2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <asm/div64.h>
43 /* Default simulator parameters values */
44 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
46 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
48 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
49 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
50 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
51 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
55 #define CONFIG_NANDSIM_ACCESS_DELAY 25
57 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
58 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
60 #ifndef CONFIG_NANDSIM_ERASE_DELAY
61 #define CONFIG_NANDSIM_ERASE_DELAY 2
63 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
64 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
66 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
67 #define CONFIG_NANDSIM_INPUT_CYCLE 50
69 #ifndef CONFIG_NANDSIM_BUS_WIDTH
70 #define CONFIG_NANDSIM_BUS_WIDTH 8
72 #ifndef CONFIG_NANDSIM_DO_DELAYS
73 #define CONFIG_NANDSIM_DO_DELAYS 0
75 #ifndef CONFIG_NANDSIM_LOG
76 #define CONFIG_NANDSIM_LOG 0
78 #ifndef CONFIG_NANDSIM_DBG
79 #define CONFIG_NANDSIM_DBG 0
82 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
83 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
84 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
85 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
86 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
87 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
88 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
89 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
90 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
91 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
92 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
93 static uint log = CONFIG_NANDSIM_LOG;
94 static uint dbg = CONFIG_NANDSIM_DBG;
95 static unsigned long parts[MAX_MTD_DEVICES];
96 static unsigned int parts_num;
97 static char *badblocks = NULL;
98 static char *weakblocks = NULL;
99 static char *weakpages = NULL;
100 static unsigned int bitflips = 0;
101 static char *gravepages = NULL;
102 static unsigned int rptwear = 0;
103 static unsigned int overridesize = 0;
105 module_param(first_id_byte, uint, 0400);
106 module_param(second_id_byte, uint, 0400);
107 module_param(third_id_byte, uint, 0400);
108 module_param(fourth_id_byte, uint, 0400);
109 module_param(access_delay, uint, 0400);
110 module_param(programm_delay, uint, 0400);
111 module_param(erase_delay, uint, 0400);
112 module_param(output_cycle, uint, 0400);
113 module_param(input_cycle, uint, 0400);
114 module_param(bus_width, uint, 0400);
115 module_param(do_delays, uint, 0400);
116 module_param(log, uint, 0400);
117 module_param(dbg, uint, 0400);
118 module_param_array(parts, ulong, &parts_num, 0400);
119 module_param(badblocks, charp, 0400);
120 module_param(weakblocks, charp, 0400);
121 module_param(weakpages, charp, 0400);
122 module_param(bitflips, uint, 0400);
123 module_param(gravepages, charp, 0400);
124 module_param(rptwear, uint, 0400);
125 module_param(overridesize, uint, 0400);
127 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
128 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
129 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
131 MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
132 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
133 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
134 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
135 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
136 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
137 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
138 MODULE_PARM_DESC(log, "Perform logging if not zero");
139 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
140 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
141 /* Page and erase block positions for the following parameters are independent of any partitions */
142 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
143 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
144 " separated by commas e.g. 113:2 means eb 113"
145 " can be erased only twice before failing");
146 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
147 " separated by commas e.g. 1401:2 means page 1401"
148 " can be written only twice before failing");
149 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
150 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
151 " separated by commas e.g. 1401:2 means page 1401"
152 " can be read only twice before failing");
153 MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero");
154 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
155 "The size is specified in erase blocks and as the exponent of a power of two"
156 " e.g. 5 means a size of 32 erase blocks");
158 /* The largest possible page size */
159 #define NS_LARGEST_PAGE_SIZE 2048
161 /* The prefix for simulator output */
162 #define NS_OUTPUT_PREFIX "[nandsim]"
164 /* Simulator's output macros (logging, debugging, warning, error) */
165 #define NS_LOG(args...) \
166 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
167 #define NS_DBG(args...) \
168 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
169 #define NS_WARN(args...) \
170 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
171 #define NS_ERR(args...) \
172 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
173 #define NS_INFO(args...) \
174 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
176 /* Busy-wait delay macros (microseconds, milliseconds) */
177 #define NS_UDELAY(us) \
178 do { if (do_delays) udelay(us); } while(0)
179 #define NS_MDELAY(us) \
180 do { if (do_delays) mdelay(us); } while(0)
182 /* Is the nandsim structure initialized ? */
183 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
185 /* Good operation completion status */
186 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
188 /* Operation failed completion status */
189 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
191 /* Calculate the page offset in flash RAM image by (row, column) address */
192 #define NS_RAW_OFFSET(ns) \
193 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
195 /* Calculate the OOB offset in flash RAM image by (row, column) address */
196 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
198 /* After a command is input, the simulator goes to one of the following states */
199 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
200 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
201 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
202 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
203 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
204 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
205 #define STATE_CMD_STATUS 0x00000007 /* read status */
206 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
207 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
208 #define STATE_CMD_READID 0x0000000A /* read ID */
209 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
210 #define STATE_CMD_RESET 0x0000000C /* reset */
211 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
212 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
213 #define STATE_CMD_MASK 0x0000000F /* command states mask */
215 /* After an address is input, the simulator goes to one of these states */
216 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
217 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
218 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
219 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
220 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
222 /* Durind data input/output the simulator is in these states */
223 #define STATE_DATAIN 0x00000100 /* waiting for data input */
224 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
226 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
227 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
228 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
229 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
230 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
232 /* Previous operation is done, ready to accept new requests */
233 #define STATE_READY 0x00000000
235 /* This state is used to mark that the next state isn't known yet */
236 #define STATE_UNKNOWN 0x10000000
238 /* Simulator's actions bit masks */
239 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
240 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
241 #define ACTION_SECERASE 0x00300000 /* erase sector */
242 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
243 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
244 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
245 #define ACTION_MASK 0x00700000 /* action mask */
247 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
248 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
250 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
251 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
252 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
253 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
254 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
255 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
256 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
257 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
258 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
260 /* Remove action bits ftom state */
261 #define NS_STATE(x) ((x) & ~ACTION_MASK)
264 * Maximum previous states which need to be saved. Currently saving is
265 * only needed for page programm operation with preceeded read command
266 * (which is only valid for 512-byte pages).
