144                         mddev->reshape_position = MaxSector;
1145                         mddev->delta_disks = 0;
1146                         mddev->new_level = mddev->level;
1147                         mddev->new_layout = mddev->layout;
1148                         mddev->new_chunk = mddev->chunk_size;
1149                 }
1150
1151         } else if (mddev->pers == NULL) {
1152                 /* Insist of good event counter while assembling */
1153                 __u64 ev1 = le64_to_cpu(sb->events);
1154                 ++ev1;
1155                 if (ev1 < mddev->events)
1156                         return -EINVAL;
1157         } else if (mddev->bitmap) {
1158                 /* If adding to array with a bitmap, then we can accept an
1159                  * older device, but not too old.
1160                  */
1161                 __u64 ev1 = le64_to_cpu(sb->events);
1162                 if (ev1 < mddev->bitmap->events_cleared)
1163                         return 0;
1164         } else /* just a hot-add of a new device, leave raid_disk at -1 */
1165                 return 0;
1166
1167         if (mddev->level != LEVEL_MULTIPATH) {
1168                 int role;
1169                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1170                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1171                 switch(role) {
1172                 case 0xffff: /* spare */
1173                         break;
1174                 case 0xfffe: /* faulty */
1175                         set_bit(Faulty, &rdev->flags);
1176                         break;
1177                 default:
1178                         set_bit(In_sync, &rdev->flags);
1179                         rdev->raid_disk = role;
1180                         break;
1181                 }
1182                 if (sb->devflags & WriteMostly1)
1183                         set_bit(WriteMostly, &rdev->flags);
1184         } else /* MULTIPATH are always insync */
1185                 set_bit(In_sync, &rdev->flags);
1186
1187         return 0;
1188 }
1189
1190 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1191 {
1192         struct mdp_superblock_1 *sb;
1193         struct list_head *tmp;
1194         mdk_rdev_t *rdev2;
1195         int max_dev, i;
1196         /* make rdev->sb match mddev and rdev data. */
1197
1198         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1199
1200         sb->feature_map = 0;
1201         sb->pad0 = 0;
1202         memset(sb->pad1, 0, sizeof(sb->pad1));
1203         memset(sb->pad2, 0, sizeof(sb->pad2));
1204         memset(sb->pad3, 0, sizeof(sb->pad3));
1205
1206         sb->utime = cpu_to_le64((__u64)mddev->utime);
1207         sb->events = cpu_to_le64(mddev->events);
1208         if (mddev->in_sync)
1209                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1210         else
1211                 sb->resync_offset = cpu_to_le64(0);
1212
1213         sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1214
1215         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1216         sb->size = cpu_to_le64(mddev->size<<1);
1217
1218         if (mddev->bitmap && mddev->bitmap_file == NULL) {
1219                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1220                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1221         }
1222         if (mddev->reshape_position != MaxSector) {
1223                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1224                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1225                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1226                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1227                 sb->new_level = cpu_to_le32(mddev->new_level);
1228                 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1229         }
1230
1231         max_dev = 0;
1232         ITERATE_RDEV(mddev,rdev2,tmp)
1233                 if (rdev2->desc_nr+1 > max_dev)
1234                         max_dev = rdev2->desc_nr+1;
1235         
1236         sb->max_dev = cpu_to_le32(max_dev);
1237         for (i=0; i<max_dev;i++)
1238                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1239         
1240         ITERATE_RDEV(mddev,rdev2,tmp) {
1241                 i = rdev2->desc_nr;
1242                 if (test_bit(Faulty, &rdev2->flags))
1243                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1244                 else if (test_bit(In_sync, &rdev2->flags))
1245                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1246                 else
1247                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1248         }
1249
1250         sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1251         sb->sb_csum = calc_sb_1_csum(sb);
1252 }
1253
1254
1255 static struct super_type super_types[] = {
1256         [0] = {
1257                 .name   = "0.90.0",
1258                 .owner  = THIS_MODULE,
1259                 .load_super     = super_90_load,
1260                 .validate_super = super_90_validate,
1261                 .sync_super     = super_90_sync,
1262         },
1263         [1] = {
1264                 .name   = "md-1",
1265                 .owner  = THIS_MODULE,
1266                 .load_super     = super_1_load,
1267                 .validate_super = super_1_validate,
1268                 .sync_super     = super_1_sync,
1269         },
1270 };
1271         
1272 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1273 {
1274         struct list_head *tmp;
1275         mdk_rdev_t *rdev;
1276
1277         ITERATE_RDEV(mddev,rdev,tmp)
1278                 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1279                         return rdev;
1280
1281         return NULL;
1282 }
1283
1284 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1285 {
1286         struct list_head *tmp;
1287         mdk_rdev_t *rdev;
1288
1289         ITERATE_RDEV(mddev1,rdev,tmp)
1290                 if (match_dev_unit(mddev2, rdev))
1291                         return 1;
1292
1293         return 0;
1294 }
1295
1296 static LIST_HEAD(pending_raid_disks);
1297
1298 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1299 {
1300         mdk_rdev_t *same_pdev;
1301         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1302         struct kobject *ko;
1303         char *s;
1304
1305         if (rdev->mddev) {
1306                 MD_BUG();
1307                 return -EINVAL;
1308         }
1309         /* make sure rdev->size exceeds mddev->size */
1310         if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1311                 if (mddev->pers)
1312                         /* Cannot change size, so fail */
1313                         return -ENOSPC;
1314                 else
1315                         mddev->size = rdev->size;
1316         }
1317         same_pdev = match_dev_unit(mddev, rdev);
1318         if (same_pdev)
1319                 printk(KERN_WARNING
1320                         "%s: WARNING: %s appears to be on the same physical"
1321                         " disk as %s. True\n     protection against single-disk"
1322                         " failure might be compromised.\n",
1323                         mdname(mddev), bdevname(rdev->bdev,b),
1324                         bdevname(same_pdev->bdev,b2));
1325
1326         /* Verify rdev->desc_nr is unique.
1327          * If it is -1, assign a free number, else
1328          * check number is not in use
1329          */
1330         if (rdev->desc_nr < 0) {
1331                 int choice = 0;
1332                 if (mddev->pers) choice = mddev->raid_disks;
1333                 while (find_rdev_nr(mddev, choice))
1334                         choice++;
1335                 rdev->desc_nr = choice;
1336         } else {
1337                 if (find_rdev_nr(mddev, rdev->desc_nr))
1338                         return -EBUSY;
1339         }
1340         bdevname(rdev->bdev,b);
1341         if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1342                 return -ENOMEM;
1343         while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1344                 *s = '!';
1345                         
1346         list_add(&rdev->same_set, &mddev->disks);
1347         rdev->mddev = mddev;
1348         printk(KERN_INFO "md: bind<%s>\n", b);
1349
1350         rdev->kobj.parent = &mddev->kobj;
1351         kobject_add(&rdev->kobj);
1352
1353         if (rdev->bdev->bd_part)
1354                 ko = &rdev->bdev->bd_part->kobj;
1355         else
1356                 ko = &rdev->bdev->bd_disk->kobj;
1357         sysfs_create_link(&rdev->kobj, ko, "block");
1358         bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1359         return 0;
1360 }
1361
1362 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1363 {
1364         char b[BDEVNAME_SIZE];
1365         if (!rdev->mddev) {
1366                 MD_BUG();
1367                 return;
1368         }
1369         bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1370         list_del_init(&rdev->same_set);
1371         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1372         rdev->mddev = NULL;
1373         sysfs_remove_link(&rdev->kobj, "block");
1374         kobject_del(&rdev->kobj);
1375 }
1376
1377 /*
1378  * prevent the device from being mounted, repartitioned or
1379  * otherwise reused by a RAID array (or any other kernel
1380  * subsystem), by bd_claiming the device.
1381  */
1382 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1383 {
1384         int err = 0;
1385         struct block_device *bdev;
1386         char b[BDEVNAME_SIZE];
1387
1388         bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1389         if (IS_ERR(bdev)) {
1390                 printk(KERN_ERR "md: could not open %s.\n",
1391                         __bdevname(dev, b));
1392                 return PTR_ERR(bdev);
1393         }
1394         err = bd_claim(bdev, rdev);
1395         if (err) {
1396                 printk(KERN_ERR "md: could not bd_claim %s.\n",
1397                         bdevname(bdev, b));
1398                 blkdev_put(bdev);
1399                 return err;
1400         }
1401         rdev->bdev = bdev;
1402         return err;
1403 }
1404
1405 static void unlock_rdev(mdk_rdev_t *rdev)
1406 {
1407         struct block_device *bdev = rdev->bdev;
1408         rdev->bdev = NULL;
1409         if (!bdev)
1410                 MD_BUG();
1411         bd_release(bdev);
1412         blkdev_put(bdev);
1413 }
1414
1415 void md_autodetect_dev(dev_t dev);
1416
1417 static void export_rdev(mdk_rdev_t * rdev)
1418 {
1419         char b[BDEVNAME_SIZE];
1420         printk(KERN_INFO "md: export_rdev(%s)\n",
1421                 bdevname(rdev->bdev,b));
1422         if (rdev->mddev)
1423                 MD_BUG();
1424         free_disk_sb(rdev);
1425         list_del_init(&rdev->same_set);
1426 #ifndef MODULE
1427         md_autodetect_dev(rdev->bdev->bd_dev);
1428 #endif
1429         unlock_rdev(rdev);
1430         kobject_put(&rdev->kobj);
1431 }
1432
1433 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1434 {
1435         unbind_rdev_from_array(rdev);
1436         export_rdev(rdev);
1437 }
1438
1439 static void export_array(mddev_t *mddev)
1440 {
1441         struct list_head *tmp;
1442         mdk_rdev_t *rdev;
1443
1444         ITERATE_RDEV(mddev,rdev,tmp) {
1445                 if (!rdev->mddev) {
1446                         MD_BUG();
1447                         continue;
1448                 }
1449                 kick_rdev_from_array(rdev);
1450         }
1451         if (!list_empty(&mddev->disks))
1452                 MD_BUG();
1453         mddev->raid_disks = 0;
1454         mddev->major_version = 0;
1455 }
1456
1457 static void print_desc(mdp_disk_t *desc)
1458 {
1459         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1460                 desc->major,desc->minor,desc->raid_disk,desc->state);
1461 }
1462
1463 static void print_sb(mdp_super_t *sb)
1464 {
1465         int i;
1466
1467         printk(KERN_INFO 
1468                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1469                 sb->major_version, sb->minor_version, sb->patch_version,
1470                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1471                 sb->ctime);
1472         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1473                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1474                 sb->md_minor, sb->layout, sb->chunk_size);
1475         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1476                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1477                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1478                 sb->failed_disks, sb->spare_disks,
1479                 sb->sb_csum, (unsigned long)sb->events_lo);
1480
1481         printk(KERN_INFO);
1482         for (i = 0; i < MD_SB_DISKS; i++) {
1483                 mdp_disk_t *desc;
1484
1485                 desc = sb->disks + i;
1486                 if (desc->number || desc->major || desc->minor ||
1487                     desc->raid_disk || (desc->state && (desc->state != 4))) {
1488                         printk("     D %2d: ", i);
1489                         print_desc(desc);
1490                 }
1491         }
1492         printk(KERN_INFO "md:     THIS: ");
1493         print_desc(&sb->this_disk);
1494
1495 }
1496
1497 static void print_rdev(mdk_rdev_t *rdev)
1498 {
1499         char b[BDEVNAME_SIZE];
1500         printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1501                 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1502                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1503                 rdev->desc_nr);
1504         if (rdev->sb_loaded) {
1505                 printk(KERN_INFO "md: rdev superblock:\n");
1506                 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1507         } else
1508                 printk(KERN_INFO "md: no rdev superblock!\n");
1509 }
1510
1511 void md_print_devices(void)
1512 {
1513         struct list_head *tmp, *tmp2;
1514         mdk_rdev_t *rdev;
1515         mddev_t *mddev;
1516         char b[BDEVNAME_SIZE];
1517
1518         printk("\n");
1519         printk("md:     **********************************\n");
1520         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
1521         printk("md:     **********************************\n");
1522         ITERATE_MDDEV(mddev,tmp) {
1523
1524                 if (mddev->bitmap)
1525                         bitmap_print_sb(mddev->bitmap);
1526                 else
1527                         printk("%s: ", mdname(mddev));
1528                 ITERATE_RDEV(mddev,rdev,tmp2)
1529                         printk("<%s>", bdevname(rdev->bdev,b));
1530                 printk("\n");
1531
1532                 ITERATE_RDEV(mddev,rdev,tmp2)
1533                         print_rdev(rdev);
1534         }
1535         printk("md:     **********************************\n");
1536         printk("\n");
1537 }
1538
1539
1540 static void sync_sbs(mddev_t * mddev)
1541 {
1542         mdk_rdev_t *rdev;
1543         struct list_head *tmp;
1544
1545         ITERATE_RDEV(mddev,rdev,tmp) {
1546                 super_types[mddev->major_version].
1547                         sync_super(mddev, rdev);
1548                 rdev->sb_loaded = 1;
1549         }
1550 }
1551
1552 void md_update_sb(mddev_t * mddev)
1553 {
1554         int err;
1555         struct list_head *tmp;
1556         mdk_rdev_t *rdev;
1557         int sync_req;
1558
1559 repeat:
1560         spin_lock_irq(&mddev->write_lock);
1561         sync_req = mddev->in_sync;
1562         mddev->utime = get_seconds();
1563         mddev->events ++;
1564
1565         if (!mddev->events) {
1566                 /*
1567                  * oops, this 64-bit counter should never wrap.
1568                  * Either we are in around ~1 trillion A.C., assuming
1569                  * 1 reboot per second, or we have a bug:
1570                  */
1571                 MD_BUG();
1572                 mddev->events --;
1573         }
1574         mddev->sb_dirty = 2;
1575         sync_sbs(mddev);
1576
1577         /*
1578          * do not write anything to disk if using
1579          * nonpersistent superblocks
1580          */
1581         if (!mddev->persistent) {
1582                 mddev->sb_dirty = 0;
1583                 spin_unlock_irq(&mddev->write_lock);
1584                 wake_up(&mddev->sb_wait);
1585                 return;
1586         }
1587         spin_unlock_irq(&mddev->write_lock);
1588
1589         dprintk(KERN_INFO 
1590                 "md: updating %s RAID superblock on device (in sync %d)\n",
1591                 mdname(mddev),mddev->in_sync);
1592
1593         err = bitmap_update_sb(mddev->bitmap);
1594         ITERATE_RDEV(mddev,rdev,tmp) {
1595                 char b[BDEVNAME_SIZE];
1596                 dprintk(KERN_INFO "md: ");
1597                 if (test_bit(Faulty, &rdev->flags))
1598                         dprintk("(skipping faulty ");
1599
1600                 dprintk("%s ", bdevname(rdev->bdev,b));
1601                 if (!test_bit(Faulty, &rdev->flags)) {
1602                         md_super_write(mddev,rdev,
1603                                        rdev->sb_offset<<1, rdev->sb_size,
1604                                        rdev->sb_page);
1605                         dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1606                                 bdevname(rdev->bdev,b),
1607                                 (unsigned long long)rdev->sb_offset);
1608
1609                 } else
1610                         dprintk(")\n");
1611                 if (mddev->level == LEVEL_MULTIPATH)
1612                         /* only need to write one superblock... */
1613                         break;
1614         }
1615         md_super_wait(mddev);
1616         /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1617
1618         spin_lock_irq(&mddev->write_lock);
1619         if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1620                 /* have to write it out again */
1621                 spin_unlock_irq(&mddev->write_lock);
1622                 goto repeat;
1623         }
1624         mddev->sb_dirty = 0;
1625         spin_unlock_irq(&mddev->write_lock);
1626         wake_up(&mddev->sb_wait);
1627
1628 }
1629 EXPORT_SYMBOL_GPL(md_update_sb);
1630
1631 /* words written to sysfs files may, or my not, be \n terminated.
1632  * We want to accept with case. For this we use cmd_match.
