]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/mtd/ubi/wl.c
UBI: prepare for protection tree improvements
[linux-2.6-omap-h63xx.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical* eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL sub-system may pick a free physical eraseblock with low erase
47  * counter, and so forth.
48  *
49  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
50  * bad.
51  *
52  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53  * in a physical eraseblock, it has to be moved. Technically this is the same
54  * as moving it for wear-leveling reasons.
55  *
56  * As it was said, for the UBI sub-system all physical eraseblocks are either
57  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58  * used eraseblocks are kept in a set of different RB-trees: @wl->used,
59  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
60  *
61  * Note, in this implementation, we keep a small in-RAM object for each physical
62  * eraseblock. This is surely not a scalable solution. But it appears to be good
63  * enough for moderately large flashes and it is simple. In future, one may
64  * re-work this sub-system and make it more scalable.
65  *
66  * At the moment this sub-system does not utilize the sequence number, which
67  * was introduced relatively recently. But it would be wise to do this because
68  * the sequence number of a logical eraseblock characterizes how old is it. For
69  * example, when we move a PEB with low erase counter, and we need to pick the
70  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
71  * pick target PEB with an average EC if our PEB is not very "old". This is a
72  * room for future re-works of the WL sub-system.
73  *
74  * Note: the stuff with protection trees looks too complex and is difficult to
75  * understand. Should be fixed.
76  */
77
78 #include <linux/slab.h>
79 #include <linux/crc32.h>
80 #include <linux/freezer.h>
81 #include <linux/kthread.h>
82 #include "ubi.h"
83
84 /* Number of physical eraseblocks reserved for wear-leveling purposes */
85 #define WL_RESERVED_PEBS 1
86
87 /*
88  * How many erase cycles are short term, unknown, and long term physical
89  * eraseblocks protected.
90  */
91 #define ST_PROTECTION 16
92 #define U_PROTECTION  10
93 #define LT_PROTECTION 4
94
95 /*
96  * Maximum difference between two erase counters. If this threshold is
97  * exceeded, the WL sub-system starts moving data from used physical
98  * eraseblocks with low erase counter to free physical eraseblocks with high
99  * erase counter.
100  */
101 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
102
103 /*
104  * When a physical eraseblock is moved, the WL sub-system has to pick the target
105  * physical eraseblock to move to. The simplest way would be just to pick the
106  * one with the highest erase counter. But in certain workloads this could lead
107  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
108  * situation when the picked physical eraseblock is constantly erased after the
109  * data is written to it. So, we have a constant which limits the highest erase
110  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
111  * does not pick eraseblocks with erase counter greater then the lowest erase
112  * counter plus %WL_FREE_MAX_DIFF.
113  */
114 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
115
116 /*
117  * Maximum number of consecutive background thread failures which is enough to
118  * switch to read-only mode.
119  */
120 #define WL_MAX_FAILURES 32
121
122 /**
123  * struct ubi_wl_prot_entry - PEB protection entry.
124  * @rb_pnum: link in the @wl->prot.pnum RB-tree
125  * @rb_aec: link in the @wl->prot.aec RB-tree
126  * @abs_ec: the absolute erase counter value when the protection ends
127  * @e: the wear-leveling entry of the physical eraseblock under protection
128  *
129  * When the WL sub-system returns a physical eraseblock, the physical
130  * eraseblock is protected from being moved for some "time". For this reason,
131  * the physical eraseblock is not directly moved from the @wl->free tree to the
132  * @wl->used tree. There is one more tree in between where this physical
133  * eraseblock is temporarily stored (@wl->prot).
134  *
135  * All this protection stuff is needed because:
136  *  o we don't want to move physical eraseblocks just after we have given them
137  *    to the user; instead, we first want to let users fill them up with data;
138  *
139  *  o there is a chance that the user will put the physical eraseblock very
140  *    soon, so it makes sense not to move it for some time, but wait; this is
141  *    especially important in case of "short term" physical eraseblocks.
142  *
143  * Physical eraseblocks stay protected only for limited time. But the "time" is
144  * measured in erase cycles in this case. This is implemented with help of the
145  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
146  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
147  * the @wl->used tree.
148  *
149  * Protected physical eraseblocks are searched by physical eraseblock number
150  * (when they are put) and by the absolute erase counter (to check if it is
151  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
152  * storing the protected physical eraseblocks: @wl->prot.pnum and
153  * @wl->prot.aec. They are referred to as the "protection" trees. The
154  * first one is indexed by the physical eraseblock number. The second one is
155  * indexed by the absolute erase counter. Both trees store
156  * &struct ubi_wl_prot_entry objects.
157  *
158  * Each physical eraseblock has 2 main states: free and used. The former state
159  * corresponds to the @wl->free tree. The latter state is split up on several
160  * sub-states:
161  * o the WL movement is allowed (@wl->used tree);
162  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
163  * @wl->prot.aec trees);
164  * o scrubbing is needed (@wl->scrub tree).
165  *
166  * Depending on the sub-state, wear-leveling entries of the used physical
167  * eraseblocks may be kept in one of those trees.
168  */
169 struct ubi_wl_prot_entry {
170         struct rb_node rb_pnum;
171         struct rb_node rb_aec;
172         unsigned long long abs_ec;
173         struct ubi_wl_entry *e;
174 };
175
176 /**
177  * struct ubi_work - UBI work description data structure.
178  * @list: a link in the list of pending works
179  * @func: worker function
180  * @priv: private data of the worker function
181  * @e: physical eraseblock to erase
182  * @torture: if the physical eraseblock has to be tortured
183  *
184  * The @func pointer points to the worker function. If the @cancel argument is
185  * not zero, the worker has to free the resources and exit immediately. The
186  * worker has to return zero in case of success and a negative error code in
187  * case of failure.
188  */
189 struct ubi_work {
190         struct list_head list;
191         int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
192         /* The below fields are only relevant to erasure works */
193         struct ubi_wl_entry *e;
194         int torture;
195 };
196
197 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
198 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
199 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
200                                      struct rb_root *root);
201 #else
202 #define paranoid_check_ec(ubi, pnum, ec) 0
203 #define paranoid_check_in_wl_tree(e, root)
204 #endif
205
206 /**
207  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
208  * @e: the wear-leveling entry to add
209  * @root: the root of the tree
210  *
211  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
212  * the @ubi->used and @ubi->free RB-trees.