268 #define NS_MAX_PREVSTATES 1
271 * A union to represent flash memory contents and flash buffer.
274 u_char *byte; /* for byte access */
275 uint16_t *word; /* for 16-bit word access */
279 * The structure which describes all the internal simulator data.
282 struct mtd_partition partitions[MAX_MTD_DEVICES];
283 unsigned int nbparts;
285 uint busw; /* flash chip bus width (8 or 16) */
286 u_char ids[4]; /* chip's ID bytes */
287 uint32_t options; /* chip's characteristic bits */
288 uint32_t state; /* current chip state */
289 uint32_t nxstate; /* next expected state */
291 uint32_t *op; /* current operation, NULL operations isn't known yet */
292 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
293 uint16_t npstates; /* number of previous states saved */
294 uint16_t stateidx; /* current state index */
296 /* The simulated NAND flash pages array */
299 /* Internal buffer of page + OOB size bytes */
302 /* NAND flash "geometry" */
303 struct nandsin_geometry {
304 uint64_t totsz; /* total flash size, bytes */
305 uint32_t secsz; /* flash sector (erase block) size, bytes */
306 uint pgsz; /* NAND flash page size, bytes */
307 uint oobsz; /* page OOB area size, bytes */
308 uint64_t totszoob; /* total flash size including OOB, bytes */
309 uint pgszoob; /* page size including OOB , bytes*/
310 uint secszoob; /* sector size including OOB, bytes */
311 uint pgnum; /* total number of pages */
312 uint pgsec; /* number of pages per sector */
313 uint secshift; /* bits number in sector size */
314 uint pgshift; /* bits number in page size */
315 uint oobshift; /* bits number in OOB size */
316 uint pgaddrbytes; /* bytes per page address */
317 uint secaddrbytes; /* bytes per sector address */
318 uint idbytes; /* the number ID bytes that this chip outputs */
321 /* NAND flash internal registers */
322 struct nandsim_regs {
323 unsigned command; /* the command register */
324 u_char status; /* the status register */
325 uint row; /* the page number */
326 uint column; /* the offset within page */
327 uint count; /* internal counter */
328 uint num; /* number of bytes which must be processed */
329 uint off; /* fixed page offset */
332 /* NAND flash lines state */
333 struct ns_lines_status {
334 int ce; /* chip Enable */
335 int cle; /* command Latch Enable */
336 int ale; /* address Latch Enable */
337 int wp; /* write Protect */
342 * Operations array. To perform any operation the simulator must pass
343 * through the correspondent states chain.
345 static struct nandsim_operations {
346 uint32_t reqopts; /* options which are required to perform the operation */
347 uint32_t states[NS_OPER_STATES]; /* operation's states */
348 } ops[NS_OPER_NUM] = {
349 /* Read page + OOB from the beginning */
350 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
351 STATE_DATAOUT, STATE_READY}},
352 /* Read page + OOB from the second half */
353 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
354 STATE_DATAOUT, STATE_READY}},
356 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
357 STATE_DATAOUT, STATE_READY}},
358 /* Programm page starting from the beginning */
359 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
360 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
361 /* Programm page starting from the beginning */
362 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
363 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
364 /* Programm page starting from the second half */
365 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
366 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
368 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
369 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
371 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
373 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
374 /* Read multi-plane status */
375 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
377 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
378 /* Large page devices read page */
379 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
380 STATE_DATAOUT, STATE_READY}},
381 /* Large page devices random page read */
382 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
383 STATE_DATAOUT, STATE_READY}},
387 struct list_head list;
388 unsigned int erase_block_no;
389 unsigned int max_erases;
390 unsigned int erases_done;
393 static LIST_HEAD(weak_blocks);
396 struct list_head list;
397 unsigned int page_no;
398 unsigned int max_writes;
399 unsigned int writes_done;
402 static LIST_HEAD(weak_pages);
405 struct list_head list;
406 unsigned int page_no;
407 unsigned int max_reads;
408 unsigned int reads_done;
411 static LIST_HEAD(grave_pages);
413 static unsigned long *erase_block_wear = NULL;
414 static unsigned int wear_eb_count = 0;
415 static unsigned long total_wear = 0;
416 static unsigned int rptwear_cnt = 0;
418 /* MTD structure for NAND controller */
419 static struct mtd_info *nsmtd;
421 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
424 * Allocate array of page pointers and initialize the array to NULL
427 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
429 static int alloc_device(struct nandsim *ns)
433 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
435 NS_ERR("alloc_map: unable to allocate page array\n");
438 for (i = 0; i < ns->geom.pgnum; i++) {
439 ns->pages[i].byte = NULL;
446 * Free any allocated pages, and free the array of page pointers.
448 static void free_device(struct nandsim *ns)
453 for (i = 0; i < ns->geom.pgnum; i++) {
454 if (ns->pages[i].byte)
455 kfree(ns->pages[i].byte);
461 static char *get_partition_name(int i)
464 sprintf(buf, "NAND simulator partition %d", i);
465 return kstrdup(buf, GFP_KERNEL);
468 static u_int64_t divide(u_int64_t n, u_int32_t d)
475 * Initialize the nandsim structure.
477 * RETURNS: 0 if success, -ERRNO if failure.
