]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/mtd/ubi/scan.c
UBI: fix error printing
[linux-2.6-omap-h63xx.git] / drivers / mtd / ubi / scan.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20
21 /*
22  * UBI scanning unit.
23  *
24  * This unit is responsible for scanning the flash media, checking UBI
25  * headers and providing complete information about the UBI flash image.
26  *
27  * The scanning information is represented by a &struct ubi_scan_info' object.
28  * Information about found volumes is represented by &struct ubi_scan_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33  * These objects are kept in per-volume RB-trees with the root at the
34  * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35  * an RB-tree of per-volume objects and each of these objects is the root of
36  * RB-tree of per-eraseblock objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  */
42
43 #include <linux/err.h>
44 #include <linux/crc32.h>
45 #include "ubi.h"
46
47 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
48 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
49 #else
50 #define paranoid_check_si(ubi, si) 0
51 #endif
52
53 /* Temporary variables used during scanning */
54 static struct ubi_ec_hdr *ech;
55 static struct ubi_vid_hdr *vidh;
56
57 /**
58  * add_to_list - add physical eraseblock to a list.
59  * @si: scanning information
60  * @pnum: physical eraseblock number to add
61  * @ec: erase counter of the physical eraseblock
62  * @list: the list to add to
63  *
64  * This function adds physical eraseblock @pnum to free, erase, corrupted or
65  * alien lists. Returns zero in case of success and a negative error code in
66  * case of failure.
67  */
68 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
69                        struct list_head *list)
70 {
71         struct ubi_scan_leb *seb;
72
73         if (list == &si->free)
74                 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
75         else if (list == &si->erase)
76                 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
77         else if (list == &si->corr)
78                 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
79         else if (list == &si->alien)
80                 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
81         else
82                 BUG();
83
84         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
85         if (!seb)
86                 return -ENOMEM;
87
88         seb->pnum = pnum;
89         seb->ec = ec;
90         list_add_tail(&seb->u.list, list);
91         return 0;
92 }
93
94 /**
95  * commit_to_mean_value - commit intermediate results to the final mean erase
96  * counter value.
97  * @si: scanning information
98  *
99  * This is a helper function which calculates partial mean erase counter mean
100  * value and adds it to the resulting mean value. As we can work only in
101  * integer arithmetic and we want to calculate the mean value of erase counter
102  * accurately, we first sum erase counter values in @si->ec_sum variable and
103  * count these components in @si->ec_count. If this temporary @si->ec_sum is
104  * going to overflow, we calculate the partial mean value
105  * (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec.
106  */
107 static void commit_to_mean_value(struct ubi_scan_info *si)
108 {
109         si->ec_sum /= si->ec_count;
110         if (si->ec_sum % si->ec_count >= si->ec_count / 2)
111                 si->mean_ec += 1;
112         si->mean_ec += si->ec_sum;
113 }
114
115 /**
116  * validate_vid_hdr - check that volume identifier header is correct and
117  * consistent.
118  * @vid_hdr: the volume identifier header to check
119  * @sv: information about the volume this logical eraseblock belongs to
120  * @pnum: physical eraseblock number the VID header came from
121  *
122  * This function checks that data stored in @vid_hdr is consistent. Returns
123  * non-zero if an inconsistency was found and zero if not.
124  *
125  * Note, UBI does sanity check of everything it reads from the flash media.
126  * Most of the checks are done in the I/O unit. Here we check that the
127  * information in the VID header is consistent to the information in other VID
128  * headers of the same volume.
129  */
130 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
131                             const struct ubi_scan_volume *sv, int pnum)
132 {
133         int vol_type = vid_hdr->vol_type;
134         int vol_id = be32_to_cpu(vid_hdr->vol_id);
135         int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
136         int data_pad = be32_to_cpu(vid_hdr->data_pad);
137
138         if (sv->leb_count != 0) {
139                 int sv_vol_type;
140
141                 /*
142                  * This is not the first logical eraseblock belonging to this
143                  * volume. Ensure that the data in its VID header is consistent
144                  * to the data in previous logical eraseblock headers.
145                  */
146
147                 if (vol_id != sv->vol_id) {
148                         dbg_err("inconsistent vol_id");
149                         goto bad;
150                 }
151
152                 if (sv->vol_type == UBI_STATIC_VOLUME)
153                         sv_vol_type = UBI_VID_STATIC;
154                 else
155                         sv_vol_type = UBI_VID_DYNAMIC;
156
157                 if (vol_type != sv_vol_type) {
158                         dbg_err("inconsistent vol_type");
159                         goto bad;
160                 }
161
162                 if (used_ebs != sv->used_ebs) {
163                         dbg_err("inconsistent used_ebs");
164                         goto bad;
165                 }
166
167                 if (data_pad != sv->data_pad) {
168                         dbg_err("inconsistent data_pad");
169                         goto bad;
170                 }
171         }
172
173         return 0;
174
175 bad:
176         ubi_err("inconsistent VID header at PEB %d", pnum);
177         ubi_dbg_dump_vid_hdr(vid_hdr);
178         ubi_dbg_dump_sv(sv);
179         return -EINVAL;
180 }
181
182 /**
183  * add_volume - add volume to the scanning information.
