]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/mtd/nand/nandsim.c
Merge branch 'master' of /home/cbou/linux-2.6
[linux-2.6-omap-h63xx.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/delay.h>
38 #include <linux/list.h>
39 #include <linux/random.h>
40 #include <asm/div64.h>
41
42 /* Default simulator parameters values */
43 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
44     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
45     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
46     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
47 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
48 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
49 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
50 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
51 #endif
52
53 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
54 #define CONFIG_NANDSIM_ACCESS_DELAY 25
55 #endif
56 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
57 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
58 #endif
59 #ifndef CONFIG_NANDSIM_ERASE_DELAY
60 #define CONFIG_NANDSIM_ERASE_DELAY 2
61 #endif
62 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
63 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
64 #endif
65 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
66 #define CONFIG_NANDSIM_INPUT_CYCLE  50
67 #endif
68 #ifndef CONFIG_NANDSIM_BUS_WIDTH
69 #define CONFIG_NANDSIM_BUS_WIDTH  8
70 #endif
71 #ifndef CONFIG_NANDSIM_DO_DELAYS
72 #define CONFIG_NANDSIM_DO_DELAYS  0
73 #endif
74 #ifndef CONFIG_NANDSIM_LOG
75 #define CONFIG_NANDSIM_LOG        0
76 #endif
77 #ifndef CONFIG_NANDSIM_DBG
78 #define CONFIG_NANDSIM_DBG        0
79 #endif
80
81 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
82 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
83 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
84 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
85 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
86 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
87 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
88 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
89 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
90 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
91 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
92 static uint log            = CONFIG_NANDSIM_LOG;
93 static uint dbg            = CONFIG_NANDSIM_DBG;
94 static unsigned long parts[MAX_MTD_DEVICES];
95 static unsigned int parts_num;
96 static char *badblocks = NULL;
97 static char *weakblocks = NULL;
98 static char *weakpages = NULL;
99 static unsigned int bitflips = 0;
100 static char *gravepages = NULL;
101 static unsigned int rptwear = 0;
102 static unsigned int overridesize = 0;
103
104 module_param(first_id_byte,  uint, 0400);
105 module_param(second_id_byte, uint, 0400);
106 module_param(third_id_byte,  uint, 0400);
107 module_param(fourth_id_byte, uint, 0400);
108 module_param(access_delay,   uint, 0400);
109 module_param(programm_delay, uint, 0400);
110 module_param(erase_delay,    uint, 0400);
111 module_param(output_cycle,   uint, 0400);
112 module_param(input_cycle,    uint, 0400);
113 module_param(bus_width,      uint, 0400);
114 module_param(do_delays,      uint, 0400);
115 module_param(log,            uint, 0400);
116 module_param(dbg,            uint, 0400);
117 module_param_array(parts, ulong, &parts_num, 0400);
118 module_param(badblocks,      charp, 0400);
119 module_param(weakblocks,     charp, 0400);
120 module_param(weakpages,      charp, 0400);
121 module_param(bitflips,       uint, 0400);
122 module_param(gravepages,     charp, 0400);
123 module_param(rptwear,        uint, 0400);
124 module_param(overridesize,   uint, 0400);
125
126 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
127 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
128 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
129 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microiseconds)");
131 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
132 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
133 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
134 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
135 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
136 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
137 MODULE_PARM_DESC(log,            "Perform logging if not zero");
138 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
139 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
140 /* Page and erase block positions for the following parameters are independent of any partitions */
141 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
142 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
143                                  " separated by commas e.g. 113:2 means eb 113"
144                                  " can be erased only twice before failing");
145 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
146                                  " separated by commas e.g. 1401:2 means page 1401"
147                                  " can be written only twice before failing");
148 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
149 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
150                                  " separated by commas e.g. 1401:2 means page 1401"
151                                  " can be read only twice before failing");
152 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
153 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
154                                  "The size is specified in erase blocks and as the exponent of a power of two"
155                                  " e.g. 5 means a size of 32 erase blocks");
156
157 /* The largest possible page size */
158 #define NS_LARGEST_PAGE_SIZE    2048
159
160 /* The prefix for simulator output */
161 #define NS_OUTPUT_PREFIX "[nandsim]"
162
163 /* Simulator's output macros (logging, debugging, warning, error) */
164 #define NS_LOG(args...) \
165         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
166 #define NS_DBG(args...) \
167         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
168 #define NS_WARN(args...) \
169         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
170 #define NS_ERR(args...) \
171         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
172 #define NS_INFO(args...) \
173         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
174
175 /* Busy-wait delay macros (microseconds, milliseconds) */
176 #define NS_UDELAY(us) \
177         do { if (do_delays) udelay(us); } while(0)
178 #define NS_MDELAY(us) \
179         do { if (do_delays) mdelay(us); } while(0)
180
181 /* Is the nandsim structure initialized ? */
182 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
183
184 /* Good operation completion status */
185 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
186
187 /* Operation failed completion status */
188 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
189
190 /* Calculate the page offset in flash RAM image by (row, column) address */
191 #define NS_RAW_OFFSET(ns) \
192         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
193
194 /* Calculate the OOB offset in flash RAM image by (row, column) address */
195 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
196
197 /* After a command is input, the simulator goes to one of the following states */
198 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
199 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
200 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
201 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
202 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
203 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
204 #define STATE_CMD_STATUS       0x00000007 /* read status */
205 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
206 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
207 #define STATE_CMD_READID       0x0000000A /* read ID */
208 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
209 #define STATE_CMD_RESET        0x0000000C /* reset */
210 #define STATE_CMD_MASK         0x0000000F /* command states mask */
211
212 /* After an address is input, the simulator goes to one of these states */
213 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
214 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
215 #define STATE_ADDR_ZERO        0x00000030 /* one byte zero address was accepted */
216 #define STATE_ADDR_MASK        0x00000030 /* address states mask */
217
218 /* Durind data input/output the simulator is in these states */
219 #define STATE_DATAIN           0x00000100 /* waiting for data input */
220 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
221
222 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
223 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
224 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
225 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
226 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
227
228 /* Previous operation is done, ready to accept new requests */
229 #define STATE_READY            0x00000000
230
231 /* This state is used to mark that the next state isn't known yet */
232 #define STATE_UNKNOWN          0x10000000
233
234 /* Simulator's actions bit masks */
235 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
236 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
237 #define ACTION_SECERASE  0x00300000 /* erase sector */
238 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
239 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
240 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
241 #define ACTION_MASK      0x00700000 /* action mask */
242
243 #define NS_OPER_NUM      12 /* Number of operations supported by the simulator */
244 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
245
246 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
247 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
248 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
249 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
250 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
251 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
252 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
253 #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
254 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
255
256 /* Remove action bits ftom state */
257 #define NS_STATE(x) ((x) & ~ACTION_MASK)
258
259 /*
260  * Maximum previous states which need to be saved. Currently saving is
261  * only needed for page programm operation with preceeded read command
262  * (which is only valid for 512-byte pages).
263  */
264 #define NS_MAX_PREVSTATES 1
265
266 /*
267  * A union to represent flash memory contents and flash buffer.
268  */
269 union ns_mem {
270         u_char *byte;    /* for byte access */
271         uint16_t *word;  /* for 16-bit word access */
272 };
273
274 /*
275  * The structure which describes all the internal simulator data.
