]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_ethtool.c
82d2c78e16964f579022bd361f9aa6628f4d29bc
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
41 extern void e1000_reset(struct e1000_adapter *adapter);
42 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
43 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
44 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
46 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
47 extern void e1000_update_stats(struct e1000_adapter *adapter);
48
49
50 struct e1000_stats {
51         char stat_string[ETH_GSTRING_LEN];
52         int sizeof_stat;
53         int stat_offset;
54 };
55
56 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
57                       offsetof(struct e1000_adapter, m)
58 static const struct e1000_stats e1000_gstrings_stats[] = {
59         { "rx_packets", E1000_STAT(stats.gprc) },
60         { "tx_packets", E1000_STAT(stats.gptc) },
61         { "rx_bytes", E1000_STAT(stats.gorcl) },
62         { "tx_bytes", E1000_STAT(stats.gotcl) },
63         { "rx_broadcast", E1000_STAT(stats.bprc) },
64         { "tx_broadcast", E1000_STAT(stats.bptc) },
65         { "rx_multicast", E1000_STAT(stats.mprc) },
66         { "tx_multicast", E1000_STAT(stats.mptc) },
67         { "rx_errors", E1000_STAT(stats.rxerrc) },
68         { "tx_errors", E1000_STAT(stats.txerrc) },
69         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
70         { "multicast", E1000_STAT(stats.mprc) },
71         { "collisions", E1000_STAT(stats.colc) },
72         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
73         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
74         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
75         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
76         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
77         { "rx_missed_errors", E1000_STAT(stats.mpc) },
78         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
79         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
80         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
81         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
82         { "tx_window_errors", E1000_STAT(stats.latecol) },
83         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
84         { "tx_deferred_ok", E1000_STAT(stats.dc) },
85         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
86         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
87         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
88         { "rx_long_length_errors", E1000_STAT(stats.roc) },
89         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
90         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
91         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
92         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
93         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
94         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
95         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
96         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
97         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
98         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
99         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
100         { "rx_header_split", E1000_STAT(rx_hdr_split) },
101         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
102 };
103
104 #define E1000_QUEUE_STATS_LEN 0
105 #define E1000_GLOBAL_STATS_LEN  \
106         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
114
115 static int
116 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
117 {
118         struct e1000_adapter *adapter = netdev_priv(netdev);
119         struct e1000_hw *hw = &adapter->hw;
120
121         if (hw->media_type == e1000_media_type_copper) {
122
123                 ecmd->supported = (SUPPORTED_10baseT_Half |
124                                    SUPPORTED_10baseT_Full |
125                                    SUPPORTED_100baseT_Half |
126                                    SUPPORTED_100baseT_Full |
127                                    SUPPORTED_1000baseT_Full|
128                                    SUPPORTED_Autoneg |
129                                    SUPPORTED_TP);
130                 if (hw->phy_type == e1000_phy_ife)
131                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
132                 ecmd->advertising = ADVERTISED_TP;
133
134                 if (hw->autoneg == 1) {
135                         ecmd->advertising |= ADVERTISED_Autoneg;
136                         /* the e1000 autoneg seems to match ethtool nicely */
137                         ecmd->advertising |= hw->autoneg_advertised;
138                 }
139
140                 ecmd->port = PORT_TP;
141                 ecmd->phy_address = hw->phy_addr;
142
143                 if (hw->mac_type == e1000_82543)
144                         ecmd->transceiver = XCVR_EXTERNAL;
145                 else
146                         ecmd->transceiver = XCVR_INTERNAL;
147
148         } else {
149                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
150                                      SUPPORTED_FIBRE |
151                                      SUPPORTED_Autoneg);
152
153                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
154                                      ADVERTISED_FIBRE |
155                                      ADVERTISED_Autoneg);
156
157                 ecmd->port = PORT_FIBRE;
158
159                 if (hw->mac_type >= e1000_82545)
160                         ecmd->transceiver = XCVR_INTERNAL;
161                 else
162                         ecmd->transceiver = XCVR_EXTERNAL;
163         }
164
165         if (netif_carrier_ok(adapter->netdev)) {
166
167                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
168                                                    &adapter->link_duplex);
169                 ecmd->speed = adapter->link_speed;
170
171                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
172                  *          and HALF_DUPLEX != DUPLEX_HALF */
173
174                 if (adapter->link_duplex == FULL_DUPLEX)
175                         ecmd->duplex = DUPLEX_FULL;
176                 else
177                         ecmd->duplex = DUPLEX_HALF;
178         } else {
179                 ecmd->speed = -1;
180                 ecmd->duplex = -1;
181         }
182
183         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
184                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
185         return 0;
186 }
187
188 static int
189 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
190 {
191         struct e1000_adapter *adapter = netdev_priv(netdev);
192         struct e1000_hw *hw = &adapter->hw;
193
194         /* When SoL/IDER sessions are active, autoneg/speed/duplex
195          * cannot be changed */
196         if (e1000_check_phy_reset_block(hw)) {
197                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
198                         "when SoL/IDER is active.\n");
199                 return -EINVAL;
200         }
201
202         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
203                 msleep(1);
204
205         if (ecmd->autoneg == AUTONEG_ENABLE) {
206                 hw->autoneg = 1;
207                 if (hw->media_type == e1000_media_type_fiber)
208                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
209                                      ADVERTISED_FIBRE |
210                                      ADVERTISED_Autoneg;
211                 else
212                         hw->autoneg_advertised = ecmd->advertising |
213                                                  ADVERTISED_TP |
214                                                  ADVERTISED_Autoneg;
215                 ecmd->advertising = hw->autoneg_advertised;
216         } else
217                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
218                         clear_bit(__E1000_RESETTING, &adapter->flags);
219                         return -EINVAL;
220                 }
221
222         /* reset the link */
223
224         if (netif_running(adapter->netdev)) {
225                 e1000_down(adapter);
226                 e1000_up(adapter);
227         } else
228                 e1000_reset(adapter);
229
230         clear_bit(__E1000_RESETTING, &adapter->flags);
231         return 0;
232 }
233
234 static void
235 e1000_get_pauseparam(struct net_device *netdev,
236                      struct ethtool_pauseparam *pause)
237 {
238         struct e1000_adapter *adapter = netdev_priv(netdev);
239         struct e1000_hw *hw = &adapter->hw;
240
241         pause->autoneg =
242                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
243
244         if (hw->fc == E1000_FC_RX_PAUSE)
245                 pause->rx_pause = 1;
246         else if (hw->fc == E1000_FC_TX_PAUSE)
247                 pause->tx_pause = 1;
248         else if (hw->fc == E1000_FC_FULL) {
249                 pause->rx_pause = 1;
250                 pause->tx_pause = 1;
251         }
252 }
253
254 static int
255 e1000_set_pauseparam(struct net_device *netdev,
256                      struct ethtool_pauseparam *pause)
257 {
258         struct e1000_adapter *adapter = netdev_priv(netdev);
259         struct e1000_hw *hw = &adapter->hw;
260         int retval = 0;
261
262         adapter->fc_autoneg = pause->autoneg;
263
264         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
265                 msleep(1);
266
267         if (pause->rx_pause && pause->tx_pause)
268                 hw->fc = E1000_FC_FULL;
269         else if (pause->rx_pause && !pause->tx_pause)
270                 hw->fc = E1000_FC_RX_PAUSE;
271         else if (!pause->rx_pause && pause->tx_pause)
272                 hw->fc = E1000_FC_TX_PAUSE;
273         else if (!pause->rx_pause && !pause->tx_pause)
274                 hw->fc = E1000_FC_NONE;
275
276         hw->original_fc = hw->fc;
277
278         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
279                 if (netif_running(adapter->netdev)) {
280                         e1000_down(adapter);
281                         e1000_up(adapter);
282                 } else
283                         e1000_reset(adapter);
284         } else
285                 retval = ((hw->media_type == e1000_media_type_fiber) ?
286                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
287
288         clear_bit(__E1000_RESETTING, &adapter->flags);
289         return retval;
290 }
291
292 static uint32_t
293 e1000_get_rx_csum(struct net_device *netdev)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         return adapter->rx_csum;
297 }
298
299 static int
300 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
301 {
302         struct e1000_adapter *adapter = netdev_priv(netdev);
303         adapter->rx_csum = data;
304
305         if (netif_running(netdev))
306                 e1000_reinit_locked(adapter);
307         else
308                 e1000_reset(adapter);
309         return 0;
310 }
311
312 static uint32_t
313 e1000_get_tx_csum(struct net_device *netdev)
314 {
315         return (netdev->features & NETIF_F_HW_CSUM) != 0;
316 }
317
318 static int
319 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322
323         if (adapter->hw.mac_type < e1000_82543) {
324                 if (!data)
325                         return -EINVAL;
326                 return 0;
327         }
328
329         if (data)
330                 netdev->features |= NETIF_F_HW_CSUM;
331         else
332                 netdev->features &= ~NETIF_F_HW_CSUM;
333
334         return 0;
335 }
336
337 #ifdef NETIF_F_TSO
338 static int
339 e1000_set_tso(struct net_device *netdev, uint32_t data)
340 {
341         struct e1000_adapter *adapter = netdev_priv(netdev);
342         if ((adapter->hw.mac_type < e1000_82544) ||
343             (adapter->hw.mac_type == e1000_82547))
344                 return data ? -EINVAL : 0;
345
346         if (data)
347                 netdev->features |= NETIF_F_TSO;
348         else
349                 netdev->features &= ~NETIF_F_TSO;
350
351         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
352         adapter->tso_force = TRUE;
353         return 0;
354 }
355 #endif /* NETIF_F_TSO */
356
357 static uint32_t
358 e1000_get_msglevel(struct net_device *netdev)
359 {
360         struct e1000_adapter *adapter = netdev_priv(netdev);
361         return adapter->msg_enable;
362 }
363
364 static void
365 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
366 {
367         struct e1000_adapter *adapter = netdev_priv(netdev);
368         adapter->msg_enable = data;
369 }
370
371 static int
372 e1000_get_regs_len(struct net_device *netdev)
373 {
374 #define E1000_REGS_LEN 32
375         return E1000_REGS_LEN * sizeof(uint32_t);
376 }
377
378 static void
379 e1000_get_regs(struct net_device *netdev,
380                struct ethtool_regs *regs, void *p)
381 {
382         struct e1000_adapter *adapter = netdev_priv(netdev);
383         struct e1000_hw *hw = &adapter->hw;
384         uint32_t *regs_buff = p;
385         uint16_t phy_data;
386
387         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
388
389         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
390
391         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
392         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
393
394         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
395         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
396         regs_buff[4]  = E1000_READ_REG(hw, RDH);
397         regs_buff[5]  = E1000_READ_REG(hw, RDT);
398         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
399
400         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
401         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
402         regs_buff[9]  = E1000_READ_REG(hw, TDH);
403         regs_buff[10] = E1000_READ_REG(hw, TDT);
404         regs_buff[11] = E1000_READ_REG(hw, TIDV);
405
406         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
407         if (hw->phy_type == e1000_phy_igp) {
408                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
409                                     IGP01E1000_PHY_AGC_A);
410                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
411                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
412                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
413                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
414                                     IGP01E1000_PHY_AGC_B);
415                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
416                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
417                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
418                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
419                                     IGP01E1000_PHY_AGC_C);
420                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
421                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
422                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
423                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
424                                     IGP01E1000_PHY_AGC_D);
425                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
426                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
427                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
428                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
429                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
430                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
431                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
432                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
433                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
434                                     IGP01E1000_PHY_PCS_INIT_REG);
435                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
436                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
437                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
438                 regs_buff[20] = 0; /* polarity correction enabled (always) */
439                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
440                 regs_buff[23] = regs_buff[18]; /* mdix mode */
441                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
442         } else {
443                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
444                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
445                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
446                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
447                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
448                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
449                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
450                 regs_buff[18] = regs_buff[13]; /* cable polarity */
451                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
452                 regs_buff[20] = regs_buff[17]; /* polarity correction */
453                 /* phy receive errors */
454                 regs_buff[22] = adapter->phy_stats.receive_errors;
455                 regs_buff[23] = regs_buff[13]; /* mdix mode */
456         }
457         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
458         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
459         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
460         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
461         if (hw->mac_type >= e1000_82540 &&
462             hw->mac_type < e1000_82571 &&
463             hw->media_type == e1000_media_type_copper) {
464                 regs_buff[26] = E1000_READ_REG(hw, MANC);
465         }
466 }
467
468 static int
469 e1000_get_eeprom_len(struct net_device *netdev)
470 {
471         struct e1000_adapter *adapter = netdev_priv(netdev);
472         return adapter->hw.eeprom.word_size * 2;
473 }
474
475 static int
476 e1000_get_eeprom(struct net_device *netdev,
477                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
478 {
479         struct e1000_adapter *adapter = netdev_priv(netdev);
480         struct e1000_hw *hw = &adapter->hw;
481         uint16_t *eeprom_buff;
482         int first_word, last_word;
483         int ret_val = 0;
484         uint16_t i;
485
486         if (eeprom->len == 0)
487                 return -EINVAL;
488
489         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
490
491         first_word = eeprom->offset >> 1;
492         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
493
494         eeprom_buff = kmalloc(sizeof(uint16_t) *
495                         (last_word - first_word + 1), GFP_KERNEL);
496         if (!eeprom_buff)
497                 return -ENOMEM;
498
499         if (hw->eeprom.type == e1000_eeprom_spi)
500                 ret_val = e1000_read_eeprom(hw, first_word,
501                                             last_word - first_word + 1,
502                                             eeprom_buff);
503         else {
504                 for (i = 0; i < last_word - first_word + 1; i++)
505                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
506                                                         &eeprom_buff[i])))
507                                 break;
508         }
509
510         /* Device's eeprom is always little-endian, word addressable */
511         for (i = 0; i < last_word - first_word + 1; i++)
512                 le16_to_cpus(&eeprom_buff[i]);
513
514         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
515                         eeprom->len);
516         kfree(eeprom_buff);
517
518         return ret_val;
519 }
520
521 static int
522 e1000_set_eeprom(struct net_device *netdev,
523                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
524 {
525         struct e1000_adapter *adapter = netdev_priv(netdev);
526         struct e1000_hw *hw = &adapter->hw;
527         uint16_t *eeprom_buff;
528         void *ptr;
529         int max_len, first_word, last_word, ret_val = 0;
530         uint16_t i;
531
532         if (eeprom->len == 0)
533                 return -EOPNOTSUPP;
534
535         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
536                 return -EFAULT;
537
538         max_len = hw->eeprom.word_size * 2;
539
540         first_word = eeprom->offset >> 1;
541         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
542         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
543         if (!eeprom_buff)
544                 return -ENOMEM;
545
546         ptr = (void *)eeprom_buff;
547
548         if (eeprom->offset & 1) {
549                 /* need read/modify/write of first changed EEPROM word */
550                 /* only the second byte of the word is being modified */
551                 ret_val = e1000_read_eeprom(hw, first_word, 1,
552                                             &eeprom_buff[0]);
553                 ptr++;
554         }
555         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
556                 /* need read/modify/write of last changed EEPROM word */
557                 /* only the first byte of the word is being modified */
558                 ret_val = e1000_read_eeprom(hw, last_word, 1,
559                                   &eeprom_buff[last_word - first_word]);
560         }
561
562         /* Device's eeprom is always little-endian, word addressable */
563         for (i = 0; i < last_word - first_word + 1; i++)
564                 le16_to_cpus(&eeprom_buff[i]);
565
566         memcpy(ptr, bytes, eeprom->len);
567
568         for (i = 0; i < last_word - first_word + 1; i++)
569                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
570
571         ret_val = e1000_write_eeprom(hw, first_word,
572                                      last_word - first_word + 1, eeprom_buff);
573
574         /* Update the checksum over the first part of the EEPROM if needed
575          * and flush shadow RAM for 82573 conrollers */
576         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
577                                 (hw->mac_type == e1000_82573)))
578                 e1000_update_eeprom_checksum(hw);
579
580         kfree(eeprom_buff);
581         return ret_val;
582 }
583
584 static void
585 e1000_get_drvinfo(struct net_device *netdev,
586                        struct ethtool_drvinfo *drvinfo)
587 {
588         struct e1000_adapter *adapter = netdev_priv(netdev);
589         char firmware_version[32];
590         uint16_t eeprom_data;
591
592         strncpy(drvinfo->driver,  e1000_driver_name, 32);
593         strncpy(drvinfo->version, e1000_driver_version, 32);
594
595         /* EEPROM image version # is reported as firmware version # for
596          * 8257{1|2|3} controllers */
597         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
598         switch (adapter->hw.mac_type) {
599         case e1000_82571:
600         case e1000_82572:
601         case e1000_82573:
602         case e1000_80003es2lan:
603         case e1000_ich8lan:
604                 sprintf(firmware_version, "%d.%d-%d",
605                         (eeprom_data & 0xF000) >> 12,
606                         (eeprom_data & 0x0FF0) >> 4,
607                         eeprom_data & 0x000F);
608                 break;
609         default:
610                 sprintf(firmware_version, "N/A");
611         }
612
613         strncpy(drvinfo->fw_version, firmware_version, 32);
614         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
615         drvinfo->n_stats = E1000_STATS_LEN;
616         drvinfo->testinfo_len = E1000_TEST_LEN;
617         drvinfo->regdump_len = e1000_get_regs_len(netdev);
618         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
619 }
620
621 static void
622 e1000_get_ringparam(struct net_device *netdev,
623                     struct ethtool_ringparam *ring)
624 {
625         struct e1000_adapter *adapter = netdev_priv(netdev);
626         e1000_mac_type mac_type = adapter->hw.mac_type;
627         struct e1000_tx_ring *txdr = adapter->tx_ring;
628         struct e1000_rx_ring *rxdr = adapter->rx_ring;
629
630         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
631                 E1000_MAX_82544_RXD;
632         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
633                 E1000_MAX_82544_TXD;
634         ring->rx_mini_max_pending = 0;
635         ring->rx_jumbo_max_pending = 0;
636         ring->rx_pending = rxdr->count;
637         ring->tx_pending = txdr->count;
638         ring->rx_mini_pending = 0;
639         ring->rx_jumbo_pending = 0;
640 }
641
642 static int
643 e1000_set_ringparam(struct net_device *netdev,
644                     struct ethtool_ringparam *ring)
645 {
646         struct e1000_adapter *adapter = netdev_priv(netdev);
647         e1000_mac_type mac_type = adapter->hw.mac_type;
648         struct e1000_tx_ring *txdr, *tx_old;
649         struct e1000_rx_ring *rxdr, *rx_old;
650         int i, err, tx_ring_size, rx_ring_size;
651
652         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
653                 return -EINVAL;
654
655         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
656         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
657
658         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
659                 msleep(1);
660
661         if (netif_running(adapter->netdev))
662                 e1000_down(adapter);
663
664         tx_old = adapter->tx_ring;
665         rx_old = adapter->rx_ring;
666
667         err = -ENOMEM;
668         txdr = kzalloc(tx_ring_size, GFP_KERNEL);
669         if (!txdr)
670                 goto err_alloc_tx;
671
672         rxdr = kzalloc(rx_ring_size, GFP_KERNEL);
673         if (!rxdr)
674                 goto err_alloc_rx;
675
676         adapter->tx_ring = txdr;
677         adapter->rx_ring = rxdr;
678
679         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
680         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
681                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
682         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
683
684         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
685         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
686                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
687         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
688
689         for (i = 0; i < adapter->num_tx_queues; i++)
690                 txdr[i].count = txdr->count;
691         for (i = 0; i < adapter->num_rx_queues; i++)
692                 rxdr[i].count = rxdr->count;
693
694         if (netif_running(adapter->netdev)) {
695                 /* Try to get new resources before deleting old */
696                 if ((err = e1000_setup_all_rx_resources(adapter)))
697                         goto err_setup_rx;
698                 if ((err = e1000_setup_all_tx_resources(adapter)))
699                         goto err_setup_tx;
700
701                 /* save the new, restore the old in order to free it,
702                  * then restore the new back again */
703
704                 adapter->rx_ring = rx_old;
705                 adapter->tx_ring = tx_old;
706                 e1000_free_all_rx_resources(adapter);
707                 e1000_free_all_tx_resources(adapter);
708                 kfree(tx_old);
709                 kfree(rx_old);
710                 adapter->rx_ring = rxdr;
711                 adapter->tx_ring = txdr;
712                 if ((err = e1000_up(adapter)))
713                         goto err_setup;
714         }
715
716         clear_bit(__E1000_RESETTING, &adapter->flags);
717         return 0;
718 err_setup_tx:
719         e1000_free_all_rx_resources(adapter);
720 err_setup_rx:
721         adapter->rx_ring = rx_old;
722         adapter->tx_ring = tx_old;
723         kfree(rxdr);
724 err_alloc_rx:
725         kfree(txdr);
726 err_alloc_tx:
727         e1000_up(adapter);
728 err_setup:
729         clear_bit(__E1000_RESETTING, &adapter->flags);
730         return err;
731 }
732
733 #define REG_PATTERN_TEST(R, M, W)                                              \
734 {                                                                              \
735         uint32_t pat, value;                                                   \
736         uint32_t test[] =                                                      \
737                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
738         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
739                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
740                 value = E1000_READ_REG(&adapter->hw, R);                       \
741                 if (value != (test[pat] & W & M)) {                             \
742                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
743                                 "0x%08X expected 0x%08X\n",                    \
744                                 E1000_##R, value, (test[pat] & W & M));        \
745                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
746                                 E1000_82542_##R : E1000_##R;                   \
747                         return 1;                                              \
748                 }                                                              \
749         }                                                                      \
750 }
751
752 #define REG_SET_AND_CHECK(R, M, W)                                             \
753 {                                                                              \
754         uint32_t value;                                                        \
755         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
756         value = E1000_READ_REG(&adapter->hw, R);                               \
757         if ((W & M) != (value & M)) {                                          \
758                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
759                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
760                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
761                         E1000_82542_##R : E1000_##R;                           \
762                 return 1;                                                      \
763         }                                                                      \
764 }
765
766 static int
767 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
768 {
769         uint32_t value, before, after;
770         uint32_t i, toggle;
771
772         /* The status register is Read Only, so a write should fail.
773          * Some bits that get toggled are ignored.
774          */
775         switch (adapter->hw.mac_type) {
776         /* there are several bits on newer hardware that are r/w */
777         case e1000_82571:
778         case e1000_82572:
779         case e1000_80003es2lan:
780                 toggle = 0x7FFFF3FF;
781                 break;
782         case e1000_82573:
783         case e1000_ich8lan:
784                 toggle = 0x7FFFF033;
785                 break;
786         default:
787                 toggle = 0xFFFFF833;
788                 break;
789         }
790
791         before = E1000_READ_REG(&adapter->hw, STATUS);
792         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
793         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
794         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
795         if (value != after) {
796                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
797                         "0x%08X expected: 0x%08X\n", after, value);
798                 *data = 1;
799                 return 1;
800         }
801         /* restore previous status */
802         E1000_WRITE_REG(&adapter->hw, STATUS, before);
803
804         if (adapter->hw.mac_type != e1000_ich8lan) {
805                 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
806                 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
807                 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
808                 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
809         }
810
811         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
812         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
813         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
814         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
815         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
816         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
817         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
818         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
819         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
820         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
821
822         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
823
824         before = (adapter->hw.mac_type == e1000_ich8lan ?
825                   0x06C3B33E : 0x06DFB3FE);
826         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
827         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
828
829         if (adapter->hw.mac_type >= e1000_82543) {
830
831                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
832                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
833                 if (adapter->hw.mac_type != e1000_ich8lan)
834                         REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
835                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
836                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
837                 value = (adapter->hw.mac_type == e1000_ich8lan ?
838                          E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
839                 for (i = 0; i < value; i++) {
840                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
841                                          0xFFFFFFFF);
842                 }
843
844         } else {
845
846                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
847                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
848                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
849                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
850
851         }
852
853         value = (adapter->hw.mac_type == e1000_ich8lan ?
854                         E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
855         for (i = 0; i < value; i++)
856                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
857
858         *data = 0;
859         return 0;
860 }
861
862 static int
863 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
864 {
865         uint16_t temp;
866         uint16_t checksum = 0;
867         uint16_t i;
868
869         *data = 0;
870         /* Read and add up the contents of the EEPROM */
871         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
872                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
873                         *data = 1;
874                         break;
875                 }
876                 checksum += temp;
877         }
878
879         /* If Checksum is not Correct return error else test passed */
880         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
881                 *data = 2;
882
883         return *data;
884 }
885
886 static irqreturn_t
887 e1000_test_intr(int irq, void *data)
888 {
889         struct net_device *netdev = (struct net_device *) data;
890         struct e1000_adapter *adapter = netdev_priv(netdev);
891
892         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
893
894         return IRQ_HANDLED;
895 }
896
897 static int
898 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
899 {
900         struct net_device *netdev = adapter->netdev;
901         uint32_t mask, i=0, shared_int = TRUE;
902         uint32_t irq = adapter->pdev->irq;
903
904         *data = 0;
905
906         /* NOTE: we don't test MSI interrupts here, yet */
907         /* Hook up test interrupt handler just for this test */
908         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
909                          netdev))
910                 shared_int = FALSE;
911         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
912                  netdev->name, netdev)) {
913                 *data = 1;
914                 return -1;
915         }
916         DPRINTK(HW, INFO, "testing %s interrupt\n",
917                 (shared_int ? "shared" : "unshared"));
918
919         /* Disable all the interrupts */
920         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
921         msleep(10);
922
923         /* Test each interrupt */
924         for (; i < 10; i++) {
925
926                 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
927                         continue;
928
929                 /* Interrupt to test */
930                 mask = 1 << i;
931
932                 if (!shared_int) {
933                         /* Disable the interrupt to be reported in
934                          * the cause register and then force the same
935                          * interrupt and see if one gets posted.  If
936                          * an interrupt was posted to the bus, the
937                          * test failed.
938                          */
939                         adapter->test_icr = 0;
940                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
941                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
942                         msleep(10);
943
944                         if (adapter->test_icr & mask) {
945                                 *data = 3;
946                                 break;
947                         }
948                 }
949
950                 /* Enable the interrupt to be reported in
951                  * the cause register and then force the same
952                  * interrupt and see if one gets posted.  If
953                  * an interrupt was not posted to the bus, the
954                  * test failed.
955                  */
956                 adapter->test_icr = 0;
957                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
958                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
959                 msleep(10);
960
961                 if (!(adapter->test_icr & mask)) {
962                         *data = 4;
963                         break;
964                 }
965
966                 if (!shared_int) {
967                         /* Disable the other interrupts to be reported in
968                          * the cause register and then force the other
969                          * interrupts and see if any get posted.  If
970                          * an interrupt was posted to the bus, the
971                          * test failed.
972                          */
973                         adapter->test_icr = 0;
974                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
975                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
976                         msleep(10);
977
978                         if (adapter->test_icr) {
979                                 *data = 5;
980                                 break;
981                         }
982                 }
983         }
984
985         /* Disable all the interrupts */
986         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
987         msleep(10);
988
989         /* Unhook test interrupt handler */
990         free_irq(irq, netdev);
991
992         return *data;
993 }
994
995 static void
996 e1000_free_desc_rings(struct e1000_adapter *adapter)
997 {
998         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
999         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1000         struct pci_dev *pdev = adapter->pdev;
1001         int i;
1002
1003         if (txdr->desc && txdr->buffer_info) {
1004                 for (i = 0; i < txdr->count; i++) {
1005                         if (txdr->buffer_info[i].dma)
1006                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1007                                                  txdr->buffer_info[i].length,
1008                                                  PCI_DMA_TODEVICE);
1009                         if (txdr->buffer_info[i].skb)
1010                                 dev_kfree_skb(txdr->buffer_info[i].skb);
1011                 }
1012         }
1013
1014         if (rxdr->desc && rxdr->buffer_info) {
1015                 for (i = 0; i < rxdr->count; i++) {
1016                         if (rxdr->buffer_info[i].dma)
1017                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1018                                                  rxdr->buffer_info[i].length,
1019                                                  PCI_DMA_FROMDEVICE);
1020                         if (rxdr->buffer_info[i].skb)
1021                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1022                 }
1023         }
1024
1025         if (txdr->desc) {
1026                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1027                 txdr->desc = NULL;
1028         }
1029         if (rxdr->desc) {
1030                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1031                 rxdr->desc = NULL;
1032         }
1033
1034         kfree(txdr->buffer_info);
1035         txdr->buffer_info = NULL;
1036         kfree(rxdr->buffer_info);
1037         rxdr->buffer_info = NULL;
1038
1039         return;
1040 }
1041
1042 static int
1043 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1044 {
1045         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1046         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1047         struct pci_dev *pdev = adapter->pdev;
1048         uint32_t rctl;
1049         int size, i, ret_val;
1050
1051         /* Setup Tx descriptor ring and Tx buffers */
1052
1053         if (!txdr->count)
1054                 txdr->count = E1000_DEFAULT_TXD;
1055
1056         size = txdr->count * sizeof(struct e1000_buffer);
1057         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1058                 ret_val = 1;
1059                 goto err_nomem;
1060         }
1061         memset(txdr->buffer_info, 0, size);
1062
1063         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1064         E1000_ROUNDUP(txdr->size, 4096);
1065         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1066                 ret_val = 2;
1067                 goto err_nomem;
1068         }
1069         memset(txdr->desc, 0, txdr->size);
1070         txdr->next_to_use = txdr->next_to_clean = 0;
1071
1072         E1000_WRITE_REG(&adapter->hw, TDBAL,
1073                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1074         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1075         E1000_WRITE_REG(&adapter->hw, TDLEN,
1076                         txdr->count * sizeof(struct e1000_tx_desc));
1077         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1078         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1079         E1000_WRITE_REG(&adapter->hw, TCTL,
1080                         E1000_TCTL_PSP | E1000_TCTL_EN |
1081                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1082                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1083
1084         for (i = 0; i < txdr->count; i++) {
1085                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1086                 struct sk_buff *skb;
1087                 unsigned int size = 1024;
1088
1089                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1090                         ret_val = 3;
1091                         goto err_nomem;
1092                 }
1093                 skb_put(skb, size);
1094                 txdr->buffer_info[i].skb = skb;
1095                 txdr->buffer_info[i].length = skb->len;
1096                 txdr->buffer_info[i].dma =
1097                         pci_map_single(pdev, skb->data, skb->len,
1098                                        PCI_DMA_TODEVICE);
1099                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1100                 tx_desc->lower.data = cpu_to_le32(skb->len);
1101                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1102                                                    E1000_TXD_CMD_IFCS |
1103                                                    E1000_TXD_CMD_RPS);
1104                 tx_desc->upper.data = 0;
1105         }
1106
1107         /* Setup Rx descriptor ring and Rx buffers */
1108
1109         if (!rxdr->count)
1110                 rxdr->count = E1000_DEFAULT_RXD;
1111
1112         size = rxdr->count * sizeof(struct e1000_buffer);
1113         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1114                 ret_val = 4;
1115                 goto err_nomem;
1116         }
1117         memset(rxdr->buffer_info, 0, size);
1118
1119         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1120         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1121                 ret_val = 5;
1122                 goto err_nomem;
1123         }
1124         memset(rxdr->desc, 0, rxdr->size);
1125         rxdr->next_to_use = rxdr->next_to_clean = 0;
1126
1127         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1128         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1129         E1000_WRITE_REG(&adapter->hw, RDBAL,
1130                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1131         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1132         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1133         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1134         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1135         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1136                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1137                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1138         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1139
1140         for (i = 0; i < rxdr->count; i++) {
1141                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1142                 struct sk_buff *skb;
1143
1144                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1145                                 GFP_KERNEL))) {
1146                         ret_val = 6;
1147                         goto err_nomem;
1148                 }
1149                 skb_reserve(skb, NET_IP_ALIGN);
1150                 rxdr->buffer_info[i].skb = skb;
1151                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1152                 rxdr->buffer_info[i].dma =
1153                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1154                                        PCI_DMA_FROMDEVICE);
1155                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1156                 memset(skb->data, 0x00, skb->len);
1157         }
1158
1159         return 0;
1160
1161 err_nomem:
1162         e1000_free_desc_rings(adapter);
1163         return ret_val;
1164 }
1165
1166 static void
1167 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1168 {
1169         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1170         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1171         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1172         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1173         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1174 }
1175
1176 static void
1177 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1178 {
1179         uint16_t phy_reg;
1180
1181         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1182          * Extended PHY Specific Control Register to 25MHz clock.  This
1183          * value defaults back to a 2.5MHz clock when the PHY is reset.
1184          */
1185         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1186         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1187         e1000_write_phy_reg(&adapter->hw,
1188                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1189
1190         /* In addition, because of the s/w reset above, we need to enable
1191          * CRS on TX.  This must be set for both full and half duplex
1192          * operation.
1193          */
1194         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1195         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1196         e1000_write_phy_reg(&adapter->hw,
1197                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1198 }
1199
1200 static int
1201 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1202 {
1203         uint32_t ctrl_reg;
1204         uint16_t phy_reg;
1205
1206         /* Setup the Device Control Register for PHY loopback test. */
1207
1208         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1209         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1210                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1211                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1212                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1213                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1214
1215         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1216
1217         /* Read the PHY Specific Control Register (0x10) */
1218         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1219
1220         /* Clear Auto-Crossover bits in PHY Specific Control Register
1221          * (bits 6:5).
1222          */
1223         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1224         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1225
1226         /* Perform software reset on the PHY */
1227         e1000_phy_reset(&adapter->hw);
1228
1229         /* Have to setup TX_CLK and TX_CRS after software reset */
1230         e1000_phy_reset_clk_and_crs(adapter);
1231
1232         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1233
1234         /* Wait for reset to complete. */
1235         udelay(500);
1236
1237         /* Have to setup TX_CLK and TX_CRS after software reset */
1238         e1000_phy_reset_clk_and_crs(adapter);
1239
1240         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1241         e1000_phy_disable_receiver(adapter);
1242
1243         /* Set the loopback bit in the PHY control register. */
1244         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1245         phy_reg |= MII_CR_LOOPBACK;
1246         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1247
1248         /* Setup TX_CLK and TX_CRS one more time. */
1249         e1000_phy_reset_clk_and_crs(adapter);
1250
1251         /* Check Phy Configuration */
1252         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1253         if (phy_reg != 0x4100)
1254                  return 9;
1255
1256         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1257         if (phy_reg != 0x0070)
1258                 return 10;
1259
1260         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1261         if (phy_reg != 0x001A)
1262                 return 11;
1263
1264         return 0;
1265 }
1266
1267 static int
1268 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1269 {
1270         uint32_t ctrl_reg = 0;
1271         uint32_t stat_reg = 0;
1272
1273         adapter->hw.autoneg = FALSE;
1274
1275         if (adapter->hw.phy_type == e1000_phy_m88) {
1276                 /* Auto-MDI/MDIX Off */
1277                 e1000_write_phy_reg(&adapter->hw,
1278                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1279                 /* reset to update Auto-MDI/MDIX */
1280                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1281                 /* autoneg off */
1282                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1283         } else if (adapter->hw.phy_type == e1000_phy_gg82563)
1284                 e1000_write_phy_reg(&adapter->hw,
1285                                     GG82563_PHY_KMRN_MODE_CTRL,
1286                                     0x1CC);
1287
1288         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1289
1290         if (adapter->hw.phy_type == e1000_phy_ife) {
1291                 /* force 100, set loopback */
1292                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1293
1294                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1295                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1296                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1297                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1298                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1299                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1300         } else {
1301                 /* force 1000, set loopback */
1302                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1303
1304                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1305                 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1306                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1307                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1308                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1309                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1310                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1311         }
1312
1313         if (adapter->hw.media_type == e1000_media_type_copper &&
1314            adapter->hw.phy_type == e1000_phy_m88)
1315                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1316         else {
1317                 /* Set the ILOS bit on the fiber Nic is half
1318                  * duplex link is detected. */
1319                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1320                 if ((stat_reg & E1000_STATUS_FD) == 0)
1321                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1322         }
1323
1324         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1325
1326         /* Disable the receiver on the PHY so when a cable is plugged in, the
1327          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1328          */
1329         if (adapter->hw.phy_type == e1000_phy_m88)
1330                 e1000_phy_disable_receiver(adapter);
1331
1332         udelay(500);
1333
1334         return 0;
1335 }
1336
1337 static int
1338 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1339 {
1340         uint16_t phy_reg = 0;
1341         uint16_t count = 0;
1342
1343         switch (adapter->hw.mac_type) {
1344         case e1000_82543:
1345                 if (adapter->hw.media_type == e1000_media_type_copper) {
1346                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1347                          * Some PHY registers get corrupted at random, so
1348                          * attempt this 10 times.
1349                          */
1350                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1351                               count++ < 10);
1352                         if (count < 11)
1353                                 return 0;
1354                 }
1355                 break;
1356
1357         case e1000_82544:
1358         case e1000_82540:
1359         case e1000_82545:
1360         case e1000_82545_rev_3:
1361         case e1000_82546:
1362         case e1000_82546_rev_3:
1363         case e1000_82541:
1364         case e1000_82541_rev_2:
1365         case e1000_82547:
1366         case e1000_82547_rev_2:
1367         case e1000_82571:
1368         case e1000_82572:
1369         case e1000_82573:
1370         case e1000_80003es2lan:
1371         case e1000_ich8lan:
1372                 return e1000_integrated_phy_loopback(adapter);
1373                 break;
1374
1375         default:
1376                 /* Default PHY loopback work is to read the MII
1377                  * control register and assert bit 14 (loopback mode).
1378                  */
1379                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1380                 phy_reg |= MII_CR_LOOPBACK;
1381                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1382                 return 0;
1383                 break;
1384         }
1385
1386         return 8;
1387 }
1388
1389 static int
1390 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1391 {
1392         struct e1000_hw *hw = &adapter->hw;
1393         uint32_t rctl;
1394
1395         if (hw->media_type == e1000_media_type_fiber ||
1396             hw->media_type == e1000_media_type_internal_serdes) {
1397                 switch (hw->mac_type) {
1398                 case e1000_82545:
1399                 case e1000_82546:
1400                 case e1000_82545_rev_3:
1401                 case e1000_82546_rev_3:
1402                         return e1000_set_phy_loopback(adapter);
1403                         break;
1404                 case e1000_82571:
1405                 case e1000_82572:
1406 #define E1000_SERDES_LB_ON 0x410
1407                         e1000_set_phy_loopback(adapter);
1408                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1409                         msleep(10);
1410                         return 0;
1411                         break;
1412                 default:
1413                         rctl = E1000_READ_REG(hw, RCTL);
1414                         rctl |= E1000_RCTL_LBM_TCVR;
1415                         E1000_WRITE_REG(hw, RCTL, rctl);
1416                         return 0;
1417                 }
1418         } else if (hw->media_type == e1000_media_type_copper)
1419                 return e1000_set_phy_loopback(adapter);
1420
1421         return 7;
1422 }
1423
1424 static void
1425 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1426 {
1427         struct e1000_hw *hw = &adapter->hw;
1428         uint32_t rctl;
1429         uint16_t phy_reg;
1430
1431         rctl = E1000_READ_REG(hw, RCTL);
1432         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1433         E1000_WRITE_REG(hw, RCTL, rctl);
1434
1435         switch (hw->mac_type) {
1436         case e1000_82571:
1437         case e1000_82572:
1438                 if (hw->media_type == e1000_media_type_fiber ||
1439                     hw->media_type == e1000_media_type_internal_serdes) {
1440 #define E1000_SERDES_LB_OFF 0x400
1441                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1442                         msleep(10);
1443                         break;
1444                 }
1445                 /* Fall Through */
1446         case e1000_82545:
1447         case e1000_82546:
1448         case e1000_82545_rev_3:
1449         case e1000_82546_rev_3:
1450         default:
1451                 hw->autoneg = TRUE;
1452                 if (hw->phy_type == e1000_phy_gg82563)
1453                         e1000_write_phy_reg(hw,
1454                                             GG82563_PHY_KMRN_MODE_CTRL,
1455                                             0x180);
1456                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1457                 if (phy_reg & MII_CR_LOOPBACK) {
1458                         phy_reg &= ~MII_CR_LOOPBACK;
1459                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1460                         e1000_phy_reset(hw);
1461                 }
1462                 break;
1463         }
1464 }
1465
1466 static void
1467 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1468 {
1469         memset(skb->data, 0xFF, frame_size);
1470         frame_size &= ~1;
1471         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1472         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1473         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1474 }
1475
1476 static int
1477 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1478 {
1479         frame_size &= ~1;
1480         if (*(skb->data + 3) == 0xFF) {
1481                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1482                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1483                         return 0;
1484                 }
1485         }
1486         return 13;
1487 }
1488
1489 static int
1490 e1000_run_loopback_test(struct e1000_adapter *adapter)
1491 {
1492         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1493         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1494         struct pci_dev *pdev = adapter->pdev;
1495         int i, j, k, l, lc, good_cnt, ret_val=0;
1496         unsigned long time;
1497
1498         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1499
1500         /* Calculate the loop count based on the largest descriptor ring
1501          * The idea is to wrap the largest ring a number of times using 64
1502          * send/receive pairs during each loop
1503          */
1504
1505         if (rxdr->count <= txdr->count)
1506                 lc = ((txdr->count / 64) * 2) + 1;
1507         else
1508                 lc = ((rxdr->count / 64) * 2) + 1;
1509
1510         k = l = 0;
1511         for (j = 0; j <= lc; j++) { /* loop count loop */
1512                 for (i = 0; i < 64; i++) { /* send the packets */
1513                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1514                                         1024);
1515                         pci_dma_sync_single_for_device(pdev,
1516                                         txdr->buffer_info[k].dma,
1517                                         txdr->buffer_info[k].length,
1518                                         PCI_DMA_TODEVICE);
1519                         if (unlikely(++k == txdr->count)) k = 0;
1520                 }
1521                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1522                 msleep(200);
1523                 time = jiffies; /* set the start time for the receive */
1524                 good_cnt = 0;
1525                 do { /* receive the sent packets */
1526                         pci_dma_sync_single_for_cpu(pdev,
1527                                         rxdr->buffer_info[l].dma,
1528                                         rxdr->buffer_info[l].length,
1529                                         PCI_DMA_FROMDEVICE);
1530
1531                         ret_val = e1000_check_lbtest_frame(
1532                                         rxdr->buffer_info[l].skb,
1533                                         1024);
1534                         if (!ret_val)
1535                                 good_cnt++;
1536                         if (unlikely(++l == rxdr->count)) l = 0;
1537                         /* time + 20 msecs (200 msecs on 2.4) is more than
1538                          * enough time to complete the receives, if it's
1539                          * exceeded, break and error off
1540                          */
1541                 } while (good_cnt < 64 && jiffies < (time + 20));
1542                 if (good_cnt != 64) {
1543                         ret_val = 13; /* ret_val is the same as mis-compare */
1544                         break;
1545                 }
1546                 if (jiffies >= (time + 2)) {
1547                         ret_val = 14; /* error code for time out error */
1548                         break;
1549                 }
1550         } /* end loop count loop */
1551         return ret_val;
1552 }
1553
1554 static int
1555 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1556 {
1557         /* PHY loopback cannot be performed if SoL/IDER
1558          * sessions are active */
1559         if (e1000_check_phy_reset_block(&adapter->hw)) {
1560                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1561                         "when SoL/IDER is active.\n");
1562                 *data = 0;
1563                 goto out;
1564         }
1565
1566         if ((*data = e1000_setup_desc_rings(adapter)))
1567                 goto out;
1568         if ((*data = e1000_setup_loopback_test(adapter)))
1569                 goto err_loopback;
1570         *data = e1000_run_loopback_test(adapter);
1571         e1000_loopback_cleanup(adapter);
1572
1573 err_loopback:
1574         e1000_free_desc_rings(adapter);
1575 out:
1576         return *data;
1577 }
1578
1579 static int
1580 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1581 {
1582         *data = 0;
1583         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1584                 int i = 0;
1585                 adapter->hw.serdes_link_down = TRUE;
1586
1587                 /* On some blade server designs, link establishment
1588                  * could take as long as 2-3 minutes */
1589                 do {
1590                         e1000_check_for_link(&adapter->hw);
1591                         if (adapter->hw.serdes_link_down == FALSE)
1592                                 return *data;
1593                         msleep(20);
1594                 } while (i++ < 3750);
1595
1596                 *data = 1;
1597         } else {
1598                 e1000_check_for_link(&adapter->hw);
1599                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1600                         msleep(4000);
1601
1602                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1603                         *data = 1;
1604                 }
1605         }
1606         return *data;
1607 }
1608
1609 static int
1610 e1000_diag_test_count(struct net_device *netdev)
1611 {
1612         return E1000_TEST_LEN;
1613 }
1614
1615 extern void e1000_power_up_phy(struct e1000_adapter *);
1616
1617 static void
1618 e1000_diag_test(struct net_device *netdev,
1619                    struct ethtool_test *eth_test, uint64_t *data)
1620 {
1621         struct e1000_adapter *adapter = netdev_priv(netdev);
1622         boolean_t if_running = netif_running(netdev);
1623
1624         set_bit(__E1000_TESTING, &adapter->flags);
1625         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1626                 /* Offline tests */
1627
1628                 /* save speed, duplex, autoneg settings */
1629                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1630                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1631                 uint8_t autoneg = adapter->hw.autoneg;
1632
1633                 DPRINTK(HW, INFO, "offline testing starting\n");
1634
1635                 /* Link test performed before hardware reset so autoneg doesn't
1636                  * interfere with test result */
1637                 if (e1000_link_test(adapter, &data[4]))
1638                         eth_test->flags |= ETH_TEST_FL_FAILED;
1639
1640                 if (if_running)
1641                         /* indicate we're in test mode */
1642                         dev_close(netdev);
1643                 else
1644                         e1000_reset(adapter);
1645
1646                 if (e1000_reg_test(adapter, &data[0]))
1647                         eth_test->flags |= ETH_TEST_FL_FAILED;
1648
1649                 e1000_reset(adapter);
1650                 if (e1000_eeprom_test(adapter, &data[1]))
1651                         eth_test->flags |= ETH_TEST_FL_FAILED;
1652
1653                 e1000_reset(adapter);
1654                 if (e1000_intr_test(adapter, &data[2]))
1655                         eth_test->flags |= ETH_TEST_FL_FAILED;
1656
1657                 e1000_reset(adapter);
1658                 /* make sure the phy is powered up */
1659                 e1000_power_up_phy(adapter);
1660                 if (e1000_loopback_test(adapter, &data[3]))
1661                         eth_test->flags |= ETH_TEST_FL_FAILED;
1662
1663                 /* restore speed, duplex, autoneg settings */
1664                 adapter->hw.autoneg_advertised = autoneg_advertised;
1665                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1666                 adapter->hw.autoneg = autoneg;
1667
1668                 e1000_reset(adapter);
1669                 clear_bit(__E1000_TESTING, &adapter->flags);
1670                 if (if_running)
1671                         dev_open(netdev);
1672         } else {
1673                 DPRINTK(HW, INFO, "online testing starting\n");
1674                 /* Online tests */
1675                 if (e1000_link_test(adapter, &data[4]))
1676                         eth_test->flags |= ETH_TEST_FL_FAILED;
1677
1678                 /* Online tests aren't run; pass by default */
1679                 data[0] = 0;
1680                 data[1] = 0;
1681                 data[2] = 0;
1682                 data[3] = 0;
1683
1684                 clear_bit(__E1000_TESTING, &adapter->flags);
1685         }
1686         msleep_interruptible(4 * 1000);
1687 }
1688
1689 static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
1690 {
1691         struct e1000_hw *hw = &adapter->hw;
1692         int retval = 1; /* fail by default */
1693
1694         switch (hw->device_id) {
1695         case E1000_DEV_ID_82542:
1696         case E1000_DEV_ID_82543GC_FIBER:
1697         case E1000_DEV_ID_82543GC_COPPER:
1698         case E1000_DEV_ID_82544EI_FIBER:
1699         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1700         case E1000_DEV_ID_82545EM_FIBER:
1701         case E1000_DEV_ID_82545EM_COPPER:
1702         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1703         case E1000_DEV_ID_82546GB_PCIE:
1704                 /* these don't support WoL at all */
1705                 wol->supported = 0;
1706                 break;
1707         case E1000_DEV_ID_82546EB_FIBER:
1708         case E1000_DEV_ID_82546GB_FIBER:
1709         case E1000_DEV_ID_82571EB_FIBER:
1710         case E1000_DEV_ID_82571EB_SERDES:
1711         case E1000_DEV_ID_82571EB_COPPER:
1712                 /* Wake events not supported on port B */
1713                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1714                         wol->supported = 0;
1715                         break;
1716                 }
1717                 /* return success for non excluded adapter ports */
1718                 retval = 0;
1719                 break;
1720         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1721         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1722                 /* quad port adapters only support WoL on port A */
1723                 if (!adapter->quad_port_a) {
1724                         wol->supported = 0;
1725                         break;
1726                 }
1727                 /* return success for non excluded adapter ports */
1728                 retval = 0;
1729                 break;
1730         default:
1731                 /* dual port cards only support WoL on port A from now on
1732                  * unless it was enabled in the eeprom for port B
1733                  * so exclude FUNC_1 ports from having WoL enabled */
1734                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1735                     !adapter->eeprom_wol) {
1736                         wol->supported = 0;
1737                         break;
1738                 }
1739
1740                 retval = 0;
1741         }
1742
1743         return retval;
1744 }
1745
1746 static void
1747 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1748 {
1749         struct e1000_adapter *adapter = netdev_priv(netdev);
1750
1751         wol->supported = WAKE_UCAST | WAKE_MCAST |
1752                          WAKE_BCAST | WAKE_MAGIC;
1753         wol->wolopts = 0;
1754
1755         /* this function will set ->supported = 0 and return 1 if wol is not
1756          * supported by this hardware */
1757         if (e1000_wol_exclusion(adapter, wol))
1758                 return;
1759
1760         /* apply any specific unsupported masks here */
1761         switch (adapter->hw.device_id) {
1762         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1763                 /* KSP3 does not suppport UCAST wake-ups */
1764                 wol->supported &= ~WAKE_UCAST;
1765
1766                 if (adapter->wol & E1000_WUFC_EX)
1767                         DPRINTK(DRV, ERR, "Interface does not support "
1768                         "directed (unicast) frame wake-up packets\n");
1769                 break;
1770         default:
1771                 break;
1772         }
1773
1774         if (adapter->wol & E1000_WUFC_EX)
1775                 wol->wolopts |= WAKE_UCAST;
1776         if (adapter->wol & E1000_WUFC_MC)
1777                 wol->wolopts |= WAKE_MCAST;
1778         if (adapter->wol & E1000_WUFC_BC)
1779                 wol->wolopts |= WAKE_BCAST;
1780         if (adapter->wol & E1000_WUFC_MAG)
1781                 wol->wolopts |= WAKE_MAGIC;
1782
1783         return;
1784 }
1785
1786 static int
1787 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1788 {
1789         struct e1000_adapter *adapter = netdev_priv(netdev);
1790         struct e1000_hw *hw = &adapter->hw;
1791
1792         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1793                 return -EOPNOTSUPP;
1794
1795         if (e1000_wol_exclusion(adapter, wol))
1796                 return wol->wolopts ? -EOPNOTSUPP : 0;
1797
1798         switch (hw->device_id) {
1799         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1800                 if (wol->wolopts & WAKE_UCAST) {
1801                         DPRINTK(DRV, ERR, "Interface does not support "
1802                         "directed (unicast) frame wake-up packets\n");
1803                         return -EOPNOTSUPP;
1804                 }
1805                 break;
1806         default:
1807                 break;
1808         }
1809
1810         /* these settings will always override what we currently have */
1811         adapter->wol = 0;
1812
1813         if (wol->wolopts & WAKE_UCAST)
1814                 adapter->wol |= E1000_WUFC_EX;
1815         if (wol->wolopts & WAKE_MCAST)
1816                 adapter->wol |= E1000_WUFC_MC;
1817         if (wol->wolopts & WAKE_BCAST)
1818                 adapter->wol |= E1000_WUFC_BC;
1819         if (wol->wolopts & WAKE_MAGIC)
1820                 adapter->wol |= E1000_WUFC_MAG;
1821
1822         return 0;
1823 }
1824
1825 /* toggle LED 4 times per second = 2 "blinks" per second */
1826 #define E1000_ID_INTERVAL       (HZ/4)
1827
1828 /* bit defines for adapter->led_status */
1829 #define E1000_LED_ON            0
1830
1831 static void
1832 e1000_led_blink_callback(unsigned long data)
1833 {
1834         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1835
1836         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1837                 e1000_led_off(&adapter->hw);
1838         else
1839                 e1000_led_on(&adapter->hw);
1840
1841         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1842 }
1843
1844 static int
1845 e1000_phys_id(struct net_device *netdev, uint32_t data)
1846 {
1847         struct e1000_adapter *adapter = netdev_priv(netdev);
1848
1849         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1850                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1851
1852         if (adapter->hw.mac_type < e1000_82571) {
1853                 if (!adapter->blink_timer.function) {
1854                         init_timer(&adapter->blink_timer);
1855                         adapter->blink_timer.function = e1000_led_blink_callback;
1856                         adapter->blink_timer.data = (unsigned long) adapter;
1857                 }
1858                 e1000_setup_led(&adapter->hw);
1859                 mod_timer(&adapter->blink_timer, jiffies);
1860                 msleep_interruptible(data * 1000);
1861                 del_timer_sync(&adapter->blink_timer);
1862         } else if (adapter->hw.phy_type == e1000_phy_ife) {
1863                 if (!adapter->blink_timer.function) {
1864                         init_timer(&adapter->blink_timer);
1865                         adapter->blink_timer.function = e1000_led_blink_callback;
1866                         adapter->blink_timer.data = (unsigned long) adapter;
1867                 }
1868                 mod_timer(&adapter->blink_timer, jiffies);
1869                 msleep_interruptible(data * 1000);
1870                 del_timer_sync(&adapter->blink_timer);
1871                 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1872         } else {
1873                 e1000_blink_led_start(&adapter->hw);
1874                 msleep_interruptible(data * 1000);
1875         }
1876
1877         e1000_led_off(&adapter->hw);
1878         clear_bit(E1000_LED_ON, &adapter->led_status);
1879         e1000_cleanup_led(&adapter->hw);
1880
1881         return 0;
1882 }
1883
1884 static int
1885 e1000_nway_reset(struct net_device *netdev)
1886 {
1887         struct e1000_adapter *adapter = netdev_priv(netdev);
1888         if (netif_running(netdev))
1889                 e1000_reinit_locked(adapter);
1890         return 0;
1891 }
1892
1893 static int
1894 e1000_get_stats_count(struct net_device *netdev)
1895 {
1896         return E1000_STATS_LEN;
1897 }
1898
1899 static void
1900 e1000_get_ethtool_stats(struct net_device *netdev,
1901                 struct ethtool_stats *stats, uint64_t *data)
1902 {
1903         struct e1000_adapter *adapter = netdev_priv(netdev);
1904         int i;
1905
1906         e1000_update_stats(adapter);
1907         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1908                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1909                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1910                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1911         }
1912 /*      BUG_ON(i != E1000_STATS_LEN); */
1913 }
1914
1915 static void
1916 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1917 {
1918         uint8_t *p = data;
1919         int i;
1920
1921         switch (stringset) {
1922         case ETH_SS_TEST:
1923                 memcpy(data, *e1000_gstrings_test,
1924                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1925                 break;
1926         case ETH_SS_STATS:
1927                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1928                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1929                                ETH_GSTRING_LEN);
1930                         p += ETH_GSTRING_LEN;
1931                 }
1932 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1933                 break;
1934         }
1935 }
1936
1937 static const struct ethtool_ops e1000_ethtool_ops = {
1938         .get_settings           = e1000_get_settings,
1939         .set_settings           = e1000_set_settings,
1940         .get_drvinfo            = e1000_get_drvinfo,
1941         .get_regs_len           = e1000_get_regs_len,
1942         .get_regs               = e1000_get_regs,
1943         .get_wol                = e1000_get_wol,
1944         .set_wol                = e1000_set_wol,
1945         .get_msglevel           = e1000_get_msglevel,
1946         .set_msglevel           = e1000_set_msglevel,
1947         .nway_reset             = e1000_nway_reset,
1948         .get_link               = ethtool_op_get_link,
1949         .get_eeprom_len         = e1000_get_eeprom_len,
1950         .get_eeprom             = e1000_get_eeprom,
1951         .set_eeprom             = e1000_set_eeprom,
1952         .get_ringparam          = e1000_get_ringparam,
1953         .set_ringparam          = e1000_set_ringparam,
1954         .get_pauseparam         = e1000_get_pauseparam,
1955         .set_pauseparam         = e1000_set_pauseparam,
1956         .get_rx_csum            = e1000_get_rx_csum,
1957         .set_rx_csum            = e1000_set_rx_csum,
1958         .get_tx_csum            = e1000_get_tx_csum,
1959         .set_tx_csum            = e1000_set_tx_csum,
1960         .get_sg                 = ethtool_op_get_sg,
1961         .set_sg                 = ethtool_op_set_sg,
1962 #ifdef NETIF_F_TSO
1963         .get_tso                = ethtool_op_get_tso,
1964         .set_tso                = e1000_set_tso,
1965 #endif
1966         .self_test_count        = e1000_diag_test_count,
1967         .self_test              = e1000_diag_test,
1968         .get_strings            = e1000_get_strings,
1969         .phys_id                = e1000_phys_id,
1970         .get_stats_count        = e1000_get_stats_count,
1971         .get_ethtool_stats      = e1000_get_ethtool_stats,
1972         .get_perm_addr          = ethtool_op_get_perm_addr,
1973 };
1974
1975 void e1000_set_ethtool_ops(struct net_device *netdev)
1976 {
1977         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1978 }