1633  */
1634 static int cmd_match(const char *cmd, const char *str)
1635 {
1636         /* See if cmd, written into a sysfs file, matches
1637          * str.  They must either be the same, or cmd can
1638          * have a trailing newline
1639          */
1640         while (*cmd && *str && *cmd == *str) {
1641                 cmd++;
1642                 str++;
1643         }
1644         if (*cmd == '\n')
1645                 cmd++;
1646         if (*str || *cmd)
1647                 return 0;
1648         return 1;
1649 }
1650
1651 struct rdev_sysfs_entry {
1652         struct attribute attr;
1653         ssize_t (*show)(mdk_rdev_t *, char *);
1654         ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1655 };
1656
1657 static ssize_t
1658 state_show(mdk_rdev_t *rdev, char *page)
1659 {
1660         char *sep = "";
1661         int len=0;
1662
1663         if (test_bit(Faulty, &rdev->flags)) {
1664                 len+= sprintf(page+len, "%sfaulty",sep);
1665                 sep = ",";
1666         }
1667         if (test_bit(In_sync, &rdev->flags)) {
1668                 len += sprintf(page+len, "%sin_sync",sep);
1669                 sep = ",";
1670         }
1671         if (!test_bit(Faulty, &rdev->flags) &&
1672             !test_bit(In_sync, &rdev->flags)) {
1673                 len += sprintf(page+len, "%sspare", sep);
1674                 sep = ",";
1675         }
1676         return len+sprintf(page+len, "\n");
1677 }
1678
1679 static struct rdev_sysfs_entry
1680 rdev_state = __ATTR_RO(state);
1681
1682 static ssize_t
1683 super_show(mdk_rdev_t *rdev, char *page)
1684 {
1685         if (rdev->sb_loaded && rdev->sb_size) {
1686                 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1687                 return rdev->sb_size;
1688         } else
1689                 return 0;
1690 }
1691 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1692
1693 static ssize_t
1694 errors_show(mdk_rdev_t *rdev, char *page)
1695 {
1696         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1697 }
1698
1699 static ssize_t
1700 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1701 {
1702         char *e;
1703         unsigned long n = simple_strtoul(buf, &e, 10);
1704         if (*buf && (*e == 0 || *e == '\n')) {
1705                 atomic_set(&rdev->corrected_errors, n);
1706                 return len;
1707         }
1708         return -EINVAL;
1709 }
1710 static struct rdev_sysfs_entry rdev_errors =
1711 __ATTR(errors, 0644, errors_show, errors_store);
1712
1713 static ssize_t
1714 slot_show(mdk_rdev_t *rdev, char *page)
1715 {
1716         if (rdev->raid_disk < 0)
1717                 return sprintf(page, "none\n");
1718         else
1719                 return sprintf(page, "%d\n", rdev->raid_disk);
1720 }
1721
1722 static ssize_t
1723 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1724 {
1725         char *e;
1726         int slot = simple_strtoul(buf, &e, 10);
1727         if (strncmp(buf, "none", 4)==0)
1728                 slot = -1;
1729         else if (e==buf || (*e && *e!= '\n'))
1730                 return -EINVAL;
1731         if (rdev->mddev->pers)
1732                 /* Cannot set slot in active array (yet) */
1733                 return -EBUSY;
1734         if (slot >= rdev->mddev->raid_disks)
1735                 return -ENOSPC;
1736         rdev->raid_disk = slot;
1737         /* assume it is working */
1738         rdev->flags = 0;
1739         set_bit(In_sync, &rdev->flags);
1740         return len;
1741 }
1742
1743
1744 static struct rdev_sysfs_entry rdev_slot =
1745 __ATTR(slot, 0644, slot_show, slot_store);
1746
1747 static ssize_t
1748 offset_show(mdk_rdev_t *rdev, char *page)
1749 {
1750         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1751 }
1752
1753 static ssize_t
1754 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1755 {
1756         char *e;
1757         unsigned long long offset = simple_strtoull(buf, &e, 10);
1758         if (e==buf || (*e && *e != '\n'))
1759                 return -EINVAL;
1760         if (rdev->mddev->pers)
1761                 return -EBUSY;
1762         rdev->data_offset = offset;
1763         return len;
1764 }
1765
1766 static struct rdev_sysfs_entry rdev_offset =
1767 __ATTR(offset, 0644, offset_show, offset_store);
1768
1769 static ssize_t
1770 rdev_size_show(mdk_rdev_t *rdev, char *page)
1771 {
1772         return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1773 }
1774
1775 static ssize_t
1776 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1777 {
1778         char *e;
1779         unsigned long long size = simple_strtoull(buf, &e, 10);
1780         if (e==buf || (*e && *e != '\n'))
1781                 return -EINVAL;
1782         if (rdev->mddev->pers)
1783                 return -EBUSY;
1784         rdev->size = size;
1785         if (size < rdev->mddev->size || rdev->mddev->size == 0)
1786                 rdev->mddev->size = size;
1787         return len;
1788 }
1789
1790 static struct rdev_sysfs_entry rdev_size =
1791 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1792
1793 static struct attribute *rdev_default_attrs[] = {
1794         &rdev_state.attr,
1795         &rdev_super.attr,
1796         &rdev_errors.attr,
1797         &rdev_slot.attr,
1798         &rdev_offset.attr,
1799         &rdev_size.attr,
1800         NULL,
1801 };
1802 static ssize_t
1803 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1804 {
1805         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1806         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1807
1808         if (!entry->show)
1809                 return -EIO;
1810         return entry->show(rdev, page);
1811 }
1812
1813 static ssize_t
1814 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1815               const char *page, size_t length)
1816 {
1817         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1818         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1819
1820         if (!entry->store)
1821                 return -EIO;
1822         return entry->store(rdev, page, length);
1823 }
1824
1825 static void rdev_free(struct kobject *ko)
1826 {
1827         mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1828         kfree(rdev);
1829 }
1830 static struct sysfs_ops rdev_sysfs_ops = {
1831         .show           = rdev_attr_show,
1832         .store          = rdev_attr_store,
1833 };
1834 static struct kobj_type rdev_ktype = {
1835         .release        = rdev_free,
1836         .sysfs_ops      = &rdev_sysfs_ops,
1837         .default_attrs  = rdev_default_attrs,
1838 };
1839
1840 /*
1841  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1842  *
1843  * mark the device faulty if:
1844  *
1845  *   - the device is nonexistent (zero size)
1846  *   - the device has no valid superblock
1847  *
1848  * a faulty rdev _never_ has rdev->sb set.
1849  */
1850 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1851 {
1852         char b[BDEVNAME_SIZE];
1853         int err;
1854         mdk_rdev_t *rdev;
1855         sector_t size;
1856
1857         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1858         if (!rdev) {
1859                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1860                 return ERR_PTR(-ENOMEM);
1861         }
1862
1863         if ((err = alloc_disk_sb(rdev)))
1864                 goto abort_free;
1865
1866         err = lock_rdev(rdev, newdev);
1867         if (err)
1868                 goto abort_free;
1869
1870         rdev->kobj.parent = NULL;
1871         rdev->kobj.ktype = &rdev_ktype;
1872         kobject_init(&rdev->kobj);
1873
1874         rdev->desc_nr = -1;
1875         rdev->flags = 0;
1876         rdev->data_offset = 0;
1877         atomic_set(&rdev->nr_pending, 0);
1878         atomic_set(&rdev->read_errors, 0);
1879         atomic_set(&rdev->corrected_errors, 0);
1880
1881         size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1882         if (!size) {
1883                 printk(KERN_WARNING 
1884                         "md: %s has zero or unknown size, marking faulty!\n",
1885                         bdevname(rdev->bdev,b));
1886                 err = -EINVAL;
1887                 goto abort_free;
1888         }
1889
1890         if (super_format >= 0) {
1891                 err = super_types[super_format].
1892                         load_super(rdev, NULL, super_minor);
1893                 if (err == -EINVAL) {
1894                         printk(KERN_WARNING 
1895                                 "md: %s has invalid sb, not importing!\n",
1896                                 bdevname(rdev->bdev,b));
1897                         goto abort_free;
1898                 }
1899                 if (err < 0) {
1900                         printk(KERN_WARNING 
1901                                 "md: could not read %s's sb, not importing!\n",
1902                                 bdevname(rdev->bdev,b));
1903                         goto abort_free;
1904                 }
1905         }
1906         INIT_LIST_HEAD(&rdev->same_set);
1907
1908         return rdev;
1909
1910 abort_free:
1911         if (rdev->sb_page) {
1912                 if (rdev->bdev)
1913                         unlock_rdev(rdev);
1914                 free_disk_sb(rdev);
1915         }
1916         kfree(rdev);
1917         return ERR_PTR(err);
1918 }
1919
1920 /*
1921  * Check a full RAID array for plausibility
1922  */
1923
1924
1925 static void analyze_sbs(mddev_t * mddev)
1926 {
1927         int i;
1928         struct list_head *tmp;
1929         mdk_rdev_t *rdev, *freshest;
1930         char b[BDEVNAME_SIZE];
1931
1932         freshest = NULL;
1933         ITERATE_RDEV(mddev,rdev,tmp)
1934                 switch (super_types[mddev->major_version].
1935                         load_super(rdev, freshest, mddev->minor_version)) {
1936                 case 1:
1937                         freshest = rdev;
1938                         break;
1939                 case 0:
1940                         break;
1941                 default:
1942                         printk( KERN_ERR \
1943                                 "md: fatal superblock inconsistency in %s"
1944                                 " -- removing from array\n", 
1945                                 bdevname(rdev->bdev,b));
1946                         kick_rdev_from_array(rdev);
1947                 }
1948
1949
1950         super_types[mddev->major_version].
1951                 validate_super(mddev, freshest);
1952
1953         i = 0;
1954         ITERATE_RDEV(mddev,rdev,tmp) {
1955                 if (rdev != freshest)
1956                         if (super_types[mddev->major_version].
1957                             validate_super(mddev, rdev)) {
1958                                 printk(KERN_WARNING "md: kicking non-fresh %s"
1959                                         " from array!\n",
1960                                         bdevname(rdev->bdev,b));
1961                                 kick_rdev_from_array(rdev);
1962                                 continue;
1963                         }
1964                 if (mddev->level == LEVEL_MULTIPATH) {
1965                         rdev->desc_nr = i++;
1966                         rdev->raid_disk = rdev->desc_nr;
1967                         set_bit(In_sync, &rdev->flags);
1968                 }
1969         }
1970
1971
1972
1973         if (mddev->recovery_cp != MaxSector &&
1974             mddev->level >= 1)
1975                 printk(KERN_ERR "md: %s: raid array is not clean"
1976                        " -- starting background reconstruction\n",
1977                        mdname(mddev));
1978
1979 }
1980
1981 static ssize_t
1982 safe_delay_show(mddev_t *mddev, char *page)
1983 {
1984         int msec = (mddev->safemode_delay*1000)/HZ;
1985         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
1986 }
1987 static ssize_t
1988 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
1989 {
1990         int scale=1;
1991         int dot=0;
1992         int i;
1993         unsigned long msec;
1994         char buf[30];
1995         char *e;
1996         /* remove a period, and count digits after it */
1997         if (len >= sizeof(buf))
1998                 return -EINVAL;
1999         strlcpy(buf, cbuf, len);
2000         buf[len] = 0;
2001         for (i=0; i<len; i++) {
2002                 if (dot) {
2003                         if (isdigit(buf[i])) {
2004                                 buf[i-1] = buf[i];
2005                                 scale *= 10;
2006                         }
2007                         buf[i] = 0;
2008                 } else if (buf[i] == '.') {
2009                         dot=1;
2010                         buf[i] = 0;
2011                 }
2012         }
2013         msec = simple_strtoul(buf, &e, 10);
2014         if (e == buf || (*e && *e != '\n'))
2015                 return -EINVAL;
2016         msec = (msec * 1000) / scale;
2017         if (msec == 0)
2018                 mddev->safemode_delay = 0;
2019         else {
2020                 mddev->safemode_delay = (msec*HZ)/1000;
2021                 if (mddev->safemode_delay == 0)
2022                         mddev->safemode_delay = 1;
2023         }
2024         return len;
2025 }
2026 static struct md_sysfs_entry md_safe_delay =
2027 __ATTR(safe_mode_delay, 0644,safe_delay_show, safe_delay_store);
2028
2029 static ssize_t
2030 level_show(mddev_t *mddev, char *page)
2031 {
2032         struct mdk_personality *p = mddev->pers;
2033         if (p)
2034                 return sprintf(page, "%s\n", p->name);
2035         else if (mddev->clevel[0])
2036                 return sprintf(page, "%s\n", mddev->clevel);
2037         else if (mddev->level != LEVEL_NONE)
2038                 return sprintf(page, "%d\n", mddev->level);
2039         else
2040                 return 0;
2041 }
2042
2043 static ssize_t
2044 level_store(mddev_t *mddev, const char *buf, size_t len)
2045 {
2046         int rv = len;
2047         if (mddev->pers)
2048                 return -EBUSY;
2049         if (len == 0)
2050                 return 0;
2051         if (len >= sizeof(mddev->clevel))
2052                 return -ENOSPC;
2053         strncpy(mddev->clevel, buf, len);
2054         if (mddev->clevel[len-1] == '\n')
2055                 len--;
2056         mddev->clevel[len] = 0;
2057         mddev->level = LEVEL_NONE;
2058         return rv;
2059 }
2060
2061 static struct md_sysfs_entry md_level =
2062 __ATTR(level, 0644, level_show, level_store);
2063
2064 static ssize_t
2065 raid_disks_show(mddev_t *mddev, char *page)
2066 {
2067         if (mddev->raid_disks == 0)
2068                 return 0;
2069         return sprintf(page, "%d\n", mddev->raid_disks);
2070 }
2071
2072 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2073
2074 static ssize_t
2075 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2076 {
2077         /* can only set raid_disks if array is not yet active */
2078         char *e;
2079         int rv = 0;
2080         unsigned long n = simple_strtoul(buf, &e, 10);
2081
2082         if (!*buf || (*e && *e != '\n'))
2083                 return -EINVAL;
2084
2085         if (mddev->pers)
2086                 rv = update_raid_disks(mddev, n);
2087         else
2088                 mddev->raid_disks = n;
2089         return rv ? rv : len;
2090 }
2091 static struct md_sysfs_entry md_raid_disks =
2092 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
2093
2094 static ssize_t
2095 chunk_size_show(mddev_t *mddev, char *page)
2096 {
2097         return sprintf(page, "%d\n", mddev->chunk_size);
2098 }
2099
2100 static ssize_t
2101 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2102 {
2103         /* can only set chunk_size if array is not yet active */
2104         char *e;
2105         unsigned long n = simple_strtoul(buf, &e, 10);
2106
2107         if (mddev->pers)
2108                 return -EBUSY;
2109         if (!*buf || (*e && *e != '\n'))
2110                 return -EINVAL;
2111
2112         mddev->chunk_size = n;
2113         return len;
2114 }
2115 static struct md_sysfs_entry md_chunk_size =
2116 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2117
2118 static ssize_t
2119 null_show(mddev_t *mddev, char *page)
2120 {
2121         return -EINVAL;
2122 }
2123
2124 static ssize_t
2125 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2126 {
2127         /* buf must be %d:%d\n? giving major and minor numbers */
2128         /* The new device is added to the array.
2129          * If the array has a persistent superblock, we read the
2130          * superblock to initialise info and check validity.
2131          * Otherwise, only checking done is that in bind_rdev_to_array,
2132          * which mainly checks size.
2133          */
2134         char *e;
2135         int major = simple_strtoul(buf, &e, 10);
2136         int minor;
2137         dev_t dev;
2138         mdk_rdev_t *rdev;
2139         int err;
2140
2141         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2142                 return -EINVAL;
2143         minor = simple_strtoul(e+1, &e, 10);
2144         if (*e && *e != '\n')
2145                 return -EINVAL;
2146         dev = MKDEV(major, minor);
2147         if (major != MAJOR(dev) ||
2148             minor != MINOR(dev))
2149                 return -EOVERFLOW;
2150
2151
2152         if (mddev->persistent) {
2153                 rdev = md_import_device(dev, mddev->major_version,
2154                                         mddev->minor_version);
2155                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2156                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2157                                                        mdk_rdev_t, same_set);
2158                         err = super_types[mddev->major_version]
2159                                 .load_super(rdev, rdev0, mddev->minor_version);
2160                         if (err < 0)
2161                                 goto out;
2162                 }
2163         } else
2164                 rdev = md_import_device(dev, -1, -1);
2165
2166         if (IS_ERR(rdev))
2167                 return PTR_ERR(rdev);
2168         err = bind_rdev_to_array(rdev, mddev);
2169  out:
2170         if (err)
2171                 export_rdev(rdev);
2172         return err ? err : len;
2173 }
2174
2175 static struct md_sysfs_entry md_new_device =
2176 __ATTR(new_dev, 0200, null_show, new_dev_store);
2177
2178 static ssize_t
2179 size_show(mddev_t *mddev, char *page)
2180 {
2181         return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2182 }
2183
2184 static int update_size(mddev_t *mddev, unsigned long size);
2185
2186 static ssize_t
2187 size_store(mddev_t *mddev, const char *buf, size_t len)
2188 {
2189         /* If array is inactive, we can reduce the component size, but
2190          * not increase it (except from 0).