276  */
277 struct nandsim {
278         struct mtd_partition partitions[MAX_MTD_DEVICES];
279         unsigned int nbparts;
280
281         uint busw;              /* flash chip bus width (8 or 16) */
282         u_char ids[4];          /* chip's ID bytes */
283         uint32_t options;       /* chip's characteristic bits */
284         uint32_t state;         /* current chip state */
285         uint32_t nxstate;       /* next expected state */
286
287         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
288         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
289         uint16_t npstates;      /* number of previous states saved */
290         uint16_t stateidx;      /* current state index */
291
292         /* The simulated NAND flash pages array */
293         union ns_mem *pages;
294
295         /* Internal buffer of page + OOB size bytes */
296         union ns_mem buf;
297
298         /* NAND flash "geometry" */
299         struct nandsin_geometry {
300                 uint64_t totsz;     /* total flash size, bytes */
301                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
302                 uint pgsz;          /* NAND flash page size, bytes */
303                 uint oobsz;         /* page OOB area size, bytes */
304                 uint64_t totszoob;  /* total flash size including OOB, bytes */
305                 uint pgszoob;       /* page size including OOB , bytes*/
306                 uint secszoob;      /* sector size including OOB, bytes */
307                 uint pgnum;         /* total number of pages */
308                 uint pgsec;         /* number of pages per sector */
309                 uint secshift;      /* bits number in sector size */
310                 uint pgshift;       /* bits number in page size */
311                 uint oobshift;      /* bits number in OOB size */
312                 uint pgaddrbytes;   /* bytes per page address */
313                 uint secaddrbytes;  /* bytes per sector address */
314                 uint idbytes;       /* the number ID bytes that this chip outputs */
315         } geom;
316
317         /* NAND flash internal registers */
318         struct nandsim_regs {
319                 unsigned command; /* the command register */
320                 u_char   status;  /* the status register */
321                 uint     row;     /* the page number */
322                 uint     column;  /* the offset within page */
323                 uint     count;   /* internal counter */
324                 uint     num;     /* number of bytes which must be processed */
325                 uint     off;     /* fixed page offset */
326         } regs;
327
328         /* NAND flash lines state */
329         struct ns_lines_status {
330                 int ce;  /* chip Enable */
331                 int cle; /* command Latch Enable */
332                 int ale; /* address Latch Enable */
333                 int wp;  /* write Protect */
334         } lines;
335 };
336
337 /*
338  * Operations array. To perform any operation the simulator must pass
339  * through the correspondent states chain.
340  */
341 static struct nandsim_operations {
342         uint32_t reqopts;  /* options which are required to perform the operation */
343         uint32_t states[NS_OPER_STATES]; /* operation's states */
344 } ops[NS_OPER_NUM] = {
345         /* Read page + OOB from the beginning */
346         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
347                         STATE_DATAOUT, STATE_READY}},
348         /* Read page + OOB from the second half */
349         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
350                         STATE_DATAOUT, STATE_READY}},
351         /* Read OOB */
352         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
353                         STATE_DATAOUT, STATE_READY}},
354         /* Programm page starting from the beginning */
355         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
356                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
357         /* Programm page starting from the beginning */
358         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
359                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
360         /* Programm page starting from the second half */
361         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
362                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
363         /* Programm OOB */
364         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
365                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
366         /* Erase sector */
367         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
368         /* Read status */
369         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
370         /* Read multi-plane status */
371         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
372         /* Read ID */
373         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
374         /* Large page devices read page */
375         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
376                                STATE_DATAOUT, STATE_READY}}
377 };
378
379 struct weak_block {
380         struct list_head list;
381         unsigned int erase_block_no;
382         unsigned int max_erases;
383         unsigned int erases_done;
384 };
385
386 static LIST_HEAD(weak_blocks);
387
388 struct weak_page {
389         struct list_head list;
390         unsigned int page_no;
391         unsigned int max_writes;
392         unsigned int writes_done;
393 };
394
395 static LIST_HEAD(weak_pages);
396
397 struct grave_page {
398         struct list_head list;
399         unsigned int page_no;
400         unsigned int max_reads;
401         unsigned int reads_done;
402 };
403
404 static LIST_HEAD(grave_pages);
405
406 static unsigned long *erase_block_wear = NULL;
407 static unsigned int wear_eb_count = 0;
408 static unsigned long total_wear = 0;
409 static unsigned int rptwear_cnt = 0;
410
411 /* MTD structure for NAND controller */
412 static struct mtd_info *nsmtd;
413
414 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
415
416 /*
417  * Allocate array of page pointers and initialize the array to NULL
418  * pointers.
419  *
420  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
421  */
422 static int alloc_device(struct nandsim *ns)
423 {
424         int i;
425
426         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
427         if (!ns->pages) {
428                 NS_ERR("alloc_map: unable to allocate page array\n");
429                 return -ENOMEM;
430         }
431         for (i = 0; i < ns->geom.pgnum; i++) {
432                 ns->pages[i].byte = NULL;
433         }
434
435         return 0;
436 }
437
438 /*
439  * Free any allocated pages, and free the array of page pointers.
440  */
441 static void free_device(struct nandsim *ns)
442 {
443         int i;
444
445         if (ns->pages) {
446                 for (i = 0; i < ns->geom.pgnum; i++) {
447                         if (ns->pages[i].byte)
448                                 kfree(ns->pages[i].byte);
449                 }
450                 vfree(ns->pages);
451         }
452 }
453
454 static char *get_partition_name(int i)
455 {
456         char buf[64];
457         sprintf(buf, "NAND simulator partition %d", i);
458         return kstrdup(buf, GFP_KERNEL);
459 }
460
461 static u_int64_t divide(u_int64_t n, u_int32_t d)
462 {
463         do_div(n, d);
464         return n;
465 }
466
467 /*
468  * Initialize the nandsim structure.
469  *
470  * RETURNS: 0 if success, -ERRNO if failure.