479 static int init_nandsim(struct mtd_info *mtd)
481 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
482 struct nandsim *ns = (struct nandsim *)(chip->priv);
485 u_int64_t next_offset;
487 if (NS_IS_INITIALIZED(ns)) {
488 NS_ERR("init_nandsim: nandsim is already initialized\n");
492 /* Force mtd to not do delays */
493 chip->chip_delay = 0;
495 /* Initialize the NAND flash parameters */
496 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
497 ns->geom.totsz = mtd->size;
498 ns->geom.pgsz = mtd->writesize;
499 ns->geom.oobsz = mtd->oobsize;
500 ns->geom.secsz = mtd->erasesize;
501 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
502 ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz);
503 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
504 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
505 ns->geom.pgshift = chip->page_shift;
506 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
507 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
508 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
511 if (ns->geom.pgsz == 256) {
512 ns->options |= OPT_PAGE256;
514 else if (ns->geom.pgsz == 512) {
515 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
517 ns->options |= OPT_PAGE512_8BIT;
518 } else if (ns->geom.pgsz == 2048) {
519 ns->options |= OPT_PAGE2048;
521 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
525 if (ns->options & OPT_SMALLPAGE) {
526 if (ns->geom.totsz <= (32 << 20)) {
527 ns->geom.pgaddrbytes = 3;
528 ns->geom.secaddrbytes = 2;
530 ns->geom.pgaddrbytes = 4;
531 ns->geom.secaddrbytes = 3;
534 if (ns->geom.totsz <= (128 << 20)) {
535 ns->geom.pgaddrbytes = 4;
536 ns->geom.secaddrbytes = 2;
538 ns->geom.pgaddrbytes = 5;
539 ns->geom.secaddrbytes = 3;
543 /* Fill the partition_info structure */
544 if (parts_num > ARRAY_SIZE(ns->partitions)) {
545 NS_ERR("too many partitions.\n");
549 remains = ns->geom.totsz;
551 for (i = 0; i < parts_num; ++i) {
552 u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;
554 if (!part_sz || part_sz > remains) {
555 NS_ERR("bad partition size.\n");
559 ns->partitions[i].name = get_partition_name(i);
560 ns->partitions[i].offset = next_offset;
561 ns->partitions[i].size = part_sz;
562 next_offset += ns->partitions[i].size;
563 remains -= ns->partitions[i].size;
565 ns->nbparts = parts_num;
567 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
568 NS_ERR("too many partitions.\n");
572 ns->partitions[i].name = get_partition_name(i);
573 ns->partitions[i].offset = next_offset;
574 ns->partitions[i].size = remains;
578 /* Detect how many ID bytes the NAND chip outputs */
579 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
580 if (second_id_byte != nand_flash_ids[i].id)
582 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
583 ns->options |= OPT_AUTOINCR;
587 NS_WARN("16-bit flashes support wasn't tested\n");
589 printk("flash size: %llu MiB\n",
590 (unsigned long long)ns->geom.totsz >> 20);
591 printk("page size: %u bytes\n", ns->geom.pgsz);
592 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
593 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
594 printk("pages number: %u\n", ns->geom.pgnum);
595 printk("pages per sector: %u\n", ns->geom.pgsec);
596 printk("bus width: %u\n", ns->busw);
597 printk("bits in sector size: %u\n", ns->geom.secshift);
598 printk("bits in page size: %u\n", ns->geom.pgshift);
599 printk("bits in OOB size: %u\n", ns->geom.oobshift);
600 printk("flash size with OOB: %llu KiB\n",
601 (unsigned long long)ns->geom.totszoob >> 10);
602 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
603 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
604 printk("options: %#x\n", ns->options);
606 if ((ret = alloc_device(ns)) != 0)
609 /* Allocate / initialize the internal buffer */
610 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
612 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
617 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
628 * Free the nandsim structure.
630 static void free_nandsim(struct nandsim *ns)
638 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
642 unsigned int erase_block_no;
649 zero_ok = (*w == '0' ? 1 : 0);
650 erase_block_no = simple_strtoul(w, &w, 0);
651 if (!zero_ok && !erase_block_no) {
652 NS_ERR("invalid badblocks.\n");
655 offset = erase_block_no * ns->geom.secsz;
656 if (mtd->block_markbad(mtd, offset)) {
657 NS_ERR("invalid badblocks.\n");
666 static int parse_weakblocks(void)
670 unsigned int erase_block_no;
671 unsigned int max_erases;
672 struct weak_block *wb;
678 zero_ok = (*w == '0' ? 1 : 0);
679 erase_block_no = simple_strtoul(w, &w, 0);
680 if (!zero_ok && !erase_block_no) {
681 NS_ERR("invalid weakblocks.\n");
687 max_erases = simple_strtoul(w, &w, 0);
691 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
693 NS_ERR("unable to allocate memory.\n");
696 wb->erase_block_no = erase_block_no;
697 wb->max_erases = max_erases;
698 list_add(&wb->list, &weak_blocks);
703 static int erase_error(unsigned int erase_block_no)
705 struct weak_block *wb;
707 list_for_each_entry(wb, &weak_blocks, list)
708 if (wb->erase_block_no == erase_block_no) {
709 if (wb->erases_done >= wb->max_erases)
711 wb->erases_done += 1;