213  */
214 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
215 {
216         struct rb_node **p, *parent = NULL;
217
218         p = &root->rb_node;
219         while (*p) {
220                 struct ubi_wl_entry *e1;
221
222                 parent = *p;
223                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
224
225                 if (e->ec < e1->ec)
226                         p = &(*p)->rb_left;
227                 else if (e->ec > e1->ec)
228                         p = &(*p)->rb_right;
229                 else {
230                         ubi_assert(e->pnum != e1->pnum);
231                         if (e->pnum < e1->pnum)
232                                 p = &(*p)->rb_left;
233                         else
234                                 p = &(*p)->rb_right;
235                 }
236         }
237
238         rb_link_node(&e->u.rb, parent, p);
239         rb_insert_color(&e->u.rb, root);
240 }
241
242 /**
243  * do_work - do one pending work.
244  * @ubi: UBI device description object
245  *
246  * This function returns zero in case of success and a negative error code in
247  * case of failure.
248  */
249 static int do_work(struct ubi_device *ubi)
250 {
251         int err;
252         struct ubi_work *wrk;
253
254         cond_resched();
255
256         /*
257          * @ubi->work_sem is used to synchronize with the workers. Workers take
258          * it in read mode, so many of them may be doing works at a time. But
259          * the queue flush code has to be sure the whole queue of works is
260          * done, and it takes the mutex in write mode.
261          */
262         down_read(&ubi->work_sem);
263         spin_lock(&ubi->wl_lock);
264         if (list_empty(&ubi->works)) {
265                 spin_unlock(&ubi->wl_lock);
266                 up_read(&ubi->work_sem);
267                 return 0;
268         }
269
270         wrk = list_entry(ubi->works.next, struct ubi_work, list);
271         list_del(&wrk->list);
272         ubi->works_count -= 1;
273         ubi_assert(ubi->works_count >= 0);
274         spin_unlock(&ubi->wl_lock);
275
276         /*
277          * Call the worker function. Do not touch the work structure
278          * after this call as it will have been freed or reused by that
279          * time by the worker function.
280          */
281         err = wrk->func(ubi, wrk, 0);
282         if (err)
283                 ubi_err("work failed with error code %d", err);
284         up_read(&ubi->work_sem);
285
286         return err;
287 }
288
289 /**
290  * produce_free_peb - produce a free physical eraseblock.
291  * @ubi: UBI device description object
292  *
293  * This function tries to make a free PEB by means of synchronous execution of
294  * pending works. This may be needed if, for example the background thread is
295  * disabled. Returns zero in case of success and a negative error code in case
296  * of failure.
297  */
298 static int produce_free_peb(struct ubi_device *ubi)
299 {
300         int err;
301
302         spin_lock(&ubi->wl_lock);
303         while (!ubi->free.rb_node) {
304                 spin_unlock(&ubi->wl_lock);
305
306                 dbg_wl("do one work synchronously");
307                 err = do_work(ubi);
308                 if (err)
309                         return err;
310
311                 spin_lock(&ubi->wl_lock);
312         }
313         spin_unlock(&ubi->wl_lock);
314
315         return 0;
316 }
317
318 /**
319  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
320  * @e: the wear-leveling entry to check
321  * @root: the root of the tree
322  *
323  * This function returns non-zero if @e is in the @root RB-tree and zero if it
324  * is not.
325  */
326 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
327 {
328         struct rb_node *p;
329
330         p = root->rb_node;
331         while (p) {
332                 struct ubi_wl_entry *e1;
333
334                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
335
336                 if (e->pnum == e1->pnum) {
337                         ubi_assert(e == e1);
338                         return 1;
339                 }
340
341                 if (e->ec < e1->ec)
342                         p = p->rb_left;
343                 else if (e->ec > e1->ec)
344                         p = p->rb_right;
345                 else {
346                         ubi_assert(e->pnum != e1->pnum);
347                         if (e->pnum < e1->pnum)
348                                 p = p->rb_left;
349                         else
350                                 p = p->rb_right;
351                 }
352         }
353
354         return 0;
355 }
356
357 /**
358  * prot_tree_add - add physical eraseblock to protection trees.
359  * @ubi: UBI device description object
360  * @e: the physical eraseblock to add
361  * @pe: protection entry object to use
362  * @ec: for how many erase operations this PEB should be protected
363  *
364  * @wl->lock has to be locked.
365  */
366 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
367                           struct ubi_wl_prot_entry *pe, int ec)
368 {
369         struct rb_node **p, *parent = NULL;
370         struct ubi_wl_prot_entry *pe1;
371
372         pe->e = e;
373         pe->abs_ec = ubi->abs_ec + ec;
374
375         p = &ubi->prot.pnum.rb_node;
376         while (*p) {
377                 parent = *p;
378                 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
379
380                 if (e->pnum < pe1->e->pnum)
381                         p = &(*p)->rb_left;
382                 else
383                         p = &(*p)->rb_right;
384         }
385         rb_link_node(&pe->rb_pnum, parent, p);
386         rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
387
388         p = &ubi->prot.aec.rb_node;
389         parent = NULL;
390         while (*p) {
391                 parent = *p;
392                 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
393
394                 if (pe->abs_ec < pe1->abs_ec)
395                         p = &(*p)->rb_left;
396                 else
397                         p = &(*p)->rb_right;
398         }
399         rb_link_node(&pe->rb_aec, parent, p);
400         rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
401 }
402
403 /**
404  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
405  * @root: the RB-tree where to look for
406  * @max: highest possible erase counter
407  *
408  * This function looks for a wear leveling entry with erase counter closest to
409  * @max and less then @max.
410  */
411 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
412 {
413         struct rb_node *p;
414         struct ubi_wl_entry *e;
415
416         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
417         max += e->ec;
418
419         p = root->rb_node;
420         while (p) {
421                 struct ubi_wl_entry *e1;
422
423                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
424                 if (e1->ec >= max)
425                         p = p->rb_left;
426                 else {
427                         p = p->rb_right;
428                         e = e1;
429                 }
430         }
431
432         return e;
433 }
434
435 /**
436  * ubi_wl_get_peb - get a physical eraseblock.
437  * @ubi: UBI device description object
438  * @dtype: type of data which will be stored in this physical eraseblock
439  *
440  * This function returns a physical eraseblock in case of success and a
441  * negative error code in case of failure. Might sleep.
