]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_ethtool.c
Merge branch 'upstream-fixes'
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
64         { "multicast", E1000_STAT(net_stats.multicast) },
65         { "collisions", E1000_STAT(net_stats.collisions) },
66         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
67         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
68         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
69         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
70         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
71         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
72         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
73         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
74         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
75         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
76         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
77         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
78         { "tx_deferred_ok", E1000_STAT(stats.dc) },
79         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
80         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
81         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
82         { "rx_long_length_errors", E1000_STAT(stats.roc) },
83         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
84         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
85         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
86         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
87         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
88         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
89         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
90         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
91         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
92         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
93         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
94         { "rx_header_split", E1000_STAT(rx_hdr_split) },
95         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
96 };
97
98 #define E1000_QUEUE_STATS_LEN 0
99 #define E1000_GLOBAL_STATS_LEN  \
100         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103         "Register test  (offline)", "Eeprom test    (offline)",
104         "Interrupt test (offline)", "Loopback test  (offline)",
105         "Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
108
109 static int
110 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
111 {
112         struct e1000_adapter *adapter = netdev_priv(netdev);
113         struct e1000_hw *hw = &adapter->hw;
114
115         if (hw->media_type == e1000_media_type_copper) {
116
117                 ecmd->supported = (SUPPORTED_10baseT_Half |
118                                    SUPPORTED_10baseT_Full |
119                                    SUPPORTED_100baseT_Half |
120                                    SUPPORTED_100baseT_Full |
121                                    SUPPORTED_1000baseT_Full|
122                                    SUPPORTED_Autoneg |
123                                    SUPPORTED_TP);
124
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129
130                         /* the e1000 autoneg seems to match ethtool nicely */
131
132                         ecmd->advertising |= hw->autoneg_advertised;
133                 }
134
135                 ecmd->port = PORT_TP;
136                 ecmd->phy_address = hw->phy_addr;
137
138                 if (hw->mac_type == e1000_82543)
139                         ecmd->transceiver = XCVR_EXTERNAL;
140                 else
141                         ecmd->transceiver = XCVR_INTERNAL;
142
143         } else {
144                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
145                                      SUPPORTED_FIBRE |
146                                      SUPPORTED_Autoneg);
147
148                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
149                                      ADVERTISED_FIBRE |
150                                      ADVERTISED_Autoneg);
151
152                 ecmd->port = PORT_FIBRE;
153
154                 if (hw->mac_type >= e1000_82545)
155                         ecmd->transceiver = XCVR_INTERNAL;
156                 else
157                         ecmd->transceiver = XCVR_EXTERNAL;
158         }
159
160         if (netif_carrier_ok(adapter->netdev)) {
161
162                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
163                                                    &adapter->link_duplex);
164                 ecmd->speed = adapter->link_speed;
165
166                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
167                  *          and HALF_DUPLEX != DUPLEX_HALF */
168
169                 if (adapter->link_duplex == FULL_DUPLEX)
170                         ecmd->duplex = DUPLEX_FULL;
171                 else
172                         ecmd->duplex = DUPLEX_HALF;
173         } else {
174                 ecmd->speed = -1;
175                 ecmd->duplex = -1;
176         }
177
178         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
179                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180         return 0;
181 }
182
183 static int
184 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
185 {
186         struct e1000_adapter *adapter = netdev_priv(netdev);
187         struct e1000_hw *hw = &adapter->hw;
188
189         /* When SoL/IDER sessions are active, autoneg/speed/duplex
190          * cannot be changed */
191         if (e1000_check_phy_reset_block(hw)) {
192                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
193                         "when SoL/IDER is active.\n");
194                 return -EINVAL;
195         }
196
197         if (ecmd->autoneg == AUTONEG_ENABLE) {
198                 hw->autoneg = 1;
199                 if (hw->media_type == e1000_media_type_fiber)
200                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
201                                      ADVERTISED_FIBRE |
202                                      ADVERTISED_Autoneg;
203                 else
204                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
205                                                   ADVERTISED_10baseT_Full |
206                                                   ADVERTISED_100baseT_Half |
207                                                   ADVERTISED_100baseT_Full |
208                                                   ADVERTISED_1000baseT_Full|
209                                                   ADVERTISED_Autoneg |
210                                                   ADVERTISED_TP;
211                 ecmd->advertising = hw->autoneg_advertised;
212         } else
213                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
214                         return -EINVAL;
215
216         /* reset the link */
217
218         if (netif_running(adapter->netdev)) {
219                 e1000_down(adapter);
220                 e1000_reset(adapter);
221                 e1000_up(adapter);
222         } else
223                 e1000_reset(adapter);
224
225         return 0;
226 }
227
228 static void
229 e1000_get_pauseparam(struct net_device *netdev,
230                      struct ethtool_pauseparam *pause)
231 {
232         struct e1000_adapter *adapter = netdev_priv(netdev);
233         struct e1000_hw *hw = &adapter->hw;
234
235         pause->autoneg =
236                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
237
238         if (hw->fc == e1000_fc_rx_pause)
239                 pause->rx_pause = 1;
240         else if (hw->fc == e1000_fc_tx_pause)
241                 pause->tx_pause = 1;
242         else if (hw->fc == e1000_fc_full) {
243                 pause->rx_pause = 1;
244                 pause->tx_pause = 1;
245         }
246 }
247
248 static int
249 e1000_set_pauseparam(struct net_device *netdev,
250                      struct ethtool_pauseparam *pause)
251 {
252         struct e1000_adapter *adapter = netdev_priv(netdev);
253         struct e1000_hw *hw = &adapter->hw;
254
255         adapter->fc_autoneg = pause->autoneg;
256
257         if (pause->rx_pause && pause->tx_pause)
258                 hw->fc = e1000_fc_full;
259         else if (pause->rx_pause && !pause->tx_pause)
260                 hw->fc = e1000_fc_rx_pause;
261         else if (!pause->rx_pause && pause->tx_pause)
262                 hw->fc = e1000_fc_tx_pause;
263         else if (!pause->rx_pause && !pause->tx_pause)
264                 hw->fc = e1000_fc_none;
265
266         hw->original_fc = hw->fc;
267
268         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
269                 if (netif_running(adapter->netdev)) {
270                         e1000_down(adapter);
271                         e1000_up(adapter);
272                 } else
273                         e1000_reset(adapter);
274         } else
275                 return ((hw->media_type == e1000_media_type_fiber) ?