717 static int parse_weakpages(void)
721 unsigned int page_no;
722 unsigned int max_writes;
723 struct weak_page *wp;
729 zero_ok = (*w == '0' ? 1 : 0);
730 page_no = simple_strtoul(w, &w, 0);
731 if (!zero_ok && !page_no) {
732 NS_ERR("invalid weakpagess.\n");
738 max_writes = simple_strtoul(w, &w, 0);
742 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
744 NS_ERR("unable to allocate memory.\n");
747 wp->page_no = page_no;
748 wp->max_writes = max_writes;
749 list_add(&wp->list, &weak_pages);
754 static int write_error(unsigned int page_no)
756 struct weak_page *wp;
758 list_for_each_entry(wp, &weak_pages, list)
759 if (wp->page_no == page_no) {
760 if (wp->writes_done >= wp->max_writes)
762 wp->writes_done += 1;
768 static int parse_gravepages(void)
772 unsigned int page_no;
773 unsigned int max_reads;
774 struct grave_page *gp;
780 zero_ok = (*g == '0' ? 1 : 0);
781 page_no = simple_strtoul(g, &g, 0);
782 if (!zero_ok && !page_no) {
783 NS_ERR("invalid gravepagess.\n");
789 max_reads = simple_strtoul(g, &g, 0);
793 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
795 NS_ERR("unable to allocate memory.\n");
798 gp->page_no = page_no;
799 gp->max_reads = max_reads;
800 list_add(&gp->list, &grave_pages);
805 static int read_error(unsigned int page_no)
807 struct grave_page *gp;
809 list_for_each_entry(gp, &grave_pages, list)
810 if (gp->page_no == page_no) {
811 if (gp->reads_done >= gp->max_reads)
819 static void free_lists(void)
821 struct list_head *pos, *n;
822 list_for_each_safe(pos, n, &weak_blocks) {
824 kfree(list_entry(pos, struct weak_block, list));
826 list_for_each_safe(pos, n, &weak_pages) {
828 kfree(list_entry(pos, struct weak_page, list));
830 list_for_each_safe(pos, n, &grave_pages) {
832 kfree(list_entry(pos, struct grave_page, list));
834 kfree(erase_block_wear);
837 static int setup_wear_reporting(struct mtd_info *mtd)
843 wear_eb_count = divide(mtd->size, mtd->erasesize);
844 mem = wear_eb_count * sizeof(unsigned long);
845 if (mem / sizeof(unsigned long) != wear_eb_count) {
846 NS_ERR("Too many erase blocks for wear reporting\n");
849 erase_block_wear = kzalloc(mem, GFP_KERNEL);
850 if (!erase_block_wear) {
851 NS_ERR("Too many erase blocks for wear reporting\n");
857 static void update_wear(unsigned int erase_block_no)
859 unsigned long wmin = -1, wmax = 0, avg;
860 unsigned long deciles[10], decile_max[10], tot = 0;
863 if (!erase_block_wear)
867 NS_ERR("Erase counter total overflow\n");
868 erase_block_wear[erase_block_no] += 1;
869 if (erase_block_wear[erase_block_no] == 0)
870 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
872 if (rptwear_cnt < rptwear)
875 /* Calc wear stats */
876 for (i = 0; i < wear_eb_count; ++i) {
877 unsigned long wear = erase_block_wear[i];
884 for (i = 0; i < 9; ++i) {
886 decile_max[i] = (wmax * (i + 1) + 5) / 10;
889 decile_max[9] = wmax;
890 for (i = 0; i < wear_eb_count; ++i) {
892 unsigned long wear = erase_block_wear[i];
893 for (d = 0; d < 10; ++d)
894 if (wear <= decile_max[d]) {
899 avg = tot / wear_eb_count;
900 /* Output wear report */
901 NS_INFO("*** Wear Report ***\n");
902 NS_INFO("Total numbers of erases: %lu\n", tot);
903 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
904 NS_INFO("Average number of erases: %lu\n", avg);
905 NS_INFO("Maximum number of erases: %lu\n", wmax);
906 NS_INFO("Minimum number of erases: %lu\n", wmin);
907 for (i = 0; i < 10; ++i) {
908 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
909 if (from > decile_max[i])
911 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
916 NS_INFO("*** End of Wear Report ***\n");
920 * Returns the string representation of 'state' state.
922 static char *get_state_name(uint32_t state)
924 switch (NS_STATE(state)) {
925 case STATE_CMD_READ0:
926 return "STATE_CMD_READ0";
927 case STATE_CMD_READ1:
928 return "STATE_CMD_READ1";
929 case STATE_CMD_PAGEPROG:
930 return "STATE_CMD_PAGEPROG";
931 case STATE_CMD_READOOB:
932 return "STATE_CMD_READOOB";
933 case STATE_CMD_READSTART:
934 return "STATE_CMD_READSTART";
935 case STATE_CMD_ERASE1:
936 return "STATE_CMD_ERASE1";
937 case STATE_CMD_STATUS:
938 return "STATE_CMD_STATUS";
939 case STATE_CMD_STATUS_M:
940 return "STATE_CMD_STATUS_M";
941 case STATE_CMD_SEQIN:
942 return "STATE_CMD_SEQIN";
943 case STATE_CMD_READID:
944 return "STATE_CMD_READID";
945 case STATE_CMD_ERASE2:
946 return "STATE_CMD_ERASE2";
947 case STATE_CMD_RESET:
948 return "STATE_CMD_RESET";
949 case STATE_CMD_RNDOUT:
950 return "STATE_CMD_RNDOUT";
951 case STATE_CMD_RNDOUTSTART:
952 return "STATE_CMD_RNDOUTSTART";
953 case STATE_ADDR_PAGE:
954 return "STATE_ADDR_PAGE";
956 return "STATE_ADDR_SEC";
957 case STATE_ADDR_ZERO:
958 return "STATE_ADDR_ZERO";
959 case STATE_ADDR_COLUMN:
960 return "STATE_ADDR_COLUMN";
962 return "STATE_DATAIN";
964 return "STATE_DATAOUT";
965 case STATE_DATAOUT_ID:
966 return "STATE_DATAOUT_ID";
967 case STATE_DATAOUT_STATUS:
968 return "STATE_DATAOUT_STATUS";
969 case STATE_DATAOUT_STATUS_M:
970 return "STATE_DATAOUT_STATUS_M";
972 return "STATE_READY";
974 return "STATE_UNKNOWN";
977 NS_ERR("get_state_name: unknown state, BUG\n");
982 * Check if command is valid.
984 * RETURNS: 1 if wrong command, 0 if right.