184  * @si: scanning information
185  * @vol_id: ID of the volume to add
186  * @pnum: physical eraseblock number
187  * @vid_hdr: volume identifier header
188  *
189  * If the volume corresponding to the @vid_hdr logical eraseblock is already
190  * present in the scanning information, this function does nothing. Otherwise
191  * it adds corresponding volume to the scanning information. Returns a pointer
192  * to the scanning volume object in case of success and a negative error code
193  * in case of failure.
194  */
195 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
196                                           int pnum,
197                                           const struct ubi_vid_hdr *vid_hdr)
198 {
199         struct ubi_scan_volume *sv;
200         struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
201
202         ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
203
204         /* Walk the volume RB-tree to look if this volume is already present */
205         while (*p) {
206                 parent = *p;
207                 sv = rb_entry(parent, struct ubi_scan_volume, rb);
208
209                 if (vol_id == sv->vol_id)
210                         return sv;
211
212                 if (vol_id > sv->vol_id)
213                         p = &(*p)->rb_left;
214                 else
215                         p = &(*p)->rb_right;
216         }
217
218         /* The volume is absent - add it */
219         sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
220         if (!sv)
221                 return ERR_PTR(-ENOMEM);
222
223         sv->highest_lnum = sv->leb_count = 0;
224         sv->vol_id = vol_id;
225         sv->root = RB_ROOT;
226         sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
227         sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
228         sv->compat = vid_hdr->compat;
229         sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
230                                                             : UBI_STATIC_VOLUME;
231         if (vol_id > si->highest_vol_id)
232                 si->highest_vol_id = vol_id;
233
234         rb_link_node(&sv->rb, parent, p);
235         rb_insert_color(&sv->rb, &si->volumes);
236         si->vols_found += 1;
237         dbg_bld("added volume %d", vol_id);
238         return sv;
239 }
240
241 /**
242  * compare_lebs - find out which logical eraseblock is newer.
243  * @ubi: UBI device description object
244  * @seb: first logical eraseblock to compare
245  * @pnum: physical eraseblock number of the second logical eraseblock to
246  * compare
247  * @vid_hdr: volume identifier header of the second logical eraseblock
248  *
249  * This function compares 2 copies of a LEB and informs which one is newer. In
250  * case of success this function returns a positive value, in case of failure, a
251  * negative error code is returned. The success return codes use the following
252  * bits:
253  *     o bit 0 is cleared: the first PEB (described by @seb) is newer then the
254  *       second PEB (described by @pnum and @vid_hdr);
255  *     o bit 0 is set: the second PEB is newer;
256  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
257  *     o bit 1 is set: bit-flips were detected in the newer LEB;
258  *     o bit 2 is cleared: the older LEB is not corrupted;
259  *     o bit 2 is set: the older LEB is corrupted.
260  */
261 static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
262                         int pnum, const struct ubi_vid_hdr *vid_hdr)
263 {
264         void *buf;
265         int len, err, second_is_newer, bitflips = 0, corrupted = 0;
266         uint32_t data_crc, crc;
267         struct ubi_vid_hdr *vh = NULL;
268         unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
269
270         if (seb->sqnum == 0 && sqnum2 == 0) {
271                 long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
272
273                 /*
274                  * UBI constantly increases the logical eraseblock version
275                  * number and it can overflow. Thus, we have to bear in mind
276                  * that versions that are close to %0xFFFFFFFF are less then
277                  * versions that are close to %0.
278                  *
279                  * The UBI WL unit guarantees that the number of pending tasks
280                  * is not greater then %0x7FFFFFFF. So, if the difference
281                  * between any two versions is greater or equivalent to
282                  * %0x7FFFFFFF, there was an overflow and the logical
283                  * eraseblock with lower version is actually newer then the one
284                  * with higher version.
285                  *
286                  * FIXME: but this is anyway obsolete and will be removed at
287                  * some point.
288                  */
289                 dbg_bld("using old crappy leb_ver stuff");
290
291                 if (v1 == v2) {
292                         ubi_err("PEB %d and PEB %d have the same version %lld",
293                                 seb->pnum, pnum, v1);
294                         return -EINVAL;
295                 }
296
297                 abs = v1 - v2;
298                 if (abs < 0)
299                         abs = -abs;
300
301                 if (abs < 0x7FFFFFFF)
302                         /* Non-overflow situation */
303                         second_is_newer = (v2 > v1);
304                 else
305                         second_is_newer = (v2 < v1);
306         } else
307                 /* Obviously the LEB with lower sequence counter is older */
308                 second_is_newer = sqnum2 > seb->sqnum;
309
310         /*
311          * Now we know which copy is newer. If the copy flag of the PEB with
312          * newer version is not set, then we just return, otherwise we have to
313          * check data CRC. For the second PEB we already have the VID header,
314          * for the first one - we'll need to re-read it from flash.
315          *
316          * FIXME: this may be optimized so that we wouldn't read twice.