442  */
443 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
444 {
445         int err, protect, medium_ec;
446         struct ubi_wl_entry *e, *first, *last;
447         struct ubi_wl_prot_entry *pe;
448
449         ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
450                    dtype == UBI_UNKNOWN);
451
452         pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
453         if (!pe)
454                 return -ENOMEM;
455
456 retry:
457         spin_lock(&ubi->wl_lock);
458         if (!ubi->free.rb_node) {
459                 if (ubi->works_count == 0) {
460                         ubi_assert(list_empty(&ubi->works));
461                         ubi_err("no free eraseblocks");
462                         spin_unlock(&ubi->wl_lock);
463                         kfree(pe);
464                         return -ENOSPC;
465                 }
466                 spin_unlock(&ubi->wl_lock);
467
468                 err = produce_free_peb(ubi);
469                 if (err < 0) {
470                         kfree(pe);
471                         return err;
472                 }
473                 goto retry;
474         }
475
476         switch (dtype) {
477         case UBI_LONGTERM:
478                 /*
479                  * For long term data we pick a physical eraseblock with high
480                  * erase counter. But the highest erase counter we can pick is
481                  * bounded by the the lowest erase counter plus
482                  * %WL_FREE_MAX_DIFF.
483                  */
484                 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
485                 protect = LT_PROTECTION;
486                 break;
487         case UBI_UNKNOWN:
488                 /*
489                  * For unknown data we pick a physical eraseblock with medium
490                  * erase counter. But we by no means can pick a physical
491                  * eraseblock with erase counter greater or equivalent than the
492                  * lowest erase counter plus %WL_FREE_MAX_DIFF.
493                  */
494                 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
495                                         u.rb);
496                 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
497
498                 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
499                         e = rb_entry(ubi->free.rb_node,
500                                         struct ubi_wl_entry, u.rb);
501                 else {
502                         medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
503                         e = find_wl_entry(&ubi->free, medium_ec);
504                 }
505                 protect = U_PROTECTION;
506                 break;
507         case UBI_SHORTTERM:
508                 /*
509                  * For short term data we pick a physical eraseblock with the
510                  * lowest erase counter as we expect it will be erased soon.
511                  */
512                 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
513                 protect = ST_PROTECTION;
514                 break;
515         default:
516                 protect = 0;
517                 e = NULL;
518                 BUG();
519         }
520
521         /*
522          * Move the physical eraseblock to the protection trees where it will
523          * be protected from being moved for some time.
524          */
525         paranoid_check_in_wl_tree(e, &ubi->free);
526         rb_erase(&e->u.rb, &ubi->free);
527         prot_tree_add(ubi, e, pe, protect);
528
529         dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
530         spin_unlock(&ubi->wl_lock);
531
532         return e->pnum;
533 }
534
535 /**
536  * prot_tree_del - remove a physical eraseblock from the protection trees
537  * @ubi: UBI device description object
538  * @pnum: the physical eraseblock to remove
539  *
540  * This function returns PEB @pnum from the protection trees and returns zero
541  * in case of success and %-ENODEV if the PEB was not found in the protection
542  * trees.
543  */
544 static int prot_tree_del(struct ubi_device *ubi, int pnum)
545 {
546         struct rb_node *p;
547         struct ubi_wl_prot_entry *pe = NULL;
548
549         p = ubi->prot.pnum.rb_node;
550         while (p) {
551
552                 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
553
554                 if (pnum == pe->e->pnum)
555                         goto found;
556
557                 if (pnum < pe->e->pnum)
558                         p = p->rb_left;
559                 else
560                         p = p->rb_right;
561         }
562
563         return -ENODEV;
564
565 found:
566         ubi_assert(pe->e->pnum == pnum);
567         rb_erase(&pe->rb_aec, &ubi->prot.aec);
568         rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
569         kfree(pe);
570         return 0;
571 }
572
573 /**
574  * sync_erase - synchronously erase a physical eraseblock.
575  * @ubi: UBI device description object
576  * @e: the the physical eraseblock to erase
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a negative error code in
580  * case of failure.
581  */
582 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583                       int torture)
584 {
585         int err;
586         struct ubi_ec_hdr *ec_hdr;
587         unsigned long long ec = e->ec;
588
589         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
590
591         err = paranoid_check_ec(ubi, e->pnum, e->ec);
592         if (err > 0)
593                 return -EINVAL;
594
595         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
596         if (!ec_hdr)
597                 return -ENOMEM;
598
599         err = ubi_io_sync_erase(ubi, e->pnum, torture);
600         if (err < 0)
601                 goto out_free;
602
603         ec += err;
604         if (ec > UBI_MAX_ERASECOUNTER) {
605                 /*
606                  * Erase counter overflow. Upgrade UBI and use 64-bit
607                  * erase counters internally.
608                  */
609                 ubi_err("erase counter overflow at PEB %d, EC %llu",
610                         e->pnum, ec);
611                 err = -EINVAL;
612                 goto out_free;
613         }
614
615         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
616
617         ec_hdr->ec = cpu_to_be64(ec);
618
619         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
620         if (err)
621                 goto out_free;
622
623         e->ec = ec;
624         spin_lock(&ubi->wl_lock);
625         if (e->ec > ubi->max_ec)
626                 ubi->max_ec = e->ec;
627         spin_unlock(&ubi->wl_lock);
628
629 out_free:
630         kfree(ec_hdr);
631         return err;
632 }
633
634 /**
635  * check_protection_over - check if it is time to stop protecting some PEBs.
636  * @ubi: UBI device description object
637  *
638  * This function is called after each erase operation, when the absolute erase
639  * counter is incremented, to check if some physical eraseblock  have not to be
640  * protected any longer. These physical eraseblocks are moved from the
641  * protection trees to the used tree.
642  */
643 static void check_protection_over(struct ubi_device *ubi)
644 {
645         struct ubi_wl_prot_entry *pe;
646
647         /*
648          * There may be several protected physical eraseblock to remove,
649          * process them all.
650          */
651         while (1) {
652                 spin_lock(&ubi->wl_lock);
653                 if (!ubi->prot.aec.rb_node) {
654                         spin_unlock(&ubi->wl_lock);
655                         break;
656                 }
657
658                 pe = rb_entry(rb_first(&ubi->prot.aec),
659                               struct ubi_wl_prot_entry, rb_aec);
660
661                 if (pe->abs_ec > ubi->abs_ec) {
662                         spin_unlock(&ubi->wl_lock);
663                         break;
664                 }
665
666                 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
667                        pe->e->pnum, ubi->abs_ec, pe->abs_ec);
668                 rb_erase(&pe->rb_aec, &ubi->prot.aec);
669                 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
670                 wl_tree_add(pe->e, &ubi->used);
671                 spin_unlock(&ubi->wl_lock);
672
673                 kfree(pe);
674                 cond_resched();
675         }
676 }
677
678 /**
679  * schedule_ubi_work - schedule a work.