986 static int check_command(int cmd)
992 case NAND_CMD_READSTART:
993 case NAND_CMD_PAGEPROG:
994 case NAND_CMD_READOOB:
995 case NAND_CMD_ERASE1:
996 case NAND_CMD_STATUS:
998 case NAND_CMD_READID:
999 case NAND_CMD_ERASE2:
1000 case NAND_CMD_RESET:
1001 case NAND_CMD_RNDOUT:
1002 case NAND_CMD_RNDOUTSTART:
1005 case NAND_CMD_STATUS_MULTI:
1012 * Returns state after command is accepted by command number.
1014 static uint32_t get_state_by_command(unsigned command)
1017 case NAND_CMD_READ0:
1018 return STATE_CMD_READ0;
1019 case NAND_CMD_READ1:
1020 return STATE_CMD_READ1;
1021 case NAND_CMD_PAGEPROG:
1022 return STATE_CMD_PAGEPROG;
1023 case NAND_CMD_READSTART:
1024 return STATE_CMD_READSTART;
1025 case NAND_CMD_READOOB:
1026 return STATE_CMD_READOOB;
1027 case NAND_CMD_ERASE1:
1028 return STATE_CMD_ERASE1;
1029 case NAND_CMD_STATUS:
1030 return STATE_CMD_STATUS;
1031 case NAND_CMD_STATUS_MULTI:
1032 return STATE_CMD_STATUS_M;
1033 case NAND_CMD_SEQIN:
1034 return STATE_CMD_SEQIN;
1035 case NAND_CMD_READID:
1036 return STATE_CMD_READID;
1037 case NAND_CMD_ERASE2:
1038 return STATE_CMD_ERASE2;
1039 case NAND_CMD_RESET:
1040 return STATE_CMD_RESET;
1041 case NAND_CMD_RNDOUT:
1042 return STATE_CMD_RNDOUT;
1043 case NAND_CMD_RNDOUTSTART:
1044 return STATE_CMD_RNDOUTSTART;
1047 NS_ERR("get_state_by_command: unknown command, BUG\n");
1052 * Move an address byte to the correspondent internal register.
1054 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1056 uint byte = (uint)bt;
1058 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1059 ns->regs.column |= (byte << 8 * ns->regs.count);
1061 ns->regs.row |= (byte << 8 * (ns->regs.count -
1062 ns->geom.pgaddrbytes +
1063 ns->geom.secaddrbytes));
1070 * Switch to STATE_READY state.
1072 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1074 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1076 ns->state = STATE_READY;
1077 ns->nxstate = STATE_UNKNOWN;
1085 ns->regs.column = 0;
1086 ns->regs.status = status;
1090 * If the operation isn't known yet, try to find it in the global array
1091 * of supported operations.
1093 * Operation can be unknown because of the following.
1094 * 1. New command was accepted and this is the firs call to find the
1095 * correspondent states chain. In this case ns->npstates = 0;
1096 * 2. There is several operations which begin with the same command(s)
1097 * (for example program from the second half and read from the
1098 * second half operations both begin with the READ1 command). In this
1099 * case the ns->pstates[] array contains previous states.
1101 * Thus, the function tries to find operation containing the following
1102 * states (if the 'flag' parameter is 0):
1103 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1105 * If (one and only one) matching operation is found, it is accepted (
1106 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1109 * If there are several maches, the current state is pushed to the
1112 * The operation can be unknown only while commands are input to the chip.
1113 * As soon as address command is accepted, the operation must be known.
1114 * In such situation the function is called with 'flag' != 0, and the
1115 * operation is searched using the following pattern:
1116 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1118 * It is supposed that this pattern must either match one operation on
1119 * none. There can't be ambiguity in that case.
1121 * If no matches found, the functions does the following:
1122 * 1. if there are saved states present, try to ignore them and search
1123 * again only using the last command. If nothing was found, switch
1124 * to the STATE_READY state.
1125 * 2. if there are no saved states, switch to the STATE_READY state.
1127 * RETURNS: -2 - no matched operations found.
1128 * -1 - several matches.
1129 * 0 - operation is found.
1131 static int find_operation(struct nandsim *ns, uint32_t flag)
1136 for (i = 0; i < NS_OPER_NUM; i++) {
1140 if (!(ns->options & ops[i].reqopts))
1141 /* Ignore operations we can't perform */
1145 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1148 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1152 for (j = 0; j < ns->npstates; j++)
1153 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1154 && (ns->options & ops[idx].reqopts)) {
1165 if (opsfound == 1) {
1167 ns->op = &ops[idx].states[0];
1170 * In this case the find_operation function was
1171 * called when address has just began input. But it isn't
1172 * yet fully input and the current state must
1173 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1174 * state must be the next state (ns->nxstate).
1176 ns->stateidx = ns->npstates - 1;
1178 ns->stateidx = ns->npstates;
1181 ns->state = ns->op[ns->stateidx];
1182 ns->nxstate = ns->op[ns->stateidx + 1];
1183 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1184 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1188 if (opsfound == 0) {
1189 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1190 if (ns->npstates != 0) {
1191 NS_DBG("find_operation: no operation found, try again with state %s\n",
1192 get_state_name(ns->state));
1194 return find_operation(ns, 0);
1197 NS_DBG("find_operation: no operations found\n");
1198 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1203 /* This shouldn't happen */
1204 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1208 NS_DBG("find_operation: there is still ambiguity\n");
1210 ns->pstates[ns->npstates++] = ns->state;
1216 * Returns a pointer to the current page.
1218 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1220 return &(ns->pages[ns->regs.row]);
1224 * Retuns a pointer to the current byte, within the current page.
1226 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1228 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1232 * Fill the NAND buffer with data read from the specified page.