471  */
472 static int init_nandsim(struct mtd_info *mtd)
473 {
474         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
475         struct nandsim   *ns   = (struct nandsim *)(chip->priv);
476         int i, ret = 0;
477         u_int64_t remains;
478         u_int64_t next_offset;
479
480         if (NS_IS_INITIALIZED(ns)) {
481                 NS_ERR("init_nandsim: nandsim is already initialized\n");
482                 return -EIO;
483         }
484
485         /* Force mtd to not do delays */
486         chip->chip_delay = 0;
487
488         /* Initialize the NAND flash parameters */
489         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
490         ns->geom.totsz    = mtd->size;
491         ns->geom.pgsz     = mtd->writesize;
492         ns->geom.oobsz    = mtd->oobsize;
493         ns->geom.secsz    = mtd->erasesize;
494         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
495         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
496         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
497         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
498         ns->geom.pgshift  = chip->page_shift;
499         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
500         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
501         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
502         ns->options = 0;
503
504         if (ns->geom.pgsz == 256) {
505                 ns->options |= OPT_PAGE256;
506         }
507         else if (ns->geom.pgsz == 512) {
508                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
509                 if (ns->busw == 8)
510                         ns->options |= OPT_PAGE512_8BIT;
511         } else if (ns->geom.pgsz == 2048) {
512                 ns->options |= OPT_PAGE2048;
513         } else {
514                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
515                 return -EIO;
516         }
517
518         if (ns->options & OPT_SMALLPAGE) {
519                 if (ns->geom.totsz <= (32 << 20)) {
520                         ns->geom.pgaddrbytes  = 3;
521                         ns->geom.secaddrbytes = 2;
522                 } else {
523                         ns->geom.pgaddrbytes  = 4;
524                         ns->geom.secaddrbytes = 3;
525                 }
526         } else {
527                 if (ns->geom.totsz <= (128 << 20)) {
528                         ns->geom.pgaddrbytes  = 4;
529                         ns->geom.secaddrbytes = 2;
530                 } else {
531                         ns->geom.pgaddrbytes  = 5;
532                         ns->geom.secaddrbytes = 3;
533                 }
534         }
535
536         /* Fill the partition_info structure */
537         if (parts_num > ARRAY_SIZE(ns->partitions)) {
538                 NS_ERR("too many partitions.\n");
539                 ret = -EINVAL;
540                 goto error;
541         }
542         remains = ns->geom.totsz;
543         next_offset = 0;
544         for (i = 0; i < parts_num; ++i) {
545                 u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;
546
547                 if (!part_sz || part_sz > remains) {
548                         NS_ERR("bad partition size.\n");
549                         ret = -EINVAL;
550                         goto error;
551                 }
552                 ns->partitions[i].name   = get_partition_name(i);
553                 ns->partitions[i].offset = next_offset;
554                 ns->partitions[i].size   = part_sz;
555                 next_offset += ns->partitions[i].size;
556                 remains -= ns->partitions[i].size;
557         }
558         ns->nbparts = parts_num;
559         if (remains) {
560                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
561                         NS_ERR("too many partitions.\n");
562                         ret = -EINVAL;
563                         goto error;
564                 }
565                 ns->partitions[i].name   = get_partition_name(i);
566                 ns->partitions[i].offset = next_offset;
567                 ns->partitions[i].size   = remains;
568                 ns->nbparts += 1;
569         }
570
571         /* Detect how many ID bytes the NAND chip outputs */
572         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
573                 if (second_id_byte != nand_flash_ids[i].id)
574                         continue;
575                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
576                         ns->options |= OPT_AUTOINCR;
577         }
578
579         if (ns->busw == 16)
580                 NS_WARN("16-bit flashes support wasn't tested\n");
581
582         printk("flash size: %llu MiB\n",        ns->geom.totsz >> 20);
583         printk("page size: %u bytes\n",         ns->geom.pgsz);
584         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
585         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
586         printk("pages number: %u\n",            ns->geom.pgnum);
587         printk("pages per sector: %u\n",        ns->geom.pgsec);
588         printk("bus width: %u\n",               ns->busw);
589         printk("bits in sector size: %u\n",     ns->geom.secshift);
590         printk("bits in page size: %u\n",       ns->geom.pgshift);
591         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
592         printk("flash size with OOB: %llu KiB\n", ns->geom.totszoob >> 10);
593         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
594         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
595         printk("options: %#x\n",                ns->options);
596
597         if ((ret = alloc_device(ns)) != 0)
598                 goto error;
599
600         /* Allocate / initialize the internal buffer */
601         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
602         if (!ns->buf.byte) {
603                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
604                         ns->geom.pgszoob);
605                 ret = -ENOMEM;
606                 goto error;
607         }
608         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
609
610         return 0;
611
612 error:
613         free_device(ns);
614
615         return ret;
616 }
617
618 /*
619  * Free the nandsim structure.
620  */
621 static void free_nandsim(struct nandsim *ns)
622 {
623         kfree(ns->buf.byte);
624         free_device(ns);
625
626         return;
627 }
628
629 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
630 {
631         char *w;
632         int zero_ok;
633         unsigned int erase_block_no;
634         loff_t offset;
635
636         if (!badblocks)
637                 return 0;
638         w = badblocks;
639         do {
640                 zero_ok = (*w == '0' ? 1 : 0);
641                 erase_block_no = simple_strtoul(w, &w, 0);
642                 if (!zero_ok && !erase_block_no) {
643                         NS_ERR("invalid badblocks.\n");
644                         return -EINVAL;
645                 }
646                 offset = erase_block_no * ns->geom.secsz;
647                 if (mtd->block_markbad(mtd, offset)) {
648                         NS_ERR("invalid badblocks.\n");
649                         return -EINVAL;
650                 }
651                 if (*w == ',')
652                         w += 1;
653         } while (*w);
654         return 0;
655 }
656
657 static int parse_weakblocks(void)
658 {
659         char *w;
660         int zero_ok;
661         unsigned int erase_block_no;
662         unsigned int max_erases;
663         struct weak_block *wb;
664
665         if (!weakblocks)
666                 return 0;
667         w = weakblocks;
668         do {
669                 zero_ok = (*w == '0' ? 1 : 0);
670                 erase_block_no = simple_strtoul(w, &w, 0);
671                 if (!zero_ok && !erase_block_no) {
672                         NS_ERR("invalid weakblocks.\n");
673                         return -EINVAL;
674                 }
675                 max_erases = 3;
676                 if (*w == ':') {
677                         w += 1;
678                         max_erases = simple_strtoul(w, &w, 0);
679                 }
680                 if (*w == ',')
681                         w += 1;
682                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
683                 if (!wb) {
684                         NS_ERR("unable to allocate memory.\n");
685                         return -ENOMEM;
686                 }
687                 wb->erase_block_no = erase_block_no;
688                 wb->max_erases = max_erases;
689                 list_add(&wb->list, &weak_blocks);
690         } while (*w);
691         return 0;
692 }
693
694 static int erase_error(unsigned int erase_block_no)
695 {
696         struct weak_block *wb;
697
698         list_for_each_entry(wb, &weak_blocks, list)
699                 if (wb->erase_block_no == erase_block_no) {
700                         if (wb->erases_done >= wb->max_erases)
701                                 return 1;
702                         wb->erases_done += 1;
703                         return 0;
704                 }
705         return 0;
706 }
707
708 static int parse_weakpages(void)
709 {
710         char *w;
711         int zero_ok;
712         unsigned int page_no;
713         unsigned int max_writes;
714         struct weak_page *wp;
715
716         if (!weakpages)
717                 return 0;
718         w = weakpages;
719         do {
720                 zero_ok = (*w == '0' ? 1 : 0);
721                 page_no = simple_strtoul(w, &w, 0);
722                 if (!zero_ok && !page_no) {
723                         NS_ERR("invalid weakpagess.\n");
724                         return -EINVAL;
725                 }
726                 max_writes = 3;
727                 if (*w == ':') {