276                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
277
278         return 0;
279 }
280
281 static uint32_t
282 e1000_get_rx_csum(struct net_device *netdev)
283 {
284         struct e1000_adapter *adapter = netdev_priv(netdev);
285         return adapter->rx_csum;
286 }
287
288 static int
289 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
290 {
291         struct e1000_adapter *adapter = netdev_priv(netdev);
292         adapter->rx_csum = data;
293
294         if (netif_running(netdev)) {
295                 e1000_down(adapter);
296                 e1000_up(adapter);
297         } else
298                 e1000_reset(adapter);
299         return 0;
300 }
301
302 static uint32_t
303 e1000_get_tx_csum(struct net_device *netdev)
304 {
305         return (netdev->features & NETIF_F_HW_CSUM) != 0;
306 }
307
308 static int
309 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
310 {
311         struct e1000_adapter *adapter = netdev_priv(netdev);
312
313         if (adapter->hw.mac_type < e1000_82543) {
314                 if (!data)
315                         return -EINVAL;
316                 return 0;
317         }
318
319         if (data)
320                 netdev->features |= NETIF_F_HW_CSUM;
321         else
322                 netdev->features &= ~NETIF_F_HW_CSUM;
323
324         return 0;
325 }
326
327 #ifdef NETIF_F_TSO
328 static int
329 e1000_set_tso(struct net_device *netdev, uint32_t data)
330 {
331         struct e1000_adapter *adapter = netdev_priv(netdev);
332         if ((adapter->hw.mac_type < e1000_82544) ||
333             (adapter->hw.mac_type == e1000_82547))
334                 return data ? -EINVAL : 0;
335
336         if (data)
337                 netdev->features |= NETIF_F_TSO;
338         else
339                 netdev->features &= ~NETIF_F_TSO;
340
341         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
342         adapter->tso_force = TRUE;
343         return 0;
344 }
345 #endif /* NETIF_F_TSO */
346
347 static uint32_t
348 e1000_get_msglevel(struct net_device *netdev)
349 {
350         struct e1000_adapter *adapter = netdev_priv(netdev);
351         return adapter->msg_enable;
352 }
353
354 static void
355 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
356 {
357         struct e1000_adapter *adapter = netdev_priv(netdev);
358         adapter->msg_enable = data;
359 }
360
361 static int
362 e1000_get_regs_len(struct net_device *netdev)
363 {
364 #define E1000_REGS_LEN 32
365         return E1000_REGS_LEN * sizeof(uint32_t);
366 }
367
368 static void
369 e1000_get_regs(struct net_device *netdev,
370                struct ethtool_regs *regs, void *p)
371 {
372         struct e1000_adapter *adapter = netdev_priv(netdev);
373         struct e1000_hw *hw = &adapter->hw;
374         uint32_t *regs_buff = p;
375         uint16_t phy_data;
376
377         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
378
379         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
380
381         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
382         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
383
384         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
385         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
386         regs_buff[4]  = E1000_READ_REG(hw, RDH);
387         regs_buff[5]  = E1000_READ_REG(hw, RDT);
388         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
389
390         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
391         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
392         regs_buff[9]  = E1000_READ_REG(hw, TDH);
393         regs_buff[10] = E1000_READ_REG(hw, TDT);
394         regs_buff[11] = E1000_READ_REG(hw, TIDV);
395
396         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
397         if (hw->phy_type == e1000_phy_igp) {
398                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399                                     IGP01E1000_PHY_AGC_A);
400                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
401                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
403                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
404                                     IGP01E1000_PHY_AGC_B);
405                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
406                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
407                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
408                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
409                                     IGP01E1000_PHY_AGC_C);
410                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
411                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
412                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
413                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
414                                     IGP01E1000_PHY_AGC_D);
415                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
416                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
417                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
418                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
419                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
420                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
421                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
422                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
423                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
424                                     IGP01E1000_PHY_PCS_INIT_REG);
425                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
426                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
427                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
428                 regs_buff[20] = 0; /* polarity correction enabled (always) */
429                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
430                 regs_buff[23] = regs_buff[18]; /* mdix mode */
431                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
432         } else {
433                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
434                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
435                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
436                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
437                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
438                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
439                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
440                 regs_buff[18] = regs_buff[13]; /* cable polarity */
441                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
442                 regs_buff[20] = regs_buff[17]; /* polarity correction */
443                 /* phy receive errors */
444                 regs_buff[22] = adapter->phy_stats.receive_errors;
445                 regs_buff[23] = regs_buff[13]; /* mdix mode */
446         }
447         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
448         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
449         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
450         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
451         if (hw->mac_type >= e1000_82540 &&
452            hw->media_type == e1000_media_type_copper) {
453                 regs_buff[26] = E1000_READ_REG(hw, MANC);
454         }
455 }
456
457 static int
458 e1000_get_eeprom_len(struct net_device *netdev)
459 {
460         struct e1000_adapter *adapter = netdev_priv(netdev);
461         return adapter->hw.eeprom.word_size * 2;
462 }
463
464 static int
465 e1000_get_eeprom(struct net_device *netdev,
466                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
467 {
468         struct e1000_adapter *adapter = netdev_priv(netdev);
469         struct e1000_hw *hw = &adapter->hw;
470         uint16_t *eeprom_buff;
471         int first_word, last_word;
472         int ret_val = 0;
473         uint16_t i;
474
475         if (eeprom->len == 0)
476                 return -EINVAL;
477
478         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
479
480         first_word = eeprom->offset >> 1;
481         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
482
483         eeprom_buff = kmalloc(sizeof(uint16_t) *
484                         (last_word - first_word + 1), GFP_KERNEL);
485         if (!eeprom_buff)
486                 return -ENOMEM;
487
488         if (hw->eeprom.type == e1000_eeprom_spi)
489                 ret_val = e1000_read_eeprom(hw, first_word,
490                                             last_word - first_word + 1,
491                                             eeprom_buff);
492         else {
493                 for (i = 0; i < last_word - first_word + 1; i++)
494                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
495                                                         &eeprom_buff[i])))
496                                 break;
497         }
498
499         /* Device's eeprom is always little-endian, word addressable */
500         for (i = 0; i < last_word - first_word + 1; i++)
501                 le16_to_cpus(&eeprom_buff[i]);
502
503         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
504                         eeprom->len);
505         kfree(eeprom_buff);
506
507         return ret_val;
508 }
509
510 static int
511 e1000_set_eeprom(struct net_device *netdev,
512                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
513 {
514         struct e1000_adapter *adapter = netdev_priv(netdev);
515         struct e1000_hw *hw = &adapter->hw;
516         uint16_t *eeprom_buff;
517         void *ptr;
518         int max_len, first_word, last_word, ret_val = 0;
519         uint16_t i;
520
521         if (eeprom->len == 0)
522                 return -EOPNOTSUPP;
523
524         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
525                 return -EFAULT;
526
527         max_len = hw->eeprom.word_size * 2;
528
529         first_word = eeprom->offset >> 1;
530         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
531         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
532         if (!eeprom_buff)
533                 return -ENOMEM;
534
535         ptr = (void *)eeprom_buff;
536
537         if (eeprom->offset & 1) {
538                 /* need read/modify/write of first changed EEPROM word */
539                 /* only the second byte of the word is being modified */
540                 ret_val = e1000_read_eeprom(hw, first_word, 1,
541                                             &eeprom_buff[0]);
542                 ptr++;
543         }
544         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
545                 /* need read/modify/write of last changed EEPROM word */
546                 /* only the first byte of the word is being modified */
547                 ret_val = e1000_read_eeprom(hw, last_word, 1,
548                                   &eeprom_buff[last_word - first_word]);
549         }
550
551         /* Device's eeprom is always little-endian, word addressable */
552         for (i = 0; i < last_word - first_word + 1; i++)
553                 le16_to_cpus(&eeprom_buff[i]);
554
555         memcpy(ptr, bytes, eeprom->len);
556
557         for (i = 0; i < last_word - first_word + 1; i++)
558                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
559
560         ret_val = e1000_write_eeprom(hw, first_word,
561                                      last_word - first_word + 1, eeprom_buff);
562
563         /* Update the checksum over the first part of the EEPROM if needed
564          * and flush shadow RAM for 82573 conrollers */
565         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
566                                 (hw->mac_type == e1000_82573)))
567                 e1000_update_eeprom_checksum(hw);
568
569         kfree(eeprom_buff);
570         return ret_val;
571 }
572
573 static void
574 e1000_get_drvinfo(struct net_device *netdev,
575                        struct ethtool_drvinfo *drvinfo)
576 {
577         struct e1000_adapter *adapter = netdev_priv(netdev);
578         char firmware_version[32];
579         uint16_t eeprom_data;
580
581         strncpy(drvinfo->driver,  e1000_driver_name, 32);
582         strncpy(drvinfo->version, e1000_driver_version, 32);
583
584         /* EEPROM image version # is reported as firmware version # for
585          * 8257{1|2|3} controllers */
586         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
587         switch (adapter->hw.mac_type) {
588         case e1000_82571:
589         case e1000_82572:
590         case e1000_82573:
591         case e1000_80003es2lan:
592                 sprintf(firmware_version, "%d.%d-%d",
593                         (eeprom_data & 0xF000) >> 12,
594                         (eeprom_data & 0x0FF0) >> 4,
595                         eeprom_data & 0x000F);
596                 break;
597         default:
598                 sprintf(firmware_version, "N/A");
599         }
600
601         strncpy(drvinfo->fw_version, firmware_version, 32);
602         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
603         drvinfo->n_stats = E1000_STATS_LEN;
604         drvinfo->testinfo_len = E1000_TEST_LEN;
605         drvinfo->regdump_len = e1000_get_regs_len(netdev);
606         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
607 }
608
609 static void
610 e1000_get_ringparam(struct net_device *netdev,
611                     struct ethtool_ringparam *ring)
612 {
613         struct e1000_adapter *adapter = netdev_priv(netdev);
614         e1000_mac_type mac_type = adapter->hw.mac_type;
615         struct e1000_tx_ring *txdr = adapter->tx_ring;
616         struct e1000_rx_ring *rxdr = adapter->rx_ring;
617
618         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
619                 E1000_MAX_82544_RXD;
620         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
621                 E1000_MAX_82544_TXD;
622         ring->rx_mini_max_pending = 0;
623         ring->rx_jumbo_max_pending = 0;
624         ring->rx_pending = rxdr->count;
625         ring->tx_pending = txdr->count;
626         ring->rx_mini_pending = 0;
627         ring->rx_jumbo_pending = 0;
628 }
629
630 static int
631 e1000_set_ringparam(struct net_device *netdev,
632                     struct ethtool_ringparam *ring)
633 {
634         struct e1000_adapter *adapter = netdev_priv(netdev);
635         e1000_mac_type mac_type = adapter->hw.mac_type;
636         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
637         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
638         int i, err, tx_ring_size, rx_ring_size;
639
640         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
641                 return -EINVAL;
642
643         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
644         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
645
646         if (netif_running(adapter->netdev))
647                 e1000_down(adapter);
648
649         tx_old = adapter->tx_ring;
650         rx_old = adapter->rx_ring;
651
652         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
653         if (!adapter->tx_ring) {
654                 err = -ENOMEM;
655                 goto err_setup_rx;
656         }
657         memset(adapter->tx_ring, 0, tx_ring_size);
658
659         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
660         if (!adapter->rx_ring) {
661                 kfree(adapter->tx_ring);
662                 err = -ENOMEM;
663                 goto err_setup_rx;
664         }
665         memset(adapter->rx_ring, 0, rx_ring_size);
666
667         txdr = adapter->tx_ring;
668         rxdr = adapter->rx_ring;
669
670         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
671         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
672                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
673         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
674
675         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
676         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
677                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
678         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
679
680         for (i = 0; i < adapter->num_tx_queues; i++)
681                 txdr[i].count = txdr->count;
682         for (i = 0; i < adapter->num_rx_queues; i++)
683                 rxdr[i].count = rxdr->count;
684
685         if (netif_running(adapter->netdev)) {
686                 /* Try to get new resources before deleting old */
687                 if ((err = e1000_setup_all_rx_resources(adapter)))
688                         goto err_setup_rx;
689                 if ((err = e1000_setup_all_tx_resources(adapter)))
690                         goto err_setup_tx;
691
692                 /* save the new, restore the old in order to free it,
693                  * then restore the new back again */
694
695                 rx_new = adapter->rx_ring;
696                 tx_new = adapter->tx_ring;
697                 adapter->rx_ring = rx_old;
698                 adapter->tx_ring = tx_old;
699                 e1000_free_all_rx_resources(adapter);
700                 e1000_free_all_tx_resources(adapter);
701                 kfree(tx_old);
702                 kfree(rx_old);
703                 adapter->rx_ring = rx_new;
704                 adapter->tx_ring = tx_new;
705                 if ((err = e1000_up(adapter)))
706                         return err;
707         }
708
709         return 0;
710 err_setup_tx:
711         e1000_free_all_rx_resources(adapter);
712 err_setup_rx:
713         adapter->rx_ring = rx_old;
714         adapter->tx_ring = tx_old;
715         e1000_up(adapter);
716         return err;
717 }
718
719 #define REG_PATTERN_TEST(R, M, W)                                              \
720 {                                                                              \
721         uint32_t pat, value;                                                   \
722         uint32_t test[] =                                                      \
723                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
724         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
725                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
726                 value = E1000_READ_REG(&adapter->hw, R);                       \
727                 if (value != (test[pat] & W & M)) {                             \
728                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
729                                 "0x%08X expected 0x%08X\n",                    \
730                                 E1000_##R, value, (test[pat] & W & M));        \
731                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
732                                 E1000_82542_##R : E1000_##R;                   \
733                         return 1;                                              \
734                 }                                                              \
735         }                                                                      \
736 }
737
738 #define REG_SET_AND_CHECK(R, M, W)                                             \
739 {                                                                              \
740         uint32_t value;                                                        \
741         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
742         value = E1000_READ_REG(&adapter->hw, R);                               \
743         if ((W & M) != (value & M)) {                                          \
744                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
745                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
746                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
747                         E1000_82542_##R : E1000_##R;                           \
748                 return 1;                                                      \
749         }                                                                      \
750 }
751
752 static int
753 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
754 {
755         uint32_t value, before, after;
756         uint32_t i, toggle;
757
758         /* The status register is Read Only, so a write should fail.
759          * Some bits that get toggled are ignored.
760          */
761         switch (adapter->hw.mac_type) {
762         /* there are several bits on newer hardware that are r/w */
763         case e1000_82571:
764         case e1000_82572:
765         case e1000_80003es2lan:
766                 toggle = 0x7FFFF3FF;
767                 break;
768         case e1000_82573:
769                 toggle = 0x7FFFF033;
770                 break;
771         default:
772                 toggle = 0xFFFFF833;
773                 break;
774         }
775
776         before = E1000_READ_REG(&adapter->hw, STATUS);
777         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
778         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
779         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
780         if (value != after) {
781                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
782                         "0x%08X expected: 0x%08X\n", after, value);
783                 *data = 1;
784                 return 1;
785         }
786         /* restore previous status */
787         E1000_WRITE_REG(&adapter->hw, STATUS, before);
788
789         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
790         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
791         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
792         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
793         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
794         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
795         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
796         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
797         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
798         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
799         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
800         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
801         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
802         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
803
804         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
805         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
806         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
807
808         if (adapter->hw.mac_type >= e1000_82543) {
809
810                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
811                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
812                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
813                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
814                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
815
816                 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
817                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
818                                          0xFFFFFFFF);
819                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
820                                          0xFFFFFFFF);
821                 }
822
823         } else {
824
825                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
826                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
827                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
828                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
829
830         }
831
832         for (i = 0; i < E1000_MC_TBL_SIZE; i++)
833                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
834
835         *data = 0;
836         return 0;
837 }
838
839 static int
840 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
841 {
842         uint16_t temp;
843         uint16_t checksum = 0;
844         uint16_t i;
845
846         *data = 0;
847         /* Read and add up the contents of the EEPROM */
848         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
849                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
850                         *data = 1;
851                         break;
852                 }
853                 checksum += temp;
854         }
855
856         /* If Checksum is not Correct return error else test passed */
857         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
858                 *data = 2;
859
860         return *data;
861 }
862
863 static irqreturn_t
864 e1000_test_intr(int irq,
865                 void *data,
866                 struct pt_regs *regs)
867 {
868         struct net_device *netdev = (struct net_device *) data;
869         struct e1000_adapter *adapter = netdev_priv(netdev);
870
871         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
872
873         return IRQ_HANDLED;
874 }
875
876 static int
877 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
878 {
879         struct net_device *netdev = adapter->netdev;
880         uint32_t mask, i=0, shared_int = TRUE;
881         uint32_t irq = adapter->pdev->irq;
882
883         *data = 0;
884
885         /* Hook up test interrupt handler just for this test */
886         if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
887                 shared_int = FALSE;
888         } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
889                               netdev->name, netdev)){
890                 *data = 1;
891                 return -1;
892         }
893
894         /* Disable all the interrupts */
895         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
896         msec_delay(10);
897
898         /* Test each interrupt */
899         for (; i < 10; i++) {
900
901                 /* Interrupt to test */
902                 mask = 1 << i;
903
904                 if (!shared_int) {
905                         /* Disable the interrupt to be reported in
906                          * the cause register and then force the same
907                          * interrupt and see if one gets posted.  If
908                          * an interrupt was posted to the bus, the
909                          * test failed.
910                          */
911                         adapter->test_icr = 0;
912                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
913                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
914                         msec_delay(10);
915
916                         if (adapter->test_icr & mask) {
917                                 *data = 3;
918                                 break;
919                         }
920                 }
921
922                 /* Enable the interrupt to be reported in
923                  * the cause register and then force the same
924                  * interrupt and see if one gets posted.  If
925                  * an interrupt was not posted to the bus, the
926                  * test failed.
927                  */
928                 adapter->test_icr = 0;
929                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
930                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
931                 msec_delay(10);
932
933                 if (!(adapter->test_icr & mask)) {
934                         *data = 4;
935                         break;
936                 }
937
938                 if (!shared_int) {
939                         /* Disable the other interrupts to be reported in
940                          * the cause register and then force the other
941                          * interrupts and see if any get posted.  If
942                          * an interrupt was posted to the bus, the
943                          * test failed.
944                          */
945                         adapter->test_icr = 0;
946                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
947                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
948                         msec_delay(10);
949
950                         if (adapter->test_icr) {
951                                 *data = 5;
952                                 break;
953                         }
954                 }
955         }
956
957         /* Disable all the interrupts */
958         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
959         msec_delay(10);
960
961         /* Unhook test interrupt handler */
962         free_irq(irq, netdev);
963
964         return *data;
965 }
966
967 static void
968 e1000_free_desc_rings(struct e1000_adapter *adapter)
969 {
970         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
971         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
972         struct pci_dev *pdev = adapter->pdev;
973         int i;
974
975         if (txdr->desc && txdr->buffer_info) {
976                 for (i = 0; i < txdr->count; i++) {
977                         if (txdr->buffer_info[i].dma)
978                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
979                                                  txdr->buffer_info[i].length,
980                                                  PCI_DMA_TODEVICE);
981                         if (txdr->buffer_info[i].skb)
982                                 dev_kfree_skb(txdr->buffer_info[i].skb);
983                 }
984         }
985
986         if (rxdr->desc && rxdr->buffer_info) {
987                 for (i = 0; i < rxdr->count; i++) {
988                         if (rxdr->buffer_info[i].dma)
989                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
990                                                  rxdr->buffer_info[i].length,
991                                                  PCI_DMA_FROMDEVICE);
992                         if (rxdr->buffer_info[i].skb)
993                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
994                 }
995         }
996
997         if (txdr->desc) {
998                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
999                 txdr->desc = NULL;
1000         }
1001         if (rxdr->desc) {
1002                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1003                 rxdr->desc = NULL;
1004         }
1005
1006         kfree(txdr->buffer_info);
1007         txdr->buffer_info = NULL;
1008         kfree(rxdr->buffer_info);
1009         rxdr->buffer_info = NULL;
1010
1011         return;
1012 }
1013
1014 static int
1015 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1016 {
1017         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1018         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1019         struct pci_dev *pdev = adapter->pdev;
1020         uint32_t rctl;
1021         int size, i, ret_val;
1022
1023         /* Setup Tx descriptor ring and Tx buffers */
1024
1025         if (!txdr->count)
1026                 txdr->count = E1000_DEFAULT_TXD;
1027
1028         size = txdr->count * sizeof(struct e1000_buffer);
1029         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1030                 ret_val = 1;
1031                 goto err_nomem;
1032         }
1033         memset(txdr->buffer_info, 0, size);
1034
1035         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1036         E1000_ROUNDUP(txdr->size, 4096);
1037         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1038                 ret_val = 2;
1039                 goto err_nomem;
1040         }
1041         memset(txdr->desc, 0, txdr->size);
1042         txdr->next_to_use = txdr->next_to_clean = 0;
1043
1044         E1000_WRITE_REG(&adapter->hw, TDBAL,
1045                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1046         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1047         E1000_WRITE_REG(&adapter->hw, TDLEN,
1048                         txdr->count * sizeof(struct e1000_tx_desc));
1049         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1050         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1051         E1000_WRITE_REG(&adapter->hw, TCTL,
1052                         E1000_TCTL_PSP | E1000_TCTL_EN |
1053                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1054                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1055
1056         for (i = 0; i < txdr->count; i++) {
1057                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1058                 struct sk_buff *skb;
1059                 unsigned int size = 1024;
1060
1061                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1062                         ret_val = 3;
1063                         goto err_nomem;
1064                 }
1065                 skb_put(skb, size);
1066                 txdr->buffer_info[i].skb = skb;
1067                 txdr->buffer_info[i].length = skb->len;
1068                 txdr->buffer_info[i].dma =
1069                         pci_map_single(pdev, skb->data, skb->len,
1070                                        PCI_DMA_TODEVICE);
1071                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1072                 tx_desc->lower.data = cpu_to_le32(skb->len);
1073                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1074                                                    E1000_TXD_CMD_IFCS |
1075                                                    E1000_TXD_CMD_RPS);
1076                 tx_desc->upper.data = 0;
1077         }
1078
1079         /* Setup Rx descriptor ring and Rx buffers */
1080
1081         if (!rxdr->count)
1082                 rxdr->count = E1000_DEFAULT_RXD;
1083
1084         size = rxdr->count * sizeof(struct e1000_buffer);
1085         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1086                 ret_val = 4;
1087                 goto err_nomem;
1088         }
1089         memset(rxdr->buffer_info, 0, size);
1090
1091         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1092         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1093                 ret_val = 5;
1094                 goto err_nomem;
1095         }
1096         memset(rxdr->desc, 0, rxdr->size);
1097         rxdr->next_to_use = rxdr->next_to_clean = 0;
1098
1099         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1100         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1101         E1000_WRITE_REG(&adapter->hw, RDBAL,
1102                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1103         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1104         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1105         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1106         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1107         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1108                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1109                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1110         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1111
1112         for (i = 0; i < rxdr->count; i++) {
1113                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1114                 struct sk_buff *skb;
1115
1116                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1117                                 GFP_KERNEL))) {
1118                         ret_val = 6;
1119                         goto err_nomem;
1120                 }
1121                 skb_reserve(skb, NET_IP_ALIGN);
1122                 rxdr->buffer_info[i].skb = skb;
1123                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1124                 rxdr->buffer_info[i].dma =
1125                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1126                                        PCI_DMA_FROMDEVICE);
1127                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1128                 memset(skb->data, 0x00, skb->len);
1129         }
1130
1131         return 0;
1132
1133 err_nomem:
1134         e1000_free_desc_rings(adapter);
1135         return ret_val;
1136 }
1137
1138 static void
1139 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1140 {
1141         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1142         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1143         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1144         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1145         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1146 }
1147
1148 static void
1149 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1150 {
1151         uint16_t phy_reg;
1152
1153         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1154          * Extended PHY Specific Control Register to 25MHz clock.  This
1155          * value defaults back to a 2.5MHz clock when the PHY is reset.
1156          */
1157         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1158         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1159         e1000_write_phy_reg(&adapter->hw,
1160                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1161
1162         /* In addition, because of the s/w reset above, we need to enable
1163          * CRS on TX.  This must be set for both full and half duplex
1164          * operation.
1165          */
1166         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1167         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1168         e1000_write_phy_reg(&adapter->hw,
1169                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1170 }
1171
1172 static int
1173 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1174 {
1175         uint32_t ctrl_reg;
1176         uint16_t phy_reg;
1177
1178         /* Setup the Device Control Register for PHY loopback test. */
1179
1180         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1181         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1182                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1183                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1184                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1185                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1186
1187         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1188
1189         /* Read the PHY Specific Control Register (0x10) */
1190         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1191
1192         /* Clear Auto-Crossover bits in PHY Specific Control Register
1193          * (bits 6:5).
1194          */
1195         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1196         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1197
1198         /* Perform software reset on the PHY */
1199         e1000_phy_reset(&adapter->hw);
1200
1201         /* Have to setup TX_CLK and TX_CRS after software reset */
1202         e1000_phy_reset_clk_and_crs(adapter);
1203
1204         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1205
1206         /* Wait for reset to complete. */
1207         udelay(500);
1208
1209         /* Have to setup TX_CLK and TX_CRS after software reset */
1210         e1000_phy_reset_clk_and_crs(adapter);
1211
1212         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1213         e1000_phy_disable_receiver(adapter);
1214
1215         /* Set the loopback bit in the PHY control register. */
1216         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1217         phy_reg |= MII_CR_LOOPBACK;
1218         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1219
1220         /* Setup TX_CLK and TX_CRS one more time. */
1221         e1000_phy_reset_clk_and_crs(adapter);
1222
1223         /* Check Phy Configuration */
1224         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1225         if (phy_reg != 0x4100)
1226                  return 9;
1227
1228         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1229         if (phy_reg != 0x0070)
1230                 return 10;
1231
1232         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1233         if (phy_reg != 0x001A)
1234                 return 11;
1235
1236         return 0;
1237 }
1238
1239 static int
1240 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1241 {
1242         uint32_t ctrl_reg = 0;
1243         uint32_t stat_reg = 0;
1244
1245         adapter->hw.autoneg = FALSE;
1246
1247         if (adapter->hw.phy_type == e1000_phy_m88) {
1248                 /* Auto-MDI/MDIX Off */
1249                 e1000_write_phy_reg(&adapter->hw,
1250                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1251                 /* reset to update Auto-MDI/MDIX */
1252                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1253                 /* autoneg off */
1254                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1255         } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
1256                 e1000_write_phy_reg(&adapter->hw,
1257                                     GG82563_PHY_KMRN_MODE_CTRL,
1258                                     0x1CE);
1259         }
1260         /* force 1000, set loopback */
1261         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1262
1263         /* Now set up the MAC to the same speed/duplex as the PHY. */
1264         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1265         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1266         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1267                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1268                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1269                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1270
1271         if (adapter->hw.media_type == e1000_media_type_copper &&
1272            adapter->hw.phy_type == e1000_phy_m88) {
1273                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1274         } else {
1275                 /* Set the ILOS bit on the fiber Nic is half
1276                  * duplex link is detected. */
1277                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1278                 if ((stat_reg & E1000_STATUS_FD) == 0)
1279                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1280         }
1281
1282         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1283
1284         /* Disable the receiver on the PHY so when a cable is plugged in, the
1285          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1286          */
1287         if (adapter->hw.phy_type == e1000_phy_m88)
1288                 e1000_phy_disable_receiver(adapter);
1289
1290         udelay(500);
1291
1292         return 0;
1293 }
1294
1295 static int
1296 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1297 {
1298         uint16_t phy_reg = 0;
1299         uint16_t count = 0;
1300
1301         switch (adapter->hw.mac_type) {
1302         case e1000_82543:
1303                 if (adapter->hw.media_type == e1000_media_type_copper) {
1304                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1305                          * Some PHY registers get corrupted at random, so
1306                          * attempt this 10 times.
1307                          */
1308                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1309                               count++ < 10);
1310                         if (count < 11)
1311                                 return 0;
1312                 }
1313                 break;
1314
1315         case e1000_82544:
1316         case e1000_82540:
1317         case e1000_82545:
1318         case e1000_82545_rev_3:
1319         case e1000_82546:
1320         case e1000_82546_rev_3:
1321         case e1000_82541:
1322         case e1000_82541_rev_2:
1323         case e1000_82547:
1324         case e1000_82547_rev_2:
1325         case e1000_82571:
1326         case e1000_82572:
1327         case e1000_82573:
1328         case e1000_80003es2lan:
1329                 return e1000_integrated_phy_loopback(adapter);
1330                 break;
1331
1332         default:
1333                 /* Default PHY loopback work is to read the MII
1334                  * control register and assert bit 14 (loopback mode).
1335                  */
1336                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1337                 phy_reg |= MII_CR_LOOPBACK;
1338                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1339                 return 0;
1340                 break;
1341         }
1342
1343         return 8;
1344 }
1345
1346 static int
1347 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1348 {
1349         struct e1000_hw *hw = &adapter->hw;
1350         uint32_t rctl;
1351
1352         if (hw->media_type == e1000_media_type_fiber ||
1353             hw->media_type == e1000_media_type_internal_serdes) {
1354                 switch (hw->mac_type) {
1355                 case e1000_82545:
1356                 case e1000_82546:
1357                 case e1000_82545_rev_3:
1358                 case e1000_82546_rev_3:
1359                         return e1000_set_phy_loopback(adapter);
1360                         break;
1361                 case e1000_82571:
1362                 case e1000_82572:
1363 #define E1000_SERDES_LB_ON 0x410
1364                         e1000_set_phy_loopback(adapter);
1365                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1366                         msec_delay(10);
1367                         return 0;
1368                         break;
1369                 default:
1370                         rctl = E1000_READ_REG(hw, RCTL);
1371                         rctl |= E1000_RCTL_LBM_TCVR;
1372                         E1000_WRITE_REG(hw, RCTL, rctl);
1373                         return 0;
1374                 }
1375         } else if (hw->media_type == e1000_media_type_copper)
1376                 return e1000_set_phy_loopback(adapter);
1377
1378         return 7;
1379 }
1380
1381 static void
1382 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1383 {
1384         struct e1000_hw *hw = &adapter->hw;
1385         uint32_t rctl;
1386         uint16_t phy_reg;
1387
1388         rctl = E1000_READ_REG(hw, RCTL);
1389         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1390         E1000_WRITE_REG(hw, RCTL, rctl);
1391
1392         switch (hw->mac_type) {
1393         case e1000_82571:
1394         case e1000_82572:
1395                 if (hw->media_type == e1000_media_type_fiber ||
1396                     hw->media_type == e1000_media_type_internal_serdes) {
1397 #define E1000_SERDES_LB_OFF 0x400
1398                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1399                         msec_delay(10);
1400                         break;
1401                 }
1402                 /* Fall Through */
1403         case e1000_82545:
1404         case e1000_82546:
1405         case e1000_82545_rev_3:
1406         case e1000_82546_rev_3:
1407         default:
1408                 hw->autoneg = TRUE;
1409                 if (hw->phy_type == e1000_phy_gg82563) {
1410                         e1000_write_phy_reg(hw,
1411                                             GG82563_PHY_KMRN_MODE_CTRL,
1412                                             0x180);
1413                 }
1414                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1415                 if (phy_reg & MII_CR_LOOPBACK) {
1416                         phy_reg &= ~MII_CR_LOOPBACK;
1417                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1418                         e1000_phy_reset(hw);
1419                 }
1420                 break;
1421         }
1422 }
1423
1424 static void
1425 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1426 {
1427         memset(skb->data, 0xFF, frame_size);
1428         frame_size &= ~1;
1429         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1430         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1431         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1432 }
1433
1434 static int
1435 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1436 {
1437         frame_size &= ~1;
1438         if (*(skb->data + 3) == 0xFF) {
1439                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1440                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1441                         return 0;
1442                 }
1443         }
1444         return 13;
1445 }
1446
1447 static int
1448 e1000_run_loopback_test(struct e1000_adapter *adapter)
1449 {
1450         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1451         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1452         struct pci_dev *pdev = adapter->pdev;
1453         int i, j, k, l, lc, good_cnt, ret_val=0;
1454         unsigned long time;
1455
1456         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1457
1458         /* Calculate the loop count based on the largest descriptor ring
1459          * The idea is to wrap the largest ring a number of times using 64
1460          * send/receive pairs during each loop
1461          */
1462
1463         if (rxdr->count <= txdr->count)
1464                 lc = ((txdr->count / 64) * 2) + 1;
1465         else
1466                 lc = ((rxdr->count / 64) * 2) + 1;
1467
1468         k = l = 0;
1469         for (j = 0; j <= lc; j++) { /* loop count loop */
1470                 for (i = 0; i < 64; i++) { /* send the packets */
1471                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1472                                         1024);
1473                         pci_dma_sync_single_for_device(pdev,
1474                                         txdr->buffer_info[k].dma,
1475                                         txdr->buffer_info[k].length,
1476                                         PCI_DMA_TODEVICE);
1477                         if (unlikely(++k == txdr->count)) k = 0;
1478                 }
1479                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1480                 msec_delay(200);
1481                 time = jiffies; /* set the start time for the receive */
1482                 good_cnt = 0;
1483                 do { /* receive the sent packets */
1484                         pci_dma_sync_single_for_cpu(pdev,
1485                                         rxdr->buffer_info[l].dma,
1486                                         rxdr->buffer_info[l].length,
1487                                         PCI_DMA_FROMDEVICE);
1488
1489                         ret_val = e1000_check_lbtest_frame(
1490                                         rxdr->buffer_info[l].skb,
1491                                         1024);
1492                         if (!ret_val)
1493                                 good_cnt++;
1494                         if (unlikely(++l == rxdr->count)) l = 0;
1495                         /* time + 20 msecs (200 msecs on 2.4) is more than
1496                          * enough time to complete the receives, if it's
1497                          * exceeded, break and error off
1498                          */
1499                 } while (good_cnt < 64 && jiffies < (time + 20));
1500                 if (good_cnt != 64) {
1501                         ret_val = 13; /* ret_val is the same as mis-compare */
1502                         break;
1503                 }
1504                 if (jiffies >= (time + 2)) {
1505                         ret_val = 14; /* error code for time out error */
1506                         break;
1507                 }
1508         } /* end loop count loop */
1509         return ret_val;
1510 }
1511
1512 static int
1513 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1514 {
1515         /* PHY loopback cannot be performed if SoL/IDER
1516          * sessions are active */
1517         if (e1000_check_phy_reset_block(&adapter->hw)) {
1518                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1519                         "when SoL/IDER is active.\n");
1520                 *data = 0;
1521                 goto out;
1522         }
1523
1524         if ((*data = e1000_setup_desc_rings(adapter)))
1525                 goto out;
1526         if ((*data = e1000_setup_loopback_test(adapter)))
1527                 goto err_loopback;
1528         *data = e1000_run_loopback_test(adapter);
1529         e1000_loopback_cleanup(adapter);
1530
1531 err_loopback:
1532         e1000_free_desc_rings(adapter);
1533 out:
1534         return *data;
1535 }
1536
1537 static int
1538 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1539 {
1540         *data = 0;
1541         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1542                 int i = 0;
1543                 adapter->hw.serdes_link_down = TRUE;
1544
1545                 /* On some blade server designs, link establishment
1546                  * could take as long as 2-3 minutes */
1547                 do {
1548                         e1000_check_for_link(&adapter->hw);
1549                         if (adapter->hw.serdes_link_down == FALSE)
1550                                 return *data;
1551                         msec_delay(20);
1552                 } while (i++ < 3750);
1553
1554                 *data = 1;
1555         } else {
1556                 e1000_check_for_link(&adapter->hw);
1557                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1558                         msec_delay(4000);
1559
1560                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1561                         *data = 1;
1562                 }
1563         }
1564         return *data;
1565 }
1566
1567 static int
1568 e1000_diag_test_count(struct net_device *netdev)
1569 {
1570         return E1000_TEST_LEN;
1571 }
1572
1573 static void
1574 e1000_diag_test(struct net_device *netdev,
1575                    struct ethtool_test *eth_test, uint64_t *data)
1576 {
1577         struct e1000_adapter *adapter = netdev_priv(netdev);
1578         boolean_t if_running = netif_running(netdev);
1579
1580         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1581                 /* Offline tests */
1582
1583                 /* save speed, duplex, autoneg settings */
1584                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1585                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1586                 uint8_t autoneg = adapter->hw.autoneg;
1587
1588                 /* Link test performed before hardware reset so autoneg doesn't
1589                  * interfere with test result */
1590                 if (e1000_link_test(adapter, &data[4]))
1591                         eth_test->flags |= ETH_TEST_FL_FAILED;
1592
1593                 if (if_running)
1594                         e1000_down(adapter);
1595                 else
1596                         e1000_reset(adapter);
1597
1598                 if (e1000_reg_test(adapter, &data[0]))
1599                         eth_test->flags |= ETH_TEST_FL_FAILED;
1600
1601                 e1000_reset(adapter);
1602                 if (e1000_eeprom_test(adapter, &data[1]))
1603                         eth_test->flags |= ETH_TEST_FL_FAILED;
1604
1605                 e1000_reset(adapter);
1606                 if (e1000_intr_test(adapter, &data[2]))
1607                         eth_test->flags |= ETH_TEST_FL_FAILED;
1608
1609                 e1000_reset(adapter);
1610                 if (e1000_loopback_test(adapter, &data[3]))
1611                         eth_test->flags |= ETH_TEST_FL_FAILED;
1612
1613                 /* restore speed, duplex, autoneg settings */
1614                 adapter->hw.autoneg_advertised = autoneg_advertised;
1615                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1616                 adapter->hw.autoneg = autoneg;
1617
1618                 e1000_reset(adapter);
1619                 if (if_running)
1620                         e1000_up(adapter);
1621         } else {
1622                 /* Online tests */
1623                 if (e1000_link_test(adapter, &data[4]))
1624                         eth_test->flags |= ETH_TEST_FL_FAILED;
1625
1626                 /* Offline tests aren't run; pass by default */
1627                 data[0] = 0;
1628                 data[1] = 0;
1629                 data[2] = 0;
1630                 data[3] = 0;
1631         }
1632         msleep_interruptible(4 * 1000);
1633 }
1634
1635 static void
1636 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1637 {
1638         struct e1000_adapter *adapter = netdev_priv(netdev);
1639         struct e1000_hw *hw = &adapter->hw;
1640
1641         switch (adapter->hw.device_id) {
1642         case E1000_DEV_ID_82542:
1643         case E1000_DEV_ID_82543GC_FIBER:
1644         case E1000_DEV_ID_82543GC_COPPER:
1645         case E1000_DEV_ID_82544EI_FIBER:
1646         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1647         case E1000_DEV_ID_82545EM_FIBER:
1648         case E1000_DEV_ID_82545EM_COPPER:
1649         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1650                 wol->supported = 0;
1651                 wol->wolopts   = 0;
1652                 return;
1653
1654         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1655                 /* device id 10B5 port-A supports wol */
1656                 if (!adapter->ksp3_port_a) {
1657                         wol->supported = 0;
1658                         return;
1659                 }
1660                 /* KSP3 does not suppport UCAST wake-ups for any interface */
1661                 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1662
1663                 if (adapter->wol & E1000_WUFC_EX)
1664                         DPRINTK(DRV, ERR, "Interface does not support "
1665                         "directed (unicast) frame wake-up packets\n");
1666                 wol->wolopts = 0;
1667                 goto do_defaults;
1668
1669         case E1000_DEV_ID_82546EB_FIBER:
1670         case E1000_DEV_ID_82546GB_FIBER:
1671         case E1000_DEV_ID_82571EB_FIBER:
1672                 /* Wake events only supported on port A for dual fiber */
1673                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1674                         wol->supported = 0;
1675                         wol->wolopts   = 0;
1676                         return;
1677                 }
1678                 /* Fall Through */
1679
1680         default:
1681                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1682                                  WAKE_BCAST | WAKE_MAGIC;
1683                 wol->wolopts = 0;
1684
1685 do_defaults:
1686                 if (adapter->wol & E1000_WUFC_EX)
1687                         wol->wolopts |= WAKE_UCAST;
1688                 if (adapter->wol & E1000_WUFC_MC)
1689                         wol->wolopts |= WAKE_MCAST;
1690                 if (adapter->wol & E1000_WUFC_BC)
1691                         wol->wolopts |= WAKE_BCAST;
1692                 if (adapter->wol & E1000_WUFC_MAG)
1693                         wol->wolopts |= WAKE_MAGIC;
1694                 return;
1695         }
1696 }
1697
1698 static int
1699 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1700 {
1701         struct e1000_adapter *adapter = netdev_priv(netdev);
1702         struct e1000_hw *hw = &adapter->hw;
1703
1704         switch (adapter->hw.device_id) {
1705         case E1000_DEV_ID_82542:
1706         case E1000_DEV_ID_82543GC_FIBER:
1707         case E1000_DEV_ID_82543GC_COPPER:
1708         case E1000_DEV_ID_82544EI_FIBER:
1709         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1710         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1711         case E1000_DEV_ID_82545EM_FIBER:
1712         case E1000_DEV_ID_82545EM_COPPER:
1713                 return wol->wolopts ? -EOPNOTSUPP : 0;
1714
1715         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1716                 /* device id 10B5 port-A supports wol */
1717                 if (!adapter->ksp3_port_a)
1718                         return wol->wolopts ? -EOPNOTSUPP : 0;
1719
1720                 if (wol->wolopts & WAKE_UCAST) {
1721                         DPRINTK(DRV, ERR, "Interface does not support "
1722                         "directed (unicast) frame wake-up packets\n");
1723                         return -EOPNOTSUPP;
1724                 }
1725
1726         case E1000_DEV_ID_82546EB_FIBER:
1727         case E1000_DEV_ID_82546GB_FIBER:
1728         case E1000_DEV_ID_82571EB_FIBER:
1729                 /* Wake events only supported on port A for dual fiber */
1730                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1731                         return wol->wolopts ? -EOPNOTSUPP : 0;
1732                 /* Fall Through */
1733
1734         default:
1735                 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1736                         return -EOPNOTSUPP;
1737
1738                 adapter->wol = 0;
1739
1740                 if (wol->wolopts & WAKE_UCAST)
1741                         adapter->wol |= E1000_WUFC_EX;
1742                 if (wol->wolopts & WAKE_MCAST)
1743                         adapter->wol |= E1000_WUFC_MC;
1744                 if (wol->wolopts & WAKE_BCAST)
1745                         adapter->wol |= E1000_WUFC_BC;
1746                 if (wol->wolopts & WAKE_MAGIC)
1747                         adapter->wol |= E1000_WUFC_MAG;
1748         }
1749
1750         return 0;
1751 }
1752
1753 /* toggle LED 4 times per second = 2 "blinks" per second */
1754 #define E1000_ID_INTERVAL       (HZ/4)
1755
1756 /* bit defines for adapter->led_status */
1757 #define E1000_LED_ON            0
1758
1759 static void
1760 e1000_led_blink_callback(unsigned long data)
1761 {
1762         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1763
1764         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1765                 e1000_led_off(&adapter->hw);
1766         else
1767                 e1000_led_on(&adapter->hw);
1768
1769         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1770 }
1771
1772 static int
1773 e1000_phys_id(struct net_device *netdev, uint32_t data)
1774 {
1775         struct e1000_adapter *adapter = netdev_priv(netdev);
1776
1777         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1778                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1779
1780         if (adapter->hw.mac_type < e1000_82571) {
1781                 if (!adapter->blink_timer.function) {
1782                         init_timer(&adapter->blink_timer);
1783                         adapter->blink_timer.function = e1000_led_blink_callback;
1784                         adapter->blink_timer.data = (unsigned long) adapter;
1785                 }
1786                 e1000_setup_led(&adapter->hw);
1787                 mod_timer(&adapter->blink_timer, jiffies);
1788                 msleep_interruptible(data * 1000);
1789                 del_timer_sync(&adapter->blink_timer);
1790         } else if (adapter->hw.mac_type < e1000_82573) {
1791                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1792                         (E1000_LEDCTL_LED2_BLINK_RATE |
1793                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1794                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1795                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1796                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1797                 msleep_interruptible(data * 1000);
1798         } else {
1799                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1800                         (E1000_LEDCTL_LED2_BLINK_RATE |
1801                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1802                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1803                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1804                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1805                 msleep_interruptible(data * 1000);
1806         }
1807
1808         e1000_led_off(&adapter->hw);
1809         clear_bit(E1000_LED_ON, &adapter->led_status);
1810         e1000_cleanup_led(&adapter->hw);
1811
1812         return 0;
1813 }
1814
1815 static int
1816 e1000_nway_reset(struct net_device *netdev)
1817 {
1818         struct e1000_adapter *adapter = netdev_priv(netdev);
1819         if (netif_running(netdev)) {
1820                 e1000_down(adapter);
1821                 e1000_up(adapter);
1822         }
1823         return 0;
1824 }
1825
1826 static int
1827 e1000_get_stats_count(struct net_device *netdev)
1828 {
1829         return E1000_STATS_LEN;
1830 }
1831
1832 static void
1833 e1000_get_ethtool_stats(struct net_device *netdev,
1834                 struct ethtool_stats *stats, uint64_t *data)
1835 {
1836         struct e1000_adapter *adapter = netdev_priv(netdev);
1837         int i;
1838
1839         e1000_update_stats(adapter);
1840         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1841                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1842                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1843                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1844         }
1845 /*      BUG_ON(i != E1000_STATS_LEN); */
1846 }
1847
1848 static void
1849 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1850 {
1851         uint8_t *p = data;
1852         int i;
1853
1854         switch (stringset) {
1855         case ETH_SS_TEST:
1856                 memcpy(data, *e1000_gstrings_test,
1857                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1858                 break;
1859         case ETH_SS_STATS:
1860                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1861                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1862                                ETH_GSTRING_LEN);
1863                         p += ETH_GSTRING_LEN;
1864                 }
1865 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1866                 break;
1867         }
1868 }
1869
1870 static struct ethtool_ops e1000_ethtool_ops = {
1871         .get_settings           = e1000_get_settings,
1872         .set_settings           = e1000_set_settings,
1873         .get_drvinfo            = e1000_get_drvinfo,
1874         .get_regs_len           = e1000_get_regs_len,
1875         .get_regs               = e1000_get_regs,
1876         .get_wol                = e1000_get_wol,
1877         .set_wol                = e1000_set_wol,
1878         .get_msglevel           = e1000_get_msglevel,
1879         .set_msglevel           = e1000_set_msglevel,
1880         .nway_reset             = e1000_nway_reset,
1881         .get_link               = ethtool_op_get_link,
1882         .get_eeprom_len         = e1000_get_eeprom_len,
1883         .get_eeprom             = e1000_get_eeprom,
1884         .set_eeprom             = e1000_set_eeprom,
1885         .get_ringparam          = e1000_get_ringparam,
1886         .set_ringparam          = e1000_set_ringparam,
1887         .get_pauseparam         = e1000_get_pauseparam,
1888         .set_pauseparam         = e1000_set_pauseparam,
1889         .get_rx_csum            = e1000_get_rx_csum,
1890         .set_rx_csum            = e1000_set_rx_csum,
1891         .get_tx_csum            = e1000_get_tx_csum,
1892         .set_tx_csum            = e1000_set_tx_csum,
1893         .get_sg                 = ethtool_op_get_sg,
1894         .set_sg                 = ethtool_op_set_sg,
1895 #ifdef NETIF_F_TSO
1896         .get_tso                = ethtool_op_get_tso,
1897         .set_tso                = e1000_set_tso,
1898 #endif
1899         .self_test_count        = e1000_diag_test_count,
1900         .self_test              = e1000_diag_test,
1901         .get_strings            = e1000_get_strings,
1902         .phys_id                = e1000_phys_id,
1903         .get_stats_count        = e1000_get_stats_count,
1904         .get_ethtool_stats      = e1000_get_ethtool_stats,
1905         .get_perm_addr          = ethtool_op_get_perm_addr,
1906 };
1907
1908 void e1000_set_ethtool_ops(struct net_device *netdev)
1909 {
1910         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1911 }