317          */
318
319         if (second_is_newer) {
320                 if (!vid_hdr->copy_flag) {
321                         /* It is not a copy, so it is newer */
322                         dbg_bld("second PEB %d is newer, copy_flag is unset",
323                                 pnum);
324                         return 1;
325                 }
326         } else {
327                 pnum = seb->pnum;
328
329                 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
330                 if (!vh)
331                         return -ENOMEM;
332
333                 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
334                 if (err) {
335                         if (err == UBI_IO_BITFLIPS)
336                                 bitflips = 1;
337                         else {
338                                 dbg_err("VID of PEB %d header is bad, but it "
339                                         "was OK earlier", pnum);
340                                 if (err > 0)
341                                         err = -EIO;
342
343                                 goto out_free_vidh;
344                         }
345                 }
346
347                 if (!vh->copy_flag) {
348                         /* It is not a copy, so it is newer */
349                         dbg_bld("first PEB %d is newer, copy_flag is unset",
350                                 pnum);
351                         err = bitflips << 1;
352                         goto out_free_vidh;
353                 }
354
355                 vid_hdr = vh;
356         }
357
358         /* Read the data of the copy and check the CRC */
359
360         len = be32_to_cpu(vid_hdr->data_size);
361         buf = vmalloc(len);
362         if (!buf) {
363                 err = -ENOMEM;
364                 goto out_free_vidh;
365         }
366
367         err = ubi_io_read_data(ubi, buf, pnum, 0, len);
368         if (err && err != UBI_IO_BITFLIPS)
369                 goto out_free_buf;
370
371         data_crc = be32_to_cpu(vid_hdr->data_crc);
372         crc = crc32(UBI_CRC32_INIT, buf, len);
373         if (crc != data_crc) {
374                 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
375                         pnum, crc, data_crc);
376                 corrupted = 1;
377                 bitflips = 0;
378                 second_is_newer = !second_is_newer;
379         } else {
380                 dbg_bld("PEB %d CRC is OK", pnum);
381                 bitflips = !!err;
382         }
383
384         vfree(buf);
385         ubi_free_vid_hdr(ubi, vh);
386
387         if (second_is_newer)
388                 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
389         else
390                 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
391
392         return second_is_newer | (bitflips << 1) | (corrupted << 2);
393
394 out_free_buf:
395         vfree(buf);
396 out_free_vidh:
397         ubi_free_vid_hdr(ubi, vh);
398         return err;
399 }
400
401 /**
402  * ubi_scan_add_used - add information about a physical eraseblock to the
403  * scanning information.
404  * @ubi: UBI device description object
405  * @si: scanning information
406  * @pnum: the physical eraseblock number
407  * @ec: erase counter
408  * @vid_hdr: the volume identifier header
409  * @bitflips: if bit-flips were detected when this physical eraseblock was read
410  *
411  * This function adds information about a used physical eraseblock to the
412  * 'used' tree of the corresponding volume. The function is rather complex
413  * because it has to handle cases when this is not the first physical
414  * eraseblock belonging to the same logical eraseblock, and the newer one has
415  * to be picked, while the older one has to be dropped. This function returns
416  * zero in case of success and a negative error code in case of failure.
417  */
418 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
419                       int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
420                       int bitflips)
421 {
422         int err, vol_id, lnum;
423         uint32_t leb_ver;
424         unsigned long long sqnum;
425         struct ubi_scan_volume *sv;
426         struct ubi_scan_leb *seb;
427         struct rb_node **p, *parent = NULL;
428
429         vol_id = be32_to_cpu(vid_hdr->vol_id);
430         lnum = be32_to_cpu(vid_hdr->lnum);
431         sqnum = be64_to_cpu(vid_hdr->sqnum);
432         leb_ver = be32_to_cpu(vid_hdr->leb_ver);
433
434         dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
435                 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
436
437         sv = add_volume(si, vol_id, pnum, vid_hdr);
438         if (IS_ERR(sv) < 0)
439                 return PTR_ERR(sv);
440
441         if (si->max_sqnum < sqnum)
442                 si->max_sqnum = sqnum;
443
444         /*
445          * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
446          * if this is the first instance of this logical eraseblock or not.
447          */
448         p = &sv->root.rb_node;
449         while (*p) {
450                 int cmp_res;
451
452                 parent = *p;
453                 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
454                 if (lnum != seb->lnum) {
455                         if (lnum < seb->lnum)
456                                 p = &(*p)->rb_left;
457                         else
458                                 p = &(*p)->rb_right;
459                         continue;
460                 }
461
462                 /*
463                  * There is already a physical eraseblock describing the same
464                  * logical eraseblock present.
465                  */
466
467                 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
468                         "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
469                         seb->leb_ver, seb->ec);
470
471                 /*
472                  * Make sure that the logical eraseblocks have different
473                  * versions. Otherwise the image is bad.
474                  */
475                 if (seb->leb_ver == leb_ver && leb_ver != 0) {
476                         ubi_err("two LEBs with same version %u", leb_ver);
477                         ubi_dbg_dump_seb(seb, 0);
478                         ubi_dbg_dump_vid_hdr(vid_hdr);
479                         return -EINVAL;
480                 }
481
482                 /*
483                  * Make sure that the logical eraseblocks have different
484                  * sequence numbers. Otherwise the image is bad.
485                  *
486                  * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
487                  */
488                 if (seb->sqnum == sqnum && sqnum != 0) {
489                         ubi_err("two LEBs with same sequence number %llu",
490                                 sqnum);
491                         ubi_dbg_dump_seb(seb, 0);
492                         ubi_dbg_dump_vid_hdr(vid_hdr);
493                         return -EINVAL;
494                 }
495
496                 /*
497                  * Now we have to drop the older one and preserve the newer
498                  * one.