2191          * If array is active, we can try an on-line resize
2192          */
2193         char *e;
2194         int err = 0;
2195         unsigned long long size = simple_strtoull(buf, &e, 10);
2196         if (!*buf || *buf == '\n' ||
2197             (*e && *e != '\n'))
2198                 return -EINVAL;
2199
2200         if (mddev->pers) {
2201                 err = update_size(mddev, size);
2202                 md_update_sb(mddev);
2203         } else {
2204                 if (mddev->size == 0 ||
2205                     mddev->size > size)
2206                         mddev->size = size;
2207                 else
2208                         err = -ENOSPC;
2209         }
2210         return err ? err : len;
2211 }
2212
2213 static struct md_sysfs_entry md_size =
2214 __ATTR(component_size, 0644, size_show, size_store);
2215
2216
2217 /* Metdata version.
2218  * This is either 'none' for arrays with externally managed metadata,
2219  * or N.M for internally known formats
2220  */
2221 static ssize_t
2222 metadata_show(mddev_t *mddev, char *page)
2223 {
2224         if (mddev->persistent)
2225                 return sprintf(page, "%d.%d\n",
2226                                mddev->major_version, mddev->minor_version);
2227         else
2228                 return sprintf(page, "none\n");
2229 }
2230
2231 static ssize_t
2232 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2233 {
2234         int major, minor;
2235         char *e;
2236         if (!list_empty(&mddev->disks))
2237                 return -EBUSY;
2238
2239         if (cmd_match(buf, "none")) {
2240                 mddev->persistent = 0;
2241                 mddev->major_version = 0;
2242                 mddev->minor_version = 90;
2243                 return len;
2244         }
2245         major = simple_strtoul(buf, &e, 10);
2246         if (e==buf || *e != '.')
2247                 return -EINVAL;
2248         buf = e+1;
2249         minor = simple_strtoul(buf, &e, 10);
2250         if (e==buf || *e != '\n')
2251                 return -EINVAL;
2252         if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2253             super_types[major].name == NULL)
2254                 return -ENOENT;
2255         mddev->major_version = major;
2256         mddev->minor_version = minor;
2257         mddev->persistent = 1;
2258         return len;
2259 }
2260
2261 static struct md_sysfs_entry md_metadata =
2262 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2263
2264 static ssize_t
2265 action_show(mddev_t *mddev, char *page)
2266 {
2267         char *type = "idle";
2268         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2269             test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2270                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2271                         type = "reshape";
2272                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2273                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2274                                 type = "resync";
2275                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2276                                 type = "check";
2277                         else
2278                                 type = "repair";
2279                 } else
2280                         type = "recover";
2281         }
2282         return sprintf(page, "%s\n", type);
2283 }
2284
2285 static ssize_t
2286 action_store(mddev_t *mddev, const char *page, size_t len)
2287 {
2288         if (!mddev->pers || !mddev->pers->sync_request)
2289                 return -EINVAL;
2290
2291         if (cmd_match(page, "idle")) {
2292                 if (mddev->sync_thread) {
2293                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2294                         md_unregister_thread(mddev->sync_thread);
2295                         mddev->sync_thread = NULL;
2296                         mddev->recovery = 0;
2297                 }
2298         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2299                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2300                 return -EBUSY;
2301         else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2302                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2303         else if (cmd_match(page, "reshape")) {
2304                 int err;
2305                 if (mddev->pers->start_reshape == NULL)
2306                         return -EINVAL;
2307                 err = mddev->pers->start_reshape(mddev);
2308                 if (err)
2309                         return err;
2310         } else {
2311                 if (cmd_match(page, "check"))
2312                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2313                 else if (!cmd_match(page, "repair"))
2314                         return -EINVAL;
2315                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2316                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2317         }
2318         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2319         md_wakeup_thread(mddev->thread);
2320         return len;
2321 }
2322
2323 static ssize_t
2324 mismatch_cnt_show(mddev_t *mddev, char *page)
2325 {
2326         return sprintf(page, "%llu\n",
2327                        (unsigned long long) mddev->resync_mismatches);
2328 }
2329
2330 static struct md_sysfs_entry
2331 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2332
2333
2334 static struct md_sysfs_entry
2335 md_mismatches = __ATTR_RO(mismatch_cnt);
2336
2337 static ssize_t
2338 sync_min_show(mddev_t *mddev, char *page)
2339 {
2340         return sprintf(page, "%d (%s)\n", speed_min(mddev),
2341                        mddev->sync_speed_min ? "local": "system");
2342 }
2343
2344 static ssize_t
2345 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2346 {
2347         int min;
2348         char *e;
2349         if (strncmp(buf, "system", 6)==0) {
2350                 mddev->sync_speed_min = 0;
2351                 return len;
2352         }
2353         min = simple_strtoul(buf, &e, 10);
2354         if (buf == e || (*e && *e != '\n') || min <= 0)
2355                 return -EINVAL;
2356         mddev->sync_speed_min = min;
2357         return len;
2358 }
2359
2360 static struct md_sysfs_entry md_sync_min =
2361 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2362
2363 static ssize_t
2364 sync_max_show(mddev_t *mddev, char *page)
2365 {
2366         return sprintf(page, "%d (%s)\n", speed_max(mddev),
2367                        mddev->sync_speed_max ? "local": "system");
2368 }
2369
2370 static ssize_t
2371 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2372 {
2373         int max;
2374         char *e;
2375         if (strncmp(buf, "system", 6)==0) {
2376                 mddev->sync_speed_max = 0;
2377                 return len;
2378         }
2379         max = simple_strtoul(buf, &e, 10);
2380         if (buf == e || (*e && *e != '\n') || max <= 0)
2381                 return -EINVAL;
2382         mddev->sync_speed_max = max;
2383         return len;
2384 }
2385
2386 static struct md_sysfs_entry md_sync_max =
2387 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2388
2389
2390 static ssize_t
2391 sync_speed_show(mddev_t *mddev, char *page)
2392 {
2393         unsigned long resync, dt, db;
2394         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2395         dt = ((jiffies - mddev->resync_mark) / HZ);
2396         if (!dt) dt++;
2397         db = resync - (mddev->resync_mark_cnt);
2398         return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2399 }
2400
2401 static struct md_sysfs_entry
2402 md_sync_speed = __ATTR_RO(sync_speed);
2403
2404 static ssize_t
2405 sync_completed_show(mddev_t *mddev, char *page)
2406 {
2407         unsigned long max_blocks, resync;
2408
2409         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2410                 max_blocks = mddev->resync_max_sectors;
2411         else
2412                 max_blocks = mddev->size << 1;
2413
2414         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2415         return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2416 }
2417
2418 static struct md_sysfs_entry
2419 md_sync_completed = __ATTR_RO(sync_completed);
2420
2421 static ssize_t
2422 suspend_lo_show(mddev_t *mddev, char *page)
2423 {
2424         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2425 }
2426
2427 static ssize_t
2428 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2429 {
2430         char *e;
2431         unsigned long long new = simple_strtoull(buf, &e, 10);
2432
2433         if (mddev->pers->quiesce == NULL)
2434                 return -EINVAL;
2435         if (buf == e || (*e && *e != '\n'))
2436                 return -EINVAL;
2437         if (new >= mddev->suspend_hi ||
2438             (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2439                 mddev->suspend_lo = new;
2440                 mddev->pers->quiesce(mddev, 2);
2441                 return len;
2442         } else
2443                 return -EINVAL;
2444 }
2445 static struct md_sysfs_entry md_suspend_lo =
2446 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2447
2448
2449 static ssize_t
2450 suspend_hi_show(mddev_t *mddev, char *page)
2451 {
2452         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2453 }
2454
2455 static ssize_t
2456 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2457 {
2458         char *e;
2459         unsigned long long new = simple_strtoull(buf, &e, 10);
2460
2461         if (mddev->pers->quiesce == NULL)
2462                 return -EINVAL;
2463         if (buf == e || (*e && *e != '\n'))
2464                 return -EINVAL;
2465         if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2466             (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2467                 mddev->suspend_hi = new;
2468                 mddev->pers->quiesce(mddev, 1);
2469                 mddev->pers->quiesce(mddev, 0);
2470                 return len;
2471         } else
2472                 return -EINVAL;
2473 }
2474 static struct md_sysfs_entry md_suspend_hi =
2475 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2476
2477
2478 static struct attribute *md_default_attrs[] = {
2479         &md_level.attr,
2480         &md_raid_disks.attr,
2481         &md_chunk_size.attr,
2482         &md_size.attr,
2483         &md_metadata.attr,
2484         &md_new_device.attr,
2485         &md_safe_delay.attr,
2486         NULL,
2487 };
2488
2489 static struct attribute *md_redundancy_attrs[] = {
2490         &md_scan_mode.attr,
2491         &md_mismatches.attr,
2492         &md_sync_min.attr,
2493         &md_sync_max.attr,
2494         &md_sync_speed.attr,
2495         &md_sync_completed.attr,
2496         &md_suspend_lo.attr,
2497         &md_suspend_hi.attr,
2498         NULL,
2499 };
2500 static struct attribute_group md_redundancy_group = {
2501         .name = NULL,
2502         .attrs = md_redundancy_attrs,
2503 };
2504
2505
2506 static ssize_t
2507 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2508 {
2509         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2510         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2511         ssize_t rv;
2512
2513         if (!entry->show)
2514                 return -EIO;
2515         rv = mddev_lock(mddev);
2516         if (!rv) {
2517                 rv = entry->show(mddev, page);
2518                 mddev_unlock(mddev);
2519         }
2520         return rv;
2521 }
2522
2523 static ssize_t
2524 md_attr_store(struct kobject *kobj, struct attribute *attr,
2525               const char *page, size_t length)
2526 {
2527         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2528         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2529         ssize_t rv;
2530
2531         if (!entry->store)
2532                 return -EIO;
2533         rv = mddev_lock(mddev);
2534         if (!rv) {
2535                 rv = entry->store(mddev, page, length);
2536                 mddev_unlock(mddev);
2537         }
2538         return rv;
2539 }
2540
2541 static void md_free(struct kobject *ko)
2542 {
2543         mddev_t *mddev = container_of(ko, mddev_t, kobj);
2544         kfree(mddev);
2545 }
2546
2547 static struct sysfs_ops md_sysfs_ops = {
2548         .show   = md_attr_show,
2549         .store  = md_attr_store,
2550 };
2551 static struct kobj_type md_ktype = {
2552         .release        = md_free,
2553         .sysfs_ops      = &md_sysfs_ops,
2554         .default_attrs  = md_default_attrs,
2555 };
2556
2557 int mdp_major = 0;
2558
2559 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2560 {
2561         static DEFINE_MUTEX(disks_mutex);
2562         mddev_t *mddev = mddev_find(dev);
2563         struct gendisk *disk;
2564         int partitioned = (MAJOR(dev) != MD_MAJOR);
2565         int shift = partitioned ? MdpMinorShift : 0;
2566         int unit = MINOR(dev) >> shift;
2567
2568         if (!mddev)
2569                 return NULL;
2570
2571         mutex_lock(&disks_mutex);
2572         if (mddev->gendisk) {
2573                 mutex_unlock(&disks_mutex);
2574                 mddev_put(mddev);
2575                 return NULL;
2576         }
2577         disk = alloc_disk(1 << shift);
2578         if (!disk) {
2579                 mutex_unlock(&disks_mutex);
2580                 mddev_put(mddev);
2581                 return NULL;
2582         }
2583         disk->major = MAJOR(dev);
2584         disk->first_minor = unit << shift;
2585         if (partitioned) {
2586                 sprintf(disk->disk_name, "md_d%d", unit);
2587                 sprintf(disk->devfs_name, "md/d%d", unit);
2588         } else {
2589                 sprintf(disk->disk_name, "md%d", unit);
2590                 sprintf(disk->devfs_name, "md/%d", unit);
2591         }
2592         disk->fops = &md_fops;
2593         disk->private_data = mddev;
2594         disk->queue = mddev->queue;
2595         add_disk(disk);
2596         mddev->gendisk = disk;
2597         mutex_unlock(&disks_mutex);
2598         mddev->kobj.parent = &disk->kobj;
2599         mddev->kobj.k_name = NULL;
2600         snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2601         mddev->kobj.ktype = &md_ktype;
2602         kobject_register(&mddev->kobj);
2603         return NULL;
2604 }
2605
2606 void md_wakeup_thread(mdk_thread_t *thread);
2607
2608 static void md_safemode_timeout(unsigned long data)
2609 {
2610         mddev_t *mddev = (mddev_t *) data;
2611
2612         mddev->safemode = 1;
2613         md_wakeup_thread(mddev->thread);
2614 }
2615
2616 static int start_dirty_degraded;
2617
2618 static int do_md_run(mddev_t * mddev)
2619 {
2620         int err;
2621         int chunk_size;
2622         struct list_head *tmp;
2623         mdk_rdev_t *rdev;
2624         struct gendisk *disk;
2625         struct mdk_personality *pers;
2626         char b[BDEVNAME_SIZE];
2627
2628         if (list_empty(&mddev->disks))
2629                 /* cannot run an array with no devices.. */
2630                 return -EINVAL;
2631
2632         if (mddev->pers)
2633                 return -EBUSY;
2634
2635         /*
2636          * Analyze all RAID superblock(s)
2637          */
2638         if (!mddev->raid_disks)
2639                 analyze_sbs(mddev);
2640
2641         chunk_size = mddev->chunk_size;
2642
2643         if (chunk_size) {
2644                 if (chunk_size > MAX_CHUNK_SIZE) {
2645                         printk(KERN_ERR "too big chunk_size: %d > %d\n",
2646                                 chunk_size, MAX_CHUNK_SIZE);
2647                         return -EINVAL;
2648                 }
2649                 /*
2650                  * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2651                  */
2652                 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2653                         printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2654                         return -EINVAL;
2655                 }
2656                 if (chunk_size < PAGE_SIZE) {
2657                         printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2658                                 chunk_size, PAGE_SIZE);
2659                         return -EINVAL;
2660                 }
2661
2662                 /* devices must have minimum size of one chunk */
2663                 ITERATE_RDEV(mddev,rdev,tmp) {
2664                         if (test_bit(Faulty, &rdev->flags))
2665                                 continue;
2666                         if (rdev->size < chunk_size / 1024) {
2667                                 printk(KERN_WARNING
2668                                         "md: Dev %s smaller than chunk_size:"
2669                                         " %lluk < %dk\n",
2670                                         bdevname(rdev->bdev,b),
2671                                         (unsigned long long)rdev->size,
2672                                         chunk_size / 1024);
2673                                 return -EINVAL;
2674                         }
2675                 }
2676         }
2677
2678 #ifdef CONFIG_KMOD
2679         if (mddev->level != LEVEL_NONE)
2680                 request_module("md-level-%d", mddev->level);
2681         else if (mddev->clevel[0])
2682                 request_module("md-%s", mddev->clevel);
2683 #endif
2684
2685         /*
2686          * Drop all container device buffers, from now on
2687          * the only valid external interface is through the md
2688          * device.