680  * @ubi: UBI device description object
681  * @wrk: the work to schedule
682  *
683  * This function enqueues a work defined by @wrk to the tail of the pending
684  * works list.
685  */
686 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
687 {
688         spin_lock(&ubi->wl_lock);
689         list_add_tail(&wrk->list, &ubi->works);
690         ubi_assert(ubi->works_count >= 0);
691         ubi->works_count += 1;
692         if (ubi->thread_enabled)
693                 wake_up_process(ubi->bgt_thread);
694         spin_unlock(&ubi->wl_lock);
695 }
696
697 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
698                         int cancel);
699
700 /**
701  * schedule_erase - schedule an erase work.
702  * @ubi: UBI device description object
703  * @e: the WL entry of the physical eraseblock to erase
704  * @torture: if the physical eraseblock has to be tortured
705  *
706  * This function returns zero in case of success and a %-ENOMEM in case of
707  * failure.
708  */
709 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
710                           int torture)
711 {
712         struct ubi_work *wl_wrk;
713
714         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
715                e->pnum, e->ec, torture);
716
717         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
718         if (!wl_wrk)
719                 return -ENOMEM;
720
721         wl_wrk->func = &erase_worker;
722         wl_wrk->e = e;
723         wl_wrk->torture = torture;
724
725         schedule_ubi_work(ubi, wl_wrk);
726         return 0;
727 }
728
729 /**
730  * wear_leveling_worker - wear-leveling worker function.
731  * @ubi: UBI device description object
732  * @wrk: the work object
733  * @cancel: non-zero if the worker has to free memory and exit
734  *
735  * This function copies a more worn out physical eraseblock to a less worn out
736  * one. Returns zero in case of success and a negative error code in case of
737  * failure.
738  */
739 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
740                                 int cancel)
741 {
742         int err, scrubbing = 0, torture = 0;
743         struct ubi_wl_prot_entry *uninitialized_var(pe);
744         struct ubi_wl_entry *e1, *e2;
745         struct ubi_vid_hdr *vid_hdr;
746
747         kfree(wrk);
748         if (cancel)
749                 return 0;
750
751         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
752         if (!vid_hdr)
753                 return -ENOMEM;
754
755         mutex_lock(&ubi->move_mutex);
756         spin_lock(&ubi->wl_lock);
757         ubi_assert(!ubi->move_from && !ubi->move_to);
758         ubi_assert(!ubi->move_to_put);
759
760         if (!ubi->free.rb_node ||
761             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
762                 /*
763                  * No free physical eraseblocks? Well, they must be waiting in
764                  * the queue to be erased. Cancel movement - it will be
765                  * triggered again when a free physical eraseblock appears.
766                  *
767                  * No used physical eraseblocks? They must be temporarily
768                  * protected from being moved. They will be moved to the
769                  * @ubi->used tree later and the wear-leveling will be
770                  * triggered again.
771                  */
772                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
773                        !ubi->free.rb_node, !ubi->used.rb_node);
774                 goto out_cancel;
775         }
776
777         if (!ubi->scrub.rb_node) {
778                 /*
779                  * Now pick the least worn-out used physical eraseblock and a
780                  * highly worn-out free physical eraseblock. If the erase
781                  * counters differ much enough, start wear-leveling.
782                  */
783                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
784                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
785
786                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
787                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
788                                e1->ec, e2->ec);
789                         goto out_cancel;
790                 }
791                 paranoid_check_in_wl_tree(e1, &ubi->used);
792                 rb_erase(&e1->u.rb, &ubi->used);
793                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
794                        e1->pnum, e1->ec, e2->pnum, e2->ec);
795         } else {
796                 /* Perform scrubbing */
797                 scrubbing = 1;
798                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
799                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
800                 paranoid_check_in_wl_tree(e1, &ubi->scrub);
801                 rb_erase(&e1->u.rb, &ubi->scrub);
802                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
803         }
804
805         paranoid_check_in_wl_tree(e2, &ubi->free);
806         rb_erase(&e2->u.rb, &ubi->free);
807         ubi->move_from = e1;
808         ubi->move_to = e2;
809         spin_unlock(&ubi->wl_lock);
810
811         /*
812          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
813          * We so far do not know which logical eraseblock our physical
814          * eraseblock (@e1) belongs to. We have to read the volume identifier
815          * header first.
816          *
817          * Note, we are protected from this PEB being unmapped and erased. The
818          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
819          * which is being moved was unmapped.
820          */
821
822         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
823         if (err && err != UBI_IO_BITFLIPS) {
824                 if (err == UBI_IO_PEB_FREE) {
825                         /*
826                          * We are trying to move PEB without a VID header. UBI
827                          * always write VID headers shortly after the PEB was
828                          * given, so we have a situation when it did not have
829                          * chance to write it down because it was preempted.
830                          * Just re-schedule the work, so that next time it will
831                          * likely have the VID header in place.
832                          */
833                         dbg_wl("PEB %d has no VID header", e1->pnum);
834                         goto out_not_moved;
835                 }
836
837                 ubi_err("error %d while reading VID header from PEB %d",
838                         err, e1->pnum);
839                 if (err > 0)
840                         err = -EIO;
841                 goto out_error;
842         }
843
844         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
845         if (err) {
846                 if (err == -EAGAIN)
847                         goto out_not_moved;
848                 if (err < 0)
849                         goto out_error;
850                 if (err == 2) {
851                         /* Target PEB write error, torture it */
852                         torture = 1;
853                         goto out_not_moved;
854                 }
855
856                 /*
857                  * The LEB has not been moved because the volume is being
858                  * deleted or the PEB has been put meanwhile. We should prevent
859                  * this PEB from being selected for wear-leveling movement
860                  * again, so put it to the protection tree.