499                  */
500                 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
501                 if (cmp_res < 0)
502                         return cmp_res;
503
504                 if (cmp_res & 1) {
505                         /*
506                          * This logical eraseblock is newer then the one
507                          * found earlier.
508                          */
509                         err = validate_vid_hdr(vid_hdr, sv, pnum);
510                         if (err)
511                                 return err;
512
513                         if (cmp_res & 4)
514                                 err = add_to_list(si, seb->pnum, seb->ec,
515                                                   &si->corr);
516                         else
517                                 err = add_to_list(si, seb->pnum, seb->ec,
518                                                   &si->erase);
519                         if (err)
520                                 return err;
521
522                         seb->ec = ec;
523                         seb->pnum = pnum;
524                         seb->scrub = ((cmp_res & 2) || bitflips);
525                         seb->sqnum = sqnum;
526                         seb->leb_ver = leb_ver;
527
528                         if (sv->highest_lnum == lnum)
529                                 sv->last_data_size =
530                                         be32_to_cpu(vid_hdr->data_size);
531
532                         return 0;
533                 } else {
534                         /*
535                          * This logical eraseblock is older then the one found
536                          * previously.
537                          */
538                         if (cmp_res & 4)
539                                 return add_to_list(si, pnum, ec, &si->corr);
540                         else
541                                 return add_to_list(si, pnum, ec, &si->erase);
542                 }
543         }
544
545         /*
546          * We've met this logical eraseblock for the first time, add it to the
547          * scanning information.
548          */
549
550         err = validate_vid_hdr(vid_hdr, sv, pnum);
551         if (err)
552                 return err;
553
554         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
555         if (!seb)
556                 return -ENOMEM;
557
558         seb->ec = ec;
559         seb->pnum = pnum;
560         seb->lnum = lnum;
561         seb->sqnum = sqnum;
562         seb->scrub = bitflips;
563         seb->leb_ver = leb_ver;
564
565         if (sv->highest_lnum <= lnum) {
566                 sv->highest_lnum = lnum;
567                 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
568         }
569
570         sv->leb_count += 1;
571         rb_link_node(&seb->u.rb, parent, p);
572         rb_insert_color(&seb->u.rb, &sv->root);
573         return 0;
574 }
575
576 /**
577  * ubi_scan_find_sv - find information about a particular volume in the
578  * scanning information.
579  * @si: scanning information
580  * @vol_id: the requested volume ID
581  *
582  * This function returns a pointer to the volume description or %NULL if there
583  * are no data about this volume in the scanning information.
584  */
585 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
586                                          int vol_id)
587 {
588         struct ubi_scan_volume *sv;
589         struct rb_node *p = si->volumes.rb_node;
590
591         while (p) {
592                 sv = rb_entry(p, struct ubi_scan_volume, rb);
593
594                 if (vol_id == sv->vol_id)
595                         return sv;
596
597                 if (vol_id > sv->vol_id)
598                         p = p->rb_left;
599                 else
600                         p = p->rb_right;
601         }
602
603         return NULL;
604 }
605
606 /**
607  * ubi_scan_find_seb - find information about a particular logical
608  * eraseblock in the volume scanning information.
609  * @sv: a pointer to the volume scanning information
610  * @lnum: the requested logical eraseblock
611  *
612  * This function returns a pointer to the scanning logical eraseblock or %NULL
613  * if there are no data about it in the scanning volume information.
614  */
615 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
616                                        int lnum)
617 {
618         struct ubi_scan_leb *seb;
619         struct rb_node *p = sv->root.rb_node;
620
621         while (p) {
622                 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
623
624                 if (lnum == seb->lnum)
625                         return seb;
626
627                 if (lnum > seb->lnum)
628                         p = p->rb_left;
629                 else
630                         p = p->rb_right;
631         }
632
633         return NULL;
634 }
635
636 /**
637  * ubi_scan_rm_volume - delete scanning information about a volume.
638  * @si: scanning information
639  * @sv: the volume scanning information to delete
640  */
641 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
642 {
643         struct rb_node *rb;
644         struct ubi_scan_leb *seb;
645
646         dbg_bld("remove scanning information about volume %d", sv->vol_id);
647
648         while ((rb = rb_first(&sv->root))) {
649                 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
650                 rb_erase(&seb->u.rb, &sv->root);
651                 list_add_tail(&seb->u.list, &si->erase);
652         }
653
654         rb_erase(&sv->rb, &si->volumes);
655         kfree(sv);
656         si->vols_found -= 1;
657 }
658
659 /**
660  * ubi_scan_erase_peb - erase a physical eraseblock.
661  * @ubi: UBI device description object
662  * @si: scanning information
663  * @pnum: physical eraseblock number to erase;
664  * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
665  *
666  * This function erases physical eraseblock 'pnum', and writes the erase
667  * counter header to it. This function should only be used on UBI device
668  * initialization stages, when the EBA unit had not been yet initialized. This
669  * function returns zero in case of success and a negative error code in case
670  * of failure.
671  */
672 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
673                        int pnum, int ec)
674 {
675         int err;
676         struct ubi_ec_hdr *ec_hdr;
677
678         if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
679                 /*
680                  * Erase counter overflow. Upgrade UBI and use 64-bit
681                  * erase counters internally.