2689          * Also find largest hardsector size
2690          */
2691         ITERATE_RDEV(mddev,rdev,tmp) {
2692                 if (test_bit(Faulty, &rdev->flags))
2693                         continue;
2694                 sync_blockdev(rdev->bdev);
2695                 invalidate_bdev(rdev->bdev, 0);
2696         }
2697
2698         md_probe(mddev->unit, NULL, NULL);
2699         disk = mddev->gendisk;
2700         if (!disk)
2701                 return -ENOMEM;
2702
2703         spin_lock(&pers_lock);
2704         pers = find_pers(mddev->level, mddev->clevel);
2705         if (!pers || !try_module_get(pers->owner)) {
2706                 spin_unlock(&pers_lock);
2707                 if (mddev->level != LEVEL_NONE)
2708                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2709                                mddev->level);
2710                 else
2711                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
2712                                mddev->clevel);
2713                 return -EINVAL;
2714         }
2715         mddev->pers = pers;
2716         spin_unlock(&pers_lock);
2717         mddev->level = pers->level;
2718         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2719
2720         if (mddev->reshape_position != MaxSector &&
2721             pers->start_reshape == NULL) {
2722                 /* This personality cannot handle reshaping... */
2723                 mddev->pers = NULL;
2724                 module_put(pers->owner);
2725                 return -EINVAL;
2726         }
2727
2728         mddev->recovery = 0;
2729         mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2730         mddev->barriers_work = 1;
2731         mddev->ok_start_degraded = start_dirty_degraded;
2732
2733         if (start_readonly)
2734                 mddev->ro = 2; /* read-only, but switch on first write */
2735
2736         err = mddev->pers->run(mddev);
2737         if (!err && mddev->pers->sync_request) {
2738                 err = bitmap_create(mddev);
2739                 if (err) {
2740                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2741                                mdname(mddev), err);
2742                         mddev->pers->stop(mddev);
2743                 }
2744         }
2745         if (err) {
2746                 printk(KERN_ERR "md: pers->run() failed ...\n");
2747                 module_put(mddev->pers->owner);
2748                 mddev->pers = NULL;
2749                 bitmap_destroy(mddev);
2750                 return err;
2751         }
2752         if (mddev->pers->sync_request)
2753                 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2754         else if (mddev->ro == 2) /* auto-readonly not meaningful */
2755                 mddev->ro = 0;
2756
2757         atomic_set(&mddev->writes_pending,0);
2758         mddev->safemode = 0;
2759         mddev->safemode_timer.function = md_safemode_timeout;
2760         mddev->safemode_timer.data = (unsigned long) mddev;
2761         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
2762         mddev->in_sync = 1;
2763
2764         ITERATE_RDEV(mddev,rdev,tmp)
2765                 if (rdev->raid_disk >= 0) {
2766                         char nm[20];
2767                         sprintf(nm, "rd%d", rdev->raid_disk);
2768                         sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2769                 }
2770         
2771         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2772         md_wakeup_thread(mddev->thread);
2773         
2774         if (mddev->sb_dirty)
2775                 md_update_sb(mddev);
2776
2777         set_capacity(disk, mddev->array_size<<1);
2778
2779         /* If we call blk_queue_make_request here, it will
2780          * re-initialise max_sectors etc which may have been
2781          * refined inside -> run.  So just set the bits we need to set.
2782          * Most initialisation happended when we called
2783          * blk_queue_make_request(..., md_fail_request)
2784          * earlier.
2785          */
2786         mddev->queue->queuedata = mddev;
2787         mddev->queue->make_request_fn = mddev->pers->make_request;
2788
2789         mddev->changed = 1;
2790         md_new_event(mddev);
2791         return 0;
2792 }
2793
2794 static int restart_array(mddev_t *mddev)
2795 {
2796         struct gendisk *disk = mddev->gendisk;
2797         int err;
2798
2799         /*
2800          * Complain if it has no devices
2801          */
2802         err = -ENXIO;
2803         if (list_empty(&mddev->disks))
2804                 goto out;
2805
2806         if (mddev->pers) {
2807                 err = -EBUSY;
2808                 if (!mddev->ro)
2809                         goto out;
2810
2811                 mddev->safemode = 0;
2812                 mddev->ro = 0;
2813                 set_disk_ro(disk, 0);
2814
2815                 printk(KERN_INFO "md: %s switched to read-write mode.\n",
2816                         mdname(mddev));
2817                 /*
2818                  * Kick recovery or resync if necessary
2819                  */
2820                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2821                 md_wakeup_thread(mddev->thread);
2822                 err = 0;
2823         } else {
2824                 printk(KERN_ERR "md: %s has no personality assigned.\n",
2825                         mdname(mddev));
2826                 err = -EINVAL;
2827         }
2828
2829 out:
2830         return err;
2831 }
2832
2833 static int do_md_stop(mddev_t * mddev, int ro)
2834 {
2835         int err = 0;
2836         struct gendisk *disk = mddev->gendisk;
2837
2838         if (mddev->pers) {
2839                 if (atomic_read(&mddev->active)>2) {
2840                         printk("md: %s still in use.\n",mdname(mddev));
2841                         return -EBUSY;
2842                 }
2843
2844                 if (mddev->sync_thread) {
2845                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2846                         md_unregister_thread(mddev->sync_thread);
2847                         mddev->sync_thread = NULL;
2848                 }
2849
2850                 del_timer_sync(&mddev->safemode_timer);
2851
2852                 invalidate_partition(disk, 0);
2853
2854                 if (ro) {
2855                         err  = -ENXIO;
2856                         if (mddev->ro==1)
2857                                 goto out;
2858                         mddev->ro = 1;
2859                 } else {
2860                         bitmap_flush(mddev);
2861                         md_super_wait(mddev);
2862                         if (mddev->ro)
2863                                 set_disk_ro(disk, 0);
2864                         blk_queue_make_request(mddev->queue, md_fail_request);
2865                         mddev->pers->stop(mddev);
2866                         if (mddev->pers->sync_request)
2867                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2868
2869                         module_put(mddev->pers->owner);
2870                         mddev->pers = NULL;
2871                         if (mddev->ro)
2872                                 mddev->ro = 0;
2873                 }
2874                 if (!mddev->in_sync) {
2875                         /* mark array as shutdown cleanly */
2876                         mddev->in_sync = 1;
2877                         md_update_sb(mddev);
2878                 }
2879                 if (ro)
2880                         set_disk_ro(disk, 1);
2881         }
2882
2883         /*
2884          * Free resources if final stop
2885          */
2886         if (!ro) {
2887                 mdk_rdev_t *rdev;
2888                 struct list_head *tmp;
2889                 struct gendisk *disk;
2890                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2891
2892                 bitmap_destroy(mddev);
2893                 if (mddev->bitmap_file) {
2894                         atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2895                         fput(mddev->bitmap_file);
2896                         mddev->bitmap_file = NULL;
2897                 }
2898                 mddev->bitmap_offset = 0;
2899
2900                 ITERATE_RDEV(mddev,rdev,tmp)
2901                         if (rdev->raid_disk >= 0) {
2902                                 char nm[20];
2903                                 sprintf(nm, "rd%d", rdev->raid_disk);
2904                                 sysfs_remove_link(&mddev->kobj, nm);
2905                         }
2906
2907                 export_array(mddev);
2908
2909                 mddev->array_size = 0;
2910                 disk = mddev->gendisk;
2911                 if (disk)
2912                         set_capacity(disk, 0);
2913                 mddev->changed = 1;
2914         } else if (mddev->pers)
2915                 printk(KERN_INFO "md: %s switched to read-only mode.\n",
2916                         mdname(mddev));
2917         err = 0;
2918         md_new_event(mddev);
2919 out:
2920         return err;
2921 }
2922
2923 static void autorun_array(mddev_t *mddev)
2924 {
2925         mdk_rdev_t *rdev;
2926         struct list_head *tmp;
2927         int err;
2928
2929         if (list_empty(&mddev->disks))
2930                 return;
2931
2932         printk(KERN_INFO "md: running: ");
2933
2934         ITERATE_RDEV(mddev,rdev,tmp) {
2935                 char b[BDEVNAME_SIZE];
2936                 printk("<%s>", bdevname(rdev->bdev,b));
2937         }
2938         printk("\n");
2939
2940         err = do_md_run (mddev);
2941         if (err) {
2942                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2943                 do_md_stop (mddev, 0);
2944         }
2945 }
2946
2947 /*
2948  * lets try to run arrays based on all disks that have arrived
2949  * until now. (those are in pending_raid_disks)
2950  *
2951  * the method: pick the first pending disk, collect all disks with
2952  * the same UUID, remove all from the pending list and put them into
2953  * the 'same_array' list. Then order this list based on superblock
2954  * update time (freshest comes first), kick out 'old' disks and
2955  * compare superblocks. If everything's fine then run it.
2956  *
2957  * If "unit" is allocated, then bump its reference count
2958  */
2959 static void autorun_devices(int part)
2960 {
2961         struct list_head *tmp;
2962         mdk_rdev_t *rdev0, *rdev;
2963         mddev_t *mddev;
2964         char b[BDEVNAME_SIZE];
2965
2966         printk(KERN_INFO "md: autorun ...\n");
2967         while (!list_empty(&pending_raid_disks)) {
2968                 dev_t dev;
2969                 LIST_HEAD(candidates);
2970                 rdev0 = list_entry(pending_raid_disks.next,
2971                                          mdk_rdev_t, same_set);
2972
2973                 printk(KERN_INFO "md: considering %s ...\n",
2974                         bdevname(rdev0->bdev,b));
2975                 INIT_LIST_HEAD(&candidates);
2976                 ITERATE_RDEV_PENDING(rdev,tmp)
2977                         if (super_90_load(rdev, rdev0, 0) >= 0) {
2978                                 printk(KERN_INFO "md:  adding %s ...\n",
2979                                         bdevname(rdev->bdev,b));
2980                                 list_move(&rdev->same_set, &candidates);
2981                         }
2982                 /*
2983                  * now we have a set of devices, with all of them having
2984                  * mostly sane superblocks. It's time to allocate the
2985                  * mddev.
2986                  */
2987                 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2988                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2989                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2990                         break;
2991                 }
2992                 if (part)
2993                         dev = MKDEV(mdp_major,
2994                                     rdev0->preferred_minor << MdpMinorShift);
2995                 else
2996                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2997
2998                 md_probe(dev, NULL, NULL);
2999                 mddev = mddev_find(dev);
3000                 if (!mddev) {
3001                         printk(KERN_ERR 
3002                                 "md: cannot allocate memory for md drive.\n");
3003                         break;
3004                 }
3005                 if (mddev_lock(mddev)) 
3006                         printk(KERN_WARNING "md: %s locked, cannot run\n",
3007                                mdname(mddev));
3008                 else if (mddev->raid_disks || mddev->major_version
3009                          || !list_empty(&mddev->disks)) {
3010                         printk(KERN_WARNING 
3011                                 "md: %s already running, cannot run %s\n",
3012                                 mdname(mddev), bdevname(rdev0->bdev,b));
3013                         mddev_unlock(mddev);
3014                 } else {
3015                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
3016                         ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3017                                 list_del_init(&rdev->same_set);
3018                                 if (bind_rdev_to_array(rdev, mddev))
3019                                         export_rdev(rdev);
3020                         }
3021                         autorun_array(mddev);
3022                         mddev_unlock(mddev);
3023                 }
3024                 /* on success, candidates will be empty, on error
3025                  * it won't...
3026                  */
3027                 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3028                         export_rdev(rdev);
3029                 mddev_put(mddev);
3030         }
3031         printk(KERN_INFO "md: ... autorun DONE.\n");
3032 }
3033
3034 /*
3035  * import RAID devices based on one partition
3036  * if possible, the array gets run as well.
3037  */
3038
3039 static int autostart_array(dev_t startdev)
3040 {
3041         char b[BDEVNAME_SIZE];
3042         int err = -EINVAL, i;
3043         mdp_super_t *sb = NULL;
3044         mdk_rdev_t *start_rdev = NULL, *rdev;
3045
3046         start_rdev = md_import_device(startdev, 0, 0);
3047         if (IS_ERR(start_rdev))
3048                 return err;
3049
3050
3051         /* NOTE: this can only work for 0.90.0 superblocks */
3052         sb = (mdp_super_t*)page_address(start_rdev->sb_page);
3053         if (sb->major_version != 0 ||
3054             sb->minor_version != 90 ) {
3055                 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
3056                 export_rdev(start_rdev);
3057                 return err;
3058         }
3059
3060         if (test_bit(Faulty, &start_rdev->flags)) {
3061                 printk(KERN_WARNING 
3062                         "md: can not autostart based on faulty %s!\n",
3063                         bdevname(start_rdev->bdev,b));
3064                 export_rdev(start_rdev);
3065                 return err;
3066         }
3067         list_add(&start_rdev->same_set, &pending_raid_disks);
3068
3069         for (i = 0; i < MD_SB_DISKS; i++) {
3070                 mdp_disk_t *desc = sb->disks + i;
3071                 dev_t dev = MKDEV(desc->major, desc->minor);
3072
3073                 if (!dev)
3074                         continue;
3075                 if (dev == startdev)
3076                         continue;
3077                 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
3078                         continue;
3079                 rdev = md_import_device(dev, 0, 0);
3080                 if (IS_ERR(rdev))
3081                         continue;
3082
3083                 list_add(&rdev->same_set, &pending_raid_disks);
3084         }
3085
3086         /*
3087          * possibly return codes
3088          */
3089         autorun_devices(0);
3090         return 0;
3091
3092 }
3093
3094
3095 static int get_version(void __user * arg)
3096 {
3097         mdu_version_t ver;
3098
3099         ver.major = MD_MAJOR_VERSION;
3100         ver.minor = MD_MINOR_VERSION;
3101         ver.patchlevel = MD_PATCHLEVEL_VERSION;
3102
3103         if (copy_to_user(arg, &ver, sizeof(ver)))
3104                 return -EFAULT;
3105
3106         return 0;
3107 }
3108
3109 static int get_array_info(mddev_t * mddev, void __user * arg)
3110 {
3111         mdu_array_info_t info;
3112         int nr,working,active,failed,spare;
3113         mdk_rdev_t *rdev;
3114         struct list_head *tmp;
3115
3116         nr=working=active=failed=spare=0;
3117         ITERATE_RDEV(mddev,rdev,tmp) {
3118                 nr++;
3119                 if (test_bit(Faulty, &rdev->flags))
3120                         failed++;
3121                 else {
3122                         working++;
3123                         if (test_bit(In_sync, &rdev->flags))
3124                                 active++;       
3125                         else
3126                                 spare++;
3127                 }
3128         }
3129
3130         info.major_version = mddev->major_version;
3131         info.minor_version = mddev->minor_version;
3132         info.patch_version = MD_PATCHLEVEL_VERSION;
3133         info.ctime         = mddev->ctime;
3134         info.level         = mddev->level;
3135         info.size          = mddev->size;
3136         if (info.size != mddev->size) /* overflow */
3137                 info.size = -1;
3138         info.nr_disks      = nr;
3139         info.raid_disks    = mddev->raid_disks;
3140         info.md_minor      = mddev->md_minor;
3141         info.not_persistent= !mddev->persistent;
3142
3143         info.utime         = mddev->utime;
3144         info.state         = 0;
3145         if (mddev->in_sync)
3146                 info.state = (1<<MD_SB_CLEAN);
3147         if (mddev->bitmap && mddev->bitmap_offset)
3148                 info.state = (1<<MD_SB_BITMAP_PRESENT);
3149         info.active_disks  = active;
3150         info.working_disks = working;
3151         info.failed_disks  = failed;
3152         info.spare_disks   = spare;
3153
3154         info.layout        = mddev->layout;
3155         info.chunk_size    = mddev->chunk_size;
3156
3157         if (copy_to_user(arg, &info, sizeof(info)))
3158                 return -EFAULT;
3159
3160         return 0;
3161 }
3162
3163 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3164 {
3165         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3166         char *ptr, *buf = NULL;
3167         int err = -ENOMEM;
3168
3169         file = kmalloc(sizeof(*file), GFP_KERNEL);
3170         if (!file)
3171                 goto out;
3172
3173         /* bitmap disabled, zero the first byte and copy out */
3174         if (!mddev->bitmap || !mddev->bitmap->file) {
3175                 file->pathname[0] = '\0';
3176                 goto copy_out;
3177         }
3178
3179         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3180         if (!buf)
3181                 goto out;
3182
3183         ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3184         if (!ptr)
3185                 goto out;
3186
3187         strcpy(file->pathname, ptr);
3188
3189 copy_out:
3190         err = 0;
3191         if (copy_to_user(arg, file, sizeof(*file)))
3192                 err = -EFAULT;
3193 out:
3194         kfree(buf);
3195         kfree(file);
3196         return err;
3197 }
3198
3199 static int get_disk_info(mddev_t * mddev, void __user * arg)
3200 {
3201         mdu_disk_info_t info;
3202         unsigned int nr;
3203         mdk_rdev_t *rdev;
3204
3205         if (copy_from_user(&info, arg, sizeof(info)))
3206                 return -EFAULT;
3207
3208         nr = info.number;
3209
3210         rdev = find_rdev_nr(mddev, nr);
3211         if (rdev) {
3212                 info.major = MAJOR(rdev->bdev->bd_dev);
3213                 info.minor = MINOR(rdev->bdev->bd_dev);
3214                 info.raid_disk = rdev->raid_disk;
3215                 info.state = 0;
3216                 if (test_bit(Faulty, &rdev->flags))
3217                         info.state |= (1<<MD_DISK_FAULTY);
3218                 else if (test_bit(In_sync, &rdev->flags)) {
3219                         info.state |= (1<<MD_DISK_ACTIVE);
3220                         info.state |= (1<<MD_DISK_SYNC);
3221                 }
3222                 if (test_bit(WriteMostly, &rdev->flags))
3223                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
3224         } else {
3225                 info.major = info.minor = 0;
3226                 info.raid_disk = -1;
3227                 info.state = (1<<MD_DISK_REMOVED);
3228         }
3229
3230         if (copy_to_user(arg, &info, sizeof(info)))
3231                 return -EFAULT;
3232
3233         return 0;
3234 }
3235
3236 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3237 {
3238         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3239         mdk_rdev_t *rdev;
3240         dev_t dev = MKDEV(info->major,info->minor);
3241
3242         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3243                 return -EOVERFLOW;
3244
3245         if (!mddev->raid_disks) {
3246                 int err;
3247                 /* expecting a device which has a superblock */
3248                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3249                 if (IS_ERR(rdev)) {
3250                         printk(KERN_WARNING 
3251                                 "md: md_import_device returned %ld\n",
3252                                 PTR_ERR(rdev));
3253                         return PTR_ERR(rdev);
3254                 }
3255                 if (!list_empty(&mddev->disks)) {
3256                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3257                                                         mdk_rdev_t, same_set);
3258                         int err = super_types[mddev->major_version]
3259                                 .load_super(rdev, rdev0, mddev->minor_version);
3260                         if (err < 0) {
3261                                 printk(KERN_WARNING 
3262                                         "md: %s has different UUID to %s\n",
3263                                         bdevname(rdev->bdev,b), 
3264                                         bdevname(rdev0->bdev,b2));
3265                                 export_rdev(rdev);
3266                                 return -EINVAL;
3267                         }
3268                 }
3269                 err = bind_rdev_to_array(rdev, mddev);
3270                 if (err)
3271                         export_rdev(rdev);
3272                 return err;
3273         }
3274
3275         /*
3276          * add_new_disk can be used once the array is assembled
3277          * to add "hot spares".  They must already have a superblock
3278          * written
3279          */
3280         if (mddev->pers) {
3281                 int err;
3282                 if (!mddev->pers->hot_add_disk) {
3283                         printk(KERN_WARNING 
3284                                 "%s: personality does not support diskops!\n",
3285                                mdname(mddev));
3286                         return -EINVAL;
3287                 }
3288                 if (mddev->persistent)
3289                         rdev = md_import_device(dev, mddev->major_version,
3290                                                 mddev->minor_version);
3291                 else
3292                         rdev = md_import_device(dev, -1, -1);
3293                 if (IS_ERR(rdev)) {
3294                         printk(KERN_WARNING 
3295                                 "md: md_import_device returned %ld\n",
3296                                 PTR_ERR(rdev));
3297                         return PTR_ERR(rdev);
3298                 }
3299                 /* set save_raid_disk if appropriate */
3300                 if (!mddev->persistent) {
3301                         if (info->state & (1<<MD_DISK_SYNC)  &&
3302                             info->raid_disk < mddev->raid_disks)
3303                                 rdev->raid_disk = info->raid_disk;
3304                         else
3305                                 rdev->raid_disk = -1;
3306                 } else
3307                         super_types[mddev->major_version].