728                         w += 1;
729                         max_writes = simple_strtoul(w, &w, 0);
730                 }
731                 if (*w == ',')
732                         w += 1;
733                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
734                 if (!wp) {
735                         NS_ERR("unable to allocate memory.\n");
736                         return -ENOMEM;
737                 }
738                 wp->page_no = page_no;
739                 wp->max_writes = max_writes;
740                 list_add(&wp->list, &weak_pages);
741         } while (*w);
742         return 0;
743 }
744
745 static int write_error(unsigned int page_no)
746 {
747         struct weak_page *wp;
748
749         list_for_each_entry(wp, &weak_pages, list)
750                 if (wp->page_no == page_no) {
751                         if (wp->writes_done >= wp->max_writes)
752                                 return 1;
753                         wp->writes_done += 1;
754                         return 0;
755                 }
756         return 0;
757 }
758
759 static int parse_gravepages(void)
760 {
761         char *g;
762         int zero_ok;
763         unsigned int page_no;
764         unsigned int max_reads;
765         struct grave_page *gp;
766
767         if (!gravepages)
768                 return 0;
769         g = gravepages;
770         do {
771                 zero_ok = (*g == '0' ? 1 : 0);
772                 page_no = simple_strtoul(g, &g, 0);
773                 if (!zero_ok && !page_no) {
774                         NS_ERR("invalid gravepagess.\n");
775                         return -EINVAL;
776                 }
777                 max_reads = 3;
778                 if (*g == ':') {
779                         g += 1;
780                         max_reads = simple_strtoul(g, &g, 0);
781                 }
782                 if (*g == ',')
783                         g += 1;
784                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
785                 if (!gp) {
786                         NS_ERR("unable to allocate memory.\n");
787                         return -ENOMEM;
788                 }
789                 gp->page_no = page_no;
790                 gp->max_reads = max_reads;
791                 list_add(&gp->list, &grave_pages);
792         } while (*g);
793         return 0;
794 }
795
796 static int read_error(unsigned int page_no)
797 {
798         struct grave_page *gp;
799
800         list_for_each_entry(gp, &grave_pages, list)
801                 if (gp->page_no == page_no) {
802                         if (gp->reads_done >= gp->max_reads)
803                                 return 1;
804                         gp->reads_done += 1;
805                         return 0;
806                 }
807         return 0;
808 }
809
810 static void free_lists(void)
811 {
812         struct list_head *pos, *n;
813         list_for_each_safe(pos, n, &weak_blocks) {
814                 list_del(pos);
815                 kfree(list_entry(pos, struct weak_block, list));
816         }
817         list_for_each_safe(pos, n, &weak_pages) {
818                 list_del(pos);
819                 kfree(list_entry(pos, struct weak_page, list));
820         }
821         list_for_each_safe(pos, n, &grave_pages) {
822                 list_del(pos);
823                 kfree(list_entry(pos, struct grave_page, list));
824         }
825         kfree(erase_block_wear);
826 }
827
828 static int setup_wear_reporting(struct mtd_info *mtd)
829 {
830         size_t mem;
831
832         if (!rptwear)
833                 return 0;
834         wear_eb_count = divide(mtd->size, mtd->erasesize);
835         mem = wear_eb_count * sizeof(unsigned long);
836         if (mem / sizeof(unsigned long) != wear_eb_count) {
837                 NS_ERR("Too many erase blocks for wear reporting\n");
838                 return -ENOMEM;
839         }
840         erase_block_wear = kzalloc(mem, GFP_KERNEL);
841         if (!erase_block_wear) {
842                 NS_ERR("Too many erase blocks for wear reporting\n");
843                 return -ENOMEM;
844         }
845         return 0;
846 }
847
848 static void update_wear(unsigned int erase_block_no)
849 {
850         unsigned long wmin = -1, wmax = 0, avg;
851         unsigned long deciles[10], decile_max[10], tot = 0;
852         unsigned int i;
853
854         if (!erase_block_wear)
855                 return;
856         total_wear += 1;
857         if (total_wear == 0)
858                 NS_ERR("Erase counter total overflow\n");
859         erase_block_wear[erase_block_no] += 1;
860         if (erase_block_wear[erase_block_no] == 0)
861                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
862         rptwear_cnt += 1;
863         if (rptwear_cnt < rptwear)
864                 return;
865         rptwear_cnt = 0;
866         /* Calc wear stats */
867         for (i = 0; i < wear_eb_count; ++i) {
868                 unsigned long wear = erase_block_wear[i];
869                 if (wear < wmin)
870                         wmin = wear;
871                 if (wear > wmax)
872                         wmax = wear;
873                 tot += wear;
874         }
875         for (i = 0; i < 9; ++i) {
876                 deciles[i] = 0;
877                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
878         }
879         deciles[9] = 0;
880         decile_max[9] = wmax;
881         for (i = 0; i < wear_eb_count; ++i) {
882                 int d;
883                 unsigned long wear = erase_block_wear[i];
884                 for (d = 0; d < 10; ++d)
885                         if (wear <= decile_max[d]) {
886                                 deciles[d] += 1;
887                                 break;
888                         }
889         }
890         avg = tot / wear_eb_count;
891         /* Output wear report */
892         NS_INFO("*** Wear Report ***\n");
893         NS_INFO("Total numbers of erases:  %lu\n", tot);
894         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
895         NS_INFO("Average number of erases: %lu\n", avg);
896         NS_INFO("Maximum number of erases: %lu\n", wmax);
897         NS_INFO("Minimum number of erases: %lu\n", wmin);
898         for (i = 0; i < 10; ++i) {
899                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
900                 if (from > decile_max[i])
901                         continue;
902                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
903                         from,
904                         decile_max[i],
905                         deciles[i]);
906         }
907         NS_INFO("*** End of Wear Report ***\n");
908 }
909
910 /*
911  * Returns the string representation of 'state' state.
912  */
913 static char *get_state_name(uint32_t state)
914 {
915         switch (NS_STATE(state)) {
916                 case STATE_CMD_READ0:
917                         return "STATE_CMD_READ0";
918                 case STATE_CMD_READ1:
919                         return "STATE_CMD_READ1";
920                 case STATE_CMD_PAGEPROG:
921                         return "STATE_CMD_PAGEPROG";
922                 case STATE_CMD_READOOB:
923                         return "STATE_CMD_READOOB";
924                 case STATE_CMD_READSTART:
925                         return "STATE_CMD_READSTART";
926                 case STATE_CMD_ERASE1:
927                         return "STATE_CMD_ERASE1";
928                 case STATE_CMD_STATUS:
929                         return "STATE_CMD_STATUS";
930                 case STATE_CMD_STATUS_M:
931                         return "STATE_CMD_STATUS_M";
932                 case STATE_CMD_SEQIN:
933                         return "STATE_CMD_SEQIN";
934                 case STATE_CMD_READID:
935                         return "STATE_CMD_READID";
936                 case STATE_CMD_ERASE2:
937                         return "STATE_CMD_ERASE2";
938                 case STATE_CMD_RESET:
939                         return "STATE_CMD_RESET";
940                 case STATE_ADDR_PAGE:
941                         return "STATE_ADDR_PAGE";
942                 case STATE_ADDR_SEC:
943                         return "STATE_ADDR_SEC";
944                 case STATE_ADDR_ZERO:
945                         return "STATE_ADDR_ZERO";
946                 case STATE_DATAIN:
947                         return "STATE_DATAIN";
948                 case STATE_DATAOUT:
949                         return "STATE_DATAOUT";
950                 case STATE_DATAOUT_ID:
951                         return "STATE_DATAOUT_ID";
952                 case STATE_DATAOUT_STATUS:
953                         return "STATE_DATAOUT_STATUS";
954                 case STATE_DATAOUT_STATUS_M:
955                         return "STATE_DATAOUT_STATUS_M";
956                 case STATE_READY:
957                         return "STATE_READY";
958                 case STATE_UNKNOWN:
959                         return "STATE_UNKNOWN";
960         }
961
962         NS_ERR("get_state_name: unknown state, BUG\n");
963         return NULL;
964 }
965
966 /*
967  * Check if command is valid.
968  *
969  * RETURNS: 1 if wrong command, 0 if right.
970  */
971 static int check_command(int cmd)
972 {
973         switch (cmd) {
974
975         case NAND_CMD_READ0:
976         case NAND_CMD_READSTART:
977         case NAND_CMD_PAGEPROG:
978         case NAND_CMD_READOOB:
979         case NAND_CMD_ERASE1:
980         case NAND_CMD_STATUS:
981         case NAND_CMD_SEQIN:
982         case NAND_CMD_READID:
983         case NAND_CMD_ERASE2:
984         case NAND_CMD_RESET:
985         case NAND_CMD_READ1:
986                 return 0;
987
988         case NAND_CMD_STATUS_MULTI:
989         default:
990                 return 1;
991         }
992 }
993
994 /*
995  * Returns state after command is accepted by command number.