682                  */
683                 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
684                 return -EINVAL;
685         }
686
687         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
688         if (!ec_hdr)
689                 return -ENOMEM;
690
691         ec_hdr->ec = cpu_to_be64(ec);
692
693         err = ubi_io_sync_erase(ubi, pnum, 0);
694         if (err < 0)
695                 goto out_free;
696
697         err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
698
699 out_free:
700         kfree(ec_hdr);
701         return err;
702 }
703
704 /**
705  * ubi_scan_get_free_peb - get a free physical eraseblock.
706  * @ubi: UBI device description object
707  * @si: scanning information
708  *
709  * This function returns a free physical eraseblock. It is supposed to be
710  * called on the UBI initialization stages when the wear-leveling unit is not
711  * initialized yet. This function picks a physical eraseblocks from one of the
712  * lists, writes the EC header if it is needed, and removes it from the list.
713  *
714  * This function returns scanning physical eraseblock information in case of
715  * success and an error code in case of failure.
716  */
717 struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
718                                            struct ubi_scan_info *si)
719 {
720         int err = 0, i;
721         struct ubi_scan_leb *seb;
722
723         if (!list_empty(&si->free)) {
724                 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
725                 list_del(&seb->u.list);
726                 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
727                 return seb;
728         }
729
730         for (i = 0; i < 2; i++) {
731                 struct list_head *head;
732                 struct ubi_scan_leb *tmp_seb;
733
734                 if (i == 0)
735                         head = &si->erase;
736                 else
737                         head = &si->corr;
738
739                 /*
740                  * We try to erase the first physical eraseblock from the @head
741                  * list and pick it if we succeed, or try to erase the
742                  * next one if not. And so forth. We don't want to take care
743                  * about bad eraseblocks here - they'll be handled later.
744                  */
745                 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
746                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
747                                 seb->ec = si->mean_ec;
748
749                         err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
750                         if (err)
751                                 continue;
752
753                         seb->ec += 1;
754                         list_del(&seb->u.list);
755                         dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
756                         return seb;
757                 }
758         }
759
760         ubi_err("no eraseblocks found");
761         return ERR_PTR(-ENOSPC);
762 }
763
764 /**
765  * process_eb - read UBI headers, check them and add corresponding data
766  * to the scanning information.
767  * @ubi: UBI device description object
768  * @si: scanning information
769  * @pnum: the physical eraseblock number
770  *
771  * This function returns a zero if the physical eraseblock was successfully
772  * handled and a negative error code in case of failure.
773  */
774 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
775 {
776         long long uninitialized_var(ec);
777         int err, bitflips = 0, vol_id, ec_corr = 0;
778
779         dbg_bld("scan PEB %d", pnum);
780
781         /* Skip bad physical eraseblocks */
782         err = ubi_io_is_bad(ubi, pnum);
783         if (err < 0)
784                 return err;
785         else if (err) {
786                 /*
787                  * FIXME: this is actually duty of the I/O unit to initialize
788                  * this, but MTD does not provide enough information.
789                  */
790                 si->bad_peb_count += 1;
791                 return 0;
792         }
793
794         err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
795         if (err < 0)
796                 return err;
797         else if (err == UBI_IO_BITFLIPS)
798                 bitflips = 1;
799         else if (err == UBI_IO_PEB_EMPTY)
800                 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
801         else if (err == UBI_IO_BAD_EC_HDR) {
802                 /*
803                  * We have to also look at the VID header, possibly it is not
804                  * corrupted. Set %bitflips flag in order to make this PEB be
805                  * moved and EC be re-created.
806                  */
807                 ec_corr = 1;
808                 ec = UBI_SCAN_UNKNOWN_EC;
809                 bitflips = 1;
810         }
811
812         si->is_empty = 0;
813
814         if (!ec_corr) {
815                 /* Make sure UBI version is OK */
816                 if (ech->version != UBI_VERSION) {
817                         ubi_err("this UBI version is %d, image version is %d",
818                                 UBI_VERSION, (int)ech->version);
819                         return -EINVAL;
820                 }
821
822                 ec = be64_to_cpu(ech->ec);
823                 if (ec > UBI_MAX_ERASECOUNTER) {
824                         /*
825                          * Erase counter overflow. The EC headers have 64 bits
826                          * reserved, but we anyway make use of only 31 bit
827                          * values, as this seems to be enough for any existing
828                          * flash. Upgrade UBI and use 64-bit erase counters
829                          * internally.