3308                                 validate_super(mddev, rdev);
3309                 rdev->saved_raid_disk = rdev->raid_disk;
3310
3311                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3312                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3313                         set_bit(WriteMostly, &rdev->flags);
3314
3315                 rdev->raid_disk = -1;
3316                 err = bind_rdev_to_array(rdev, mddev);
3317                 if (err)
3318                         export_rdev(rdev);
3319
3320                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3321                 md_wakeup_thread(mddev->thread);
3322                 return err;
3323         }
3324
3325         /* otherwise, add_new_disk is only allowed
3326          * for major_version==0 superblocks
3327          */
3328         if (mddev->major_version != 0) {
3329                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3330                        mdname(mddev));
3331                 return -EINVAL;
3332         }
3333
3334         if (!(info->state & (1<<MD_DISK_FAULTY))) {
3335                 int err;
3336                 rdev = md_import_device (dev, -1, 0);
3337                 if (IS_ERR(rdev)) {
3338                         printk(KERN_WARNING 
3339                                 "md: error, md_import_device() returned %ld\n",
3340                                 PTR_ERR(rdev));
3341                         return PTR_ERR(rdev);
3342                 }
3343                 rdev->desc_nr = info->number;
3344                 if (info->raid_disk < mddev->raid_disks)
3345                         rdev->raid_disk = info->raid_disk;
3346                 else
3347                         rdev->raid_disk = -1;
3348
3349                 rdev->flags = 0;
3350
3351                 if (rdev->raid_disk < mddev->raid_disks)
3352                         if (info->state & (1<<MD_DISK_SYNC))
3353                                 set_bit(In_sync, &rdev->flags);
3354
3355                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3356                         set_bit(WriteMostly, &rdev->flags);
3357
3358                 if (!mddev->persistent) {
3359                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
3360                         rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3361                 } else 
3362                         rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3363                 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3364
3365                 err = bind_rdev_to_array(rdev, mddev);
3366                 if (err) {
3367                         export_rdev(rdev);
3368                         return err;
3369                 }
3370         }
3371
3372         return 0;
3373 }
3374
3375 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3376 {
3377         char b[BDEVNAME_SIZE];
3378         mdk_rdev_t *rdev;
3379
3380         if (!mddev->pers)
3381                 return -ENODEV;
3382
3383         rdev = find_rdev(mddev, dev);
3384         if (!rdev)
3385                 return -ENXIO;
3386
3387         if (rdev->raid_disk >= 0)
3388                 goto busy;
3389
3390         kick_rdev_from_array(rdev);
3391         md_update_sb(mddev);
3392         md_new_event(mddev);
3393
3394         return 0;
3395 busy:
3396         printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3397                 bdevname(rdev->bdev,b), mdname(mddev));
3398         return -EBUSY;
3399 }
3400
3401 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3402 {
3403         char b[BDEVNAME_SIZE];
3404         int err;
3405         unsigned int size;
3406         mdk_rdev_t *rdev;
3407
3408         if (!mddev->pers)
3409                 return -ENODEV;
3410
3411         if (mddev->major_version != 0) {
3412                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3413                         " version-0 superblocks.\n",
3414                         mdname(mddev));
3415                 return -EINVAL;
3416         }
3417         if (!mddev->pers->hot_add_disk) {
3418                 printk(KERN_WARNING 
3419                         "%s: personality does not support diskops!\n",
3420                         mdname(mddev));
3421                 return -EINVAL;
3422         }
3423
3424         rdev = md_import_device (dev, -1, 0);
3425         if (IS_ERR(rdev)) {
3426                 printk(KERN_WARNING 
3427                         "md: error, md_import_device() returned %ld\n",
3428                         PTR_ERR(rdev));
3429                 return -EINVAL;
3430         }
3431
3432         if (mddev->persistent)
3433                 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3434         else
3435                 rdev->sb_offset =
3436                         rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3437
3438         size = calc_dev_size(rdev, mddev->chunk_size);
3439         rdev->size = size;
3440
3441         if (test_bit(Faulty, &rdev->flags)) {
3442                 printk(KERN_WARNING 
3443                         "md: can not hot-add faulty %s disk to %s!\n",
3444                         bdevname(rdev->bdev,b), mdname(mddev));
3445                 err = -EINVAL;
3446                 goto abort_export;
3447         }
3448         clear_bit(In_sync, &rdev->flags);
3449         rdev->desc_nr = -1;
3450         err = bind_rdev_to_array(rdev, mddev);
3451         if (err)
3452                 goto abort_export;
3453
3454         /*
3455          * The rest should better be atomic, we can have disk failures
3456          * noticed in interrupt contexts ...
3457          */
3458
3459         if (rdev->desc_nr == mddev->max_disks) {
3460                 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3461                         mdname(mddev));
3462                 err = -EBUSY;
3463                 goto abort_unbind_export;
3464         }
3465
3466         rdev->raid_disk = -1;
3467
3468         md_update_sb(mddev);
3469
3470         /*
3471          * Kick recovery, maybe this spare has to be added to the
3472          * array immediately.
3473          */
3474         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3475         md_wakeup_thread(mddev->thread);
3476         md_new_event(mddev);
3477         return 0;
3478
3479 abort_unbind_export:
3480         unbind_rdev_from_array(rdev);
3481
3482 abort_export:
3483         export_rdev(rdev);
3484         return err;
3485 }
3486
3487 /* similar to deny_write_access, but accounts for our holding a reference
3488  * to the file ourselves */
3489 static int deny_bitmap_write_access(struct file * file)
3490 {
3491         struct inode *inode = file->f_mapping->host;
3492
3493         spin_lock(&inode->i_lock);
3494         if (atomic_read(&inode->i_writecount) > 1) {
3495                 spin_unlock(&inode->i_lock);
3496                 return -ETXTBSY;
3497         }
3498         atomic_set(&inode->i_writecount, -1);
3499         spin_unlock(&inode->i_lock);
3500
3501         return 0;
3502 }
3503
3504 static int set_bitmap_file(mddev_t *mddev, int fd)
3505 {
3506         int err;
3507
3508         if (mddev->pers) {
3509                 if (!mddev->pers->quiesce)
3510                         return -EBUSY;
3511                 if (mddev->recovery || mddev->sync_thread)
3512                         return -EBUSY;
3513                 /* we should be able to change the bitmap.. */
3514         }
3515
3516
3517         if (fd >= 0) {
3518                 if (mddev->bitmap)
3519                         return -EEXIST; /* cannot add when bitmap is present */
3520                 mddev->bitmap_file = fget(fd);
3521
3522                 if (mddev->bitmap_file == NULL) {
3523                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3524                                mdname(mddev));
3525                         return -EBADF;
3526                 }
3527
3528                 err = deny_bitmap_write_access(mddev->bitmap_file);
3529                 if (err) {
3530                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3531                                mdname(mddev));
3532                         fput(mddev->bitmap_file);
3533                         mddev->bitmap_file = NULL;
3534                         return err;
3535                 }
3536                 mddev->bitmap_offset = 0; /* file overrides offset */
3537         } else if (mddev->bitmap == NULL)
3538                 return -ENOENT; /* cannot remove what isn't there */
3539         err = 0;
3540         if (mddev->pers) {
3541                 mddev->pers->quiesce(mddev, 1);
3542                 if (fd >= 0)
3543                         err = bitmap_create(mddev);
3544                 if (fd < 0 || err)
3545                         bitmap_destroy(mddev);
3546                 mddev->pers->quiesce(mddev, 0);
3547         } else if (fd < 0) {
3548                 if (mddev->bitmap_file)
3549                         fput(mddev->bitmap_file);
3550                 mddev->bitmap_file = NULL;
3551         }
3552
3553         return err;
3554 }
3555
3556 /*
3557  * set_array_info is used two different ways
3558  * The original usage is when creating a new array.
3559  * In this usage, raid_disks is > 0 and it together with
3560  *  level, size, not_persistent,layout,chunksize determine the
3561  *  shape of the array.
3562  *  This will always create an array with a type-0.90.0 superblock.
3563  * The newer usage is when assembling an array.
3564  *  In this case raid_disks will be 0, and the major_version field is
3565  *  use to determine which style super-blocks are to be found on the devices.
3566  *  The minor and patch _version numbers are also kept incase the
3567  *  super_block handler wishes to interpret them.
3568  */
3569 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3570 {
3571
3572         if (info->raid_disks == 0) {
3573                 /* just setting version number for superblock loading */
3574                 if (info->major_version < 0 ||
3575                     info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3576                     super_types[info->major_version].name == NULL) {
3577                         /* maybe try to auto-load a module? */
3578                         printk(KERN_INFO 
3579                                 "md: superblock version %d not known\n",
3580                                 info->major_version);
3581                         return -EINVAL;
3582                 }
3583                 mddev->major_version = info->major_version;
3584                 mddev->minor_version = info->minor_version;
3585                 mddev->patch_version = info->patch_version;
3586                 return 0;
3587         }
3588         mddev->major_version = MD_MAJOR_VERSION;
3589         mddev->minor_version = MD_MINOR_VERSION;
3590         mddev->patch_version = MD_PATCHLEVEL_VERSION;
3591         mddev->ctime         = get_seconds();
3592
3593         mddev->level         = info->level;
3594         mddev->clevel[0]     = 0;
3595         mddev->size          = info->size;
3596         mddev->raid_disks    = info->raid_disks;
3597         /* don't set md_minor, it is determined by which /dev/md* was
3598          * openned
3599          */
3600         if (info->state & (1<<MD_SB_CLEAN))
3601                 mddev->recovery_cp = MaxSector;
3602         else
3603                 mddev->recovery_cp = 0;
3604         mddev->persistent    = ! info->not_persistent;
3605
3606         mddev->layout        = info->layout;
3607         mddev->chunk_size    = info->chunk_size;
3608
3609         mddev->max_disks     = MD_SB_DISKS;
3610
3611         mddev->sb_dirty      = 1;
3612
3613         mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3614         mddev->bitmap_offset = 0;
3615
3616         mddev->reshape_position = MaxSector;
3617
3618         /*
3619          * Generate a 128 bit UUID
3620          */
3621         get_random_bytes(mddev->uuid, 16);
3622
3623         mddev->new_level = mddev->level;
3624         mddev->new_chunk = mddev->chunk_size;
3625         mddev->new_layout = mddev->layout;
3626         mddev->delta_disks = 0;
3627
3628         return 0;
3629 }
3630
3631 static int update_size(mddev_t *mddev, unsigned long size)
3632 {
3633         mdk_rdev_t * rdev;
3634         int rv;
3635         struct list_head *tmp;
3636         int fit = (size == 0);
3637
3638         if (mddev->pers->resize == NULL)
3639                 return -EINVAL;
3640         /* The "size" is the amount of each device that is used.
3641          * This can only make sense for arrays with redundancy.
3642          * linear and raid0 always use whatever space is available
3643          * We can only consider changing the size if no resync
3644          * or reconstruction is happening, and if the new size
3645          * is acceptable. It must fit before the sb_offset or,
3646          * if that is <data_offset, it must fit before the
3647          * size of each device.
3648          * If size is zero, we find the largest size that fits.
3649          */
3650         if (mddev->sync_thread)
3651                 return -EBUSY;
3652         ITERATE_RDEV(mddev,rdev,tmp) {
3653                 sector_t avail;
3654                 if (rdev->sb_offset > rdev->data_offset)
3655                         avail = (rdev->sb_offset*2) - rdev->data_offset;
3656                 else
3657                         avail = get_capacity(rdev->bdev->bd_disk)
3658                                 - rdev->data_offset;
3659                 if (fit && (size == 0 || size > avail/2))
3660                         size = avail/2;
3661                 if (avail < ((sector_t)size << 1))
3662                         return -ENOSPC;
3663         }
3664         rv = mddev->pers->resize(mddev, (sector_t)size *2);
3665         if (!rv) {
3666                 struct block_device *bdev;
3667
3668                 bdev = bdget_disk(mddev->gendisk, 0);
3669                 if (bdev) {
3670                         mutex_lock(&bdev->bd_inode->i_mutex);
3671                         i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
3672                         mutex_unlock(&bdev->bd_inode->i_mutex);
3673                         bdput(bdev);
3674                 }
3675         }
3676         return rv;
3677 }
3678
3679 static int update_raid_disks(mddev_t *mddev, int raid_disks)
3680 {
3681         int rv;
3682         /* change the number of raid disks */
3683         if (mddev->pers->check_reshape == NULL)
3684                 return -EINVAL;
3685         if (raid_disks <= 0 ||
3686             raid_disks >= mddev->max_disks)
3687                 return -EINVAL;
3688         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
3689                 return -EBUSY;
3690         mddev->delta_disks = raid_disks - mddev->raid_disks;
3691
3692         rv = mddev->pers->check_reshape(mddev);
3693         return rv;
3694 }
3695
3696
3697 /*
3698  * update_array_info is used to change the configuration of an
3699  * on-line array.
3700  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3701  * fields in the info are checked against the array.
3702  * Any differences that cannot be handled will cause an error.
3703  * Normally, only one change can be managed at a time.