996  */
997 static uint32_t get_state_by_command(unsigned command)
998 {
999         switch (command) {
1000                 case NAND_CMD_READ0:
1001                         return STATE_CMD_READ0;
1002                 case NAND_CMD_READ1:
1003                         return STATE_CMD_READ1;
1004                 case NAND_CMD_PAGEPROG:
1005                         return STATE_CMD_PAGEPROG;
1006                 case NAND_CMD_READSTART:
1007                         return STATE_CMD_READSTART;
1008                 case NAND_CMD_READOOB:
1009                         return STATE_CMD_READOOB;
1010                 case NAND_CMD_ERASE1:
1011                         return STATE_CMD_ERASE1;
1012                 case NAND_CMD_STATUS:
1013                         return STATE_CMD_STATUS;
1014                 case NAND_CMD_STATUS_MULTI:
1015                         return STATE_CMD_STATUS_M;
1016                 case NAND_CMD_SEQIN:
1017                         return STATE_CMD_SEQIN;
1018                 case NAND_CMD_READID:
1019                         return STATE_CMD_READID;
1020                 case NAND_CMD_ERASE2:
1021                         return STATE_CMD_ERASE2;
1022                 case NAND_CMD_RESET:
1023                         return STATE_CMD_RESET;
1024         }
1025
1026         NS_ERR("get_state_by_command: unknown command, BUG\n");
1027         return 0;
1028 }
1029
1030 /*
1031  * Move an address byte to the correspondent internal register.
1032  */
1033 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1034 {
1035         uint byte = (uint)bt;
1036
1037         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1038                 ns->regs.column |= (byte << 8 * ns->regs.count);
1039         else {
1040                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1041                                                 ns->geom.pgaddrbytes +
1042                                                 ns->geom.secaddrbytes));
1043         }
1044
1045         return;
1046 }
1047
1048 /*
1049  * Switch to STATE_READY state.
1050  */
1051 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1052 {
1053         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1054
1055         ns->state       = STATE_READY;
1056         ns->nxstate     = STATE_UNKNOWN;
1057         ns->op          = NULL;
1058         ns->npstates    = 0;
1059         ns->stateidx    = 0;
1060         ns->regs.num    = 0;
1061         ns->regs.count  = 0;
1062         ns->regs.off    = 0;
1063         ns->regs.row    = 0;
1064         ns->regs.column = 0;
1065         ns->regs.status = status;
1066 }
1067
1068 /*
1069  * If the operation isn't known yet, try to find it in the global array
1070  * of supported operations.
1071  *
1072  * Operation can be unknown because of the following.
1073  *   1. New command was accepted and this is the firs call to find the
1074  *      correspondent states chain. In this case ns->npstates = 0;
1075  *   2. There is several operations which begin with the same command(s)
1076  *      (for example program from the second half and read from the
1077  *      second half operations both begin with the READ1 command). In this
1078  *      case the ns->pstates[] array contains previous states.
1079  *
1080  * Thus, the function tries to find operation containing the following
1081  * states (if the 'flag' parameter is 0):
1082  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1083  *
1084  * If (one and only one) matching operation is found, it is accepted (
1085  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1086  * zeroed).
1087  *
1088  * If there are several maches, the current state is pushed to the
1089  * ns->pstates.
1090  *
1091  * The operation can be unknown only while commands are input to the chip.
1092  * As soon as address command is accepted, the operation must be known.
1093  * In such situation the function is called with 'flag' != 0, and the
1094  * operation is searched using the following pattern:
1095  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1096  *
1097  * It is supposed that this pattern must either match one operation on
1098  * none. There can't be ambiguity in that case.
1099  *
1100  * If no matches found, the functions does the following:
1101  *   1. if there are saved states present, try to ignore them and search
1102  *      again only using the last command. If nothing was found, switch
1103  *      to the STATE_READY state.
1104  *   2. if there are no saved states, switch to the STATE_READY state.
1105  *
1106  * RETURNS: -2 - no matched operations found.
1107  *          -1 - several matches.
1108  *           0 - operation is found.
1109  */
1110 static int find_operation(struct nandsim *ns, uint32_t flag)
1111 {
1112         int opsfound = 0;
1113         int i, j, idx = 0;
1114
1115         for (i = 0; i < NS_OPER_NUM; i++) {
1116
1117                 int found = 1;
1118
1119                 if (!(ns->options & ops[i].reqopts))
1120                         /* Ignore operations we can't perform */
1121                         continue;
1122
1123                 if (flag) {
1124                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1125                                 continue;
1126                 } else {
1127                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1128                                 continue;
1129                 }
1130
1131                 for (j = 0; j < ns->npstates; j++)
1132                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1133                                 && (ns->options & ops[idx].reqopts)) {
1134                                 found = 0;
1135                                 break;
1136                         }
1137
1138                 if (found) {
1139                         idx = i;
1140                         opsfound += 1;
1141                 }
1142         }
1143
1144         if (opsfound == 1) {
1145                 /* Exact match */
1146                 ns->op = &ops[idx].states[0];
1147                 if (flag) {
1148                         /*
1149                          * In this case the find_operation function was
1150                          * called when address has just began input. But it isn't
1151                          * yet fully input and the current state must
1152                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1153                          * state must be the next state (ns->nxstate).
1154                          */
1155                         ns->stateidx = ns->npstates - 1;
1156                 } else {
1157                         ns->stateidx = ns->npstates;
1158                 }
1159                 ns->npstates = 0;
1160                 ns->state = ns->op[ns->stateidx];
1161                 ns->nxstate = ns->op[ns->stateidx + 1];
1162                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1163                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1164                 return 0;
1165         }
1166
1167         if (opsfound == 0) {
1168                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1169                 if (ns->npstates != 0) {
1170                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1171                                         get_state_name(ns->state));
1172                         ns->npstates = 0;
1173                         return find_operation(ns, 0);
1174
1175                 }
1176                 NS_DBG("find_operation: no operations found\n");
1177                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1178                 return -2;
1179         }
1180
1181         if (flag) {
1182                 /* This shouldn't happen */
1183                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1184                 return -2;
1185         }
1186
1187         NS_DBG("find_operation: there is still ambiguity\n");
1188
1189         ns->pstates[ns->npstates++] = ns->state;
1190
1191         return -1;
1192 }
1193
1194 /*
1195  * Returns a pointer to the current page.
1196  */
1197 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1198 {
1199         return &(ns->pages[ns->regs.row]);
1200 }
1201
1202 /*
1203  * Retuns a pointer to the current byte, within the current page.
1204  */
1205 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1206 {
1207         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1208 }
1209
1210 /*
1211  * Fill the NAND buffer with data read from the specified page.
1212  */
1213 static void read_page(struct nandsim *ns, int num)
1214 {
1215         union ns_mem *mypage;
1216
1217         mypage = NS_GET_PAGE(ns);
1218         if (mypage->byte == NULL) {
1219                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1220                 memset(ns->buf.byte, 0xFF, num);
1221         } else {
1222                 unsigned int page_no = ns->regs.row;
1223                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1224                         ns->regs.row, ns->regs.column + ns->regs.off);
1225                 if (read_error(page_no)) {
1226                         int i;
1227                         memset(ns->buf.byte, 0xFF, num);
1228                         for (i = 0; i < num; ++i)
1229                                 ns->buf.byte[i] = random32();
1230                         NS_WARN("simulating read error in page %u\n", page_no);
1231                         return;
1232                 }
1233                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1234                 if (bitflips && random32() < (1 << 22)) {
1235                         int flips = 1;
1236                         if (bitflips > 1)
1237                                 flips = (random32() % (int) bitflips) + 1;
1238                         while (flips--) {
1239                                 int pos = random32() % (num * 8);
1240                                 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1241                                 NS_WARN("read_page: flipping bit %d in page %d "
1242                                         "reading from %d ecc: corrected=%u failed=%u\n",
1243                                         pos, ns->regs.row, ns->regs.column + ns->regs.off,
1244                                         nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1245                         }
1246                 }
1247         }
1248 }
1249
1250 /*
1251  * Erase all pages in the specified sector.
1252  */
1253 static void erase_sector(struct nandsim *ns)
1254 {
1255         union ns_mem *mypage;
1256         int i;
1257
1258         mypage = NS_GET_PAGE(ns);
1259         for (i = 0; i < ns->geom.pgsec; i++) {
1260                 if (mypage->byte != NULL) {
1261                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1262                         kfree(mypage->byte);
1263                         mypage->byte = NULL;
1264                 }
1265                 mypage++;
1266         }
1267 }
1268
1269 /*
1270  * Program the specified page with the contents from the NAND buffer.
1271  */
1272 static int prog_page(struct nandsim *ns, int num)
1273 {
1274         int i;
1275         union ns_mem *mypage;
1276         u_char *pg_off;
1277
1278         mypage = NS_GET_PAGE(ns);
1279         if (mypage->byte == NULL) {
1280                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1281                 /*
1282                  * We allocate memory with GFP_NOFS because a flash FS may
1283                  * utilize this. If it is holding an FS lock, then gets here,
1284                  * then kmalloc runs writeback which goes to the FS again
1285                  * and deadlocks. This was seen in practice.
1286                  */
1287                 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
1288                 if (mypage->byte == NULL) {
1289                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1290                         return -1;
1291                 }
1292                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1293         }
1294
1295         pg_off = NS_PAGE_BYTE_OFF(ns);
1296         for (i = 0; i < num; i++)
1297                 pg_off[i] &= ns->buf.byte[i];
1298
1299         return 0;
1300 }
1301
1302 /*
1303  * If state has any action bit, perform this action.
1304  *
1305  * RETURNS: 0 if success, -1 if error.
1306  */
1307 static int do_state_action(struct nandsim *ns, uint32_t action)
1308 {
1309         int num;
1310         int busdiv = ns->busw == 8 ? 1 : 2;
1311         unsigned int erase_block_no, page_no;
1312
1313         action &= ACTION_MASK;
1314
1315         /* Check that page address input is correct */
1316         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1317                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1318                 return -1;
1319         }
1320
1321         switch (action) {
1322
1323         case ACTION_CPY:
1324                 /*
1325                  * Copy page data to the internal buffer.
1326                  */
1327
1328                 /* Column shouldn't be very large */
1329                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1330                         NS_ERR("do_state_action: column number is too large\n");
1331                         break;
1332                 }
1333                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1334                 read_page(ns, num);
1335
1336                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1337                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1338
1339                 if (ns->regs.off == 0)
1340                         NS_LOG("read page %d\n", ns->regs.row);
1341                 else if (ns->regs.off < ns->geom.pgsz)
1342                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1343                 else
1344                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1345
1346                 NS_UDELAY(access_delay);
1347                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1348
1349                 break;
1350
1351         case ACTION_SECERASE:
1352                 /*
1353                  * Erase sector.
1354                  */
1355
1356                 if (ns->lines.wp) {
1357                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1358                         return -1;
1359                 }
1360
1361                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1362                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1363                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1364                         return -1;
1365                 }
1366
1367                 ns->regs.row = (ns->regs.row <<
1368                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1369                 ns->regs.column = 0;
1370
1371                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1372
1373                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1374                                 ns->regs.row, NS_RAW_OFFSET(ns));
1375                 NS_LOG("erase sector %u\n", erase_block_no);
1376
1377                 erase_sector(ns);
1378
1379                 NS_MDELAY(erase_delay);
1380
1381                 if (erase_block_wear)
1382                         update_wear(erase_block_no);
1383
1384                 if (erase_error(erase_block_no)) {
1385                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1386                         return -1;
1387                 }
1388
1389                 break;
1390
1391         case ACTION_PRGPAGE:
1392                 /*
1393                  * Programm page - move internal buffer data to the page.
1394                  */
1395
1396                 if (ns->lines.wp) {
1397                         NS_WARN("do_state_action: device is write-protected, programm\n");
1398                         return -1;
1399                 }
1400
1401                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1402                 if (num != ns->regs.count) {
1403                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1404                                         ns->regs.count, num);
1405                         return -1;
1406                 }
1407
1408                 if (prog_page(ns, num) == -1)
1409                         return -1;
1410
1411                 page_no = ns->regs.row;
1412
1413                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1414                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1415                 NS_LOG("programm page %d\n", ns->regs.row);
1416
1417                 NS_UDELAY(programm_delay);
1418                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1419
1420                 if (write_error(page_no)) {
1421                         NS_WARN("simulating write failure in page %u\n", page_no);
1422                         return -1;
1423                 }
1424
1425                 break;
1426
1427         case ACTION_ZEROOFF:
1428                 NS_DBG("do_state_action: set internal offset to 0\n");
1429                 ns->regs.off = 0;
1430                 break;
1431
1432         case ACTION_HALFOFF:
1433                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1434                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1435                                 "byte page size 8x chips\n");
1436                         return -1;
1437                 }
1438                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1439                 ns->regs.off = ns->geom.pgsz/2;
1440                 break;
1441
1442         case ACTION_OOBOFF:
1443                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1444                 ns->regs.off = ns->geom.pgsz;
1445                 break;
1446
1447         default:
1448                 NS_DBG("do_state_action: BUG! unknown action\n");
1449         }
1450
1451         return 0;
1452 }
1453
1454 /*
1455  * Switch simulator's state.
1456  */
1457 static void switch_state(struct nandsim *ns)
1458 {
1459         if (ns->op) {
1460                 /*
1461                  * The current operation have already been identified.
1462                  * Just follow the states chain.
1463                  */
1464
1465                 ns->stateidx += 1;
1466                 ns->state = ns->nxstate;
1467                 ns->nxstate = ns->op[ns->stateidx + 1];
1468
1469                 NS_DBG("switch_state: operation is known, switch to the next state, "
1470                         "state: %s, nxstate: %s\n",
1471                         get_state_name(ns->state), get_state_name(ns->nxstate));
1472
1473                 /* See, whether we need to do some action */
1474                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1475                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1476                         return;
1477                 }
1478
1479         } else {
1480                 /*
1481                  * We don't yet know which operation we perform.
1482                  * Try to identify it.
1483                  */
1484
1485                 /*
1486                  *  The only event causing the switch_state function to
1487                  *  be called with yet unknown operation is new command.
