]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/media/dvb/frontends/nxt6000.c
bca83266ae8b198a1df6e9dbf87e1b0555c6a090
[linux-2.6-omap-h63xx.git] / drivers / media / dvb / frontends / nxt6000.c
1 /*
2         NxtWave Communications - NXT6000 demodulator driver
3
4     Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5     Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
6
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11
12     This program is distributed in the hope that it will be useful,
13     but WITHOUT ANY WARRANTY; without even the implied warranty of
14     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15     GNU General Public License for more details.
16
17     You should have received a copy of the GNU General Public License
18     along with this program; if not, write to the Free Software
19     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
31
32
33
34 struct nxt6000_state {
35         struct i2c_adapter* i2c;
36         struct dvb_frontend_ops ops;
37         /* configuration settings */
38         const struct nxt6000_config* config;
39         struct dvb_frontend frontend;
40 };
41
42 static int debug = 0;
43 #define dprintk if (debug) printk
44
45 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
46 {
47         u8 buf[] = { reg, data };
48         struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
49         int ret;
50
51         if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
52                 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
53
54         return (ret != 1) ? -EFAULT : 0;
55 }
56
57 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
58 {
59         int ret;
60         u8 b0[] = { reg };
61         u8 b1[] = { 0 };
62         struct i2c_msg msgs[] = {
63                 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
64                 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
65         };
66
67         ret = i2c_transfer(state->i2c, msgs, 2);
68
69         if (ret != 2)
70                 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
71
72         return b1[0];
73 }
74
75 static void nxt6000_reset(struct nxt6000_state* state)
76 {
77         u8 val;
78
79         val = nxt6000_readreg(state, OFDM_COR_CTL);
80
81         nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
82         nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
83 }
84
85 static int nxt6000_set_bandwidth(struct nxt6000_state* state, fe_bandwidth_t bandwidth)
86 {
87         u16 nominal_rate;
88         int result;
89
90         switch (bandwidth) {
91
92         case BANDWIDTH_6_MHZ:
93                 nominal_rate = 0x55B7;
94                 break;
95
96         case BANDWIDTH_7_MHZ:
97                 nominal_rate = 0x6400;
98                 break;
99
100         case BANDWIDTH_8_MHZ:
101                 nominal_rate = 0x7249;
102                 break;
103
104         default:
105                 return -EINVAL;
106         }
107
108         if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
109                 return result;
110
111         return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
112 }
113
114 static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
115 {
116         switch (guard_interval) {
117
118         case GUARD_INTERVAL_1_32:
119                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
120
121         case GUARD_INTERVAL_1_16:
122                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
123
124         case GUARD_INTERVAL_AUTO:
125         case GUARD_INTERVAL_1_8:
126                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
127
128         case GUARD_INTERVAL_1_4:
129                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
130
131         default:
132                 return -EINVAL;
133         }
134 }
135
136 static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
137 {
138         switch (inversion) {
139
140         case INVERSION_OFF:
141                 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
142
143         case INVERSION_ON:
144                 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
145
146         default:
147                 return -EINVAL;
148
149         }
150 }
151
152 static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
153 {
154         int result;
155
156         switch (transmission_mode) {
157
158         case TRANSMISSION_MODE_2K:
159                 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
160                         return result;
161
162                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
163
164         case TRANSMISSION_MODE_8K:
165         case TRANSMISSION_MODE_AUTO:
166                 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
167                         return result;
168
169                 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
170
171         default:
172                 return -EINVAL;
173
174         }
175 }
176
177 static void nxt6000_setup(struct dvb_frontend* fe)
178 {
179         struct nxt6000_state* state = fe->demodulator_priv;
180
181         nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
182         nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
183         nxt6000_writereg(state, VIT_BERTIME_2, 0x00);  // BER Timer = 0x000200 * 256 = 131072 bits
184         nxt6000_writereg(state, VIT_BERTIME_1, 0x02);  //
185         nxt6000_writereg(state, VIT_BERTIME_0, 0x00);  //
186         nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
187         nxt6000_writereg(state, VIT_COR_CTL, 0x82);   // Enable BER measurement
188         nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
189         nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
190         nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
191         nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
192         nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
193         nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
194         nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
195         nxt6000_writereg(state, CAS_FREQ, 0xBB);        /* CHECKME */
196         nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
197         nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
198         nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
199         nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
200         nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
201         nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
202         nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
203
204         if (state->config->clock_inversion)
205                 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
206         else
207                 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
208
209         nxt6000_writereg(state, TS_FORMAT, 0);
210 }
211
212 static void nxt6000_dump_status(struct nxt6000_state *state)
213 {
214         u8 val;
215
216 /*
217         printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
218         printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
219         printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
220         printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
221         printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
222         printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
223         printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
224         printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
225         printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
226         printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
227 */
228         printk("NXT6000 status:");
229
230         val = nxt6000_readreg(state, RS_COR_STAT);
231
232         printk(" DATA DESCR LOCK: %d,", val & 0x01);
233         printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
234
235         val = nxt6000_readreg(state, VIT_SYNC_STATUS);
236
237         printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
238
239         switch ((val >> 4) & 0x07) {
240
241         case 0x00:
242                 printk(" VITERBI CODERATE: 1/2,");
243                 break;
244
245         case 0x01:
246                 printk(" VITERBI CODERATE: 2/3,");
247                 break;
248
249         case 0x02:
250                 printk(" VITERBI CODERATE: 3/4,");
251                 break;
252
253         case 0x03:
254                 printk(" VITERBI CODERATE: 5/6,");
255                 break;
256
257         case 0x04:
258                 printk(" VITERBI CODERATE: 7/8,");
259                 break;
260
261         default:
262                 printk(" VITERBI CODERATE: Reserved,");
263
264         }
265
266         val = nxt6000_readreg(state, OFDM_COR_STAT);
267
268         printk(" CHCTrack: %d,", (val >> 7) & 0x01);
269         printk(" TPSLock: %d,", (val >> 6) & 0x01);
270         printk(" SYRLock: %d,", (val >> 5) & 0x01);
271         printk(" AGCLock: %d,", (val >> 4) & 0x01);
272
273         switch (val & 0x0F) {
274
275         case 0x00:
276                 printk(" CoreState: IDLE,");
277                 break;
278
279         case 0x02:
280                 printk(" CoreState: WAIT_AGC,");
281                 break;
282
283         case 0x03:
284                 printk(" CoreState: WAIT_SYR,");
285                 break;
286
287         case 0x04:
288                 printk(" CoreState: WAIT_PPM,");
289                 break;
290
291         case 0x01:
292                 printk(" CoreState: WAIT_TRL,");
293                 break;
294
295         case 0x05:
296                 printk(" CoreState: WAIT_TPS,");
297                 break;
298
299         case 0x06:
300                 printk(" CoreState: MONITOR_TPS,");
301                 break;
302
303         default:
304                 printk(" CoreState: Reserved,");
305
306         }
307
308         val = nxt6000_readreg(state, OFDM_SYR_STAT);
309
310         printk(" SYRLock: %d,", (val >> 4) & 0x01);
311         printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
312
313         switch ((val >> 4) & 0x03) {
314
315         case 0x00:
316                 printk(" SYRGuard: 1/32,");
317                 break;
318
319         case 0x01:
320                 printk(" SYRGuard: 1/16,");
321                 break;
322
323         case 0x02:
324                 printk(" SYRGuard: 1/8,");
325                 break;
326
327         case 0x03:
328                 printk(" SYRGuard: 1/4,");
329                 break;
330         }
331
332         val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
333
334         switch ((val >> 4) & 0x07) {
335
336         case 0x00:
337                 printk(" TPSLP: 1/2,");
338                 break;
339
340         case 0x01:
341                 printk(" TPSLP: 2/3,");
342                 break;
343
344         case 0x02:
345                 printk(" TPSLP: 3/4,");
346                 break;
347
348         case 0x03:
349                 printk(" TPSLP: 5/6,");
350                 break;
351
352         case 0x04:
353                 printk(" TPSLP: 7/8,");
354                 break;
355
356         default:
357                 printk(" TPSLP: Reserved,");
358
359         }
360
361         switch (val & 0x07) {
362
363         case 0x00:
364                 printk(" TPSHP: 1/2,");
365                 break;
366
367         case 0x01:
368                 printk(" TPSHP: 2/3,");
369                 break;
370
371         case 0x02:
372                 printk(" TPSHP: 3/4,");
373                 break;
374
375         case 0x03:
376                 printk(" TPSHP: 5/6,");
377                 break;
378
379         case 0x04:
380                 printk(" TPSHP: 7/8,");
381                 break;
382
383         default:
384                 printk(" TPSHP: Reserved,");
385
386         }
387
388         val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
389
390         printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
391
392         switch ((val >> 4) & 0x03) {
393
394         case 0x00:
395                 printk(" TPSGuard: 1/32,");
396                 break;
397
398         case 0x01:
399                 printk(" TPSGuard: 1/16,");
400                 break;
401
402         case 0x02:
403                 printk(" TPSGuard: 1/8,");
404                 break;
405
406         case 0x03:
407                 printk(" TPSGuard: 1/4,");
408                 break;
409
410         }
411
412         /* Strange magic required to gain access to RF_AGC_STATUS */
413         nxt6000_readreg(state, RF_AGC_VAL_1);
414         val = nxt6000_readreg(state, RF_AGC_STATUS);
415         val = nxt6000_readreg(state, RF_AGC_STATUS);
416
417         printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
418         printk("\n");
419 }
420
421 static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
422 {
423         u8 core_status;
424         struct nxt6000_state* state = fe->demodulator_priv;
425
426         *status = 0;
427
428         core_status = nxt6000_readreg(state, OFDM_COR_STAT);
429
430         if (core_status & AGCLOCKED)
431                 *status |= FE_HAS_SIGNAL;
432
433         if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
434                 *status |= FE_HAS_CARRIER;
435
436         if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
437                 *status |= FE_HAS_VITERBI;
438
439         if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
440                 *status |= FE_HAS_SYNC;
441
442         if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
443                 *status |= FE_HAS_LOCK;
444
445         if (debug)
446                 nxt6000_dump_status(state);
447
448         return 0;
449 }
450
451 static int nxt6000_init(struct dvb_frontend* fe)
452 {
453         struct nxt6000_state* state = fe->demodulator_priv;
454
455         nxt6000_reset(state);
456         nxt6000_setup(fe);
457
458         return 0;
459 }
460
461 static int nxt6000_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *param)
462 {
463         struct nxt6000_state* state = fe->demodulator_priv;
464         int result;
465
466         if (fe->ops->tuner_ops.set_params) {
467                 fe->ops->tuner_ops.set_params(fe, param);
468                 if (fe->ops->i2c_gate_ctrl) fe->ops->i2c_gate_ctrl(fe, 0);
469         }
470
471         if ((result = nxt6000_set_bandwidth(state, param->u.ofdm.bandwidth)) < 0)
472                 return result;
473         if ((result = nxt6000_set_guard_interval(state, param->u.ofdm.guard_interval)) < 0)
474                 return result;
475         if ((result = nxt6000_set_transmission_mode(state, param->u.ofdm.transmission_mode)) < 0)
476                 return result;
477         if ((result = nxt6000_set_inversion(state, param->inversion)) < 0)
478                 return result;
479
480         msleep(500);
481         return 0;
482 }
483
484 static void nxt6000_release(struct dvb_frontend* fe)
485 {
486         struct nxt6000_state* state = fe->demodulator_priv;
487         kfree(state);
488 }
489
490 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
491 {
492         struct nxt6000_state* state = fe->demodulator_priv;
493
494         *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
495
496         return 0;
497 }
498
499 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
500 {
501         struct nxt6000_state* state = fe->demodulator_priv;
502
503         nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
504
505         *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
506                 nxt6000_readreg( state, VIT_BER_0 );
507
508         nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
509
510         return 0;
511 }
512
513 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
514 {
515         struct nxt6000_state* state = fe->demodulator_priv;
516
517         *signal_strength = (short) (511 -
518                 (nxt6000_readreg(state, AGC_GAIN_1) +
519                 ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
520
521         return 0;
522 }
523
524 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
525 {
526         tune->min_delay_ms = 500;
527         return 0;
528 }
529
530 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
531 {
532         struct nxt6000_state* state = fe->demodulator_priv;
533
534         if (enable) {
535                 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
536         } else {
537                 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
538         }
539 }
540
541 static struct dvb_frontend_ops nxt6000_ops;
542
543 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
544                                     struct i2c_adapter* i2c)
545 {
546         struct nxt6000_state* state = NULL;
547
548         /* allocate memory for the internal state */
549         state = kmalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
550         if (state == NULL) goto error;
551
552         /* setup the state */
553         state->config = config;
554         state->i2c = i2c;
555         memcpy(&state->ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
556
557         /* check if the demod is there */
558         if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
559
560         /* create dvb_frontend */
561         state->frontend.ops = &state->ops;
562         state->frontend.demodulator_priv = state;
563         return &state->frontend;
564
565 error:
566         kfree(state);
567         return NULL;
568 }
569
570 static struct dvb_frontend_ops nxt6000_ops = {
571
572         .info = {
573                 .name = "NxtWave NXT6000 DVB-T",
574                 .type = FE_OFDM,
575                 .frequency_min = 0,
576                 .frequency_max = 863250000,
577                 .frequency_stepsize = 62500,
578                 /*.frequency_tolerance = *//* FIXME: 12% of SR */
579                 .symbol_rate_min = 0,   /* FIXME */
580                 .symbol_rate_max = 9360000,     /* FIXME */
581                 .symbol_rate_tolerance = 4000,
582                 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
583                         FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
584                         FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
585                         FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
586                         FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
587                         FE_CAN_HIERARCHY_AUTO,
588         },
589
590         .release = nxt6000_release,
591
592         .init = nxt6000_init,
593         .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
594
595         .get_tune_settings = nxt6000_fe_get_tune_settings,
596
597         .set_frontend = nxt6000_set_frontend,
598
599         .read_status = nxt6000_read_status,
600         .read_ber = nxt6000_read_ber,
601         .read_signal_strength = nxt6000_read_signal_strength,
602         .read_snr = nxt6000_read_snr,
603 };
604
605 module_param(debug, int, 0644);
606 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
607
608 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
609 MODULE_AUTHOR("Florian Schirmer");
610 MODULE_LICENSE("GPL");
611
612 EXPORT_SYMBOL(nxt6000_attach);