1234 static void read_page(struct nandsim *ns, int num)
1236 union ns_mem *mypage;
1238 mypage = NS_GET_PAGE(ns);
1239 if (mypage->byte == NULL) {
1240 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1241 memset(ns->buf.byte, 0xFF, num);
1243 unsigned int page_no = ns->regs.row;
1244 NS_DBG("read_page: page %d allocated, reading from %d\n",
1245 ns->regs.row, ns->regs.column + ns->regs.off);
1246 if (read_error(page_no)) {
1248 memset(ns->buf.byte, 0xFF, num);
1249 for (i = 0; i < num; ++i)
1250 ns->buf.byte[i] = random32();
1251 NS_WARN("simulating read error in page %u\n", page_no);
1254 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1255 if (bitflips && random32() < (1 << 22)) {
1258 flips = (random32() % (int) bitflips) + 1;
1260 int pos = random32() % (num * 8);
1261 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1262 NS_WARN("read_page: flipping bit %d in page %d "
1263 "reading from %d ecc: corrected=%u failed=%u\n",
1264 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1265 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1272 * Erase all pages in the specified sector.
1274 static void erase_sector(struct nandsim *ns)
1276 union ns_mem *mypage;
1279 mypage = NS_GET_PAGE(ns);
1280 for (i = 0; i < ns->geom.pgsec; i++) {
1281 if (mypage->byte != NULL) {
1282 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1283 kfree(mypage->byte);
1284 mypage->byte = NULL;
1291 * Program the specified page with the contents from the NAND buffer.
1293 static int prog_page(struct nandsim *ns, int num)
1296 union ns_mem *mypage;
1299 mypage = NS_GET_PAGE(ns);
1300 if (mypage->byte == NULL) {
1301 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1303 * We allocate memory with GFP_NOFS because a flash FS may
1304 * utilize this. If it is holding an FS lock, then gets here,
1305 * then kmalloc runs writeback which goes to the FS again
1306 * and deadlocks. This was seen in practice.
1308 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
1309 if (mypage->byte == NULL) {
1310 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1313 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1316 pg_off = NS_PAGE_BYTE_OFF(ns);
1317 for (i = 0; i < num; i++)
1318 pg_off[i] &= ns->buf.byte[i];
1324 * If state has any action bit, perform this action.
1326 * RETURNS: 0 if success, -1 if error.
1328 static int do_state_action(struct nandsim *ns, uint32_t action)
1331 int busdiv = ns->busw == 8 ? 1 : 2;
1332 unsigned int erase_block_no, page_no;
1334 action &= ACTION_MASK;
1336 /* Check that page address input is correct */
1337 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1338 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1346 * Copy page data to the internal buffer.
1349 /* Column shouldn't be very large */
1350 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1351 NS_ERR("do_state_action: column number is too large\n");
1354 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1357 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1358 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1360 if (ns->regs.off == 0)
1361 NS_LOG("read page %d\n", ns->regs.row);
1362 else if (ns->regs.off < ns->geom.pgsz)
1363 NS_LOG("read page %d (second half)\n", ns->regs.row);
1365 NS_LOG("read OOB of page %d\n", ns->regs.row);
1367 NS_UDELAY(access_delay);
1368 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1372 case ACTION_SECERASE:
1378 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1382 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1383 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1384 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1388 ns->regs.row = (ns->regs.row <<
1389 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1390 ns->regs.column = 0;
1392 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1394 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1395 ns->regs.row, NS_RAW_OFFSET(ns));
1396 NS_LOG("erase sector %u\n", erase_block_no);
1400 NS_MDELAY(erase_delay);
1402 if (erase_block_wear)
1403 update_wear(erase_block_no);
1405 if (erase_error(erase_block_no)) {
1406 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1412 case ACTION_PRGPAGE:
1414 * Programm page - move internal buffer data to the page.
1418 NS_WARN("do_state_action: device is write-protected, programm\n");
1422 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1423 if (num != ns->regs.count) {
1424 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1425 ns->regs.count, num);
1429 if (prog_page(ns, num) == -1)
1432 page_no = ns->regs.row;
1434 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1435 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1436 NS_LOG("programm page %d\n", ns->regs.row);
1438 NS_UDELAY(programm_delay);
1439 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1441 if (write_error(page_no)) {
1442 NS_WARN("simulating write failure in page %u\n", page_no);
1448 case ACTION_ZEROOFF:
1449 NS_DBG("do_state_action: set internal offset to 0\n");
1453 case ACTION_HALFOFF:
1454 if (!(ns->options & OPT_PAGE512_8BIT)) {
1455 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1456 "byte page size 8x chips\n");
1459 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1460 ns->regs.off = ns->geom.pgsz/2;
1464 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1465 ns->regs.off = ns->geom.pgsz;
1469 NS_DBG("do_state_action: BUG! unknown action\n");
1476 * Switch simulator's state.
1478 static void switch_state(struct nandsim *ns)
1482 * The current operation have already been identified.
1483 * Just follow the states chain.
1487 ns->state = ns->nxstate;
1488 ns->nxstate = ns->op[ns->stateidx + 1];
1490 NS_DBG("switch_state: operation is known, switch to the next state, "
1491 "state: %s, nxstate: %s\n",
1492 get_state_name(ns->state), get_state_name(ns->nxstate));
1494 /* See, whether we need to do some action */
1495 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1496 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1502 * We don't yet know which operation we perform.
1503 * Try to identify it.
1507 * The only event causing the switch_state function to
1508 * be called with yet unknown operation is new command.