3704  */
3705 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3706 {
3707         int rv = 0;
3708         int cnt = 0;
3709         int state = 0;
3710
3711         /* calculate expected state,ignoring low bits */
3712         if (mddev->bitmap && mddev->bitmap_offset)
3713                 state |= (1 << MD_SB_BITMAP_PRESENT);
3714
3715         if (mddev->major_version != info->major_version ||
3716             mddev->minor_version != info->minor_version ||
3717 /*          mddev->patch_version != info->patch_version || */
3718             mddev->ctime         != info->ctime         ||
3719             mddev->level         != info->level         ||
3720 /*          mddev->layout        != info->layout        || */
3721             !mddev->persistent   != info->not_persistent||
3722             mddev->chunk_size    != info->chunk_size    ||
3723             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3724             ((state^info->state) & 0xfffffe00)
3725                 )
3726                 return -EINVAL;
3727         /* Check there is only one change */
3728         if (info->size >= 0 && mddev->size != info->size) cnt++;
3729         if (mddev->raid_disks != info->raid_disks) cnt++;
3730         if (mddev->layout != info->layout) cnt++;
3731         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3732         if (cnt == 0) return 0;
3733         if (cnt > 1) return -EINVAL;
3734
3735         if (mddev->layout != info->layout) {
3736                 /* Change layout
3737                  * we don't need to do anything at the md level, the
3738                  * personality will take care of it all.
3739                  */
3740                 if (mddev->pers->reconfig == NULL)
3741                         return -EINVAL;
3742                 else
3743                         return mddev->pers->reconfig(mddev, info->layout, -1);
3744         }
3745         if (info->size >= 0 && mddev->size != info->size)
3746                 rv = update_size(mddev, info->size);
3747
3748         if (mddev->raid_disks    != info->raid_disks)
3749                 rv = update_raid_disks(mddev, info->raid_disks);
3750
3751         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3752                 if (mddev->pers->quiesce == NULL)
3753                         return -EINVAL;
3754                 if (mddev->recovery || mddev->sync_thread)
3755                         return -EBUSY;
3756                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3757                         /* add the bitmap */
3758                         if (mddev->bitmap)
3759                                 return -EEXIST;
3760                         if (mddev->default_bitmap_offset == 0)
3761                                 return -EINVAL;
3762                         mddev->bitmap_offset = mddev->default_bitmap_offset;
3763                         mddev->pers->quiesce(mddev, 1);
3764                         rv = bitmap_create(mddev);
3765                         if (rv)
3766                                 bitmap_destroy(mddev);
3767                         mddev->pers->quiesce(mddev, 0);
3768                 } else {
3769                         /* remove the bitmap */
3770                         if (!mddev->bitmap)
3771                                 return -ENOENT;
3772                         if (mddev->bitmap->file)
3773                                 return -EINVAL;
3774                         mddev->pers->quiesce(mddev, 1);
3775                         bitmap_destroy(mddev);
3776                         mddev->pers->quiesce(mddev, 0);
3777                         mddev->bitmap_offset = 0;
3778                 }
3779         }
3780         md_update_sb(mddev);
3781         return rv;
3782 }
3783
3784 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3785 {
3786         mdk_rdev_t *rdev;
3787
3788         if (mddev->pers == NULL)
3789                 return -ENODEV;
3790
3791         rdev = find_rdev(mddev, dev);
3792         if (!rdev)
3793                 return -ENODEV;
3794
3795         md_error(mddev, rdev);
3796         return 0;
3797 }
3798
3799 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3800 {
3801         mddev_t *mddev = bdev->bd_disk->private_data;
3802
3803         geo->heads = 2;
3804         geo->sectors = 4;
3805         geo->cylinders = get_capacity(mddev->gendisk) / 8;
3806         return 0;
3807 }
3808
3809 static int md_ioctl(struct inode *inode, struct file *file,
3810                         unsigned int cmd, unsigned long arg)
3811 {
3812         int err = 0;
3813         void __user *argp = (void __user *)arg;
3814         mddev_t *mddev = NULL;
3815
3816         if (!capable(CAP_SYS_ADMIN))
3817                 return -EACCES;
3818
3819         /*
3820          * Commands dealing with the RAID driver but not any
3821          * particular array:
3822          */
3823         switch (cmd)
3824         {
3825                 case RAID_VERSION:
3826                         err = get_version(argp);
3827                         goto done;
3828
3829                 case PRINT_RAID_DEBUG:
3830                         err = 0;
3831                         md_print_devices();
3832                         goto done;
3833
3834 #ifndef MODULE
3835                 case RAID_AUTORUN:
3836                         err = 0;
3837                         autostart_arrays(arg);
3838                         goto done;
3839 #endif
3840                 default:;
3841         }
3842
3843         /*
3844          * Commands creating/starting a new array:
3845          */
3846
3847         mddev = inode->i_bdev->bd_disk->private_data;
3848
3849         if (!mddev) {
3850                 BUG();
3851                 goto abort;
3852         }
3853
3854
3855         if (cmd == START_ARRAY) {
3856                 /* START_ARRAY doesn't need to lock the array as autostart_array
3857                  * does the locking, and it could even be a different array
3858                  */
3859                 static int cnt = 3;
3860                 if (cnt > 0 ) {
3861                         printk(KERN_WARNING
3862                                "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3863                                "This will not be supported beyond July 2006\n",
3864                                current->comm, current->pid);
3865                         cnt--;
3866                 }
3867                 err = autostart_array(new_decode_dev(arg));
3868                 if (err) {
3869                         printk(KERN_WARNING "md: autostart failed!\n");
3870                         goto abort;
3871                 }
3872                 goto done;
3873         }
3874
3875         err = mddev_lock(mddev);
3876         if (err) {
3877                 printk(KERN_INFO 
3878                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
3879                         err, cmd);
3880                 goto abort;
3881         }
3882
3883         switch (cmd)
3884         {
3885                 case SET_ARRAY_INFO:
3886                         {
3887                                 mdu_array_info_t info;
3888                                 if (!arg)
3889                                         memset(&info, 0, sizeof(info));
3890                                 else if (copy_from_user(&info, argp, sizeof(info))) {
3891                                         err = -EFAULT;
3892                                         goto abort_unlock;
3893                                 }
3894                                 if (mddev->pers) {
3895                                         err = update_array_info(mddev, &info);
3896                                         if (err) {
3897                                                 printk(KERN_WARNING "md: couldn't update"
3898                                                        " array info. %d\n", err);
3899                                                 goto abort_unlock;
3900                                         }
3901                                         goto done_unlock;
3902                                 }
3903                                 if (!list_empty(&mddev->disks)) {
3904                                         printk(KERN_WARNING
3905                                                "md: array %s already has disks!\n",
3906                                                mdname(mddev));
3907                                         err = -EBUSY;
3908                                         goto abort_unlock;
3909                                 }
3910                                 if (mddev->raid_disks) {
3911                                         printk(KERN_WARNING
3912                                                "md: array %s already initialised!\n",
3913                                                mdname(mddev));
3914                                         err = -EBUSY;
3915                                         goto abort_unlock;
3916                                 }
3917                                 err = set_array_info(mddev, &info);
3918                                 if (err) {
3919                                         printk(KERN_WARNING "md: couldn't set"
3920                                                " array info. %d\n", err);
3921                                         goto abort_unlock;
3922                                 }
3923                         }
3924                         goto done_unlock;
3925
3926                 default:;
3927         }
3928
3929         /*
3930          * Commands querying/configuring an existing array:
3931          */
3932         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3933          * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3934         if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3935                         && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3936                 err = -ENODEV;
3937                 goto abort_unlock;
3938         }
3939
3940         /*
3941          * Commands even a read-only array can execute:
3942          */
3943         switch (cmd)
3944         {
3945                 case GET_ARRAY_INFO:
3946                         err = get_array_info(mddev, argp);
3947                         goto done_unlock;
3948
3949                 case GET_BITMAP_FILE:
3950                         err = get_bitmap_file(mddev, argp);
3951                         goto done_unlock;
3952
3953                 case GET_DISK_INFO:
3954                         err = get_disk_info(mddev, argp);
3955                         goto done_unlock;
3956
3957                 case RESTART_ARRAY_RW:
3958                         err = restart_array(mddev);
3959                         goto done_unlock;
3960
3961                 case STOP_ARRAY:
3962                         err = do_md_stop (mddev, 0);
3963                         goto done_unlock;
3964
3965                 case STOP_ARRAY_RO:
3966                         err = do_md_stop (mddev, 1);
3967                         goto done_unlock;
3968
3969         /*
3970          * We have a problem here : there is no easy way to give a CHS
3971          * virtual geometry. We currently pretend that we have a 2 heads
3972          * 4 sectors (with a BIG number of cylinders...). This drives
3973          * dosfs just mad... ;-)
3974          */
3975         }
3976
3977         /*
3978          * The remaining ioctls are changing the state of the
3979          * superblock, so we do not allow them on read-only arrays.
3980          * However non-MD ioctls (e.g. get-size) will still come through
3981          * here and hit the 'default' below, so only disallow
3982          * 'md' ioctls, and switch to rw mode if started auto-readonly.
3983          */
3984         if (_IOC_TYPE(cmd) == MD_MAJOR &&
3985             mddev->ro && mddev->pers) {
3986                 if (mddev->ro == 2) {
3987                         mddev->ro = 0;
3988                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3989                 md_wakeup_thread(mddev->thread);
3990
3991                 } else {
3992                         err = -EROFS;
3993                         goto abort_unlock;
3994                 }
3995         }
3996
3997         switch (cmd)
3998         {
3999                 case ADD_NEW_DISK:
4000                 {
4001                         mdu_disk_info_t info;
4002                         if (copy_from_user(&info, argp, sizeof(info)))
4003                                 err = -EFAULT;
4004                         else
4005                                 err = add_new_disk(mddev, &info);
4006                         goto done_unlock;
4007                 }
4008
4009                 case HOT_REMOVE_DISK:
4010                         err = hot_remove_disk(mddev, new_decode_dev(arg));
4011                         goto done_unlock;
4012
4013                 case HOT_ADD_DISK:
4014                         err = hot_add_disk(mddev, new_decode_dev(arg));
4015                         goto done_unlock;
4016
4017                 case SET_DISK_FAULTY:
4018                         err = set_disk_faulty(mddev, new_decode_dev(arg));
4019                         goto done_unlock;
4020
4021                 case RUN_ARRAY:
4022                         err = do_md_run (mddev);
4023                         goto done_unlock;
4024
4025                 case SET_BITMAP_FILE:
4026                         err = set_bitmap_file(mddev, (int)arg);
4027                         goto done_unlock;
4028
4029                 default:
4030                         err = -EINVAL;
4031                         goto abort_unlock;
4032         }
4033
4034 done_unlock:
4035 abort_unlock:
4036         mddev_unlock(mddev);
4037
4038         return err;
4039 done:
4040         if (err)
4041                 MD_BUG();
4042 abort:
4043         return err;
4044 }
4045
4046 static int md_open(struct inode *inode, struct file *file)
4047 {
4048         /*
4049          * Succeed if we can lock the mddev, which confirms that
4050          * it isn't being stopped right now.
4051          */
4052         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4053         int err;
4054
4055         if ((err = mddev_lock(mddev)))
4056                 goto out;
4057
4058         err = 0;
4059         mddev_get(mddev);
4060         mddev_unlock(mddev);
4061
4062         check_disk_change(inode->i_bdev);
4063  out:
4064         return err;
4065 }
4066
4067 static int md_release(struct inode *inode, struct file * file)
4068 {
4069         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4070
4071         if (!mddev)
4072                 BUG();
4073         mddev_put(mddev);
4074
4075         return 0;
4076 }
4077
4078 static int md_media_changed(struct gendisk *disk)
4079 {
4080         mddev_t *mddev = disk->private_data;
4081
4082         return mddev->changed;
4083 }
4084
4085 static int md_revalidate(struct gendisk *disk)
4086 {
4087         mddev_t *mddev = disk->private_data;
4088
4089         mddev->changed = 0;
4090         return 0;
4091 }
4092 static struct block_device_operations md_fops =
4093 {
4094         .owner          = THIS_MODULE,
4095         .open           = md_open,
4096         .release        = md_release,
4097         .ioctl          = md_ioctl,
4098         .getgeo         = md_getgeo,
4099         .media_changed  = md_media_changed,
4100         .revalidate_disk= md_revalidate,
4101 };
4102
4103 static int md_thread(void * arg)
4104 {
4105         mdk_thread_t *thread = arg;
4106
4107         /*
4108          * md_thread is a 'system-thread', it's priority should be very
4109          * high. We avoid resource deadlocks individually in each
4110          * raid personality. (RAID5 does preallocation) We also use RR and
4111          * the very same RT priority as kswapd, thus we will never get
4112          * into a priority inversion deadlock.
4113          *
4114          * we definitely have to have equal or higher priority than
4115          * bdflush, otherwise bdflush will deadlock if there are too
4116          * many dirty RAID5 blocks.
4117          */
4118
4119         allow_signal(SIGKILL);
4120         while (!kthread_should_stop()) {
4121
4122                 /* We need to wait INTERRUPTIBLE so that
4123                  * we don't add to the load-average.
4124                  * That means we need to be sure no signals are
4125                  * pending
4126                  */
4127                 if (signal_pending(current))
4128                         flush_signals(current);
4129
4130                 wait_event_interruptible_timeout
4131                         (thread->wqueue,
4132                          test_bit(THREAD_WAKEUP, &thread->flags)
4133                          || kthread_should_stop(),
4134                          thread->timeout);
4135                 try_to_freeze();
4136
4137                 clear_bit(THREAD_WAKEUP, &thread->flags);
4138
4139                 thread->run(thread->mddev);
4140         }
4141
4142         return 0;
4143 }
4144
4145 void md_wakeup_thread(mdk_thread_t *thread)
4146 {
4147         if (thread) {
4148                 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4149                 set_bit(THREAD_WAKEUP, &thread->flags);
4150                 wake_up(&thread->wqueue);
4151         }
4152 }
4153
4154 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4155                                  const char *name)
4156 {
4157         mdk_thread_t *thread;
4158
4159         thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4160         if (!thread)
4161                 return NULL;
4162
4163         init_waitqueue_head(&thread->wqueue);
4164
4165         thread->run = run;
4166         thread->mddev = mddev;
4167         thread->timeout = MAX_SCHEDULE_TIMEOUT;
4168         thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4169         if (IS_ERR(thread->tsk)) {
4170                 kfree(thread);
4171                 return NULL;
4172         }
4173         return thread;
4174 }
4175
4176 void md_unregister_thread(mdk_thread_t *thread)
4177 {
4178         dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4179
4180         kthread_stop(thread->tsk);
4181         kfree(thread);
4182 }
4183
4184 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4185 {
4186         if (!mddev) {
4187                 MD_BUG();
4188                 return;
4189         }
4190
4191         if (!rdev || test_bit(Faulty, &rdev->flags))
4192                 return;
4193 /*
4194         dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4195                 mdname(mddev),
4196                 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4197                 __builtin_return_address(0),__builtin_return_address(1),
4198                 __builtin_return_address(2),__builtin_return_address(3));
4199 */
4200         if (!mddev->pers->error_handler)
4201                 return;
4202         mddev->pers->error_handler(mddev,rdev);
4203         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4204         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4205         md_wakeup_thread(mddev->thread);
4206         md_new_event_inintr(mddev);
4207 }
4208
4209 /* seq_file implementation /proc/mdstat */
4210
4211 static void status_unused(struct seq_file *seq)
4212 {
4213         int i = 0;
4214         mdk_rdev_t *rdev;
4215         struct list_head *tmp;
4216
4217         seq_printf(seq, "unused devices: ");
4218
4219         ITERATE_RDEV_PENDING(rdev,tmp) {
4220                 char b[BDEVNAME_SIZE];
4221                 i++;
4222                 seq_printf(seq, "%s ",
4223                               bdevname(rdev->bdev,b));
4224         }
4225         if (!i)
4226                 seq_printf(seq, "<none>");
4227
4228         seq_printf(seq, "\n");
4229 }
4230
4231
4232 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4233 {
4234         sector_t max_blocks, resync, res;
4235         unsigned long dt, db, rt;
4236         int scale;
4237         unsigned int per_milli;
4238
4239         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4240
4241         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4242                 max_blocks = mddev->resync_max_sectors >> 1;
4243         else
4244                 max_blocks = mddev->size;
4245
4246         /*
4247          * Should not happen.
4248          */
4249         if (!max_blocks) {
4250                 MD_BUG();
4251                 return;
4252         }
4253         /* Pick 'scale' such that (resync>>scale)*1000 will fit
4254          * in a sector_t, and (max_blocks>>scale) will fit in a
4255          * u32, as those are the requirements for sector_div.