861                  */
862
863                 dbg_wl("canceled moving PEB %d", e1->pnum);
864                 ubi_assert(err == 1);
865
866                 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
867                 if (!pe) {
868                         err = -ENOMEM;
869                         goto out_error;
870                 }
871
872                 ubi_free_vid_hdr(ubi, vid_hdr);
873                 vid_hdr = NULL;
874
875                 spin_lock(&ubi->wl_lock);
876                 prot_tree_add(ubi, e1, pe, U_PROTECTION);
877                 ubi_assert(!ubi->move_to_put);
878                 ubi->move_from = ubi->move_to = NULL;
879                 ubi->wl_scheduled = 0;
880                 spin_unlock(&ubi->wl_lock);
881
882                 e1 = NULL;
883                 err = schedule_erase(ubi, e2, 0);
884                 if (err)
885                         goto out_error;
886                 mutex_unlock(&ubi->move_mutex);
887                 return 0;
888         }
889
890         /* The PEB has been successfully moved */
891         ubi_free_vid_hdr(ubi, vid_hdr);
892         vid_hdr = NULL;
893         if (scrubbing)
894                 ubi_msg("scrubbed PEB %d, data moved to PEB %d",
895                         e1->pnum, e2->pnum);
896
897         spin_lock(&ubi->wl_lock);
898         if (!ubi->move_to_put) {
899                 wl_tree_add(e2, &ubi->used);
900                 e2 = NULL;
901         }
902         ubi->move_from = ubi->move_to = NULL;
903         ubi->move_to_put = ubi->wl_scheduled = 0;
904         spin_unlock(&ubi->wl_lock);
905
906         err = schedule_erase(ubi, e1, 0);
907         if (err) {
908                 e1 = NULL;
909                 goto out_error;
910         }
911
912         if (e2) {
913                 /*
914                  * Well, the target PEB was put meanwhile, schedule it for
915                  * erasure.
916                  */
917                 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
918                 err = schedule_erase(ubi, e2, 0);
919                 if (err)
920                         goto out_error;
921         }
922
923         dbg_wl("done");
924         mutex_unlock(&ubi->move_mutex);
925         return 0;
926
927         /*
928          * For some reasons the LEB was not moved, might be an error, might be
929          * something else. @e1 was not changed, so return it back. @e2 might
930          * have been changed, schedule it for erasure.
931          */
932 out_not_moved:
933         dbg_wl("canceled moving PEB %d", e1->pnum);
934         ubi_free_vid_hdr(ubi, vid_hdr);
935         vid_hdr = NULL;
936         spin_lock(&ubi->wl_lock);
937         if (scrubbing)
938                 wl_tree_add(e1, &ubi->scrub);
939         else
940                 wl_tree_add(e1, &ubi->used);
941         ubi_assert(!ubi->move_to_put);
942         ubi->move_from = ubi->move_to = NULL;
943         ubi->wl_scheduled = 0;
944         spin_unlock(&ubi->wl_lock);
945
946         e1 = NULL;
947         err = schedule_erase(ubi, e2, torture);
948         if (err)
949                 goto out_error;
950
951         mutex_unlock(&ubi->move_mutex);
952         return 0;
953
954 out_error:
955         ubi_err("error %d while moving PEB %d to PEB %d",
956                 err, e1->pnum, e2->pnum);
957
958         ubi_free_vid_hdr(ubi, vid_hdr);
959         spin_lock(&ubi->wl_lock);
960         ubi->move_from = ubi->move_to = NULL;
961         ubi->move_to_put = ubi->wl_scheduled = 0;
962         spin_unlock(&ubi->wl_lock);
963
964         if (e1)
965                 kmem_cache_free(ubi_wl_entry_slab, e1);
966         if (e2)
967                 kmem_cache_free(ubi_wl_entry_slab, e2);
968         ubi_ro_mode(ubi);
969
970         mutex_unlock(&ubi->move_mutex);
971         return err;
972
973 out_cancel:
974         ubi->wl_scheduled = 0;
975         spin_unlock(&ubi->wl_lock);
976         mutex_unlock(&ubi->move_mutex);
977         ubi_free_vid_hdr(ubi, vid_hdr);
978         return 0;
979 }
980
981 /**
982  * ensure_wear_leveling - schedule wear-leveling if it is needed.
983  * @ubi: UBI device description object
984  *
985  * This function checks if it is time to start wear-leveling and schedules it
986  * if yes. This function returns zero in case of success and a negative error
987  * code in case of failure.
988  */
989 static int ensure_wear_leveling(struct ubi_device *ubi)
990 {
991         int err = 0;
992         struct ubi_wl_entry *e1;
993         struct ubi_wl_entry *e2;
994         struct ubi_work *wrk;
995
996         spin_lock(&ubi->wl_lock);
997         if (ubi->wl_scheduled)
998                 /* Wear-leveling is already in the work queue */
999                 goto out_unlock;
1000
1001         /*
1002          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1003          * the WL worker has to be scheduled anyway.
1004          */
1005         if (!ubi->scrub.rb_node) {
1006                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1007                         /* No physical eraseblocks - no deal */
1008                         goto out_unlock;
1009
1010                 /*
1011                  * We schedule wear-leveling only if the difference between the
1012                  * lowest erase counter of used physical eraseblocks and a high
1013                  * erase counter of free physical eraseblocks is greater then
1014                  * %UBI_WL_THRESHOLD.
1015                  */
1016                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1017                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
1018
1019                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1020                         goto out_unlock;
1021                 dbg_wl("schedule wear-leveling");
1022         } else
1023                 dbg_wl("schedule scrubbing");
1024
1025         ubi->wl_scheduled = 1;
1026         spin_unlock(&ubi->wl_lock);
1027
1028         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1029         if (!wrk) {
1030                 err = -ENOMEM;
1031                 goto out_cancel;
1032         }
1033
1034         wrk->func = &wear_leveling_worker;
1035         schedule_ubi_work(ubi, wrk);
1036         return err;
1037
1038 out_cancel:
1039         spin_lock(&ubi->wl_lock);
1040         ubi->wl_scheduled = 0;
1041 out_unlock:
1042         spin_unlock(&ubi->wl_lock);
1043         return err;
1044 }
1045
1046 /**
1047  * erase_worker - physical eraseblock erase worker function.
1048  * @ubi: UBI device description object
1049  * @wl_wrk: the work object
1050  * @cancel: non-zero if the worker has to free memory and exit
1051  *
1052  * This function erases a physical eraseblock and perform torture testing if
1053  * needed. It also takes care about marking the physical eraseblock bad if
1054  * needed. Returns zero in case of success and a negative error code in case of
1055  * failure.
1056  */
1057 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1058                         int cancel)
1059 {
1060         struct ubi_wl_entry *e = wl_wrk->e;
1061         int pnum = e->pnum, err, need;
1062
1063         if (cancel) {
1064                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1065                 kfree(wl_wrk);
1066                 kmem_cache_free(ubi_wl_entry_slab, e);
1067                 return 0;
1068         }
1069
1070         dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1071
1072         err = sync_erase(ubi, e, wl_wrk->torture);
1073         if (!err) {
1074                 /* Fine, we've erased it successfully */
1075                 kfree(wl_wrk);
1076
1077                 spin_lock(&ubi->wl_lock);
1078                 ubi->abs_ec += 1;
1079                 wl_tree_add(e, &ubi->free);
1080                 spin_unlock(&ubi->wl_lock);
1081
1082                 /*
1083                  * One more erase operation has happened, take care about
1084                  * protected physical eraseblocks.