1510 ns->state = get_state_by_command(ns->regs.command);
1512 NS_DBG("switch_state: operation is unknown, try to find it\n");
1514 if (find_operation(ns, 0) != 0)
1517 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1518 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1523 /* For 16x devices column means the page offset in words */
1524 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1525 NS_DBG("switch_state: double the column number for 16x device\n");
1526 ns->regs.column <<= 1;
1529 if (NS_STATE(ns->nxstate) == STATE_READY) {
1531 * The current state is the last. Return to STATE_READY
1534 u_char status = NS_STATUS_OK(ns);
1536 /* In case of data states, see if all bytes were input/output */
1537 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1538 && ns->regs.count != ns->regs.num) {
1539 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1540 ns->regs.num - ns->regs.count);
1541 status = NS_STATUS_FAILED(ns);
1544 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1546 switch_to_ready_state(ns, status);
1549 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1551 * If the next state is data input/output, switch to it now
1554 ns->state = ns->nxstate;
1555 ns->nxstate = ns->op[++ns->stateidx + 1];
1556 ns->regs.num = ns->regs.count = 0;
1558 NS_DBG("switch_state: the next state is data I/O, switch, "
1559 "state: %s, nxstate: %s\n",
1560 get_state_name(ns->state), get_state_name(ns->nxstate));
1563 * Set the internal register to the count of bytes which
1564 * are expected to be input or output
1566 switch (NS_STATE(ns->state)) {
1569 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1572 case STATE_DATAOUT_ID:
1573 ns->regs.num = ns->geom.idbytes;
1576 case STATE_DATAOUT_STATUS:
1577 case STATE_DATAOUT_STATUS_M:
1578 ns->regs.count = ns->regs.num = 0;
1582 NS_ERR("switch_state: BUG! unknown data state\n");
1585 } else if (ns->nxstate & STATE_ADDR_MASK) {
1587 * If the next state is address input, set the internal
1588 * register to the number of expected address bytes
1593 switch (NS_STATE(ns->nxstate)) {
1594 case STATE_ADDR_PAGE:
1595 ns->regs.num = ns->geom.pgaddrbytes;
1598 case STATE_ADDR_SEC:
1599 ns->regs.num = ns->geom.secaddrbytes;
1602 case STATE_ADDR_ZERO:
1606 case STATE_ADDR_COLUMN:
1607 /* Column address is always 2 bytes */
1608 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1612 NS_ERR("switch_state: BUG! unknown address state\n");
1616 * Just reset internal counters.
1624 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1626 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1629 /* Sanity and correctness checks */
1630 if (!ns->lines.ce) {
1631 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1634 if (ns->lines.ale || ns->lines.cle) {
1635 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1638 if (!(ns->state & STATE_DATAOUT_MASK)) {
1639 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1640 "return %#x\n", get_state_name(ns->state), (uint)outb);
1644 /* Status register may be read as many times as it is wanted */
1645 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1646 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1647 return ns->regs.status;
1650 /* Check if there is any data in the internal buffer which may be read */
1651 if (ns->regs.count == ns->regs.num) {
1652 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1656 switch (NS_STATE(ns->state)) {
1658 if (ns->busw == 8) {
1659 outb = ns->buf.byte[ns->regs.count];
1660 ns->regs.count += 1;
1662 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1663 ns->regs.count += 2;
1666 case STATE_DATAOUT_ID:
1667 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1668 outb = ns->ids[ns->regs.count];
1669 ns->regs.count += 1;
1675 if (ns->regs.count == ns->regs.num) {
1676 NS_DBG("read_byte: all bytes were read\n");
1679 * The OPT_AUTOINCR allows to read next conseqitive pages without
1680 * new read operation cycle.
1682 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1684 if (ns->regs.row + 1 < ns->geom.pgnum)
1686 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1687 do_state_action(ns, ACTION_CPY);
1689 else if (NS_STATE(ns->nxstate) == STATE_READY)
1697 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1699 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1701 /* Sanity and correctness checks */
1702 if (!ns->lines.ce) {
1703 NS_ERR("write_byte: chip is disabled, ignore write\n");
1706 if (ns->lines.ale && ns->lines.cle) {
1707 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1711 if (ns->lines.cle == 1) {
1713 * The byte written is a command.
1716 if (byte == NAND_CMD_RESET) {
1717 NS_LOG("reset chip\n");
1718 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1722 /* Check that the command byte is correct */
1723 if (check_command(byte)) {
1724 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1728 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1729 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1730 || NS_STATE(ns->state) == STATE_DATAOUT) {
1731 int row = ns->regs.row;
1734 if (byte == NAND_CMD_RNDOUT)
1738 /* Check if chip is expecting command */
1739 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1741 * We are in situation when something else (not command)
1742 * was expected but command was input. In this case ignore
1743 * previous command(s)/state(s) and accept the last one.
1745 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1746 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1747 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1750 NS_DBG("command byte corresponding to %s state accepted\n",
1751 get_state_name(get_state_by_command(byte)));
1752 ns->regs.command = byte;
1755 } else if (ns->lines.ale == 1) {
1757 * The byte written is an address.
1760 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1762 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1764 if (find_operation(ns, 1) < 0)
1767 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1768 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1773 switch (NS_STATE(ns->nxstate)) {
1774 case STATE_ADDR_PAGE:
1775 ns->regs.num = ns->geom.pgaddrbytes;
1777 case STATE_ADDR_SEC:
1778 ns->regs.num = ns->geom.secaddrbytes;
1780 case STATE_ADDR_ZERO:
1788 /* Check that chip is expecting address */
1789 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1790 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1791 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1792 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1796 /* Check if this is expected byte */
1797 if (ns->regs.count == ns->regs.num) {
1798 NS_ERR("write_byte: no more address bytes expected\n");
1799 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1803 accept_addr_byte(ns, byte);
1805 ns->regs.count += 1;
1807 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1808 (uint)byte, ns->regs.count, ns->regs.num);
1810 if (ns->regs.count == ns->regs.num) {
1811 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1817 * The byte written is an input data.