4256          * Thus 'scale' must be at least 10
4257          */
4258         scale = 10;
4259         if (sizeof(sector_t) > sizeof(unsigned long)) {
4260                 while ( max_blocks/2 > (1ULL<<(scale+32)))
4261                         scale++;
4262         }
4263         res = (resync>>scale)*1000;
4264         sector_div(res, (u32)((max_blocks>>scale)+1));
4265
4266         per_milli = res;
4267         {
4268                 int i, x = per_milli/50, y = 20-x;
4269                 seq_printf(seq, "[");
4270                 for (i = 0; i < x; i++)
4271                         seq_printf(seq, "=");
4272                 seq_printf(seq, ">");
4273                 for (i = 0; i < y; i++)
4274                         seq_printf(seq, ".");
4275                 seq_printf(seq, "] ");
4276         }
4277         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4278                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4279                     "reshape" :
4280                       (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4281                        "resync" : "recovery")),
4282                       per_milli/10, per_milli % 10,
4283                    (unsigned long long) resync,
4284                    (unsigned long long) max_blocks);
4285
4286         /*
4287          * We do not want to overflow, so the order of operands and
4288          * the * 100 / 100 trick are important. We do a +1 to be
4289          * safe against division by zero. We only estimate anyway.
4290          *
4291          * dt: time from mark until now
4292          * db: blocks written from mark until now
4293          * rt: remaining time
4294          */
4295         dt = ((jiffies - mddev->resync_mark) / HZ);
4296         if (!dt) dt++;
4297         db = resync - (mddev->resync_mark_cnt/2);
4298         rt = (dt * ((unsigned long)(max_blocks-resync) / (db/100+1)))/100;
4299
4300         seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4301
4302         seq_printf(seq, " speed=%ldK/sec", db/dt);
4303 }
4304
4305 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4306 {
4307         struct list_head *tmp;
4308         loff_t l = *pos;
4309         mddev_t *mddev;
4310
4311         if (l >= 0x10000)
4312                 return NULL;
4313         if (!l--)
4314                 /* header */
4315                 return (void*)1;
4316
4317         spin_lock(&all_mddevs_lock);
4318         list_for_each(tmp,&all_mddevs)
4319                 if (!l--) {
4320                         mddev = list_entry(tmp, mddev_t, all_mddevs);
4321                         mddev_get(mddev);
4322                         spin_unlock(&all_mddevs_lock);
4323                         return mddev;
4324                 }
4325         spin_unlock(&all_mddevs_lock);
4326         if (!l--)
4327                 return (void*)2;/* tail */
4328         return NULL;
4329 }
4330
4331 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4332 {
4333         struct list_head *tmp;
4334         mddev_t *next_mddev, *mddev = v;
4335         
4336         ++*pos;
4337         if (v == (void*)2)
4338                 return NULL;
4339
4340         spin_lock(&all_mddevs_lock);
4341         if (v == (void*)1)
4342                 tmp = all_mddevs.next;
4343         else
4344                 tmp = mddev->all_mddevs.next;
4345         if (tmp != &all_mddevs)
4346                 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4347         else {
4348                 next_mddev = (void*)2;
4349                 *pos = 0x10000;
4350         }               
4351         spin_unlock(&all_mddevs_lock);
4352
4353         if (v != (void*)1)
4354                 mddev_put(mddev);
4355         return next_mddev;
4356
4357 }
4358
4359 static void md_seq_stop(struct seq_file *seq, void *v)
4360 {
4361         mddev_t *mddev = v;
4362
4363         if (mddev && v != (void*)1 && v != (void*)2)
4364                 mddev_put(mddev);
4365 }
4366
4367 struct mdstat_info {
4368         int event;
4369 };
4370
4371 static int md_seq_show(struct seq_file *seq, void *v)
4372 {
4373         mddev_t *mddev = v;
4374         sector_t size;
4375         struct list_head *tmp2;
4376         mdk_rdev_t *rdev;
4377         struct mdstat_info *mi = seq->private;
4378         struct bitmap *bitmap;
4379
4380         if (v == (void*)1) {
4381                 struct mdk_personality *pers;
4382                 seq_printf(seq, "Personalities : ");
4383                 spin_lock(&pers_lock);
4384                 list_for_each_entry(pers, &pers_list, list)
4385                         seq_printf(seq, "[%s] ", pers->name);
4386
4387                 spin_unlock(&pers_lock);
4388                 seq_printf(seq, "\n");
4389                 mi->event = atomic_read(&md_event_count);
4390                 return 0;
4391         }
4392         if (v == (void*)2) {
4393                 status_unused(seq);
4394                 return 0;
4395         }
4396
4397         if (mddev_lock(mddev) < 0)
4398                 return -EINTR;
4399
4400         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4401                 seq_printf(seq, "%s : %sactive", mdname(mddev),
4402                                                 mddev->pers ? "" : "in");
4403                 if (mddev->pers) {
4404                         if (mddev->ro==1)
4405                                 seq_printf(seq, " (read-only)");
4406                         if (mddev->ro==2)
4407                                 seq_printf(seq, "(auto-read-only)");
4408                         seq_printf(seq, " %s", mddev->pers->name);
4409                 }
4410
4411                 size = 0;
4412                 ITERATE_RDEV(mddev,rdev,tmp2) {
4413                         char b[BDEVNAME_SIZE];
4414                         seq_printf(seq, " %s[%d]",
4415                                 bdevname(rdev->bdev,b), rdev->desc_nr);
4416                         if (test_bit(WriteMostly, &rdev->flags))
4417                                 seq_printf(seq, "(W)");
4418                         if (test_bit(Faulty, &rdev->flags)) {
4419                                 seq_printf(seq, "(F)");
4420                                 continue;
4421                         } else if (rdev->raid_disk < 0)
4422                                 seq_printf(seq, "(S)"); /* spare */
4423                         size += rdev->size;
4424                 }
4425
4426                 if (!list_empty(&mddev->disks)) {
4427                         if (mddev->pers)
4428                                 seq_printf(seq, "\n      %llu blocks",
4429                                         (unsigned long long)mddev->array_size);
4430                         else
4431                                 seq_printf(seq, "\n      %llu blocks",
4432                                         (unsigned long long)size);
4433                 }
4434                 if (mddev->persistent) {
4435                         if (mddev->major_version != 0 ||
4436                             mddev->minor_version != 90) {
4437                                 seq_printf(seq," super %d.%d",
4438                                            mddev->major_version,
4439                                            mddev->minor_version);
4440                         }
4441                 } else
4442                         seq_printf(seq, " super non-persistent");
4443
4444                 if (mddev->pers) {
4445                         mddev->pers->status (seq, mddev);
4446                         seq_printf(seq, "\n      ");
4447                         if (mddev->pers->sync_request) {
4448                                 if (mddev->curr_resync > 2) {
4449                                         status_resync (seq, mddev);
4450                                         seq_printf(seq, "\n      ");
4451                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4452                                         seq_printf(seq, "\tresync=DELAYED\n      ");
4453                                 else if (mddev->recovery_cp < MaxSector)
4454                                         seq_printf(seq, "\tresync=PENDING\n      ");
4455                         }
4456                 } else
4457                         seq_printf(seq, "\n       ");
4458
4459                 if ((bitmap = mddev->bitmap)) {
4460                         unsigned long chunk_kb;
4461                         unsigned long flags;
4462                         spin_lock_irqsave(&bitmap->lock, flags);
4463                         chunk_kb = bitmap->chunksize >> 10;
4464                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4465                                 "%lu%s chunk",
4466                                 bitmap->pages - bitmap->missing_pages,
4467                                 bitmap->pages,
4468                                 (bitmap->pages - bitmap->missing_pages)
4469                                         << (PAGE_SHIFT - 10),
4470                                 chunk_kb ? chunk_kb : bitmap->chunksize,
4471                                 chunk_kb ? "KB" : "B");
4472                         if (bitmap->file) {
4473                                 seq_printf(seq, ", file: ");
4474                                 seq_path(seq, bitmap->file->f_vfsmnt,
4475                                          bitmap->file->f_dentry," \t\n");
4476                         }
4477
4478                         seq_printf(seq, "\n");
4479                         spin_unlock_irqrestore(&bitmap->lock, flags);
4480                 }
4481
4482                 seq_printf(seq, "\n");
4483         }
4484         mddev_unlock(mddev);
4485         
4486         return 0;
4487 }
4488
4489 static struct seq_operations md_seq_ops = {
4490         .start  = md_seq_start,
4491         .next   = md_seq_next,
4492         .stop   = md_seq_stop,
4493         .show   = md_seq_show,
4494 };
4495
4496 static int md_seq_open(struct inode *inode, struct file *file)
4497 {
4498         int error;
4499         struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4500         if (mi == NULL)
4501                 return -ENOMEM;
4502
4503         error = seq_open(file, &md_seq_ops);
4504         if (error)
4505                 kfree(mi);
4506         else {
4507                 struct seq_file *p = file->private_data;
4508                 p->private = mi;
4509                 mi->event = atomic_read(&md_event_count);
4510         }
4511         return error;
4512 }
4513
4514 static int md_seq_release(struct inode *inode, struct file *file)
4515 {
4516         struct seq_file *m = file->private_data;
4517         struct mdstat_info *mi = m->private;
4518         m->private = NULL;
4519         kfree(mi);
4520         return seq_release(inode, file);
4521 }
4522
4523 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4524 {
4525         struct seq_file *m = filp->private_data;
4526         struct mdstat_info *mi = m->private;
4527         int mask;
4528
4529         poll_wait(filp, &md_event_waiters, wait);
4530
4531         /* always allow read */
4532         mask = POLLIN | POLLRDNORM;
4533
4534         if (mi->event != atomic_read(&md_event_count))
4535                 mask |= POLLERR | POLLPRI;
4536         return mask;
4537 }
4538
4539 static struct file_operations md_seq_fops = {
4540         .open           = md_seq_open,
4541         .read           = seq_read,
4542         .llseek         = seq_lseek,
4543         .release        = md_seq_release,
4544         .poll           = mdstat_poll,
4545 };
4546
4547 int register_md_personality(struct mdk_personality *p)
4548 {
4549         spin_lock(&pers_lock);
4550         list_add_tail(&p->list, &pers_list);
4551         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4552         spin_unlock(&pers_lock);
4553         return 0;
4554 }
4555
4556 int unregister_md_personality(struct mdk_personality *p)
4557 {
4558         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4559         spin_lock(&pers_lock);
4560         list_del_init(&p->list);
4561         spin_unlock(&pers_lock);
4562         return 0;
4563 }
4564
4565 static int is_mddev_idle(mddev_t *mddev)
4566 {
4567         mdk_rdev_t * rdev;
4568         struct list_head *tmp;
4569         int idle;
4570         unsigned long curr_events;
4571
4572         idle = 1;
4573         ITERATE_RDEV(mddev,rdev,tmp) {
4574                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4575                 curr_events = disk_stat_read(disk, sectors[0]) + 
4576                                 disk_stat_read(disk, sectors[1]) - 
4577                                 atomic_read(&disk->sync_io);
4578                 /* The difference between curr_events and last_events
4579                  * will be affected by any new non-sync IO (making
4580                  * curr_events bigger) and any difference in the amount of
4581                  * in-flight syncio (making current_events bigger or smaller)
4582                  * The amount in-flight is currently limited to
4583                  * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4584                  * which is at most 4096 sectors.
4585                  * These numbers are fairly fragile and should be made
4586                  * more robust, probably by enforcing the
4587                  * 'window size' that md_do_sync sort-of uses.
4588                  *
4589                  * Note: the following is an unsigned comparison.
4590                  */
4591                 if ((curr_events - rdev->last_events + 4096) > 8192) {
4592                         rdev->last_events = curr_events;
4593                         idle = 0;
4594                 }
4595         }
4596         return idle;
4597 }
4598
4599 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4600 {
4601         /* another "blocks" (512byte) blocks have been synced */
4602         atomic_sub(blocks, &mddev->recovery_active);
4603         wake_up(&mddev->recovery_wait);
4604         if (!ok) {
4605                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4606                 md_wakeup_thread(mddev->thread);
4607                 // stop recovery, signal do_sync ....
4608         }
4609 }
4610
4611
4612 /* md_write_start(mddev, bi)
4613  * If we need to update some array metadata (e.g. 'active' flag
4614  * in superblock) before writing, schedule a superblock update
4615  * and wait for it to complete.
4616  */
4617 void md_write_start(mddev_t *mddev, struct bio *bi)
4618 {
4619         if (bio_data_dir(bi) != WRITE)
4620                 return;
4621
4622         BUG_ON(mddev->ro == 1);
4623         if (mddev->ro == 2) {
4624                 /* need to switch to read/write */
4625                 mddev->ro = 0;
4626                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4627                 md_wakeup_thread(mddev->thread);
4628         }
4629         atomic_inc(&mddev->writes_pending);
4630         if (mddev->in_sync) {
4631                 spin_lock_irq(&mddev->write_lock);
4632                 if (mddev->in_sync) {
4633                         mddev->in_sync = 0;
4634                         mddev->sb_dirty = 1;
4635                         md_wakeup_thread(mddev->thread);
4636                 }
4637                 spin_unlock_irq(&mddev->write_lock);
4638         }
4639         wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4640 }
4641
4642 void md_write_end(mddev_t *mddev)
4643 {
4644         if (atomic_dec_and_test(&mddev->writes_pending)) {
4645                 if (mddev->safemode == 2)
4646                         md_wakeup_thread(mddev->thread);
4647                 else if (mddev->safemode_delay)
4648                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4649         }
4650 }
4651
4652 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4653
4654 #define SYNC_MARKS      10
4655 #define SYNC_MARK_STEP  (3*HZ)
4656 void md_do_sync(mddev_t *mddev)
4657 {
4658         mddev_t *mddev2;
4659         unsigned int currspeed = 0,
4660                  window;
4661         sector_t max_sectors,j, io_sectors;
4662         unsigned long mark[SYNC_MARKS];
4663         sector_t mark_cnt[SYNC_MARKS];
4664         int last_mark,m;
4665         struct list_head *tmp;
4666         sector_t last_check;
4667         int skipped = 0;
4668
4669         /* just incase thread restarts... */
4670         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4671                 return;
4672
4673         /* we overload curr_resync somewhat here.
4674          * 0 == not engaged in resync at all
4675          * 2 == checking that there is no conflict with another sync
4676          * 1 == like 2, but have yielded to allow conflicting resync to
4677          *              commense
4678          * other == active in resync - this many blocks
4679          *
4680          * Before starting a resync we must have set curr_resync to
4681          * 2, and then checked that every "conflicting" array has curr_resync
4682          * less than ours.  When we find one that is the same or higher
4683          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4684          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4685          * This will mean we have to start checking from the beginning again.