1085                  */
1086                 check_protection_over(ubi);
1087
1088                 /* And take care about wear-leveling */
1089                 err = ensure_wear_leveling(ubi);
1090                 return err;
1091         }
1092
1093         ubi_err("failed to erase PEB %d, error %d", pnum, err);
1094         kfree(wl_wrk);
1095         kmem_cache_free(ubi_wl_entry_slab, e);
1096
1097         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1098             err == -EBUSY) {
1099                 int err1;
1100
1101                 /* Re-schedule the LEB for erasure */
1102                 err1 = schedule_erase(ubi, e, 0);
1103                 if (err1) {
1104                         err = err1;
1105                         goto out_ro;
1106                 }
1107                 return err;
1108         } else if (err != -EIO) {
1109                 /*
1110                  * If this is not %-EIO, we have no idea what to do. Scheduling
1111                  * this physical eraseblock for erasure again would cause
1112                  * errors again and again. Well, lets switch to RO mode.
1113                  */
1114                 goto out_ro;
1115         }
1116
1117         /* It is %-EIO, the PEB went bad */
1118
1119         if (!ubi->bad_allowed) {
1120                 ubi_err("bad physical eraseblock %d detected", pnum);
1121                 goto out_ro;
1122         }
1123
1124         spin_lock(&ubi->volumes_lock);
1125         need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1126         if (need > 0) {
1127                 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1128                 ubi->avail_pebs -= need;
1129                 ubi->rsvd_pebs += need;
1130                 ubi->beb_rsvd_pebs += need;
1131                 if (need > 0)
1132                         ubi_msg("reserve more %d PEBs", need);
1133         }
1134
1135         if (ubi->beb_rsvd_pebs == 0) {
1136                 spin_unlock(&ubi->volumes_lock);
1137                 ubi_err("no reserved physical eraseblocks");
1138                 goto out_ro;
1139         }
1140
1141         spin_unlock(&ubi->volumes_lock);
1142         ubi_msg("mark PEB %d as bad", pnum);
1143
1144         err = ubi_io_mark_bad(ubi, pnum);
1145         if (err)
1146                 goto out_ro;
1147
1148         spin_lock(&ubi->volumes_lock);
1149         ubi->beb_rsvd_pebs -= 1;
1150         ubi->bad_peb_count += 1;
1151         ubi->good_peb_count -= 1;
1152         ubi_calculate_reserved(ubi);
1153         if (ubi->beb_rsvd_pebs == 0)
1154                 ubi_warn("last PEB from the reserved pool was used");
1155         spin_unlock(&ubi->volumes_lock);
1156
1157         return err;
1158
1159 out_ro:
1160         ubi_ro_mode(ubi);
1161         return err;
1162 }
1163
1164 /**
1165  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1166  * @ubi: UBI device description object
1167  * @pnum: physical eraseblock to return
1168  * @torture: if this physical eraseblock has to be tortured
1169  *
1170  * This function is called to return physical eraseblock @pnum to the pool of
1171  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1172  * occurred to this @pnum and it has to be tested. This function returns zero
1173  * in case of success, and a negative error code in case of failure.
1174  */
1175 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1176 {
1177         int err;
1178         struct ubi_wl_entry *e;
1179
1180         dbg_wl("PEB %d", pnum);
1181         ubi_assert(pnum >= 0);
1182         ubi_assert(pnum < ubi->peb_count);
1183
1184 retry:
1185         spin_lock(&ubi->wl_lock);
1186         e = ubi->lookuptbl[pnum];
1187         if (e == ubi->move_from) {
1188                 /*
1189                  * User is putting the physical eraseblock which was selected to
1190                  * be moved. It will be scheduled for erasure in the
1191                  * wear-leveling worker.
1192                  */
1193                 dbg_wl("PEB %d is being moved, wait", pnum);
1194                 spin_unlock(&ubi->wl_lock);
1195
1196                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1197                 mutex_lock(&ubi->move_mutex);
1198                 mutex_unlock(&ubi->move_mutex);
1199                 goto retry;
1200         } else if (e == ubi->move_to) {
1201                 /*
1202                  * User is putting the physical eraseblock which was selected
1203                  * as the target the data is moved to. It may happen if the EBA
1204                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1205                  * but the WL sub-system has not put the PEB to the "used" tree
1206                  * yet, but it is about to do this. So we just set a flag which
1207                  * will tell the WL worker that the PEB is not needed anymore
1208                  * and should be scheduled for erasure.
1209                  */
1210                 dbg_wl("PEB %d is the target of data moving", pnum);
1211                 ubi_assert(!ubi->move_to_put);
1212                 ubi->move_to_put = 1;
1213                 spin_unlock(&ubi->wl_lock);
1214                 return 0;
1215         } else {
1216                 if (in_wl_tree(e, &ubi->used)) {
1217                         paranoid_check_in_wl_tree(e, &ubi->used);
1218                         rb_erase(&e->u.rb, &ubi->used);
1219                 } else if (in_wl_tree(e, &ubi->scrub)) {
1220                         paranoid_check_in_wl_tree(e, &ubi->scrub);
1221                         rb_erase(&e->u.rb, &ubi->scrub);
1222                 } else {
1223                         err = prot_tree_del(ubi, e->pnum);
1224                         if (err) {
1225                                 ubi_err("PEB %d not found", pnum);
1226                                 ubi_ro_mode(ubi);
1227                                 spin_unlock(&ubi->wl_lock);
1228                                 return err;
1229                         }
1230                 }
1231         }
1232         spin_unlock(&ubi->wl_lock);
1233
1234         err = schedule_erase(ubi, e, torture);
1235         if (err) {
1236                 spin_lock(&ubi->wl_lock);
1237                 wl_tree_add(e, &ubi->used);
1238                 spin_unlock(&ubi->wl_lock);
1239         }
1240
1241         return err;
1242 }
1243
1244 /**
1245  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1246  * @ubi: UBI device description object
1247  * @pnum: the physical eraseblock to schedule
1248  *
1249  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1250  * needs scrubbing. This function schedules a physical eraseblock for
1251  * scrubbing which is done in background. This function returns zero in case of
1252  * success and a negative error code in case of failure.