1488                  */
1489                 ns->state = get_state_by_command(ns->regs.command);
1490
1491                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1492
1493                 if (find_operation(ns, 0) != 0)
1494                         return;
1495
1496                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1497                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1498                         return;
1499                 }
1500         }
1501
1502         /* For 16x devices column means the page offset in words */
1503         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1504                 NS_DBG("switch_state: double the column number for 16x device\n");
1505                 ns->regs.column <<= 1;
1506         }
1507
1508         if (NS_STATE(ns->nxstate) == STATE_READY) {
1509                 /*
1510                  * The current state is the last. Return to STATE_READY
1511                  */
1512
1513                 u_char status = NS_STATUS_OK(ns);
1514
1515                 /* In case of data states, see if all bytes were input/output */
1516                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1517                         && ns->regs.count != ns->regs.num) {
1518                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1519                                         ns->regs.num - ns->regs.count);
1520                         status = NS_STATUS_FAILED(ns);
1521                 }
1522
1523                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1524
1525                 switch_to_ready_state(ns, status);
1526
1527                 return;
1528         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1529                 /*
1530                  * If the next state is data input/output, switch to it now
1531                  */
1532
1533                 ns->state      = ns->nxstate;
1534                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1535                 ns->regs.num   = ns->regs.count = 0;
1536
1537                 NS_DBG("switch_state: the next state is data I/O, switch, "
1538                         "state: %s, nxstate: %s\n",
1539                         get_state_name(ns->state), get_state_name(ns->nxstate));
1540
1541                 /*
1542                  * Set the internal register to the count of bytes which
1543                  * are expected to be input or output
1544                  */
1545                 switch (NS_STATE(ns->state)) {
1546                         case STATE_DATAIN:
1547                         case STATE_DATAOUT:
1548                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1549                                 break;
1550
1551                         case STATE_DATAOUT_ID:
1552                                 ns->regs.num = ns->geom.idbytes;
1553                                 break;
1554
1555                         case STATE_DATAOUT_STATUS:
1556                         case STATE_DATAOUT_STATUS_M:
1557                                 ns->regs.count = ns->regs.num = 0;
1558                                 break;
1559
1560                         default:
1561                                 NS_ERR("switch_state: BUG! unknown data state\n");
1562                 }
1563
1564         } else if (ns->nxstate & STATE_ADDR_MASK) {
1565                 /*
1566                  * If the next state is address input, set the internal
1567                  * register to the number of expected address bytes
1568                  */
1569
1570                 ns->regs.count = 0;
1571
1572                 switch (NS_STATE(ns->nxstate)) {
1573                         case STATE_ADDR_PAGE:
1574                                 ns->regs.num = ns->geom.pgaddrbytes;
1575
1576                                 break;
1577                         case STATE_ADDR_SEC:
1578                                 ns->regs.num = ns->geom.secaddrbytes;
1579                                 break;
1580
1581                         case STATE_ADDR_ZERO:
1582                                 ns->regs.num = 1;
1583                                 break;
1584
1585                         default:
1586                                 NS_ERR("switch_state: BUG! unknown address state\n");
1587                 }
1588         } else {
1589                 /*
1590                  * Just reset internal counters.
1591                  */
1592
1593                 ns->regs.num = 0;
1594                 ns->regs.count = 0;
1595         }
1596 }
1597
1598 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1599 {
1600         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1601         u_char outb = 0x00;
1602
1603         /* Sanity and correctness checks */
1604         if (!ns->lines.ce) {
1605                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1606                 return outb;
1607         }
1608         if (ns->lines.ale || ns->lines.cle) {
1609                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1610                 return outb;
1611         }
1612         if (!(ns->state & STATE_DATAOUT_MASK)) {
1613                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1614                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1615                 return outb;
1616         }
1617
1618         /* Status register may be read as many times as it is wanted */
1619         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1620                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1621                 return ns->regs.status;
1622         }
1623
1624         /* Check if there is any data in the internal buffer which may be read */
1625         if (ns->regs.count == ns->regs.num) {
1626                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1627                 return outb;
1628         }
1629
1630         switch (NS_STATE(ns->state)) {
1631                 case STATE_DATAOUT:
1632                         if (ns->busw == 8) {
1633                                 outb = ns->buf.byte[ns->regs.count];
1634                                 ns->regs.count += 1;
1635                         } else {
1636                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1637                                 ns->regs.count += 2;
1638                         }
1639                         break;
1640                 case STATE_DATAOUT_ID:
1641                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1642                         outb = ns->ids[ns->regs.count];
1643                         ns->regs.count += 1;
1644                         break;
1645                 default:
1646                         BUG();
1647         }
1648
1649         if (ns->regs.count == ns->regs.num) {
1650                 NS_DBG("read_byte: all bytes were read\n");
1651
1652                 /*
1653                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1654                  * new read operation cycle.
1655                  */
1656                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1657                         ns->regs.count = 0;
1658                         if (ns->regs.row + 1 < ns->geom.pgnum)
1659                                 ns->regs.row += 1;
1660                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1661                         do_state_action(ns, ACTION_CPY);
1662                 }
1663                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1664                         switch_state(ns);
1665
1666         }
1667
1668         return outb;
1669 }
1670
1671 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1672 {
1673         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1674
1675         /* Sanity and correctness checks */
1676         if (!ns->lines.ce) {
1677                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1678                 return;
1679         }
1680         if (ns->lines.ale && ns->lines.cle) {
1681                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1682                 return;
1683         }
1684
1685         if (ns->lines.cle == 1) {
1686                 /*
1687                  * The byte written is a command.
1688                  */
1689
1690                 if (byte == NAND_CMD_RESET) {
1691                         NS_LOG("reset chip\n");
1692                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1693                         return;
1694                 }
1695
1696                 /*
1697                  * Chip might still be in STATE_DATAOUT
1698                  * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1699                  * STATE_DATAOUT_STATUS_M state. If so, switch state.
1700                  */
1701                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1702                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1703                         || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1704                         switch_state(ns);
1705
1706                 /* Check if chip is expecting command */
1707                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1708                         /*
1709                          * We are in situation when something else (not command)
1710                          * was expected but command was input. In this case ignore
1711                          * previous command(s)/state(s) and accept the last one.
1712                          */
1713                         NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1714                                 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1715                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1716                 }
1717
1718                 /* Check that the command byte is correct */
1719                 if (check_command(byte)) {
1720                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1721                         return;
1722                 }
1723
1724                 NS_DBG("command byte corresponding to %s state accepted\n",
1725                         get_state_name(get_state_by_command(byte)));
1726                 ns->regs.command = byte;
1727                 switch_state(ns);
1728
1729         } else if (ns->lines.ale == 1) {
1730                 /*
1731                  * The byte written is an address.
1732                  */
1733
1734                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1735
1736                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
1737
1738                         if (find_operation(ns, 1) < 0)
1739                                 return;
1740
1741                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1742                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1743                                 return;
1744                         }
1745
1746                         ns->regs.count = 0;
1747                         switch (NS_STATE(ns->nxstate)) {
1748                                 case STATE_ADDR_PAGE:
1749                                         ns->regs.num = ns->geom.pgaddrbytes;
1750                                         break;
1751                                 case STATE_ADDR_SEC:
1752                                         ns->regs.num = ns->geom.secaddrbytes;
1753                                         break;
1754                                 case STATE_ADDR_ZERO:
1755                                         ns->regs.num = 1;
1756                                         break;
1757                                 default:
1758                                         BUG();
1759                         }
1760                 }
1761
1762                 /* Check that chip is expecting address */
1763                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1764                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1765                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1766                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1767                         return;
1768                 }
1769
1770                 /* Check if this is expected byte */
1771                 if (ns->regs.count == ns->regs.num) {
1772                         NS_ERR("write_byte: no more address bytes expected\n");
1773                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1774                         return;
1775                 }
1776
1777                 accept_addr_byte(ns, byte);
1778
1779                 ns->regs.count += 1;
1780
1781                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1782                                 (uint)byte, ns->regs.count, ns->regs.num);
1783
1784                 if (ns->regs.count == ns->regs.num) {
1785                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1786                         switch_state(ns);
1787                 }
1788
1789         } else {
1790                 /*
1791                  * The byte written is an input data.
1792                  */
1793
1794                 /* Check that chip is expecting data input */
1795                 if (!(ns->state & STATE_DATAIN_MASK)) {
1796                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1797                                 "switch to %s\n", (uint)byte,
1798                                 get_state_name(ns->state), get_state_name(STATE_READY));
1799                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1800                         return;
1801                 }
1802
1803                 /* Check if this is expected byte */
1804                 if (ns->regs.count == ns->regs.num) {
1805                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1806                                         ns->regs.num);
1807                         return;
1808                 }
1809
1810                 if (ns->busw == 8) {
1811                         ns->buf.byte[ns->regs.count] = byte;
1812                         ns->regs.count += 1;
1813                 } else {
1814                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1815                         ns->regs.count += 2;
1816                 }
1817         }
1818
1819         return;
1820 }
1821
1822 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1823 {
1824         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1825
1826         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1827         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1828         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1829
1830         if (cmd != NAND_CMD_NONE)
1831                 ns_nand_write_byte(mtd, cmd);
1832 }
1833
1834 static int ns_device_ready(struct mtd_info *mtd)
1835 {
1836         NS_DBG("device_ready\n");
1837         return 1;
1838 }
1839
1840 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1841 {
1842         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1843
1844         NS_DBG("read_word\n");
1845
1846         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1847 }
1848
1849 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1850 {
1851         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1852
1853         /* Check that chip is expecting data input */
1854         if (!(ns->state & STATE_DATAIN_MASK)) {
1855                 NS_ERR("write_buf: data input isn't expected, state is %s, "
1856                         "switch to STATE_READY\n", get_state_name(ns->state));
1857                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1858                 return;
1859         }
1860
1861         /* Check if these are expected bytes */
1862         if (ns->regs.count + len > ns->regs.num) {
1863                 NS_ERR("write_buf: too many input bytes\n");
1864                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1865                 return;
1866         }
1867
1868         memcpy(ns->buf.byte + ns->regs.count, buf, len);
1869         ns->regs.count += len;
1870
1871         if (ns->regs.count == ns->regs.num) {
1872                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1873         }
1874 }
1875
1876 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1877 {
1878         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1879
1880         /* Sanity and correctness checks */
1881         if (!ns->lines.ce) {
1882                 NS_ERR("read_buf: chip is disabled\n");
1883                 return;
1884         }
1885         if (ns->lines.ale || ns->lines.cle) {
1886                 NS_ERR("read_buf: ALE or CLE pin is high\n");
1887                 return;
1888         }
1889         if (!(ns->state & STATE_DATAOUT_MASK)) {
1890                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1891                         get_state_name(ns->state));
1892                 return;
1893         }
1894
1895         if (NS_STATE(ns->state) != STATE_DATAOUT) {
1896                 int i;
1897
1898                 for (i = 0; i < len; i++)
1899                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1900
1901                 return;
1902         }
1903
1904         /* Check if these are expected bytes */
1905         if (ns->regs.count + len > ns->regs.num) {
1906                 NS_ERR("read_buf: too many bytes to read\n");
1907                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1908                 return;
1909         }
1910
1911         memcpy(buf, ns->buf.byte + ns->regs.count, len);
1912         ns->regs.count += len;
1913
1914         if (ns->regs.count == ns->regs.num) {
1915                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1916                         ns->regs.count = 0;
1917                         if (ns->regs.row + 1 < ns->geom.pgnum)
1918                                 ns->regs.row += 1;
1919                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1920                         do_state_action(ns, ACTION_CPY);
1921                 }
1922                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1923                         switch_state(ns);
1924         }
1925
1926         return;
1927 }
1928
1929 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1930 {
1931         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1932
1933         if (!memcmp(buf, &ns_verify_buf[0], len)) {
1934                 NS_DBG("verify_buf: the buffer is OK\n");
1935                 return 0;
1936         } else {
1937                 NS_DBG("verify_buf: the buffer is wrong\n");
1938                 return -EFAULT;
1939         }
1940 }
1941
1942 /*
1943  * Module initialization function
1944  */
1945 static int __init ns_init_module(void)
1946 {
1947         struct nand_chip *chip;
1948         struct nandsim *nand;
1949         int retval = -ENOMEM, i;
1950
1951         if (bus_width != 8 && bus_width != 16) {
1952                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1953                 return -EINVAL;
1954         }
1955
1956         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1957         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1958                                 + sizeof(struct nandsim), GFP_KERNEL);
1959         if (!nsmtd) {
1960                 NS_ERR("unable to allocate core structures.\n");
1961                 return -ENOMEM;
1962         }
1963         chip        = (struct nand_chip *)(nsmtd + 1);
1964         nsmtd->priv = (void *)chip;
1965         nand        = (struct nandsim *)(chip + 1);
1966         chip->priv  = (void *)nand;
1967
1968         /*
1969          * Register simulator's callbacks.
1970          */
1971         chip->cmd_ctrl   = ns_hwcontrol;
1972         chip->read_byte  = ns_nand_read_byte;
1973         chip->dev_ready  = ns_device_ready;
1974         chip->write_buf  = ns_nand_write_buf;
1975         chip->read_buf   = ns_nand_read_buf;
1976         chip->verify_buf = ns_nand_verify_buf;
1977         chip->read_word  = ns_nand_read_word;
1978         chip->ecc.mode   = NAND_ECC_SOFT;
1979         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
1980         /* and 'badblocks' parameters to work */
1981         chip->options   |= NAND_SKIP_BBTSCAN;
1982
1983         /*
1984          * Perform minimum nandsim structure initialization to handle
1985          * the initial ID read command correctly
1986          */
1987         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1988                 nand->geom.idbytes = 4;
1989         else
1990                 nand->geom.idbytes = 2;
1991         nand->regs.status = NS_STATUS_OK(nand);
1992         nand->nxstate = STATE_UNKNOWN;
1993         nand->options |= OPT_PAGE256; /* temporary value */
1994         nand->ids[0] = first_id_byte;
1995         nand->ids[1] = second_id_byte;
1996         nand->ids[2] = third_id_byte;
1997         nand->ids[3] = fourth_id_byte;
1998         if (bus_width == 16) {
1999                 nand->busw = 16;
2000                 chip->options |= NAND_BUSWIDTH_16;
2001         }
2002
2003         nsmtd->owner = THIS_MODULE;
2004
2005         if ((retval = parse_weakblocks()) != 0)
2006                 goto error;
2007
2008         if ((retval = parse_weakpages()) != 0)
2009                 goto error;
2010
2011         if ((retval = parse_gravepages()) != 0)
2012                 goto error;
2013
2014         if ((retval = nand_scan(nsmtd, 1)) != 0) {
2015                 NS_ERR("can't register NAND Simulator\n");
2016                 if (retval > 0)
2017                         retval = -ENXIO;
2018                 goto error;
2019         }
2020
2021         if (overridesize) {
2022                 u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
2023                 if (new_size >> overridesize != nsmtd->erasesize) {
2024                         NS_ERR("overridesize is too big\n");
2025                         goto err_exit;
2026                 }
2027                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2028                 nsmtd->size = new_size;
2029                 chip->chipsize = new_size;
2030                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2031                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2032         }
2033
2034         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2035                 goto err_exit;
2036
2037         if ((retval = init_nandsim(nsmtd)) != 0)
2038                 goto err_exit;
2039
2040         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2041                 goto err_exit;
2042
2043         if ((retval = nand_default_bbt(nsmtd)) != 0)
2044                 goto err_exit;
2045
2046         /* Register NAND partitions */
2047         if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2048                 goto err_exit;
2049
2050         return 0;
2051
2052 err_exit:
2053         free_nandsim(nand);
2054         nand_release(nsmtd);
2055         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2056                 kfree(nand->partitions[i].name);
2057 error:
2058         kfree(nsmtd);
2059         free_lists();
2060
2061         return retval;
2062 }
2063
2064 module_init(ns_init_module);
2065
2066 /*
2067  * Module clean-up function
2068  */
2069 static void __exit ns_cleanup_module(void)
2070 {
2071         struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2072         int i;
2073
2074         free_nandsim(ns);    /* Free nandsim private resources */
2075         nand_release(nsmtd); /* Unregister driver */
2076         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2077                 kfree(ns->partitions[i].name);
2078         kfree(nsmtd);        /* Free other structures */
2079         free_lists();
2080 }
2081
2082 module_exit(ns_cleanup_module);
2083
2084 MODULE_LICENSE ("GPL");
2085 MODULE_AUTHOR ("Artem B. Bityuckiy");
2086 MODULE_DESCRIPTION ("The NAND flash simulator");