830                          */
831                         ubi_err("erase counter overflow, max is %d",
832                                 UBI_MAX_ERASECOUNTER);
833                         ubi_dbg_dump_ec_hdr(ech);
834                         return -EINVAL;
835                 }
836         }
837
838         /* OK, we've done with the EC header, let's look at the VID header */
839
840         err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
841         if (err < 0)
842                 return err;
843         else if (err == UBI_IO_BITFLIPS)
844                 bitflips = 1;
845         else if (err == UBI_IO_BAD_VID_HDR ||
846                  (err == UBI_IO_PEB_FREE && ec_corr)) {
847                 /* VID header is corrupted */
848                 err = add_to_list(si, pnum, ec, &si->corr);
849                 if (err)
850                         return err;
851                 goto adjust_mean_ec;
852         } else if (err == UBI_IO_PEB_FREE) {
853                 /* No VID header - the physical eraseblock is free */
854                 err = add_to_list(si, pnum, ec, &si->free);
855                 if (err)
856                         return err;
857                 goto adjust_mean_ec;
858         }
859
860         vol_id = be32_to_cpu(vidh->vol_id);
861         if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
862                 int lnum = be32_to_cpu(vidh->lnum);
863
864                 /* Unsupported internal volume */
865                 switch (vidh->compat) {
866                 case UBI_COMPAT_DELETE:
867                         ubi_msg("\"delete\" compatible internal volume %d:%d"
868                                 " found, remove it", vol_id, lnum);
869                         err = add_to_list(si, pnum, ec, &si->corr);
870                         if (err)
871                                 return err;
872                         break;
873
874                 case UBI_COMPAT_RO:
875                         ubi_msg("read-only compatible internal volume %d:%d"
876                                 " found, switch to read-only mode",
877                                 vol_id, lnum);
878                         ubi->ro_mode = 1;
879                         break;
880
881                 case UBI_COMPAT_PRESERVE:
882                         ubi_msg("\"preserve\" compatible internal volume %d:%d"
883                                 " found", vol_id, lnum);
884                         err = add_to_list(si, pnum, ec, &si->alien);
885                         if (err)
886                                 return err;
887                         si->alien_peb_count += 1;
888                         return 0;
889
890                 case UBI_COMPAT_REJECT:
891                         ubi_err("incompatible internal volume %d:%d found",
892                                 vol_id, lnum);
893                         return -EINVAL;
894                 }
895         }
896
897         /* Both UBI headers seem to be fine */
898         err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
899         if (err)
900                 return err;
901
902 adjust_mean_ec:
903         if (!ec_corr) {
904                 if (si->ec_sum + ec < ec) {
905                         commit_to_mean_value(si);
906                         si->ec_sum = 0;
907                         si->ec_count = 0;
908                 } else {
909                         si->ec_sum += ec;
910                         si->ec_count += 1;
911                 }
912
913                 if (ec > si->max_ec)
914                         si->max_ec = ec;
915                 if (ec < si->min_ec)
916                         si->min_ec = ec;
917         }
918
919         return 0;
920 }
921
922 /**
923  * ubi_scan - scan an MTD device.
924  * @ubi: UBI device description object
925  *
926  * This function does full scanning of an MTD device and returns complete
927  * information about it. In case of failure, an error code is returned.
928  */
929 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
930 {
931         int err, pnum;
932         struct rb_node *rb1, *rb2;
933         struct ubi_scan_volume *sv;
934         struct ubi_scan_leb *seb;
935         struct ubi_scan_info *si;
936
937         si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
938         if (!si)
939                 return ERR_PTR(-ENOMEM);
940
941         INIT_LIST_HEAD(&si->corr);
942         INIT_LIST_HEAD(&si->free);
943         INIT_LIST_HEAD(&si->erase);
944         INIT_LIST_HEAD(&si->alien);
945         si->volumes = RB_ROOT;
946         si->is_empty = 1;
947
948         err = -ENOMEM;
949         ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
950         if (!ech)
951                 goto out_si;
952
953         vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
954         if (!vidh)
955                 goto out_ech;
956
957         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
958                 cond_resched();
959
960                 dbg_msg("process PEB %d", pnum);
961                 err = process_eb(ubi, si, pnum);
962                 if (err < 0)
963                         goto out_vidh;
964         }
965
966         dbg_msg("scanning is finished");
967
968         /* Finish mean erase counter calculations */
969         if (si->ec_count)
970                 commit_to_mean_value(si);
971
972         if (si->is_empty)
973                 ubi_msg("empty MTD device detected");
974
975         /*
976          * In case of unknown erase counter we use the mean erase counter
977          * value.
978          */
979         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
980                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
981                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
982                                 seb->ec = si->mean_ec;
983         }
984
985         list_for_each_entry(seb, &si->free, u.list) {
986                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
987                         seb->ec = si->mean_ec;
988         }
989
990         list_for_each_entry(seb, &si->corr, u.list)
991                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
992                         seb->ec = si->mean_ec;
993
994         list_for_each_entry(seb, &si->erase, u.list)
995                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
996                         seb->ec = si->mean_ec;
997
998         err = paranoid_check_si(ubi, si);
999         if (err) {
1000                 if (err > 0)
1001                         err = -EINVAL;
1002                 goto out_vidh;
1003         }
1004
1005         ubi_free_vid_hdr(ubi, vidh);
1006         kfree(ech);
1007
1008         return si;
1009
1010 out_vidh:
1011         ubi_free_vid_hdr(ubi, vidh);
1012 out_ech:
1013         kfree(ech);
1014 out_si:
1015         ubi_scan_destroy_si(si);
1016         return ERR_PTR(err);
1017 }
1018
1019 /**
1020  * destroy_sv - free the scanning volume information
1021  * @sv: scanning volume information
1022  *
1023  * This function destroys the volume RB-tree (@sv->root) and the scanning
1024  * volume information.