4686          *
4687          */
4688
4689         do {
4690                 mddev->curr_resync = 2;
4691
4692         try_again:
4693                 if (kthread_should_stop()) {
4694                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4695                         goto skip;
4696                 }
4697                 ITERATE_MDDEV(mddev2,tmp) {
4698                         if (mddev2 == mddev)
4699                                 continue;
4700                         if (mddev2->curr_resync && 
4701                             match_mddev_units(mddev,mddev2)) {
4702                                 DEFINE_WAIT(wq);
4703                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
4704                                         /* arbitrarily yield */
4705                                         mddev->curr_resync = 1;
4706                                         wake_up(&resync_wait);
4707                                 }
4708                                 if (mddev > mddev2 && mddev->curr_resync == 1)
4709                                         /* no need to wait here, we can wait the next
4710                                          * time 'round when curr_resync == 2
4711                                          */
4712                                         continue;
4713                                 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4714                                 if (!kthread_should_stop() &&
4715                                     mddev2->curr_resync >= mddev->curr_resync) {
4716                                         printk(KERN_INFO "md: delaying resync of %s"
4717                                                " until %s has finished resync (they"
4718                                                " share one or more physical units)\n",
4719                                                mdname(mddev), mdname(mddev2));
4720                                         mddev_put(mddev2);
4721                                         schedule();
4722                                         finish_wait(&resync_wait, &wq);
4723                                         goto try_again;
4724                                 }
4725                                 finish_wait(&resync_wait, &wq);
4726                         }
4727                 }
4728         } while (mddev->curr_resync < 2);
4729
4730         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4731                 /* resync follows the size requested by the personality,
4732                  * which defaults to physical size, but can be virtual size
4733                  */
4734                 max_sectors = mddev->resync_max_sectors;
4735                 mddev->resync_mismatches = 0;
4736         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4737                 max_sectors = mddev->size << 1;
4738         else
4739                 /* recovery follows the physical size of devices */
4740                 max_sectors = mddev->size << 1;
4741
4742         printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4743         printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4744                 " %d KB/sec/disc.\n", speed_min(mddev));
4745         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4746                "(but not more than %d KB/sec) for reconstruction.\n",
4747                speed_max(mddev));
4748
4749         is_mddev_idle(mddev); /* this also initializes IO event counters */
4750         /* we don't use the checkpoint if there's a bitmap */
4751         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4752             && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4753                 j = mddev->recovery_cp;
4754         else
4755                 j = 0;
4756         io_sectors = 0;
4757         for (m = 0; m < SYNC_MARKS; m++) {
4758                 mark[m] = jiffies;
4759                 mark_cnt[m] = io_sectors;
4760         }
4761         last_mark = 0;
4762         mddev->resync_mark = mark[last_mark];
4763         mddev->resync_mark_cnt = mark_cnt[last_mark];
4764
4765         /*
4766          * Tune reconstruction:
4767          */
4768         window = 32*(PAGE_SIZE/512);
4769         printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4770                 window/2,(unsigned long long) max_sectors/2);
4771
4772         atomic_set(&mddev->recovery_active, 0);
4773         init_waitqueue_head(&mddev->recovery_wait);
4774         last_check = 0;
4775
4776         if (j>2) {
4777                 printk(KERN_INFO 
4778                         "md: resuming recovery of %s from checkpoint.\n",
4779                         mdname(mddev));
4780                 mddev->curr_resync = j;
4781         }
4782
4783         while (j < max_sectors) {
4784                 sector_t sectors;
4785
4786                 skipped = 0;
4787                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
4788                                             currspeed < speed_min(mddev));
4789                 if (sectors == 0) {
4790                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4791                         goto out;
4792                 }
4793
4794                 if (!skipped) { /* actual IO requested */
4795                         io_sectors += sectors;
4796                         atomic_add(sectors, &mddev->recovery_active);
4797                 }
4798
4799                 j += sectors;
4800                 if (j>1) mddev->curr_resync = j;
4801                 if (last_check == 0)
4802                         /* this is the earliers that rebuilt will be
4803                          * visible in /proc/mdstat
4804                          */
4805                         md_new_event(mddev);
4806
4807                 if (last_check + window > io_sectors || j == max_sectors)
4808                         continue;
4809
4810                 last_check = io_sectors;
4811
4812                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4813                     test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4814                         break;
4815
4816         repeat:
4817                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4818                         /* step marks */
4819                         int next = (last_mark+1) % SYNC_MARKS;
4820
4821                         mddev->resync_mark = mark[next];
4822                         mddev->resync_mark_cnt = mark_cnt[next];
4823                         mark[next] = jiffies;
4824                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4825                         last_mark = next;
4826                 }
4827
4828
4829                 if (kthread_should_stop()) {
4830                         /*
4831                          * got a signal, exit.
4832                          */
4833                         printk(KERN_INFO 
4834                                 "md: md_do_sync() got signal ... exiting\n");
4835                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4836                         goto out;
4837                 }
4838
4839                 /*
4840                  * this loop exits only if either when we are slower than
4841                  * the 'hard' speed limit, or the system was IO-idle for
4842                  * a jiffy.
4843                  * the system might be non-idle CPU-wise, but we only care
4844                  * about not overloading the IO subsystem. (things like an
4845                  * e2fsck being done on the RAID array should execute fast)
4846                  */
4847                 mddev->queue->unplug_fn(mddev->queue);
4848                 cond_resched();
4849
4850                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4851                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
4852
4853                 if (currspeed > speed_min(mddev)) {
4854                         if ((currspeed > speed_max(mddev)) ||
4855                                         !is_mddev_idle(mddev)) {
4856                                 msleep(500);
4857                                 goto repeat;
4858                         }
4859                 }
4860         }
4861         printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4862         /*
4863          * this also signals 'finished resyncing' to md_stop
4864          */
4865  out:
4866         mddev->queue->unplug_fn(mddev->queue);
4867
4868         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4869
4870         /* tell personality that we are finished */
4871         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4872
4873         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4874             test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
4875             !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
4876             mddev->curr_resync > 2 &&
4877             mddev->curr_resync >= mddev->recovery_cp) {
4878                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4879                         printk(KERN_INFO 
4880                                 "md: checkpointing recovery of %s.\n",
4881                                 mdname(mddev));
4882                         mddev->recovery_cp = mddev->curr_resync;
4883                 } else
4884                         mddev->recovery_cp = MaxSector;
4885         }
4886
4887  skip:
4888         mddev->curr_resync = 0;
4889         wake_up(&resync_wait);
4890         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4891         md_wakeup_thread(mddev->thread);
4892 }
4893 EXPORT_SYMBOL_GPL(md_do_sync);
4894
4895
4896 /*
4897  * This routine is regularly called by all per-raid-array threads to
4898  * deal with generic issues like resync and super-block update.
4899  * Raid personalities that don't have a thread (linear/raid0) do not
4900  * need this as they never do any recovery or update the superblock.
4901  *
4902  * It does not do any resync itself, but rather "forks" off other threads
4903  * to do that as needed.
4904  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4905  * "->recovery" and create a thread at ->sync_thread.
4906  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4907  * and wakeups up this thread which will reap the thread and finish up.
4908  * This thread also removes any faulty devices (with nr_pending == 0).
4909  *
4910  * The overall approach is:
4911  *  1/ if the superblock needs updating, update it.
4912  *  2/ If a recovery thread is running, don't do anything else.
4913  *  3/ If recovery has finished, clean up, possibly marking spares active.
4914  *  4/ If there are any faulty devices, remove them.
4915  *  5/ If array is degraded, try to add spares devices
4916  *  6/ If array has spares or is not in-sync, start a resync thread.
4917  */
4918 void md_check_recovery(mddev_t *mddev)
4919 {
4920         mdk_rdev_t *rdev;
4921         struct list_head *rtmp;
4922
4923
4924         if (mddev->bitmap)
4925                 bitmap_daemon_work(mddev->bitmap);
4926
4927         if (mddev->ro)
4928                 return;
4929
4930         if (signal_pending(current)) {
4931                 if (mddev->pers->sync_request) {
4932                         printk(KERN_INFO "md: %s in immediate safe mode\n",
4933                                mdname(mddev));
4934                         mddev->safemode = 2;
4935                 }
4936                 flush_signals(current);
4937         }
4938
4939         if ( ! (
4940                 mddev->sb_dirty ||
4941                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4942                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4943                 (mddev->safemode == 1) ||
4944                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4945                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4946                 ))
4947                 return;
4948
4949         if (mddev_trylock(mddev)) {
4950                 int spares =0;
4951
4952                 spin_lock_irq(&mddev->write_lock);
4953                 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4954                     !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4955                         mddev->in_sync = 1;
4956                         mddev->sb_dirty = 1;
4957                 }
4958                 if (mddev->safemode == 1)
4959                         mddev->safemode = 0;
4960                 spin_unlock_irq(&mddev->write_lock);
4961
4962                 if (mddev->sb_dirty)
4963                         md_update_sb(mddev);
4964
4965
4966                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4967                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4968                         /* resync/recovery still happening */
4969                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4970                         goto unlock;
4971                 }
4972                 if (mddev->sync_thread) {
4973                         /* resync has finished, collect result */
4974                         md_unregister_thread(mddev->sync_thread);
4975                         mddev->sync_thread = NULL;
4976                         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4977                             !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4978                                 /* success...*/
4979                                 /* activate any spares */
4980                                 mddev->pers->spare_active(mddev);
4981                         }
4982                         md_update_sb(mddev);
4983
4984                         /* if array is no-longer degraded, then any saved_raid_disk
4985                          * information must be scrapped
4986                          */
4987                         if (!mddev->degraded)
4988                                 ITERATE_RDEV(mddev,rdev,rtmp)
4989                                         rdev->saved_raid_disk = -1;
4990
4991                         mddev->recovery = 0;
4992                         /* flag recovery needed just to double check */
4993                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4994                         md_new_event(mddev);
4995                         goto unlock;
4996                 }
4997                 /* Clear some bits that don't mean anything, but
4998                  * might be left set
4999                  */
5000                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5001                 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5002                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5003                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5004
5005                 /* no recovery is running.
5006                  * remove any failed drives, then
5007                  * add spares if possible.
5008                  * Spare are also removed and re-added, to allow
5009                  * the personality to fail the re-add.
5010                  */
5011                 ITERATE_RDEV(mddev,rdev,rtmp)
5012                         if (rdev->raid_disk >= 0 &&
5013                             (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5014                             atomic_read(&rdev->nr_pending)==0) {
5015                                 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5016                                         char nm[20];
5017                                         sprintf(nm,"rd%d", rdev->raid_disk);
5018                                         sysfs_remove_link(&mddev->kobj, nm);
5019                                         rdev->raid_disk = -1;
5020                                 }
5021                         }
5022
5023                 if (mddev->degraded) {
5024                         ITERATE_RDEV(mddev,rdev,rtmp)
5025                                 if (rdev->raid_disk < 0
5026                                     && !test_bit(Faulty, &rdev->flags)) {
5027                                         if (mddev->pers->hot_add_disk(mddev,rdev)) {
5028                                                 char nm[20];
5029                                                 sprintf(nm, "rd%d", rdev->raid_disk);
5030                                                 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5031                                                 spares++;
5032                                                 md_new_event(mddev);
5033                                         } else
5034                                                 break;
5035                                 }
5036                 }
5037
5038                 if (spares) {
5039                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5040                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5041                 } else if (mddev->recovery_cp < MaxSector) {
5042                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5043                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5044                         /* nothing to be done ... */
5045                         goto unlock;
5046
5047                 if (mddev->pers->sync_request) {
5048                         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5049                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5050                                 /* We are adding a device or devices to an array
5051                                  * which has the bitmap stored on all devices.
5052                                  * So make sure all bitmap pages get written
5053                                  */
5054                                 bitmap_write_all(mddev->bitmap);
5055                         }
5056                         mddev->sync_thread = md_register_thread(md_do_sync,
5057                                                                 mddev,
5058                                                                 "%s_resync");
5059                         if (!mddev->sync_thread) {
5060                                 printk(KERN_ERR "%s: could not start resync"
5061                                         " thread...\n", 
5062                                         mdname(mddev));
5063                                 /* leave the spares where they are, it shouldn't hurt */
5064                                 mddev->recovery = 0;
5065                         } else
5066                                 md_wakeup_thread(mddev->sync_thread);
5067                         md_new_event(mddev);
5068                 }
5069         unlock:
5070                 mddev_unlock(mddev);
5071         }
5072 }
5073
5074 static int md_notify_reboot(struct notifier_block *this,
5075                             unsigned long code, void *x)
5076 {
5077         struct list_head *tmp;
5078         mddev_t *mddev;
5079
5080         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5081
5082                 printk(KERN_INFO "md: stopping all md devices.\n");
5083
5084                 ITERATE_MDDEV(mddev,tmp)
5085                         if (mddev_trylock(mddev)) {
5086                                 do_md_stop (mddev, 1);
5087                                 mddev_unlock(mddev);
5088                         }
5089                 /*
5090                  * certain more exotic SCSI devices are known to be
5091                  * volatile wrt too early system reboots. While the
5092                  * right place to handle this issue is the given
5093                  * driver, we do want to have a safe RAID driver ...
5094                  */
5095                 mdelay(1000*1);
5096         }
5097         return NOTIFY_DONE;
5098 }
5099
5100 static struct notifier_block md_notifier = {
5101         .notifier_call  = md_notify_reboot,
5102         .next           = NULL,
5103         .priority       = INT_MAX, /* before any real devices */
5104 };
5105
5106 static void md_geninit(void)
5107 {
5108         struct proc_dir_entry *p;
5109
5110         dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5111
5112         p = create_proc_entry("mdstat", S_IRUGO, NULL);
5113         if (p)
5114                 p->proc_fops = &md_seq_fops;
5115 }
5116
5117 static int __init md_init(void)
5118 {
5119         int minor;
5120
5121         printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
5122                         " MD_SB_DISKS=%d\n",
5123                         MD_MAJOR_VERSION, MD_MINOR_VERSION,
5124                         MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
5125         printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
5126                         BITMAP_MINOR);
5127
5128         if (register_blkdev(MAJOR_NR, "md"))
5129                 return -1;
5130         if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5131                 unregister_blkdev(MAJOR_NR, "md");
5132                 return -1;
5133         }
5134         devfs_mk_dir("md");
5135         blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
5136                                 md_probe, NULL, NULL);
5137         blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
5138                             md_probe, NULL, NULL);
5139
5140         for (minor=0; minor < MAX_MD_DEVS; ++minor)
5141                 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
5142                                 S_IFBLK|S_IRUSR|S_IWUSR,
5143                                 "md/%d", minor);
5144
5145         for (minor=0; minor < MAX_MD_DEVS; ++minor)
5146                 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
5147                               S_IFBLK|S_IRUSR|S_IWUSR,
5148                               "md/mdp%d", minor);
5149
5150
5151         register_reboot_notifier(&md_notifier);
5152         raid_table_header = register_sysctl_table(raid_root_table, 1);
5153
5154         md_geninit();
5155         return (0);
5156 }
5157
5158
5159 #ifndef MODULE
5160
5161 /*
5162  * Searches all registered partitions for autorun RAID arrays
5163  * at boot time.
5164  */
5165 static dev_t detected_devices[128];
5166 static int dev_cnt;
5167
5168 void md_autodetect_dev(dev_t dev)
5169 {
5170         if (dev_cnt >= 0 && dev_cnt < 127)
5171                 detected_devices[dev_cnt++] = dev;
5172 }
5173
5174
5175 static void autostart_arrays(int part)
5176 {
5177         mdk_rdev_t *rdev;
5178         int i;
5179
5180         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5181
5182         for (i = 0; i < dev_cnt; i++) {
5183                 dev_t dev = detected_devices[i];
5184
5185                 rdev = md_import_device(dev,0, 0);
5186                 if (IS_ERR(rdev))
5187                         continue;
5188
5189                 if (test_bit(Faulty, &rdev->flags)) {
5190                         MD_BUG();
5191                         continue;
5192                 }
5193                 list_add(&rdev->same_set, &pending_raid_disks);
5194         }
5195         dev_cnt = 0;
5196
5197         autorun_devices(part);
5198 }
5199
5200 #endif
5201
5202 static __exit void md_exit(void)
5203 {
5204         mddev_t *mddev;
5205         struct list_head *tmp;
5206         int i;
5207         blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
5208         blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
5209         for (i=0; i < MAX_MD_DEVS; i++)
5210                 devfs_remove("md/%d", i);
5211         for (i=0; i < MAX_MD_DEVS; i++)
5212                 devfs_remove("md/d%d", i);
5213
5214         devfs_remove("md");
5215
5216         unregister_blkdev(MAJOR_NR,"md");
5217         unregister_blkdev(mdp_major, "mdp");
5218         unregister_reboot_notifier(&md_notifier);
5219         unregister_sysctl_table(raid_table_header);
5220         remove_proc_entry("mdstat", NULL);
5221         ITERATE_MDDEV(mddev,tmp) {
5222                 struct gendisk *disk = mddev->gendisk;
5223                 if (!disk)
5224                         continue;
5225                 export_array(mddev);
5226                 del_gendisk(disk);
5227                 put_disk(disk);
5228                 mddev->gendisk = NULL;
5229                 mddev_put(mddev);
5230         }
5231 }
5232
5233 module_init(md_init)
5234 module_exit(md_exit)
5235
5236 static int get_ro(char *buffer, struct kernel_param *kp)
5237 {
5238         return sprintf(buffer, "%d", start_readonly);
5239 }
5240 static int set_ro(const char *val, struct kernel_param *kp)
5241 {
5242         char *e;
5243         int num = simple_strtoul(val, &e, 10);
5244         if (*val && (*e == '\0' || *e == '\n')) {
5245                 start_readonly = num;
5246                 return 0;
5247         }
5248         return -EINVAL;
5249 }
5250
5251 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5252 module_param(start_dirty_degraded, int, 0644);
5253
5254
5255 EXPORT_SYMBOL(register_md_personality);
5256 EXPORT_SYMBOL(unregister_md_personality);
5257 EXPORT_SYMBOL(md_error);
5258 EXPORT_SYMBOL(md_done_sync);
5259 EXPORT_SYMBOL(md_write_start);
5260 EXPORT_SYMBOL(md_write_end);
5261 EXPORT_SYMBOL(md_register_thread);
5262 EXPORT_SYMBOL(md_unregister_thread);
5263 EXPORT_SYMBOL(md_wakeup_thread);
5264 EXPORT_SYMBOL(md_print_devices);
5265 EXPORT_SYMBOL(md_check_recovery);
5266 MODULE_LICENSE("GPL");
5267 MODULE_ALIAS("md");
5268 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);