1820 /* Check that chip is expecting data input */
1821 if (!(ns->state & STATE_DATAIN_MASK)) {
1822 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1823 "switch to %s\n", (uint)byte,
1824 get_state_name(ns->state), get_state_name(STATE_READY));
1825 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1829 /* Check if this is expected byte */
1830 if (ns->regs.count == ns->regs.num) {
1831 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1836 if (ns->busw == 8) {
1837 ns->buf.byte[ns->regs.count] = byte;
1838 ns->regs.count += 1;
1840 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1841 ns->regs.count += 2;
1848 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1850 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1852 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1853 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1854 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1856 if (cmd != NAND_CMD_NONE)
1857 ns_nand_write_byte(mtd, cmd);
1860 static int ns_device_ready(struct mtd_info *mtd)
1862 NS_DBG("device_ready\n");
1866 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1868 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1870 NS_DBG("read_word\n");
1872 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1875 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1877 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1879 /* Check that chip is expecting data input */
1880 if (!(ns->state & STATE_DATAIN_MASK)) {
1881 NS_ERR("write_buf: data input isn't expected, state is %s, "
1882 "switch to STATE_READY\n", get_state_name(ns->state));
1883 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1887 /* Check if these are expected bytes */
1888 if (ns->regs.count + len > ns->regs.num) {
1889 NS_ERR("write_buf: too many input bytes\n");
1890 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1894 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1895 ns->regs.count += len;
1897 if (ns->regs.count == ns->regs.num) {
1898 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1902 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1904 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1906 /* Sanity and correctness checks */
1907 if (!ns->lines.ce) {
1908 NS_ERR("read_buf: chip is disabled\n");
1911 if (ns->lines.ale || ns->lines.cle) {
1912 NS_ERR("read_buf: ALE or CLE pin is high\n");
1915 if (!(ns->state & STATE_DATAOUT_MASK)) {
1916 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1917 get_state_name(ns->state));
1921 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1924 for (i = 0; i < len; i++)
1925 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1930 /* Check if these are expected bytes */
1931 if (ns->regs.count + len > ns->regs.num) {
1932 NS_ERR("read_buf: too many bytes to read\n");
1933 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1937 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1938 ns->regs.count += len;
1940 if (ns->regs.count == ns->regs.num) {
1941 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1943 if (ns->regs.row + 1 < ns->geom.pgnum)
1945 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1946 do_state_action(ns, ACTION_CPY);
1948 else if (NS_STATE(ns->nxstate) == STATE_READY)
1955 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1957 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1959 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1960 NS_DBG("verify_buf: the buffer is OK\n");
1963 NS_DBG("verify_buf: the buffer is wrong\n");
1969 * Module initialization function
1971 static int __init ns_init_module(void)
1973 struct nand_chip *chip;
1974 struct nandsim *nand;
1975 int retval = -ENOMEM, i;
1977 if (bus_width != 8 && bus_width != 16) {
1978 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1982 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1983 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1984 + sizeof(struct nandsim), GFP_KERNEL);
1986 NS_ERR("unable to allocate core structures.\n");
1989 chip = (struct nand_chip *)(nsmtd + 1);
1990 nsmtd->priv = (void *)chip;
1991 nand = (struct nandsim *)(chip + 1);
1992 chip->priv = (void *)nand;
1995 * Register simulator's callbacks.
1997 chip->cmd_ctrl = ns_hwcontrol;
1998 chip->read_byte = ns_nand_read_byte;
1999 chip->dev_ready = ns_device_ready;
2000 chip->write_buf = ns_nand_write_buf;
2001 chip->read_buf = ns_nand_read_buf;
2002 chip->verify_buf = ns_nand_verify_buf;
2003 chip->read_word = ns_nand_read_word;
2004 chip->ecc.mode = NAND_ECC_SOFT;
2005 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2006 /* and 'badblocks' parameters to work */
2007 chip->options |= NAND_SKIP_BBTSCAN;
2010 * Perform minimum nandsim structure initialization to handle
2011 * the initial ID read command correctly
2013 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2014 nand->geom.idbytes = 4;
2016 nand->geom.idbytes = 2;
2017 nand->regs.status = NS_STATUS_OK(nand);
2018 nand->nxstate = STATE_UNKNOWN;
2019 nand->options |= OPT_PAGE256; /* temporary value */
2020 nand->ids[0] = first_id_byte;
2021 nand->ids[1] = second_id_byte;
2022 nand->ids[2] = third_id_byte;
2023 nand->ids[3] = fourth_id_byte;
2024 if (bus_width == 16) {
2026 chip->options |= NAND_BUSWIDTH_16;
2029 nsmtd->owner = THIS_MODULE;
2031 if ((retval = parse_weakblocks()) != 0)
2034 if ((retval = parse_weakpages()) != 0)
2037 if ((retval = parse_gravepages()) != 0)
2040 if ((retval = nand_scan(nsmtd, 1)) != 0) {
2041 NS_ERR("can't register NAND Simulator\n");
2048 u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
2049 if (new_size >> overridesize != nsmtd->erasesize) {
2050 NS_ERR("overridesize is too big\n");
2053 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2054 nsmtd->size = new_size;
2055 chip->chipsize = new_size;
2056 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2057 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2060 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2063 if ((retval = init_nandsim(nsmtd)) != 0)
2066 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2069 if ((retval = nand_default_bbt(nsmtd)) != 0)
2072 /* Register NAND partitions */
2073 if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2080 nand_release(nsmtd);
2081 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2082 kfree(nand->partitions[i].name);
2090 module_init(ns_init_module);
2093 * Module clean-up function
2095 static void __exit ns_cleanup_module(void)
2097 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2100 free_nandsim(ns); /* Free nandsim private resources */
2101 nand_release(nsmtd); /* Unregister driver */
2102 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2103 kfree(ns->partitions[i].name);
2104 kfree(nsmtd); /* Free other structures */
2108 module_exit(ns_cleanup_module);
2110 MODULE_LICENSE ("GPL");
2111 MODULE_AUTHOR ("Artem B. Bityuckiy");
2112 MODULE_DESCRIPTION ("The NAND flash simulator");