1025  */
1026 static void destroy_sv(struct ubi_scan_volume *sv)
1027 {
1028         struct ubi_scan_leb *seb;
1029         struct rb_node *this = sv->root.rb_node;
1030
1031         while (this) {
1032                 if (this->rb_left)
1033                         this = this->rb_left;
1034                 else if (this->rb_right)
1035                         this = this->rb_right;
1036                 else {
1037                         seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1038                         this = rb_parent(this);
1039                         if (this) {
1040                                 if (this->rb_left == &seb->u.rb)
1041                                         this->rb_left = NULL;
1042                                 else
1043                                         this->rb_right = NULL;
1044                         }
1045
1046                         kfree(seb);
1047                 }
1048         }
1049         kfree(sv);
1050 }
1051
1052 /**
1053  * ubi_scan_destroy_si - destroy scanning information.
1054  * @si: scanning information
1055  */
1056 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1057 {
1058         struct ubi_scan_leb *seb, *seb_tmp;
1059         struct ubi_scan_volume *sv;
1060         struct rb_node *rb;
1061
1062         list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1063                 list_del(&seb->u.list);
1064                 kfree(seb);
1065         }
1066         list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1067                 list_del(&seb->u.list);
1068                 kfree(seb);
1069         }
1070         list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1071                 list_del(&seb->u.list);
1072                 kfree(seb);
1073         }
1074         list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1075                 list_del(&seb->u.list);
1076                 kfree(seb);
1077         }
1078
1079         /* Destroy the volume RB-tree */
1080         rb = si->volumes.rb_node;
1081         while (rb) {
1082                 if (rb->rb_left)
1083                         rb = rb->rb_left;
1084                 else if (rb->rb_right)
1085                         rb = rb->rb_right;
1086                 else {
1087                         sv = rb_entry(rb, struct ubi_scan_volume, rb);
1088
1089                         rb = rb_parent(rb);
1090                         if (rb) {
1091                                 if (rb->rb_left == &sv->rb)
1092                                         rb->rb_left = NULL;
1093                                 else
1094                                         rb->rb_right = NULL;
1095                         }
1096
1097                         destroy_sv(sv);
1098                 }
1099         }
1100
1101         kfree(si);
1102 }
1103
1104 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1105
1106 /**
1107  * paranoid_check_si - check if the scanning information is correct and
1108  * consistent.
1109  * @ubi: UBI device description object
1110  * @si: scanning information
1111  *
1112  * This function returns zero if the scanning information is all right, %1 if
1113  * not and a negative error code if an error occurred.
1114  */
1115 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1116 {
1117         int pnum, err, vols_found = 0;
1118         struct rb_node *rb1, *rb2;
1119         struct ubi_scan_volume *sv;
1120         struct ubi_scan_leb *seb, *last_seb;
1121         uint8_t *buf;
1122
1123         /*
1124          * At first, check that scanning information is OK.
1125          */
1126         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1127                 int leb_count = 0;
1128
1129                 cond_resched();
1130
1131                 vols_found += 1;
1132
1133                 if (si->is_empty) {
1134                         ubi_err("bad is_empty flag");
1135                         goto bad_sv;
1136                 }
1137
1138                 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1139                     sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1140                     sv->data_pad < 0 || sv->last_data_size < 0) {
1141                         ubi_err("negative values");
1142                         goto bad_sv;
1143                 }
1144
1145                 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1146                     sv->vol_id < UBI_INTERNAL_VOL_START) {
1147                         ubi_err("bad vol_id");
1148                         goto bad_sv;
1149                 }
1150
1151                 if (sv->vol_id > si->highest_vol_id) {
1152                         ubi_err("highest_vol_id is %d, but vol_id %d is there",
1153                                 si->highest_vol_id, sv->vol_id);
1154                         goto out;
1155                 }
1156
1157                 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1158                     sv->vol_type != UBI_STATIC_VOLUME) {
1159                         ubi_err("bad vol_type");
1160                         goto bad_sv;
1161                 }
1162
1163                 if (sv->data_pad > ubi->leb_size / 2) {
1164                         ubi_err("bad data_pad");
1165                         goto bad_sv;
1166                 }
1167
1168                 last_seb = NULL;
1169                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1170                         cond_resched();
1171
1172                         last_seb = seb;
1173                         leb_count += 1;
1174
1175                         if (seb->pnum < 0 || seb->ec < 0) {
1176                                 ubi_err("negative values");
1177                                 goto bad_seb;
1178                         }
1179
1180                         if (seb->ec < si->min_ec) {
1181                                 ubi_err("bad si->min_ec (%d), %d found",
1182                                         si->min_ec, seb->ec);
1183                                 goto bad_seb;
1184                         }
1185
1186                         if (seb->ec > si->max_ec) {
1187                                 ubi_err("bad si->max_ec (%d), %d found",
1188                                         si->max_ec, seb->ec);
1189                                 goto bad_seb;
1190                         }
1191
1192                         if (seb->pnum >= ubi->peb_count) {
1193                                 ubi_err("too high PEB number %d, total PEBs %d",
1194                                         seb->pnum, ubi->peb_count);
1195                                 goto bad_seb;
1196                         }
1197
1198                         if (sv->vol_type == UBI_STATIC_VOLUME) {
1199                                 if (seb->lnum >= sv->used_ebs) {
1200                                         ubi_err("bad lnum or used_ebs");
1201                                         goto bad_seb;
1202                                 }
1203                         } else {
1204                                 if (sv->used_ebs != 0) {