1253  */
1254 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1255 {
1256         struct ubi_wl_entry *e;
1257
1258         dbg_msg("schedule PEB %d for scrubbing", pnum);
1259
1260 retry:
1261         spin_lock(&ubi->wl_lock);
1262         e = ubi->lookuptbl[pnum];
1263         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1264                 spin_unlock(&ubi->wl_lock);
1265                 return 0;
1266         }
1267
1268         if (e == ubi->move_to) {
1269                 /*
1270                  * This physical eraseblock was used to move data to. The data
1271                  * was moved but the PEB was not yet inserted to the proper
1272                  * tree. We should just wait a little and let the WL worker
1273                  * proceed.
1274                  */
1275                 spin_unlock(&ubi->wl_lock);
1276                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1277                 yield();
1278                 goto retry;
1279         }
1280
1281         if (in_wl_tree(e, &ubi->used)) {
1282                 paranoid_check_in_wl_tree(e, &ubi->used);
1283                 rb_erase(&e->u.rb, &ubi->used);
1284         } else {
1285                 int err;
1286
1287                 err = prot_tree_del(ubi, e->pnum);
1288                 if (err) {
1289                         ubi_err("PEB %d not found", pnum);
1290                         ubi_ro_mode(ubi);
1291                         spin_unlock(&ubi->wl_lock);
1292                         return err;
1293                 }
1294         }
1295
1296         wl_tree_add(e, &ubi->scrub);
1297         spin_unlock(&ubi->wl_lock);
1298
1299         /*
1300          * Technically scrubbing is the same as wear-leveling, so it is done
1301          * by the WL worker.
1302          */
1303         return ensure_wear_leveling(ubi);
1304 }
1305
1306 /**
1307  * ubi_wl_flush - flush all pending works.
1308  * @ubi: UBI device description object
1309  *
1310  * This function returns zero in case of success and a negative error code in
1311  * case of failure.
1312  */
1313 int ubi_wl_flush(struct ubi_device *ubi)
1314 {
1315         int err;
1316
1317         /*
1318          * Erase while the pending works queue is not empty, but not more then
1319          * the number of currently pending works.
1320          */
1321         dbg_wl("flush (%d pending works)", ubi->works_count);
1322         while (ubi->works_count) {
1323                 err = do_work(ubi);
1324                 if (err)
1325                         return err;
1326         }
1327
1328         /*
1329          * Make sure all the works which have been done in parallel are
1330          * finished.
1331          */
1332         down_write(&ubi->work_sem);
1333         up_write(&ubi->work_sem);
1334
1335         /*
1336          * And in case last was the WL worker and it canceled the LEB
1337          * movement, flush again.
1338          */
1339         while (ubi->works_count) {
1340                 dbg_wl("flush more (%d pending works)", ubi->works_count);
1341                 err = do_work(ubi);
1342                 if (err)
1343                         return err;
1344         }
1345
1346         return 0;
1347 }
1348
1349 /**
1350  * tree_destroy - destroy an RB-tree.
1351  * @root: the root of the tree to destroy
1352  */
1353 static void tree_destroy(struct rb_root *root)
1354 {
1355         struct rb_node *rb;
1356         struct ubi_wl_entry *e;
1357
1358         rb = root->rb_node;
1359         while (rb) {
1360                 if (rb->rb_left)
1361                         rb = rb->rb_left;
1362                 else if (rb->rb_right)
1363                         rb = rb->rb_right;
1364                 else {
1365                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1366
1367                         rb = rb_parent(rb);
1368                         if (rb) {
1369                                 if (rb->rb_left == &e->u.rb)
1370                                         rb->rb_left = NULL;
1371                                 else
1372                                         rb->rb_right = NULL;
1373                         }
1374
1375                         kmem_cache_free(ubi_wl_entry_slab, e);
1376                 }
1377         }
1378 }
1379
1380 /**
1381  * ubi_thread - UBI background thread.
1382  * @u: the UBI device description object pointer
1383  */
1384 int ubi_thread(void *u)
1385 {
1386         int failures = 0;
1387         struct ubi_device *ubi = u;
1388
1389         ubi_msg("background thread \"%s\" started, PID %d",
1390                 ubi->bgt_name, task_pid_nr(current));
1391
1392         set_freezable();
1393         for (;;) {
1394                 int err;
1395
1396                 if (kthread_should_stop())
1397                         break;
1398
1399                 if (try_to_freeze())
1400                         continue;
1401
1402                 spin_lock(&ubi->wl_lock);
1403                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1404                                !ubi->thread_enabled) {
1405                         set_current_state(TASK_INTERRUPTIBLE);
1406                         spin_unlock(&ubi->wl_lock);
1407                         schedule();
1408                         continue;
1409                 }
1410                 spin_unlock(&ubi->wl_lock);
1411
1412                 err = do_work(ubi);
1413                 if (err) {
1414                         ubi_err("%s: work failed with error code %d",
1415                                 ubi->bgt_name, err);
1416                         if (failures++ > WL_MAX_FAILURES) {
1417                                 /*
1418                                  * Too many failures, disable the thread and
1419                                  * switch to read-only mode.
1420                                  */
1421                                 ubi_msg("%s: %d consecutive failures",
1422                                         ubi->bgt_name, WL_MAX_FAILURES);
1423                                 ubi_ro_mode(ubi);
1424                                 ubi->thread_enabled = 0;
1425                                 continue;
1426                         }
1427                 } else
1428                         failures = 0;
1429
1430                 cond_resched();
1431         }
1432
1433         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1434         return 0;
1435 }
1436
1437 /**
1438  * cancel_pending - cancel all pending works.
1439  * @ubi: UBI device description object
1440  */
1441 static void cancel_pending(struct ubi_device *ubi)
1442 {
1443         while (!list_empty(&ubi->works)) {
1444                 struct ubi_work *wrk;
1445
1446                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1447                 list_del(&wrk->list);
1448                 wrk->func(ubi, wrk, 1);
1449                 ubi->works_count -= 1;
1450                 ubi_assert(ubi->works_count >= 0);
1451         }
1452 }
1453
1454 /**
1455  * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1456  * @ubi: UBI device description object
1457  * @si: scanning information
1458  *
1459  * This function returns zero in case of success, and a negative error code in
1460  * case of failure.
1461  */
1462 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1463 {
1464         int err;
1465         struct rb_node *rb1, *rb2;
1466         struct ubi_scan_volume *sv;
1467         struct ubi_scan_leb *seb, *tmp;
1468         struct ubi_wl_entry *e;
1469
1470
1471         ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1472         ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1473         spin_lock_init(&ubi->wl_lock);
1474         mutex_init(&ubi->move_mutex);
1475         init_rwsem(&ubi->work_sem);
1476         ubi->max_ec = si->max_ec;
1477         INIT_LIST_HEAD(&ubi->works);
1478
1479         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1480
1481         err = -ENOMEM;
1482         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1483         if (!ubi->lookuptbl)
1484                 return err;
1485
1486         list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1487                 cond_resched();
1488
1489                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1490                 if (!e)
1491                         goto out_free;
1492
1493                 e->pnum = seb->pnum;
1494                 e->ec = seb->ec;
1495                 ubi->lookuptbl[e->pnum] = e;
1496                 if (schedule_erase(ubi, e, 0)) {
1497                         kmem_cache_free(ubi_wl_entry_slab, e);
1498                         goto out_free;
1499                 }
1500         }
1501
1502         list_for_each_entry(seb, &si->free, u.list) {
1503                 cond_resched();
1504
1505                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1506                 if (!e)
1507                         goto out_free;
1508
1509                 e->pnum = seb->pnum;
1510                 e->ec = seb->ec;
1511                 ubi_assert(e->ec >= 0);
1512                 wl_tree_add(e, &ubi->free);
1513                 ubi->lookuptbl[e->pnum] = e;
1514         }
1515
1516         list_for_each_entry(seb, &si->corr, u.list) {
1517                 cond_resched();
1518
1519                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1520                 if (!e)
1521                         goto out_free;
1522
1523                 e->pnum = seb->pnum;
1524                 e->ec = seb->ec;
1525                 ubi->lookuptbl[e->pnum] = e;
1526                 if (schedule_erase(ubi, e, 0)) {
1527                         kmem_cache_free(ubi_wl_entry_slab, e);
1528                         goto out_free;
1529                 }
1530         }
1531
1532         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1533                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1534                         cond_resched();
1535
1536                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1537                         if (!e)
1538                                 goto out_free;
1539
1540                         e->pnum = seb->pnum;
1541                         e->ec = seb->ec;
1542                         ubi->lookuptbl[e->pnum] = e;
1543                         if (!seb->scrub) {
1544                                 dbg_wl("add PEB %d EC %d to the used tree",
1545                                        e->pnum, e->ec);
1546                                 wl_tree_add(e, &ubi->used);
1547                         } else {
1548                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1549                                        e->pnum, e->ec);
1550                                 wl_tree_add(e, &ubi->scrub);
1551                         }
1552                 }
1553         }
1554
1555         if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1556                 ubi_err("no enough physical eraseblocks (%d, need %d)",
1557                         ubi->avail_pebs, WL_RESERVED_PEBS);
1558                 goto out_free;
1559         }
1560         ubi->avail_pebs -= WL_RESERVED_PEBS;
1561         ubi->rsvd_pebs += WL_RESERVED_PEBS;
1562
1563         /* Schedule wear-leveling if needed */
1564         err = ensure_wear_leveling(ubi);
1565         if (err)
1566                 goto out_free;
1567
1568         return 0;
1569
1570 out_free:
1571         cancel_pending(ubi);
1572         tree_destroy(&ubi->used);
1573         tree_destroy(&ubi->free);
1574         tree_destroy(&ubi->scrub);
1575         kfree(ubi->lookuptbl);
1576         return err;
1577 }
1578
1579 /**
1580  * protection_trees_destroy - destroy the protection RB-trees.
1581  * @ubi: UBI device description object
1582  */
1583 static void protection_trees_destroy(struct ubi_device *ubi)
1584 {
1585         struct rb_node *rb;
1586         struct ubi_wl_prot_entry *pe;
1587
1588         rb = ubi->prot.aec.rb_node;
1589         while (rb) {
1590                 if (rb->rb_left)
1591                         rb = rb->rb_left;
1592                 else if (rb->rb_right)
1593                         rb = rb->rb_right;
1594                 else {
1595                         pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1596
1597                         rb = rb_parent(rb);
1598                         if (rb) {
1599                                 if (rb->rb_left == &pe->rb_aec)
1600                                         rb->rb_left = NULL;
1601                                 else
1602                                         rb->rb_right = NULL;
1603                         }
1604
1605                         kmem_cache_free(ubi_wl_entry_slab, pe->e);
1606                         kfree(pe);
1607                 }
1608         }
1609 }
1610
1611 /**
1612  * ubi_wl_close - close the wear-leveling sub-system.
1613  * @ubi: UBI device description object
1614  */
1615 void ubi_wl_close(struct ubi_device *ubi)
1616 {
1617         dbg_wl("close the WL sub-system");
1618         cancel_pending(ubi);
1619         protection_trees_destroy(ubi);
1620         tree_destroy(&ubi->used);
1621         tree_destroy(&ubi->free);
1622         tree_destroy(&ubi->scrub);
1623         kfree(ubi->lookuptbl);
1624 }
1625
1626 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1627
1628 /**
1629  * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1630  * @ubi: UBI device description object
1631  * @pnum: the physical eraseblock number to check
1632  * @ec: the erase counter to check
1633  *
1634  * This function returns zero if the erase counter of physical eraseblock @pnum
1635  * is equivalent to @ec, %1 if not, and a negative error code if an error
1636  * occurred.
1637  */
1638 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1639 {
1640         int err;
1641         long long read_ec;
1642         struct ubi_ec_hdr *ec_hdr;
1643
1644         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1645         if (!ec_hdr)
1646                 return -ENOMEM;
1647
1648         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1649         if (err && err != UBI_IO_BITFLIPS) {
1650                 /* The header does not have to exist */
1651                 err = 0;
1652                 goto out_free;
1653         }
1654
1655         read_ec = be64_to_cpu(ec_hdr->ec);
1656         if (ec != read_ec) {
1657                 ubi_err("paranoid check failed for PEB %d", pnum);
1658                 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1659                 ubi_dbg_dump_stack();
1660                 err = 1;
1661         } else
1662                 err = 0;
1663
1664 out_free:
1665         kfree(ec_hdr);
1666         return err;
1667 }
1668
1669 /**
1670  * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1671  * @e: the wear-leveling entry to check
1672  * @root: the root of the tree
1673  *
1674  * This function returns zero if @e is in the @root RB-tree and %1 if it is
1675  * not.
1676  */
1677 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1678                                      struct rb_root *root)
1679 {
1680         if (in_wl_tree(e, root))
1681                 return 0;
1682
1683         ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1684                 e->pnum, e->ec, root);
1685         ubi_dbg_dump_stack();
1686         return 1;
1687 }
1688
1689 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */