1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
32 #define DRV_NAME "3c59x"
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
46 static int rx_copybreak = 200;
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
63 #define tx_interrupt_mitigation 1
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
68 static int vortex_debug = VORTEX_DEBUG;
70 static int vortex_debug = 1;
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/mii.h>
84 #include <linux/init.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/highmem.h>
90 #include <linux/eisa.h>
91 #include <linux/bitops.h>
92 #include <linux/jiffies.h>
93 #include <asm/irq.h> /* For NR_IRQS only. */
95 #include <asm/uaccess.h>
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
100 #define RUN_AT(x) (jiffies + (x))
102 #include <linux/delay.h>
105 static char version[] __devinitdata =
106 DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
113 /* Operational parameter that usually are not changed. */
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
127 #define PFX DRV_NAME ": "
134 I. Board Compatibility
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
145 II. Board-specific settings
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
155 III. Driver operation
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
270 /* note: this array directly indexed by above enums, and MUST
271 * be kept in sync with both the enums above, and the PCI device
274 static struct vortex_chip_info {
279 } vortex_info_tbl[] __devinitdata = {
280 {"3c590 Vortex 10Mbps",
281 PCI_USES_MASTER, IS_VORTEX, 32, },
282 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
283 PCI_USES_MASTER, IS_VORTEX, 32, },
284 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
285 PCI_USES_MASTER, IS_VORTEX, 32, },
286 {"3c595 Vortex 100baseTx",
287 PCI_USES_MASTER, IS_VORTEX, 32, },
288 {"3c595 Vortex 100baseT4",
289 PCI_USES_MASTER, IS_VORTEX, 32, },
291 {"3c595 Vortex 100base-MII",
292 PCI_USES_MASTER, IS_VORTEX, 32, },
293 {"3c900 Boomerang 10baseT",
294 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
295 {"3c900 Boomerang 10Mbps Combo",
296 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
297 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
298 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
299 {"3c900 Cyclone 10Mbps Combo",
300 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
303 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
304 {"3c900B-FL Cyclone 10base-FL",
305 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
306 {"3c905 Boomerang 100baseTx",
307 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
308 {"3c905 Boomerang 100baseT4",
309 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
310 {"3c905B Cyclone 100baseTx",
311 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 10/100/BNC",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
315 {"3c905B-FX Cyclone 100baseFx",
316 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
318 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
319 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
320 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
322 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
325 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
326 {"3cSOHO100-TX Hurricane",
327 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
328 {"3c555 Laptop Hurricane",
329 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
330 {"3c556 Laptop Tornado",
331 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
333 {"3c556B Laptop Hurricane",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
335 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
337 {"3c575 [Megahertz] 10/100 LAN CardBus",
338 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
339 {"3c575 Boomerang CardBus",
340 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
341 {"3CCFE575BT Cyclone CardBus",
342 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
343 INVERT_LED_PWR|HAS_HWCKSM, 128, },
344 {"3CCFE575CT Tornado CardBus",
345 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
346 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
347 {"3CCFE656 Cyclone CardBus",
348 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 INVERT_LED_PWR|HAS_HWCKSM, 128, },
351 {"3CCFEM656B Cyclone+Winmodem CardBus",
352 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
353 INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
355 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
357 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
360 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
361 {"3c982 Hydra Dual Port A",
362 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
364 {"3c982 Hydra Dual Port B",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
367 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
368 {"3c920B-EMB-WNM Tornado",
369 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
371 {NULL,}, /* NULL terminated list. */
375 static struct pci_device_id vortex_pci_tbl[] = {
376 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
377 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
378 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
379 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
380 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
382 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
383 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
384 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
385 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
386 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
388 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
389 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
390 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
391 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
392 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
394 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
395 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
396 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
397 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
398 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
399 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
401 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
402 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
403 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
404 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
405 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
407 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
408 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
409 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
410 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
411 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
413 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
414 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
415 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
416 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
417 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
419 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
420 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
422 {0,} /* 0 terminated list. */
424 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
427 /* Operational definitions.
428 These are not used by other compilation units and thus are not
429 exported in a ".h" file.
431 First the windows. There are eight register windows, with the command
432 and status registers available in each.
434 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
436 #define EL3_STATUS 0x0e
438 /* The top five bits written to EL3_CMD are a command, the lower
439 11 bits are the parameter, if applicable.
440 Note that 11 parameters bits was fine for ethernet, but the new chip
441 can handle FDDI length frames (~4500 octets) and now parameters count
442 32-bit 'Dwords' rather than octets. */
445 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
446 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
447 UpStall = 6<<11, UpUnstall = (6<<11)+1,
448 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
449 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
450 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
451 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
452 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
453 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
454 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
456 /* The SetRxFilter command accepts the following classes: */
458 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
460 /* Bits in the general status register. */
462 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
463 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
464 IntReq = 0x0040, StatsFull = 0x0080,
465 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
466 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
467 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
470 /* Register window 1 offsets, the window used in normal operation.
471 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
473 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
474 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
475 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
478 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
479 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
480 IntrStatus=0x0E, /* Valid in all windows. */
482 enum Win0_EEPROM_bits {
483 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
484 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
485 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
487 /* EEPROM locations. */
489 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
490 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
491 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
492 DriverTune=13, Checksum=15};
494 enum Window2 { /* Window 2. */
497 enum Window3 { /* Window 3: MAC/config bits. */
498 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
501 #define BFEXT(value, offset, bitcount) \
502 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
504 #define BFINS(lhs, rhs, offset, bitcount) \
505 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
506 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
508 #define RAM_SIZE(v) BFEXT(v, 0, 3)
509 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
510 #define RAM_SPEED(v) BFEXT(v, 4, 2)
511 #define ROM_SIZE(v) BFEXT(v, 6, 2)
512 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
513 #define XCVR(v) BFEXT(v, 20, 4)
514 #define AUTOSELECT(v) BFEXT(v, 24, 1)
516 enum Window4 { /* Window 4: Xcvr/media bits. */
517 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
519 enum Win4_Media_bits {
520 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
521 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
522 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
523 Media_LnkBeat = 0x0800,
525 enum Window7 { /* Window 7: Bus Master control. */
526 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
527 Wn7_MasterStatus = 12,
529 /* Boomerang bus master control registers. */
531 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
532 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
535 /* The Rx and Tx descriptor lists.
536 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
537 alignment contraint on tx_ring[] and rx_ring[]. */
538 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
539 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
540 struct boom_rx_desc {
541 u32 next; /* Last entry points to 0. */
543 u32 addr; /* Up to 63 addr/len pairs possible. */
544 s32 length; /* Set LAST_FRAG to indicate last pair. */
546 /* Values for the Rx status entry. */
547 enum rx_desc_status {
548 RxDComplete=0x00008000, RxDError=0x4000,
549 /* See boomerang_rx() for actual error bits */
550 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
551 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 #define DO_ZEROCOPY 1
557 #define DO_ZEROCOPY 0
560 struct boom_tx_desc {
561 u32 next; /* Last entry points to 0. */
562 s32 status; /* bits 0:12 length, others see below. */
567 } frag[1+MAX_SKB_FRAGS];
574 /* Values for the Tx status entry. */
575 enum tx_desc_status {
576 CRCDisable=0x2000, TxDComplete=0x8000,
577 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
578 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
581 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
582 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
584 struct vortex_extra_stats {
585 unsigned long tx_deferred;
586 unsigned long tx_max_collisions;
587 unsigned long tx_multiple_collisions;
588 unsigned long tx_single_collisions;
589 unsigned long rx_bad_ssd;
592 struct vortex_private {
593 /* The Rx and Tx rings should be quad-word-aligned. */
594 struct boom_rx_desc* rx_ring;
595 struct boom_tx_desc* tx_ring;
596 dma_addr_t rx_ring_dma;
597 dma_addr_t tx_ring_dma;
598 /* The addresses of transmit- and receive-in-place skbuffs. */
599 struct sk_buff* rx_skbuff[RX_RING_SIZE];
600 struct sk_buff* tx_skbuff[TX_RING_SIZE];
601 unsigned int cur_rx, cur_tx; /* The next free ring entry */
602 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
603 struct net_device_stats stats; /* Generic stats */
604 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
605 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
606 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
608 /* PCI configuration space information. */
609 struct device *gendev;
610 void __iomem *ioaddr; /* IO address space */
611 void __iomem *cb_fn_base; /* CardBus function status addr space. */
613 /* Some values here only for performance evaluation and path-coverage */
614 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 /* The remainder are related to chip state, mostly media selection. */
618 struct timer_list timer; /* Media selection timer. */
619 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
620 int options; /* User-settable misc. driver options. */
621 unsigned int media_override:4, /* Passed-in media type. */
622 default_media:4, /* Read from the EEPROM/Wn3_Config. */
623 full_duplex:1, autoselect:1,
624 bus_master:1, /* Vortex can only do a fragment bus-m. */
625 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
626 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
627 partner_flow_ctrl:1, /* Partner supports flow control */
629 enable_wol:1, /* Wake-on-LAN is enabled */
630 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
633 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
634 large_frames:1; /* accept large frames */
638 u16 available_media; /* From Wn3_Options. */
639 u16 capabilities, info1, info2; /* Various, from EEPROM. */
640 u16 advertising; /* NWay media advertisement */
641 unsigned char phys[2]; /* MII device addresses. */
642 u16 deferred; /* Resend these interrupts when we
643 * bale from the ISR */
644 u16 io_size; /* Size of PCI region (for release_region) */
645 spinlock_t lock; /* Serialise access to device & its vortex_private */
646 struct mii_if_info mii; /* MII lib hooks/info */
650 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
652 #define DEVICE_PCI(dev) NULL
655 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
658 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
660 #define DEVICE_EISA(dev) NULL
663 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
665 /* The action to take with a media selection timer tick.
666 Note that we deviate from the 3Com order by checking 10base2 before AUI.
669 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
670 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
673 static const struct media_table {
675 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
676 mask:8, /* The transceiver-present bit in Wn3_Config.*/
677 next:8; /* The media type to try next. */
678 int wait; /* Time before we check media status. */
680 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
681 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
682 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
683 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
684 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
685 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
686 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
687 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
688 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
689 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
690 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
694 const char str[ETH_GSTRING_LEN];
695 } ethtool_stats_keys[] = {
697 { "tx_max_collisions" },
698 { "tx_multiple_collisions" },
699 { "tx_single_collisions" },
703 /* number of ETHTOOL_GSTATS u64's */
704 #define VORTEX_NUM_STATS 5
706 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
707 int chip_idx, int card_idx);
708 static void vortex_up(struct net_device *dev);
709 static void vortex_down(struct net_device *dev, int final);
710 static int vortex_open(struct net_device *dev);
711 static void mdio_sync(void __iomem *ioaddr, int bits);
712 static int mdio_read(struct net_device *dev, int phy_id, int location);
713 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
714 static void vortex_timer(unsigned long arg);
715 static void rx_oom_timer(unsigned long arg);
716 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
717 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
718 static int vortex_rx(struct net_device *dev);
719 static int boomerang_rx(struct net_device *dev);
720 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
721 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
722 static int vortex_close(struct net_device *dev);
723 static void dump_tx_ring(struct net_device *dev);
724 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
725 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
726 static void set_rx_mode(struct net_device *dev);
728 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
730 static void vortex_tx_timeout(struct net_device *dev);
731 static void acpi_set_WOL(struct net_device *dev);
732 static const struct ethtool_ops vortex_ethtool_ops;
733 static void set_8021q_mode(struct net_device *dev, int enable);
735 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
736 /* Option count limit only -- unlimited interfaces are supported. */
738 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
739 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
740 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
741 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
742 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
743 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
744 static int global_options = -1;
745 static int global_full_duplex = -1;
746 static int global_enable_wol = -1;
747 static int global_use_mmio = -1;
749 /* Variables to work-around the Compaq PCI BIOS32 problem. */
750 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
751 static struct net_device *compaq_net_device;
753 static int vortex_cards_found;
755 module_param(debug, int, 0);
756 module_param(global_options, int, 0);
757 module_param_array(options, int, NULL, 0);
758 module_param(global_full_duplex, int, 0);
759 module_param_array(full_duplex, int, NULL, 0);
760 module_param_array(hw_checksums, int, NULL, 0);
761 module_param_array(flow_ctrl, int, NULL, 0);
762 module_param(global_enable_wol, int, 0);
763 module_param_array(enable_wol, int, NULL, 0);
764 module_param(rx_copybreak, int, 0);
765 module_param(max_interrupt_work, int, 0);
766 module_param(compaq_ioaddr, int, 0);
767 module_param(compaq_irq, int, 0);
768 module_param(compaq_device_id, int, 0);
769 module_param(watchdog, int, 0);
770 module_param(global_use_mmio, int, 0);
771 module_param_array(use_mmio, int, NULL, 0);
772 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
773 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
774 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
775 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
776 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
777 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
778 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
779 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
780 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
781 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
782 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
783 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
784 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
785 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
786 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
787 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
788 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
790 #ifdef CONFIG_NET_POLL_CONTROLLER
791 static void poll_vortex(struct net_device *dev)
793 struct vortex_private *vp = netdev_priv(dev);
795 local_irq_save(flags);
796 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
797 local_irq_restore(flags);
803 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
805 struct net_device *dev = pci_get_drvdata(pdev);
807 if (dev && dev->priv) {
808 if (netif_running(dev)) {
809 netif_device_detach(dev);
812 pci_save_state(pdev);
813 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
814 free_irq(dev->irq, dev);
815 pci_disable_device(pdev);
816 pci_set_power_state(pdev, pci_choose_state(pdev, state));
821 static int vortex_resume(struct pci_dev *pdev)
823 struct net_device *dev = pci_get_drvdata(pdev);
824 struct vortex_private *vp = netdev_priv(dev);
828 pci_set_power_state(pdev, PCI_D0);
829 pci_restore_state(pdev);
830 err = pci_enable_device(pdev);
832 printk(KERN_WARNING "%s: Could not enable device \n",
836 pci_set_master(pdev);
837 if (request_irq(dev->irq, vp->full_bus_master_rx ?
838 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev)) {
839 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
840 pci_disable_device(pdev);
843 if (netif_running(dev)) {
845 netif_device_attach(dev);
851 #endif /* CONFIG_PM */
854 static struct eisa_device_id vortex_eisa_ids[] = {
855 { "TCM5920", CH_3C592 },
856 { "TCM5970", CH_3C597 },
859 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
861 static int vortex_eisa_probe(struct device *device);
862 static int vortex_eisa_remove(struct device *device);
864 static struct eisa_driver vortex_eisa_driver = {
865 .id_table = vortex_eisa_ids,
868 .probe = vortex_eisa_probe,
869 .remove = vortex_eisa_remove
873 static int vortex_eisa_probe(struct device *device)
875 void __iomem *ioaddr;
876 struct eisa_device *edev;
878 edev = to_eisa_device(device);
880 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
883 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
885 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
886 edev->id.driver_data, vortex_cards_found)) {
887 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
891 vortex_cards_found++;
896 static int vortex_eisa_remove(struct device *device)
898 struct eisa_device *edev;
899 struct net_device *dev;
900 struct vortex_private *vp;
901 void __iomem *ioaddr;
903 edev = to_eisa_device(device);
904 dev = eisa_get_drvdata(edev);
907 printk("vortex_eisa_remove called for Compaq device!\n");
911 vp = netdev_priv(dev);
914 unregister_netdev(dev);
915 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
916 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
923 /* returns count found (>= 0), or negative on error */
924 static int __init vortex_eisa_init(void)
927 int orig_cards_found = vortex_cards_found;
932 err = eisa_driver_register (&vortex_eisa_driver);
935 * Because of the way EISA bus is probed, we cannot assume
936 * any device have been found when we exit from
937 * eisa_driver_register (the bus root driver may not be
938 * initialized yet). So we blindly assume something was
939 * found, and let the sysfs magic happend...
945 /* Special code to work-around the Compaq PCI BIOS32 problem. */
947 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
948 compaq_irq, compaq_device_id, vortex_cards_found++);
951 return vortex_cards_found - orig_cards_found + eisa_found;
954 /* returns count (>= 0), or negative on error */
955 static int __devinit vortex_init_one(struct pci_dev *pdev,
956 const struct pci_device_id *ent)
958 int rc, unit, pci_bar;
959 struct vortex_chip_info *vci;
960 void __iomem *ioaddr;
962 /* wake up and enable device */
963 rc = pci_enable_device(pdev);
967 unit = vortex_cards_found;
969 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
970 /* Determine the default if the user didn't override us */
971 vci = &vortex_info_tbl[ent->driver_data];
972 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
973 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
974 pci_bar = use_mmio[unit] ? 1 : 0;
976 pci_bar = global_use_mmio ? 1 : 0;
978 ioaddr = pci_iomap(pdev, pci_bar, 0);
979 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
980 ioaddr = pci_iomap(pdev, 0, 0);
982 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
983 ent->driver_data, unit);
985 pci_disable_device(pdev);
989 vortex_cards_found++;
996 * Start up the PCI/EISA device which is described by *gendev.
997 * Return 0 on success.
999 * NOTE: pdev can be NULL, for the case of a Compaq device
1001 static int __devinit vortex_probe1(struct device *gendev,
1002 void __iomem *ioaddr, int irq,
1003 int chip_idx, int card_idx)
1005 struct vortex_private *vp;
1007 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1009 struct net_device *dev;
1010 static int printed_version;
1011 int retval, print_info;
1012 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1013 char *print_name = "3c59x";
1014 struct pci_dev *pdev = NULL;
1015 struct eisa_device *edev = NULL;
1017 if (!printed_version) {
1019 printed_version = 1;
1023 if ((pdev = DEVICE_PCI(gendev))) {
1024 print_name = pci_name(pdev);
1027 if ((edev = DEVICE_EISA(gendev))) {
1028 print_name = edev->dev.bus_id;
1032 dev = alloc_etherdev(sizeof(*vp));
1035 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1038 SET_MODULE_OWNER(dev);
1039 SET_NETDEV_DEV(dev, gendev);
1040 vp = netdev_priv(dev);
1042 option = global_options;
1044 /* The lower four bits are the media type. */
1045 if (dev->mem_start) {
1047 * The 'options' param is passed in as the third arg to the
1048 * LILO 'ether=' argument for non-modular use
1050 option = dev->mem_start;
1052 else if (card_idx < MAX_UNITS) {
1053 if (options[card_idx] >= 0)
1054 option = options[card_idx];
1058 if (option & 0x8000)
1060 if (option & 0x4000)
1062 if (option & 0x0400)
1066 print_info = (vortex_debug > 1);
1068 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1070 printk(KERN_INFO "%s: 3Com %s %s at %p.\n",
1072 pdev ? "PCI" : "EISA",
1076 dev->base_addr = (unsigned long)ioaddr;
1079 vp->ioaddr = ioaddr;
1080 vp->large_frames = mtu > 1500;
1081 vp->drv_flags = vci->drv_flags;
1082 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1083 vp->io_size = vci->io_size;
1084 vp->card_idx = card_idx;
1086 /* module list only for Compaq device */
1087 if (gendev == NULL) {
1088 compaq_net_device = dev;
1091 /* PCI-only startup logic */
1093 /* EISA resources already marked, so only PCI needs to do this here */
1094 /* Ignore return value, because Cardbus drivers already allocate for us */
1095 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1096 vp->must_free_region = 1;
1098 /* enable bus-mastering if necessary */
1099 if (vci->flags & PCI_USES_MASTER)
1100 pci_set_master(pdev);
1102 if (vci->drv_flags & IS_VORTEX) {
1104 u8 new_latency = 248;
1106 /* Check the PCI latency value. On the 3c590 series the latency timer
1107 must be set to the maximum value to avoid data corruption that occurs
1108 when the timer expires during a transfer. This bug exists the Vortex
1110 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1111 if (pci_latency < new_latency) {
1112 printk(KERN_INFO "%s: Overriding PCI latency"
1113 " timer (CFLT) setting of %d, new value is %d.\n",
1114 print_name, pci_latency, new_latency);
1115 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1120 spin_lock_init(&vp->lock);
1121 vp->gendev = gendev;
1123 vp->mii.mdio_read = mdio_read;
1124 vp->mii.mdio_write = mdio_write;
1125 vp->mii.phy_id_mask = 0x1f;
1126 vp->mii.reg_num_mask = 0x1f;
1128 /* Makes sure rings are at least 16 byte aligned. */
1129 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1130 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1133 if (vp->rx_ring == 0)
1136 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1137 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1139 /* if we are a PCI driver, we store info in pdev->driver_data
1140 * instead of a module list */
1142 pci_set_drvdata(pdev, dev);
1144 eisa_set_drvdata(edev, dev);
1146 vp->media_override = 7;
1148 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1149 if (vp->media_override != 7)
1151 vp->full_duplex = (option & 0x200) ? 1 : 0;
1152 vp->bus_master = (option & 16) ? 1 : 0;
1155 if (global_full_duplex > 0)
1156 vp->full_duplex = 1;
1157 if (global_enable_wol > 0)
1160 if (card_idx < MAX_UNITS) {
1161 if (full_duplex[card_idx] > 0)
1162 vp->full_duplex = 1;
1163 if (flow_ctrl[card_idx] > 0)
1165 if (enable_wol[card_idx] > 0)
1169 vp->mii.force_media = vp->full_duplex;
1170 vp->options = option;
1171 /* Read the station address from the EEPROM. */
1176 if (vci->drv_flags & EEPROM_8BIT)
1178 else if (vci->drv_flags & EEPROM_OFFSET)
1179 base = EEPROM_Read + 0x30;
1183 for (i = 0; i < 0x40; i++) {
1185 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1186 /* Pause for at least 162 us. for the read to take place. */
1187 for (timer = 10; timer >= 0; timer--) {
1189 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1192 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1195 for (i = 0; i < 0x18; i++)
1196 checksum ^= eeprom[i];
1197 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1198 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1200 checksum ^= eeprom[i++];
1201 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1203 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1204 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1205 for (i = 0; i < 3; i++)
1206 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1207 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1209 for (i = 0; i < 6; i++)
1210 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1212 /* Unfortunately an all zero eeprom passes the checksum and this
1213 gets found in the wild in failure cases. Crypto is hard 8) */
1214 if (!is_valid_ether_addr(dev->dev_addr)) {
1216 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1217 goto free_ring; /* With every pack */
1220 for (i = 0; i < 6; i++)
1221 iowrite8(dev->dev_addr[i], ioaddr + i);
1224 printk(", IRQ %d\n", dev->irq);
1225 /* Tell them about an invalid IRQ. */
1226 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1227 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1231 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1233 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1234 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1235 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1239 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1242 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1243 if (!vp->cb_fn_base) {
1249 printk(KERN_INFO "%s: CardBus functions mapped "
1252 (unsigned long long)pci_resource_start(pdev, 2),
1257 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1258 if (vp->drv_flags & INVERT_LED_PWR)
1260 if (vp->drv_flags & INVERT_MII_PWR)
1262 iowrite16(n, ioaddr + Wn2_ResetOptions);
1263 if (vp->drv_flags & WNO_XCVR_PWR) {
1265 iowrite16(0x0800, ioaddr);
1269 /* Extract our information from the EEPROM data. */
1270 vp->info1 = eeprom[13];
1271 vp->info2 = eeprom[15];
1272 vp->capabilities = eeprom[16];
1274 if (vp->info1 & 0x8000) {
1275 vp->full_duplex = 1;
1277 printk(KERN_INFO "Full duplex capable\n");
1281 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1282 unsigned int config;
1284 vp->available_media = ioread16(ioaddr + Wn3_Options);
1285 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1286 vp->available_media = 0x40;
1287 config = ioread32(ioaddr + Wn3_Config);
1289 printk(KERN_DEBUG " Internal config register is %4.4x, "
1290 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1291 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1292 8 << RAM_SIZE(config),
1293 RAM_WIDTH(config) ? "word" : "byte",
1294 ram_split[RAM_SPLIT(config)],
1295 AUTOSELECT(config) ? "autoselect/" : "",
1296 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1297 media_tbl[XCVR(config)].name);
1299 vp->default_media = XCVR(config);
1300 if (vp->default_media == XCVR_NWAY)
1302 vp->autoselect = AUTOSELECT(config);
1305 if (vp->media_override != 7) {
1306 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1307 print_name, vp->media_override,
1308 media_tbl[vp->media_override].name);
1309 dev->if_port = vp->media_override;
1311 dev->if_port = vp->default_media;
1313 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1314 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1315 int phy, phy_idx = 0;
1317 mii_preamble_required++;
1318 if (vp->drv_flags & EXTRA_PREAMBLE)
1319 mii_preamble_required++;
1320 mdio_sync(ioaddr, 32);
1321 mdio_read(dev, 24, MII_BMSR);
1322 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1323 int mii_status, phyx;
1326 * For the 3c905CX we look at index 24 first, because it bogusly
1327 * reports an external PHY at all indices
1335 mii_status = mdio_read(dev, phyx, MII_BMSR);
1336 if (mii_status && mii_status != 0xffff) {
1337 vp->phys[phy_idx++] = phyx;
1339 printk(KERN_INFO " MII transceiver found at address %d,"
1340 " status %4x.\n", phyx, mii_status);
1342 if ((mii_status & 0x0040) == 0)
1343 mii_preamble_required++;
1346 mii_preamble_required--;
1348 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1351 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1352 if (vp->full_duplex) {
1353 /* Only advertise the FD media types. */
1354 vp->advertising &= ~0x02A0;
1355 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1358 vp->mii.phy_id = vp->phys[0];
1361 if (vp->capabilities & CapBusMaster) {
1362 vp->full_bus_master_tx = 1;
1364 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1365 (vp->info2 & 1) ? "early" : "whole-frame" );
1367 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1368 vp->bus_master = 0; /* AKPM: vortex only */
1371 /* The 3c59x-specific entries in the device structure. */
1372 dev->open = vortex_open;
1373 if (vp->full_bus_master_tx) {
1374 dev->hard_start_xmit = boomerang_start_xmit;
1375 /* Actually, it still should work with iommu. */
1376 if (card_idx < MAX_UNITS &&
1377 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1378 hw_checksums[card_idx] == 1)) {
1379 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1382 dev->hard_start_xmit = vortex_start_xmit;
1386 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1388 (dev->features & NETIF_F_SG) ? "en":"dis",
1389 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1392 dev->stop = vortex_close;
1393 dev->get_stats = vortex_get_stats;
1395 dev->do_ioctl = vortex_ioctl;
1397 dev->ethtool_ops = &vortex_ethtool_ops;
1398 dev->set_multicast_list = set_rx_mode;
1399 dev->tx_timeout = vortex_tx_timeout;
1400 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1401 #ifdef CONFIG_NET_POLL_CONTROLLER
1402 dev->poll_controller = poll_vortex;
1405 vp->pm_state_valid = 1;
1406 pci_save_state(VORTEX_PCI(vp));
1409 retval = register_netdev(dev);
1414 pci_free_consistent(pdev,
1415 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1416 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1420 if (vp->must_free_region)
1421 release_region(dev->base_addr, vci->io_size);
1423 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1429 issue_and_wait(struct net_device *dev, int cmd)
1431 struct vortex_private *vp = netdev_priv(dev);
1432 void __iomem *ioaddr = vp->ioaddr;
1435 iowrite16(cmd, ioaddr + EL3_CMD);
1436 for (i = 0; i < 2000; i++) {
1437 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1441 /* OK, that didn't work. Do it the slow way. One second */
1442 for (i = 0; i < 100000; i++) {
1443 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1444 if (vortex_debug > 1)
1445 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1446 dev->name, cmd, i * 10);
1451 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1452 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1456 vortex_set_duplex(struct net_device *dev)
1458 struct vortex_private *vp = netdev_priv(dev);
1459 void __iomem *ioaddr = vp->ioaddr;
1461 printk(KERN_INFO "%s: setting %s-duplex.\n",
1462 dev->name, (vp->full_duplex) ? "full" : "half");
1465 /* Set the full-duplex bit. */
1466 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1467 (vp->large_frames ? 0x40 : 0) |
1468 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1470 ioaddr + Wn3_MAC_Ctrl);
1473 static void vortex_check_media(struct net_device *dev, unsigned int init)
1475 struct vortex_private *vp = netdev_priv(dev);
1476 unsigned int ok_to_print = 0;
1478 if (vortex_debug > 3)
1481 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1482 vp->full_duplex = vp->mii.full_duplex;
1483 vortex_set_duplex(dev);
1485 vortex_set_duplex(dev);
1490 vortex_up(struct net_device *dev)
1492 struct vortex_private *vp = netdev_priv(dev);
1493 void __iomem *ioaddr = vp->ioaddr;
1494 unsigned int config;
1495 int i, mii_reg1, mii_reg5;
1497 if (VORTEX_PCI(vp)) {
1498 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1499 if (vp->pm_state_valid)
1500 pci_restore_state(VORTEX_PCI(vp));
1501 pci_enable_device(VORTEX_PCI(vp));
1504 /* Before initializing select the active media port. */
1506 config = ioread32(ioaddr + Wn3_Config);
1508 if (vp->media_override != 7) {
1509 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1510 dev->name, vp->media_override,
1511 media_tbl[vp->media_override].name);
1512 dev->if_port = vp->media_override;
1513 } else if (vp->autoselect) {
1515 if (vortex_debug > 1)
1516 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1517 dev->name, dev->if_port);
1518 dev->if_port = XCVR_NWAY;
1520 /* Find first available media type, starting with 100baseTx. */
1521 dev->if_port = XCVR_100baseTx;
1522 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1523 dev->if_port = media_tbl[dev->if_port].next;
1524 if (vortex_debug > 1)
1525 printk(KERN_INFO "%s: first available media type: %s\n",
1526 dev->name, media_tbl[dev->if_port].name);
1529 dev->if_port = vp->default_media;
1530 if (vortex_debug > 1)
1531 printk(KERN_INFO "%s: using default media %s\n",
1532 dev->name, media_tbl[dev->if_port].name);
1535 init_timer(&vp->timer);
1536 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1537 vp->timer.data = (unsigned long)dev;
1538 vp->timer.function = vortex_timer; /* timer handler */
1539 add_timer(&vp->timer);
1541 init_timer(&vp->rx_oom_timer);
1542 vp->rx_oom_timer.data = (unsigned long)dev;
1543 vp->rx_oom_timer.function = rx_oom_timer;
1545 if (vortex_debug > 1)
1546 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1547 dev->name, media_tbl[dev->if_port].name);
1549 vp->full_duplex = vp->mii.force_media;
1550 config = BFINS(config, dev->if_port, 20, 4);
1551 if (vortex_debug > 6)
1552 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1553 iowrite32(config, ioaddr + Wn3_Config);
1555 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1557 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1558 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1559 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1561 vortex_check_media(dev, 1);
1564 vortex_set_duplex(dev);
1566 issue_and_wait(dev, TxReset);
1568 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1570 issue_and_wait(dev, RxReset|0x04);
1573 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1575 if (vortex_debug > 1) {
1577 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1578 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1581 /* Set the station address and mask in window 2 each time opened. */
1583 for (i = 0; i < 6; i++)
1584 iowrite8(dev->dev_addr[i], ioaddr + i);
1585 for (; i < 12; i+=2)
1586 iowrite16(0, ioaddr + i);
1588 if (vp->cb_fn_base) {
1589 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1590 if (vp->drv_flags & INVERT_LED_PWR)
1592 if (vp->drv_flags & INVERT_MII_PWR)
1594 iowrite16(n, ioaddr + Wn2_ResetOptions);
1597 if (dev->if_port == XCVR_10base2)
1598 /* Start the thinnet transceiver. We should really wait 50ms...*/
1599 iowrite16(StartCoax, ioaddr + EL3_CMD);
1600 if (dev->if_port != XCVR_NWAY) {
1602 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1603 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1606 /* Switch to the stats window, and clear all stats by reading. */
1607 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1609 for (i = 0; i < 10; i++)
1610 ioread8(ioaddr + i);
1611 ioread16(ioaddr + 10);
1612 ioread16(ioaddr + 12);
1613 /* New: On the Vortex we must also clear the BadSSD counter. */
1615 ioread8(ioaddr + 12);
1616 /* ..and on the Boomerang we enable the extra statistics bits. */
1617 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1619 /* Switch to register set 7 for normal use. */
1622 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1623 vp->cur_rx = vp->dirty_rx = 0;
1624 /* Initialize the RxEarly register as recommended. */
1625 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1626 iowrite32(0x0020, ioaddr + PktStatus);
1627 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1629 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1630 vp->cur_tx = vp->dirty_tx = 0;
1631 if (vp->drv_flags & IS_BOOMERANG)
1632 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1633 /* Clear the Rx, Tx rings. */
1634 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1635 vp->rx_ring[i].status = 0;
1636 for (i = 0; i < TX_RING_SIZE; i++)
1637 vp->tx_skbuff[i] = NULL;
1638 iowrite32(0, ioaddr + DownListPtr);
1640 /* Set receiver mode: presumably accept b-case and phys addr only. */
1642 /* enable 802.1q tagged frames */
1643 set_8021q_mode(dev, 1);
1644 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1646 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1647 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1648 /* Allow status bits to be seen. */
1649 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1650 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1651 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1652 (vp->bus_master ? DMADone : 0);
1653 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1654 (vp->full_bus_master_rx ? 0 : RxComplete) |
1655 StatsFull | HostError | TxComplete | IntReq
1656 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1657 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1658 /* Ack all pending events, and set active indicator mask. */
1659 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1661 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1662 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1663 iowrite32(0x8000, vp->cb_fn_base + 4);
1664 netif_start_queue (dev);
1668 vortex_open(struct net_device *dev)
1670 struct vortex_private *vp = netdev_priv(dev);
1674 /* Use the now-standard shared IRQ implementation. */
1675 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1676 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1677 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1681 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1682 if (vortex_debug > 2)
1683 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1684 for (i = 0; i < RX_RING_SIZE; i++) {
1685 struct sk_buff *skb;
1686 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1687 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1688 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1689 skb = dev_alloc_skb(PKT_BUF_SZ);
1690 vp->rx_skbuff[i] = skb;
1692 break; /* Bad news! */
1693 skb->dev = dev; /* Mark as being used by this device. */
1694 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1695 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1697 if (i != RX_RING_SIZE) {
1699 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1700 for (j = 0; j < i; j++) {
1701 if (vp->rx_skbuff[j]) {
1702 dev_kfree_skb(vp->rx_skbuff[j]);
1703 vp->rx_skbuff[j] = NULL;
1709 /* Wrap the ring. */
1710 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1717 free_irq(dev->irq, dev);
1719 if (vortex_debug > 1)
1720 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1725 vortex_timer(unsigned long data)
1727 struct net_device *dev = (struct net_device *)data;
1728 struct vortex_private *vp = netdev_priv(dev);
1729 void __iomem *ioaddr = vp->ioaddr;
1730 int next_tick = 60*HZ;
1732 int media_status, old_window;
1734 if (vortex_debug > 2) {
1735 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1736 dev->name, media_tbl[dev->if_port].name);
1737 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1740 disable_irq_lockdep(dev->irq);
1741 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1743 media_status = ioread16(ioaddr + Wn4_Media);
1744 switch (dev->if_port) {
1745 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1746 if (media_status & Media_LnkBeat) {
1747 netif_carrier_on(dev);
1749 if (vortex_debug > 1)
1750 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1751 dev->name, media_tbl[dev->if_port].name, media_status);
1753 netif_carrier_off(dev);
1754 if (vortex_debug > 1) {
1755 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1756 dev->name, media_tbl[dev->if_port].name, media_status);
1760 case XCVR_MII: case XCVR_NWAY:
1763 spin_lock_bh(&vp->lock);
1764 vortex_check_media(dev, 0);
1765 spin_unlock_bh(&vp->lock);
1768 default: /* Other media types handled by Tx timeouts. */
1769 if (vortex_debug > 1)
1770 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1771 dev->name, media_tbl[dev->if_port].name, media_status);
1775 if (!netif_carrier_ok(dev))
1779 goto leave_media_alone;
1782 unsigned int config;
1785 dev->if_port = media_tbl[dev->if_port].next;
1786 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1787 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1788 dev->if_port = vp->default_media;
1789 if (vortex_debug > 1)
1790 printk(KERN_DEBUG "%s: Media selection failing, using default "
1792 dev->name, media_tbl[dev->if_port].name);
1794 if (vortex_debug > 1)
1795 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1797 dev->name, media_tbl[dev->if_port].name);
1798 next_tick = media_tbl[dev->if_port].wait;
1800 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1801 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1804 config = ioread32(ioaddr + Wn3_Config);
1805 config = BFINS(config, dev->if_port, 20, 4);
1806 iowrite32(config, ioaddr + Wn3_Config);
1808 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1810 if (vortex_debug > 1)
1811 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1812 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1816 if (vortex_debug > 2)
1817 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1818 dev->name, media_tbl[dev->if_port].name);
1820 EL3WINDOW(old_window);
1821 enable_irq_lockdep(dev->irq);
1822 mod_timer(&vp->timer, RUN_AT(next_tick));
1824 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1828 static void vortex_tx_timeout(struct net_device *dev)
1830 struct vortex_private *vp = netdev_priv(dev);
1831 void __iomem *ioaddr = vp->ioaddr;
1833 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1834 dev->name, ioread8(ioaddr + TxStatus),
1835 ioread16(ioaddr + EL3_STATUS));
1837 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1838 ioread16(ioaddr + Wn4_NetDiag),
1839 ioread16(ioaddr + Wn4_Media),
1840 ioread32(ioaddr + PktStatus),
1841 ioread16(ioaddr + Wn4_FIFODiag));
1842 /* Slight code bloat to be user friendly. */
1843 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1844 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
1845 " network cable problem?\n", dev->name);
1846 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1847 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
1848 " IRQ blocked by another device?\n", dev->name);
1849 /* Bad idea here.. but we might as well handle a few events. */
1852 * Block interrupts because vortex_interrupt does a bare spin_lock()
1854 unsigned long flags;
1855 local_irq_save(flags);
1856 if (vp->full_bus_master_tx)
1857 boomerang_interrupt(dev->irq, dev);
1859 vortex_interrupt(dev->irq, dev);
1860 local_irq_restore(flags);
1864 if (vortex_debug > 0)
1867 issue_and_wait(dev, TxReset);
1869 vp->stats.tx_errors++;
1870 if (vp->full_bus_master_tx) {
1871 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
1872 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1873 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1874 ioaddr + DownListPtr);
1875 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1876 netif_wake_queue (dev);
1877 if (vp->drv_flags & IS_BOOMERANG)
1878 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1879 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1881 vp->stats.tx_dropped++;
1882 netif_wake_queue(dev);
1885 /* Issue Tx Enable */
1886 iowrite16(TxEnable, ioaddr + EL3_CMD);
1887 dev->trans_start = jiffies;
1889 /* Switch to register set 7 for normal use. */
1894 * Handle uncommon interrupt sources. This is a separate routine to minimize
1898 vortex_error(struct net_device *dev, int status)
1900 struct vortex_private *vp = netdev_priv(dev);
1901 void __iomem *ioaddr = vp->ioaddr;
1902 int do_tx_reset = 0, reset_mask = 0;
1903 unsigned char tx_status = 0;
1905 if (vortex_debug > 2) {
1906 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
1909 if (status & TxComplete) { /* Really "TxError" for us. */
1910 tx_status = ioread8(ioaddr + TxStatus);
1911 /* Presumably a tx-timeout. We must merely re-enable. */
1912 if (vortex_debug > 2
1913 || (tx_status != 0x88 && vortex_debug > 0)) {
1914 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
1915 dev->name, tx_status);
1916 if (tx_status == 0x82) {
1917 printk(KERN_ERR "Probably a duplex mismatch. See "
1918 "Documentation/networking/vortex.txt\n");
1922 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
1923 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
1924 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1925 iowrite8(0, ioaddr + TxStatus);
1926 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1928 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1930 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1931 } else { /* Merely re-enable the transmitter. */
1932 iowrite16(TxEnable, ioaddr + EL3_CMD);
1936 if (status & RxEarly) { /* Rx early is unused. */
1938 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1940 if (status & StatsFull) { /* Empty statistics. */
1941 static int DoneDidThat;
1942 if (vortex_debug > 4)
1943 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
1944 update_stats(ioaddr, dev);
1945 /* HACK: Disable statistics as an interrupt source. */
1946 /* This occurs when we have the wrong media type! */
1947 if (DoneDidThat == 0 &&
1948 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1949 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
1950 "stats as an interrupt source.\n", dev->name);
1952 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1953 vp->intr_enable &= ~StatsFull;
1958 if (status & IntReq) { /* Restore all interrupt sources. */
1959 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1960 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1962 if (status & HostError) {
1965 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
1966 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
1967 dev->name, fifo_diag);
1968 /* Adapter failure requires Tx/Rx reset and reinit. */
1969 if (vp->full_bus_master_tx) {
1970 int bus_status = ioread32(ioaddr + PktStatus);
1971 /* 0x80000000 PCI master abort. */
1972 /* 0x40000000 PCI target abort. */
1974 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
1976 /* In this case, blow the card away */
1977 /* Must not enter D3 or we can't legally issue the reset! */
1978 vortex_down(dev, 0);
1979 issue_and_wait(dev, TotalReset | 0xff);
1980 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
1981 } else if (fifo_diag & 0x0400)
1983 if (fifo_diag & 0x3000) {
1984 /* Reset Rx fifo and upload logic */
1985 issue_and_wait(dev, RxReset|0x07);
1986 /* Set the Rx filter to the current state. */
1988 /* enable 802.1q VLAN tagged frames */
1989 set_8021q_mode(dev, 1);
1990 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
1991 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
1996 issue_and_wait(dev, TxReset|reset_mask);
1997 iowrite16(TxEnable, ioaddr + EL3_CMD);
1998 if (!vp->full_bus_master_tx)
1999 netif_wake_queue(dev);
2004 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2006 struct vortex_private *vp = netdev_priv(dev);
2007 void __iomem *ioaddr = vp->ioaddr;
2009 /* Put out the doubleword header... */
2010 iowrite32(skb->len, ioaddr + TX_FIFO);
2011 if (vp->bus_master) {
2012 /* Set the bus-master controller to transfer the packet. */
2013 int len = (skb->len + 3) & ~3;
2014 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2015 ioaddr + Wn7_MasterAddr);
2016 iowrite16(len, ioaddr + Wn7_MasterLen);
2018 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2019 /* netif_wake_queue() will be called at the DMADone interrupt. */
2021 /* ... and the packet rounded to a doubleword. */
2022 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2023 dev_kfree_skb (skb);
2024 if (ioread16(ioaddr + TxFree) > 1536) {
2025 netif_start_queue (dev); /* AKPM: redundant? */
2027 /* Interrupt us when the FIFO has room for max-sized packet. */
2028 netif_stop_queue(dev);
2029 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2033 dev->trans_start = jiffies;
2035 /* Clear the Tx status stack. */
2040 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2041 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2042 if (vortex_debug > 2)
2043 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2044 dev->name, tx_status);
2045 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2046 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2047 if (tx_status & 0x30) {
2048 issue_and_wait(dev, TxReset);
2050 iowrite16(TxEnable, ioaddr + EL3_CMD);
2052 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2059 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2061 struct vortex_private *vp = netdev_priv(dev);
2062 void __iomem *ioaddr = vp->ioaddr;
2063 /* Calculate the next Tx descriptor entry. */
2064 int entry = vp->cur_tx % TX_RING_SIZE;
2065 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2066 unsigned long flags;
2068 if (vortex_debug > 6) {
2069 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2070 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2071 dev->name, vp->cur_tx);
2074 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2075 if (vortex_debug > 0)
2076 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2078 netif_stop_queue(dev);
2082 vp->tx_skbuff[entry] = skb;
2084 vp->tx_ring[entry].next = 0;
2086 if (skb->ip_summed != CHECKSUM_PARTIAL)
2087 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2089 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2091 if (!skb_shinfo(skb)->nr_frags) {
2092 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2093 skb->len, PCI_DMA_TODEVICE));
2094 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2098 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2099 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2100 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2103 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2105 vp->tx_ring[entry].frag[i+1].addr =
2106 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2107 (void*)page_address(frag->page) + frag->page_offset,
2108 frag->size, PCI_DMA_TODEVICE));
2110 if (i == skb_shinfo(skb)->nr_frags-1)
2111 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2113 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2117 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2118 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2119 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2122 spin_lock_irqsave(&vp->lock, flags);
2123 /* Wait for the stall to complete. */
2124 issue_and_wait(dev, DownStall);
2125 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2126 if (ioread32(ioaddr + DownListPtr) == 0) {
2127 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2128 vp->queued_packet++;
2132 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2133 netif_stop_queue (dev);
2134 } else { /* Clear previous interrupt enable. */
2135 #if defined(tx_interrupt_mitigation)
2136 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2137 * were selected, this would corrupt DN_COMPLETE. No?
2139 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2142 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2143 spin_unlock_irqrestore(&vp->lock, flags);
2144 dev->trans_start = jiffies;
2148 /* The interrupt handler does all of the Rx thread work and cleans up
2149 after the Tx thread. */
2152 * This is the ISR for the vortex series chips.
2153 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2157 vortex_interrupt(int irq, void *dev_id)
2159 struct net_device *dev = dev_id;
2160 struct vortex_private *vp = netdev_priv(dev);
2161 void __iomem *ioaddr;
2163 int work_done = max_interrupt_work;
2166 ioaddr = vp->ioaddr;
2167 spin_lock(&vp->lock);
2169 status = ioread16(ioaddr + EL3_STATUS);
2171 if (vortex_debug > 6)
2172 printk("vortex_interrupt(). status=0x%4x\n", status);
2174 if ((status & IntLatch) == 0)
2175 goto handler_exit; /* No interrupt: shared IRQs cause this */
2178 if (status & IntReq) {
2179 status |= vp->deferred;
2183 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2186 if (vortex_debug > 4)
2187 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2188 dev->name, status, ioread8(ioaddr + Timer));
2191 if (vortex_debug > 5)
2192 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2194 if (status & RxComplete)
2197 if (status & TxAvailable) {
2198 if (vortex_debug > 5)
2199 printk(KERN_DEBUG " TX room bit was handled.\n");
2200 /* There's room in the FIFO for a full-sized packet. */
2201 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2202 netif_wake_queue (dev);
2205 if (status & DMADone) {
2206 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2207 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2208 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2209 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2210 if (ioread16(ioaddr + TxFree) > 1536) {
2212 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2213 * insufficient FIFO room, the TxAvailable test will succeed and call
2214 * netif_wake_queue()
2216 netif_wake_queue(dev);
2217 } else { /* Interrupt when FIFO has room for max-sized packet. */
2218 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2219 netif_stop_queue(dev);
2223 /* Check for all uncommon interrupts at once. */
2224 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2225 if (status == 0xffff)
2227 vortex_error(dev, status);
2230 if (--work_done < 0) {
2231 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2232 "%4.4x.\n", dev->name, status);
2233 /* Disable all pending interrupts. */
2235 vp->deferred |= status;
2236 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2238 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2239 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2240 /* The timer will reenable interrupts. */
2241 mod_timer(&vp->timer, jiffies + 1*HZ);
2244 /* Acknowledge the IRQ. */
2245 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2246 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2248 if (vortex_debug > 4)
2249 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2252 spin_unlock(&vp->lock);
2253 return IRQ_RETVAL(handled);
2257 * This is the ISR for the boomerang series chips.
2258 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2262 boomerang_interrupt(int irq, void *dev_id)
2264 struct net_device *dev = dev_id;
2265 struct vortex_private *vp = netdev_priv(dev);
2266 void __iomem *ioaddr;
2268 int work_done = max_interrupt_work;
2270 ioaddr = vp->ioaddr;
2273 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2274 * and boomerang_start_xmit
2276 spin_lock(&vp->lock);
2278 status = ioread16(ioaddr + EL3_STATUS);
2280 if (vortex_debug > 6)
2281 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2283 if ((status & IntLatch) == 0)
2284 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2286 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2287 if (vortex_debug > 1)
2288 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2292 if (status & IntReq) {
2293 status |= vp->deferred;
2297 if (vortex_debug > 4)
2298 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2299 dev->name, status, ioread8(ioaddr + Timer));
2301 if (vortex_debug > 5)
2302 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2304 if (status & UpComplete) {
2305 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2306 if (vortex_debug > 5)
2307 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2311 if (status & DownComplete) {
2312 unsigned int dirty_tx = vp->dirty_tx;
2314 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2315 while (vp->cur_tx - dirty_tx > 0) {
2316 int entry = dirty_tx % TX_RING_SIZE;
2317 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2318 if (ioread32(ioaddr + DownListPtr) ==
2319 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2320 break; /* It still hasn't been processed. */
2322 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2323 break; /* It still hasn't been processed. */
2326 if (vp->tx_skbuff[entry]) {
2327 struct sk_buff *skb = vp->tx_skbuff[entry];
2330 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2331 pci_unmap_single(VORTEX_PCI(vp),
2332 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2333 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2336 pci_unmap_single(VORTEX_PCI(vp),
2337 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2339 dev_kfree_skb_irq(skb);
2340 vp->tx_skbuff[entry] = NULL;
2342 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2344 /* vp->stats.tx_packets++; Counted below. */
2347 vp->dirty_tx = dirty_tx;
2348 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2349 if (vortex_debug > 6)
2350 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2351 netif_wake_queue (dev);
2355 /* Check for all uncommon interrupts at once. */
2356 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2357 vortex_error(dev, status);
2359 if (--work_done < 0) {
2360 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2361 "%4.4x.\n", dev->name, status);
2362 /* Disable all pending interrupts. */
2364 vp->deferred |= status;
2365 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2367 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2368 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2369 /* The timer will reenable interrupts. */
2370 mod_timer(&vp->timer, jiffies + 1*HZ);
2373 /* Acknowledge the IRQ. */
2374 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2375 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2376 iowrite32(0x8000, vp->cb_fn_base + 4);
2378 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2380 if (vortex_debug > 4)
2381 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2384 spin_unlock(&vp->lock);
2388 static int vortex_rx(struct net_device *dev)
2390 struct vortex_private *vp = netdev_priv(dev);
2391 void __iomem *ioaddr = vp->ioaddr;
2395 if (vortex_debug > 5)
2396 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2397 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2398 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2399 if (rx_status & 0x4000) { /* Error, update stats. */
2400 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2401 if (vortex_debug > 2)
2402 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2403 vp->stats.rx_errors++;
2404 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2405 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2406 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2407 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2408 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2410 /* The packet length: up to 4.5K!. */
2411 int pkt_len = rx_status & 0x1fff;
2412 struct sk_buff *skb;
2414 skb = dev_alloc_skb(pkt_len + 5);
2415 if (vortex_debug > 4)
2416 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2417 pkt_len, rx_status);
2420 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2421 /* 'skb_put()' points to the start of sk_buff data area. */
2422 if (vp->bus_master &&
2423 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2424 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2425 pkt_len, PCI_DMA_FROMDEVICE);
2426 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2427 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2428 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2429 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2431 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2433 ioread32_rep(ioaddr + RX_FIFO,
2434 skb_put(skb, pkt_len),
2435 (pkt_len + 3) >> 2);
2437 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2438 skb->protocol = eth_type_trans(skb, dev);
2440 dev->last_rx = jiffies;
2441 vp->stats.rx_packets++;
2442 /* Wait a limited time to go to next packet. */
2443 for (i = 200; i >= 0; i--)
2444 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2447 } else if (vortex_debug > 0)
2448 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2449 "size %d.\n", dev->name, pkt_len);
2450 vp->stats.rx_dropped++;
2452 issue_and_wait(dev, RxDiscard);
2459 boomerang_rx(struct net_device *dev)
2461 struct vortex_private *vp = netdev_priv(dev);
2462 int entry = vp->cur_rx % RX_RING_SIZE;
2463 void __iomem *ioaddr = vp->ioaddr;
2465 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2467 if (vortex_debug > 5)
2468 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2470 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2471 if (--rx_work_limit < 0)
2473 if (rx_status & RxDError) { /* Error, update stats. */
2474 unsigned char rx_error = rx_status >> 16;
2475 if (vortex_debug > 2)
2476 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2477 vp->stats.rx_errors++;
2478 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2479 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2480 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2481 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2482 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2484 /* The packet length: up to 4.5K!. */
2485 int pkt_len = rx_status & 0x1fff;
2486 struct sk_buff *skb;
2487 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2489 if (vortex_debug > 4)
2490 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2491 pkt_len, rx_status);
2493 /* Check if the packet is long enough to just accept without
2494 copying to a properly sized skbuff. */
2495 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2497 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2498 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2499 /* 'skb_put()' points to the start of sk_buff data area. */
2500 memcpy(skb_put(skb, pkt_len),
2501 vp->rx_skbuff[entry]->data,
2503 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2506 /* Pass up the skbuff already on the Rx ring. */
2507 skb = vp->rx_skbuff[entry];
2508 vp->rx_skbuff[entry] = NULL;
2509 skb_put(skb, pkt_len);
2510 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2513 skb->protocol = eth_type_trans(skb, dev);
2514 { /* Use hardware checksum info. */
2515 int csum_bits = rx_status & 0xee000000;
2517 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2518 csum_bits == (IPChksumValid | UDPChksumValid))) {
2519 skb->ip_summed = CHECKSUM_UNNECESSARY;
2524 dev->last_rx = jiffies;
2525 vp->stats.rx_packets++;
2527 entry = (++vp->cur_rx) % RX_RING_SIZE;
2529 /* Refill the Rx ring buffers. */
2530 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2531 struct sk_buff *skb;
2532 entry = vp->dirty_rx % RX_RING_SIZE;
2533 if (vp->rx_skbuff[entry] == NULL) {
2534 skb = dev_alloc_skb(PKT_BUF_SZ);
2536 static unsigned long last_jif;
2537 if (time_after(jiffies, last_jif + 10 * HZ)) {
2538 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2541 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2542 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2543 break; /* Bad news! */
2545 skb->dev = dev; /* Mark as being used by this device. */
2546 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2547 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2548 vp->rx_skbuff[entry] = skb;
2550 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2551 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2557 * If we've hit a total OOM refilling the Rx ring we poll once a second
2558 * for some memory. Otherwise there is no way to restart the rx process.
2561 rx_oom_timer(unsigned long arg)
2563 struct net_device *dev = (struct net_device *)arg;
2564 struct vortex_private *vp = netdev_priv(dev);
2566 spin_lock_irq(&vp->lock);
2567 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2569 if (vortex_debug > 1) {
2570 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2571 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2573 spin_unlock_irq(&vp->lock);
2577 vortex_down(struct net_device *dev, int final_down)
2579 struct vortex_private *vp = netdev_priv(dev);
2580 void __iomem *ioaddr = vp->ioaddr;
2582 netif_stop_queue (dev);
2584 del_timer_sync(&vp->rx_oom_timer);
2585 del_timer_sync(&vp->timer);
2587 /* Turn off statistics ASAP. We update vp->stats below. */
2588 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2590 /* Disable the receiver and transmitter. */
2591 iowrite16(RxDisable, ioaddr + EL3_CMD);
2592 iowrite16(TxDisable, ioaddr + EL3_CMD);
2594 /* Disable receiving 802.1q tagged frames */
2595 set_8021q_mode(dev, 0);
2597 if (dev->if_port == XCVR_10base2)
2598 /* Turn off thinnet power. Green! */
2599 iowrite16(StopCoax, ioaddr + EL3_CMD);
2601 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2603 update_stats(ioaddr, dev);
2604 if (vp->full_bus_master_rx)
2605 iowrite32(0, ioaddr + UpListPtr);
2606 if (vp->full_bus_master_tx)
2607 iowrite32(0, ioaddr + DownListPtr);
2609 if (final_down && VORTEX_PCI(vp)) {
2610 vp->pm_state_valid = 1;
2611 pci_save_state(VORTEX_PCI(vp));
2617 vortex_close(struct net_device *dev)
2619 struct vortex_private *vp = netdev_priv(dev);
2620 void __iomem *ioaddr = vp->ioaddr;
2623 if (netif_device_present(dev))
2624 vortex_down(dev, 1);
2626 if (vortex_debug > 1) {
2627 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2628 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2629 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2630 " tx_queued %d Rx pre-checksummed %d.\n",
2631 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2635 if (vp->rx_csumhits &&
2636 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2637 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2638 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2639 "not using them!\n", dev->name);
2643 free_irq(dev->irq, dev);
2645 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2646 for (i = 0; i < RX_RING_SIZE; i++)
2647 if (vp->rx_skbuff[i]) {
2648 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2649 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2650 dev_kfree_skb(vp->rx_skbuff[i]);
2651 vp->rx_skbuff[i] = NULL;
2654 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2655 for (i = 0; i < TX_RING_SIZE; i++) {
2656 if (vp->tx_skbuff[i]) {
2657 struct sk_buff *skb = vp->tx_skbuff[i];
2661 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2662 pci_unmap_single(VORTEX_PCI(vp),
2663 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2664 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2667 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2670 vp->tx_skbuff[i] = NULL;
2679 dump_tx_ring(struct net_device *dev)
2681 if (vortex_debug > 0) {
2682 struct vortex_private *vp = netdev_priv(dev);
2683 void __iomem *ioaddr = vp->ioaddr;
2685 if (vp->full_bus_master_tx) {
2687 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2689 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2690 vp->full_bus_master_tx,
2691 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2692 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2693 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2694 ioread32(ioaddr + DownListPtr),
2695 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2696 issue_and_wait(dev, DownStall);
2697 for (i = 0; i < TX_RING_SIZE; i++) {
2698 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2701 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2703 le32_to_cpu(vp->tx_ring[i].length),
2705 le32_to_cpu(vp->tx_ring[i].status));
2708 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2713 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2715 struct vortex_private *vp = netdev_priv(dev);
2716 void __iomem *ioaddr = vp->ioaddr;
2717 unsigned long flags;
2719 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2720 spin_lock_irqsave (&vp->lock, flags);
2721 update_stats(ioaddr, dev);
2722 spin_unlock_irqrestore (&vp->lock, flags);
2727 /* Update statistics.
2728 Unlike with the EL3 we need not worry about interrupts changing
2729 the window setting from underneath us, but we must still guard
2730 against a race condition with a StatsUpdate interrupt updating the
2731 table. This is done by checking that the ASM (!) code generated uses
2732 atomic updates with '+='.
2734 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2736 struct vortex_private *vp = netdev_priv(dev);
2737 int old_window = ioread16(ioaddr + EL3_CMD);
2739 if (old_window == 0xffff) /* Chip suspended or ejected. */
2741 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2742 /* Switch to the stats window, and read everything. */
2744 vp->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2745 vp->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2746 vp->stats.tx_window_errors += ioread8(ioaddr + 4);
2747 vp->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2748 vp->stats.tx_packets += ioread8(ioaddr + 6);
2749 vp->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2750 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2751 /* Don't bother with register 9, an extension of registers 6&7.
2752 If we do use the 6&7 values the atomic update assumption above
2754 vp->stats.rx_bytes += ioread16(ioaddr + 10);
2755 vp->stats.tx_bytes += ioread16(ioaddr + 12);
2756 /* Extra stats for get_ethtool_stats() */
2757 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2758 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2759 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2761 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2763 vp->stats.collisions = vp->xstats.tx_multiple_collisions
2764 + vp->xstats.tx_single_collisions
2765 + vp->xstats.tx_max_collisions;
2768 u8 up = ioread8(ioaddr + 13);
2769 vp->stats.rx_bytes += (up & 0x0f) << 16;
2770 vp->stats.tx_bytes += (up & 0xf0) << 12;
2773 EL3WINDOW(old_window >> 13);
2777 static int vortex_nway_reset(struct net_device *dev)
2779 struct vortex_private *vp = netdev_priv(dev);
2780 void __iomem *ioaddr = vp->ioaddr;
2781 unsigned long flags;
2784 spin_lock_irqsave(&vp->lock, flags);
2786 rc = mii_nway_restart(&vp->mii);
2787 spin_unlock_irqrestore(&vp->lock, flags);
2791 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2793 struct vortex_private *vp = netdev_priv(dev);
2794 void __iomem *ioaddr = vp->ioaddr;
2795 unsigned long flags;
2798 spin_lock_irqsave(&vp->lock, flags);
2800 rc = mii_ethtool_gset(&vp->mii, cmd);
2801 spin_unlock_irqrestore(&vp->lock, flags);
2805 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2807 struct vortex_private *vp = netdev_priv(dev);
2808 void __iomem *ioaddr = vp->ioaddr;
2809 unsigned long flags;
2812 spin_lock_irqsave(&vp->lock, flags);
2814 rc = mii_ethtool_sset(&vp->mii, cmd);
2815 spin_unlock_irqrestore(&vp->lock, flags);
2819 static u32 vortex_get_msglevel(struct net_device *dev)
2821 return vortex_debug;
2824 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2829 static int vortex_get_stats_count(struct net_device *dev)
2831 return VORTEX_NUM_STATS;
2834 static void vortex_get_ethtool_stats(struct net_device *dev,
2835 struct ethtool_stats *stats, u64 *data)
2837 struct vortex_private *vp = netdev_priv(dev);
2838 void __iomem *ioaddr = vp->ioaddr;
2839 unsigned long flags;
2841 spin_lock_irqsave(&vp->lock, flags);
2842 update_stats(ioaddr, dev);
2843 spin_unlock_irqrestore(&vp->lock, flags);
2845 data[0] = vp->xstats.tx_deferred;
2846 data[1] = vp->xstats.tx_max_collisions;
2847 data[2] = vp->xstats.tx_multiple_collisions;
2848 data[3] = vp->xstats.tx_single_collisions;
2849 data[4] = vp->xstats.rx_bad_ssd;
2853 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2855 switch (stringset) {
2857 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys));
2865 static void vortex_get_drvinfo(struct net_device *dev,
2866 struct ethtool_drvinfo *info)
2868 struct vortex_private *vp = netdev_priv(dev);
2870 strcpy(info->driver, DRV_NAME);
2871 if (VORTEX_PCI(vp)) {
2872 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2874 if (VORTEX_EISA(vp))
2875 sprintf(info->bus_info, vp->gendev->bus_id);
2877 sprintf(info->bus_info, "EISA 0x%lx %d",
2878 dev->base_addr, dev->irq);
2882 static const struct ethtool_ops vortex_ethtool_ops = {
2883 .get_drvinfo = vortex_get_drvinfo,
2884 .get_strings = vortex_get_strings,
2885 .get_msglevel = vortex_get_msglevel,
2886 .set_msglevel = vortex_set_msglevel,
2887 .get_ethtool_stats = vortex_get_ethtool_stats,
2888 .get_stats_count = vortex_get_stats_count,
2889 .get_settings = vortex_get_settings,
2890 .set_settings = vortex_set_settings,
2891 .get_link = ethtool_op_get_link,
2892 .nway_reset = vortex_nway_reset,
2893 .get_perm_addr = ethtool_op_get_perm_addr,
2898 * Must power the device up to do MDIO operations
2900 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2903 struct vortex_private *vp = netdev_priv(dev);
2904 void __iomem *ioaddr = vp->ioaddr;
2905 unsigned long flags;
2909 state = VORTEX_PCI(vp)->current_state;
2911 /* The kernel core really should have pci_get_power_state() */
2914 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2915 spin_lock_irqsave(&vp->lock, flags);
2917 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2918 spin_unlock_irqrestore(&vp->lock, flags);
2920 pci_set_power_state(VORTEX_PCI(vp), state);
2927 /* Pre-Cyclone chips have no documented multicast filter, so the only
2928 multicast setting is to receive all multicast frames. At least
2929 the chip has a very clean way to set the mode, unlike many others. */
2930 static void set_rx_mode(struct net_device *dev)
2932 struct vortex_private *vp = netdev_priv(dev);
2933 void __iomem *ioaddr = vp->ioaddr;
2936 if (dev->flags & IFF_PROMISC) {
2937 if (vortex_debug > 3)
2938 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
2939 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2940 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
2941 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2943 new_mode = SetRxFilter | RxStation | RxBroadcast;
2945 iowrite16(new_mode, ioaddr + EL3_CMD);
2948 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2949 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2950 Note that this must be done after each RxReset due to some backwards
2951 compatibility logic in the Cyclone and Tornado ASICs */
2953 /* The Ethernet Type used for 802.1q tagged frames */
2954 #define VLAN_ETHER_TYPE 0x8100
2956 static void set_8021q_mode(struct net_device *dev, int enable)
2958 struct vortex_private *vp = netdev_priv(dev);
2959 void __iomem *ioaddr = vp->ioaddr;
2960 int old_window = ioread16(ioaddr + EL3_CMD);
2963 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2964 /* cyclone and tornado chipsets can recognize 802.1q
2965 * tagged frames and treat them correctly */
2967 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
2969 max_pkt_size += 4; /* 802.1Q VLAN tag */
2972 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
2974 /* set VlanEtherType to let the hardware checksumming
2975 treat tagged frames correctly */
2977 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
2979 /* on older cards we have to enable large frames */
2981 vp->large_frames = dev->mtu > 1500 || enable;
2984 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
2985 if (vp->large_frames)
2989 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
2992 EL3WINDOW(old_window);
2996 static void set_8021q_mode(struct net_device *dev, int enable)
3003 /* MII transceiver control section.
3004 Read and write the MII registers using software-generated serial
3005 MDIO protocol. See the MII specifications or DP83840A data sheet
3008 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3009 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3010 "overclocking" issues. */
3011 #define mdio_delay() ioread32(mdio_addr)
3013 #define MDIO_SHIFT_CLK 0x01
3014 #define MDIO_DIR_WRITE 0x04
3015 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3016 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3017 #define MDIO_DATA_READ 0x02
3018 #define MDIO_ENB_IN 0x00
3020 /* Generate the preamble required for initial synchronization and
3021 a few older transceivers. */
3022 static void mdio_sync(void __iomem *ioaddr, int bits)
3024 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3026 /* Establish sync by sending at least 32 logic ones. */
3027 while (-- bits >= 0) {
3028 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3030 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3035 static int mdio_read(struct net_device *dev, int phy_id, int location)
3038 struct vortex_private *vp = netdev_priv(dev);
3039 void __iomem *ioaddr = vp->ioaddr;
3040 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3041 unsigned int retval = 0;
3042 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3044 if (mii_preamble_required)
3045 mdio_sync(ioaddr, 32);
3047 /* Shift the read command bits out. */
3048 for (i = 14; i >= 0; i--) {
3049 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3050 iowrite16(dataval, mdio_addr);
3052 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3055 /* Read the two transition, 16 data, and wire-idle bits. */
3056 for (i = 19; i > 0; i--) {
3057 iowrite16(MDIO_ENB_IN, mdio_addr);
3059 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3060 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3063 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3066 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3068 struct vortex_private *vp = netdev_priv(dev);
3069 void __iomem *ioaddr = vp->ioaddr;
3070 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3071 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3074 if (mii_preamble_required)
3075 mdio_sync(ioaddr, 32);
3077 /* Shift the command bits out. */
3078 for (i = 31; i >= 0; i--) {
3079 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3080 iowrite16(dataval, mdio_addr);
3082 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3085 /* Leave the interface idle. */
3086 for (i = 1; i >= 0; i--) {
3087 iowrite16(MDIO_ENB_IN, mdio_addr);
3089 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3095 /* ACPI: Advanced Configuration and Power Interface. */
3096 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3097 static void acpi_set_WOL(struct net_device *dev)
3099 struct vortex_private *vp = netdev_priv(dev);
3100 void __iomem *ioaddr = vp->ioaddr;
3102 if (vp->enable_wol) {
3103 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3105 iowrite16(2, ioaddr + 0x0c);
3106 /* The RxFilter must accept the WOL frames. */
3107 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3108 iowrite16(RxEnable, ioaddr + EL3_CMD);
3110 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3112 /* Change the power state to D3; RxEnable doesn't take effect. */
3113 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3118 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3120 struct net_device *dev = pci_get_drvdata(pdev);
3121 struct vortex_private *vp;
3124 printk("vortex_remove_one called for Compaq device!\n");
3128 vp = netdev_priv(dev);
3131 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3133 unregister_netdev(dev);
3135 if (VORTEX_PCI(vp)) {
3136 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3137 if (vp->pm_state_valid)
3138 pci_restore_state(VORTEX_PCI(vp));
3139 pci_disable_device(VORTEX_PCI(vp));
3141 /* Should really use issue_and_wait() here */
3142 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3143 vp->ioaddr + EL3_CMD);
3145 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3147 pci_free_consistent(pdev,
3148 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3149 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3152 if (vp->must_free_region)
3153 release_region(dev->base_addr, vp->io_size);
3158 static struct pci_driver vortex_driver = {
3160 .probe = vortex_init_one,
3161 .remove = __devexit_p(vortex_remove_one),
3162 .id_table = vortex_pci_tbl,
3164 .suspend = vortex_suspend,
3165 .resume = vortex_resume,
3170 static int vortex_have_pci;
3171 static int vortex_have_eisa;
3174 static int __init vortex_init(void)
3176 int pci_rc, eisa_rc;
3178 pci_rc = pci_register_driver(&vortex_driver);
3179 eisa_rc = vortex_eisa_init();
3182 vortex_have_pci = 1;
3184 vortex_have_eisa = 1;
3186 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3190 static void __exit vortex_eisa_cleanup(void)
3192 struct vortex_private *vp;
3193 void __iomem *ioaddr;
3196 /* Take care of the EISA devices */
3197 eisa_driver_unregister(&vortex_eisa_driver);
3200 if (compaq_net_device) {
3201 vp = compaq_net_device->priv;
3202 ioaddr = ioport_map(compaq_net_device->base_addr,
3205 unregister_netdev(compaq_net_device);
3206 iowrite16(TotalReset, ioaddr + EL3_CMD);
3207 release_region(compaq_net_device->base_addr,
3210 free_netdev(compaq_net_device);
3215 static void __exit vortex_cleanup(void)
3217 if (vortex_have_pci)
3218 pci_unregister_driver(&vortex_driver);
3219 if (vortex_have_eisa)
3220 vortex_eisa_cleanup();
3224 module_init(vortex_init);
3225 module_exit(vortex_cleanup);