1205                                         ubi_err("non-zero used_ebs");
1206                                         goto bad_seb;
1207                                 }
1208                         }
1209
1210                         if (seb->lnum > sv->highest_lnum) {
1211                                 ubi_err("incorrect highest_lnum or lnum");
1212                                 goto bad_seb;
1213                         }
1214                 }
1215
1216                 if (sv->leb_count != leb_count) {
1217                         ubi_err("bad leb_count, %d objects in the tree",
1218                                 leb_count);
1219                         goto bad_sv;
1220                 }
1221
1222                 if (!last_seb)
1223                         continue;
1224
1225                 seb = last_seb;
1226
1227                 if (seb->lnum != sv->highest_lnum) {
1228                         ubi_err("bad highest_lnum");
1229                         goto bad_seb;
1230                 }
1231         }
1232
1233         if (vols_found != si->vols_found) {
1234                 ubi_err("bad si->vols_found %d, should be %d",
1235                         si->vols_found, vols_found);
1236                 goto out;
1237         }
1238
1239         /* Check that scanning information is correct */
1240         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1241                 last_seb = NULL;
1242                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1243                         int vol_type;
1244
1245                         cond_resched();
1246
1247                         last_seb = seb;
1248
1249                         err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1250                         if (err && err != UBI_IO_BITFLIPS) {
1251                                 ubi_err("VID header is not OK (%d)", err);
1252                                 if (err > 0)
1253                                         err = -EIO;
1254                                 return err;
1255                         }
1256
1257                         vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1258                                    UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1259                         if (sv->vol_type != vol_type) {
1260                                 ubi_err("bad vol_type");
1261                                 goto bad_vid_hdr;
1262                         }
1263
1264                         if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1265                                 ubi_err("bad sqnum %llu", seb->sqnum);
1266                                 goto bad_vid_hdr;
1267                         }
1268
1269                         if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1270                                 ubi_err("bad vol_id %d", sv->vol_id);
1271                                 goto bad_vid_hdr;
1272                         }
1273
1274                         if (sv->compat != vidh->compat) {
1275                                 ubi_err("bad compat %d", vidh->compat);
1276                                 goto bad_vid_hdr;
1277                         }
1278
1279                         if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1280                                 ubi_err("bad lnum %d", seb->lnum);
1281                                 goto bad_vid_hdr;
1282                         }
1283
1284                         if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1285                                 ubi_err("bad used_ebs %d", sv->used_ebs);
1286                                 goto bad_vid_hdr;
1287                         }
1288
1289                         if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1290                                 ubi_err("bad data_pad %d", sv->data_pad);
1291                                 goto bad_vid_hdr;
1292                         }
1293
1294                         if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
1295                                 ubi_err("bad leb_ver %u", seb->leb_ver);
1296                                 goto bad_vid_hdr;
1297                         }
1298                 }
1299
1300                 if (!last_seb)
1301                         continue;
1302
1303                 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1304                         ubi_err("bad highest_lnum %d", sv->highest_lnum);
1305                         goto bad_vid_hdr;
1306                 }
1307
1308                 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1309                         ubi_err("bad last_data_size %d", sv->last_data_size);
1310                         goto bad_vid_hdr;
1311                 }
1312         }
1313
1314         /*
1315          * Make sure that all the physical eraseblocks are in one of the lists
1316          * or trees.
1317          */
1318         buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1319         if (!buf)
1320                 return -ENOMEM;
1321
1322         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1323                 err = ubi_io_is_bad(ubi, pnum);
1324                 if (err < 0) {
1325                         kfree(buf);
1326                         return err;
1327                 }
1328                 else if (err)
1329                         buf[pnum] = 1;
1330         }
1331
1332         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1333                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1334                         buf[seb->pnum] = 1;
1335
1336         list_for_each_entry(seb, &si->free, u.list)
1337                 buf[seb->pnum] = 1;
1338
1339         list_for_each_entry(seb, &si->corr, u.list)
1340                 buf[seb->pnum] = 1;
1341
1342         list_for_each_entry(seb, &si->erase, u.list)
1343                 buf[seb->pnum] = 1;
1344
1345         list_for_each_entry(seb, &si->alien, u.list)
1346                 buf[seb->pnum] = 1;
1347
1348         err = 0;
1349         for (pnum = 0; pnum < ubi->peb_count; pnum++)
1350                 if (!buf[pnum]) {
1351                         ubi_err("PEB %d is not referred", pnum);
1352                         err = 1;
1353                 }
1354
1355         kfree(buf);
1356         if (err)
1357                 goto out;
1358         return 0;
1359
1360 bad_seb:
1361         ubi_err("bad scanning information about LEB %d", seb->lnum);
1362         ubi_dbg_dump_seb(seb, 0);
1363         ubi_dbg_dump_sv(sv);
1364         goto out;
1365
1366 bad_sv:
1367         ubi_err("bad scanning information about volume %d", sv->vol_id);
1368         ubi_dbg_dump_sv(sv);
1369         goto out;
1370
1371 bad_vid_hdr:
1372         ubi_err("bad scanning information about volume %d", sv->vol_id);
1373         ubi_dbg_dump_sv(sv);
1374         ubi_dbg_dump_vid_hdr(vidh);
1375
1376 out:
1377         ubi_dbg_dump_stack();
1378         return 1;
1379 }
1380
1381 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */