]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10A5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
105         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
108         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
110         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
111         INTEL_E1000_ETHERNET_DEVICE(0x10D5),
112         INTEL_E1000_ETHERNET_DEVICE(0x10D9),
113         INTEL_E1000_ETHERNET_DEVICE(0x10DA),
114         /* required last entry */
115         {0,}
116 };
117
118 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
119
120 int e1000_up(struct e1000_adapter *adapter);
121 void e1000_down(struct e1000_adapter *adapter);
122 void e1000_reinit_locked(struct e1000_adapter *adapter);
123 void e1000_reset(struct e1000_adapter *adapter);
124 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
125 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
126 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
127 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
128 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
129 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *txdr);
131 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rxdr);
133 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
134                              struct e1000_tx_ring *tx_ring);
135 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
136                              struct e1000_rx_ring *rx_ring);
137 void e1000_update_stats(struct e1000_adapter *adapter);
138
139 static int e1000_init_module(void);
140 static void e1000_exit_module(void);
141 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
142 static void __devexit e1000_remove(struct pci_dev *pdev);
143 static int e1000_alloc_queues(struct e1000_adapter *adapter);
144 static int e1000_sw_init(struct e1000_adapter *adapter);
145 static int e1000_open(struct net_device *netdev);
146 static int e1000_close(struct net_device *netdev);
147 static void e1000_configure_tx(struct e1000_adapter *adapter);
148 static void e1000_configure_rx(struct e1000_adapter *adapter);
149 static void e1000_setup_rctl(struct e1000_adapter *adapter);
150 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
151 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
152 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
153                                 struct e1000_tx_ring *tx_ring);
154 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
155                                 struct e1000_rx_ring *rx_ring);
156 static void e1000_set_multi(struct net_device *netdev);
157 static void e1000_update_phy_info(unsigned long data);
158 static void e1000_watchdog(unsigned long data);
159 static void e1000_82547_tx_fifo_stall(unsigned long data);
160 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
161 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
162 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
163 static int e1000_set_mac(struct net_device *netdev, void *p);
164 static irqreturn_t e1000_intr(int irq, void *data);
165 static irqreturn_t e1000_intr_msi(int irq, void *data);
166 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
167                                     struct e1000_tx_ring *tx_ring);
168 #ifdef CONFIG_E1000_NAPI
169 static int e1000_clean(struct napi_struct *napi, int budget);
170 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
171                                     struct e1000_rx_ring *rx_ring,
172                                     int *work_done, int work_to_do);
173 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
174                                        struct e1000_rx_ring *rx_ring,
175                                        int *work_done, int work_to_do);
176 #else
177 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
178                                     struct e1000_rx_ring *rx_ring);
179 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
180                                        struct e1000_rx_ring *rx_ring);
181 #endif
182 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
183                                    struct e1000_rx_ring *rx_ring,
184                                    int cleaned_count);
185 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
186                                       struct e1000_rx_ring *rx_ring,
187                                       int cleaned_count);
188 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
189 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
190                            int cmd);
191 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
193 static void e1000_tx_timeout(struct net_device *dev);
194 static void e1000_reset_task(struct work_struct *work);
195 static void e1000_smartspeed(struct e1000_adapter *adapter);
196 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
197                                        struct sk_buff *skb);
198
199 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
200 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
202 static void e1000_restore_vlan(struct e1000_adapter *adapter);
203
204 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
205 #ifdef CONFIG_PM
206 static int e1000_resume(struct pci_dev *pdev);
207 #endif
208 static void e1000_shutdown(struct pci_dev *pdev);
209
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void e1000_netpoll (struct net_device *netdev);
213 #endif
214
215 #define COPYBREAK_DEFAULT 256
216 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
217 module_param(copybreak, uint, 0644);
218 MODULE_PARM_DESC(copybreak,
219         "Maximum size of packet that is copied to a new buffer on receive");
220
221 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
222                      pci_channel_state_t state);
223 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
224 static void e1000_io_resume(struct pci_dev *pdev);
225
226 static struct pci_error_handlers e1000_err_handler = {
227         .error_detected = e1000_io_error_detected,
228         .slot_reset = e1000_io_slot_reset,
229         .resume = e1000_io_resume,
230 };
231
232 static struct pci_driver e1000_driver = {
233         .name     = e1000_driver_name,
234         .id_table = e1000_pci_tbl,
235         .probe    = e1000_probe,
236         .remove   = __devexit_p(e1000_remove),
237 #ifdef CONFIG_PM
238         /* Power Managment Hooks */
239         .suspend  = e1000_suspend,
240         .resume   = e1000_resume,
241 #endif
242         .shutdown = e1000_shutdown,
243         .err_handler = &e1000_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
247 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
252 module_param(debug, int, 0);
253 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
254
255 /**
256  * e1000_init_module - Driver Registration Routine
257  *
258  * e1000_init_module is the first routine called when the driver is
259  * loaded. All it does is register with the PCI subsystem.
260  **/
261
262 static int __init
263 e1000_init_module(void)
264 {
265         int ret;
266         printk(KERN_INFO "%s - version %s\n",
267                e1000_driver_string, e1000_driver_version);
268
269         printk(KERN_INFO "%s\n", e1000_copyright);
270
271         ret = pci_register_driver(&e1000_driver);
272         if (copybreak != COPYBREAK_DEFAULT) {
273                 if (copybreak == 0)
274                         printk(KERN_INFO "e1000: copybreak disabled\n");
275                 else
276                         printk(KERN_INFO "e1000: copybreak enabled for "
277                                "packets <= %u bytes\n", copybreak);
278         }
279         return ret;
280 }
281
282 module_init(e1000_init_module);
283
284 /**
285  * e1000_exit_module - Driver Exit Cleanup Routine
286  *
287  * e1000_exit_module is called just before the driver is removed
288  * from memory.
289  **/
290
291 static void __exit
292 e1000_exit_module(void)
293 {
294         pci_unregister_driver(&e1000_driver);
295 }
296
297 module_exit(e1000_exit_module);
298
299 static int e1000_request_irq(struct e1000_adapter *adapter)
300 {
301         struct net_device *netdev = adapter->netdev;
302         void (*handler) = &e1000_intr;
303         int irq_flags = IRQF_SHARED;
304         int err;
305
306         if (adapter->hw.mac_type >= e1000_82571) {
307                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
308                 if (adapter->have_msi) {
309                         handler = &e1000_intr_msi;
310                         irq_flags = 0;
311                 }
312         }
313
314         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
315                           netdev);
316         if (err) {
317                 if (adapter->have_msi)
318                         pci_disable_msi(adapter->pdev);
319                 DPRINTK(PROBE, ERR,
320                         "Unable to allocate interrupt Error: %d\n", err);
321         }
322
323         return err;
324 }
325
326 static void e1000_free_irq(struct e1000_adapter *adapter)
327 {
328         struct net_device *netdev = adapter->netdev;
329
330         free_irq(adapter->pdev->irq, netdev);
331
332         if (adapter->have_msi)
333                 pci_disable_msi(adapter->pdev);
334 }
335
336 /**
337  * e1000_irq_disable - Mask off interrupt generation on the NIC
338  * @adapter: board private structure
339  **/
340
341 static void
342 e1000_irq_disable(struct e1000_adapter *adapter)
343 {
344         atomic_inc(&adapter->irq_sem);
345         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
346         E1000_WRITE_FLUSH(&adapter->hw);
347         synchronize_irq(adapter->pdev->irq);
348 }
349
350 /**
351  * e1000_irq_enable - Enable default interrupt generation settings
352  * @adapter: board private structure
353  **/
354
355 static void
356 e1000_irq_enable(struct e1000_adapter *adapter)
357 {
358         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
359                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
360                 E1000_WRITE_FLUSH(&adapter->hw);
361         }
362 }
363
364 static void
365 e1000_update_mng_vlan(struct e1000_adapter *adapter)
366 {
367         struct net_device *netdev = adapter->netdev;
368         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
369         uint16_t old_vid = adapter->mng_vlan_id;
370         if (adapter->vlgrp) {
371                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
372                         if (adapter->hw.mng_cookie.status &
373                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
374                                 e1000_vlan_rx_add_vid(netdev, vid);
375                                 adapter->mng_vlan_id = vid;
376                         } else
377                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
378
379                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
380                                         (vid != old_vid) &&
381                             !vlan_group_get_device(adapter->vlgrp, old_vid))
382                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
383                 } else
384                         adapter->mng_vlan_id = vid;
385         }
386 }
387
388 /**
389  * e1000_release_hw_control - release control of the h/w to f/w
390  * @adapter: address of board private structure
391  *
392  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
393  * For ASF and Pass Through versions of f/w this means that the
394  * driver is no longer loaded. For AMT version (only with 82573) i
395  * of the f/w this means that the network i/f is closed.
396  *
397  **/
398
399 static void
400 e1000_release_hw_control(struct e1000_adapter *adapter)
401 {
402         uint32_t ctrl_ext;
403         uint32_t swsm;
404
405         /* Let firmware taken over control of h/w */
406         switch (adapter->hw.mac_type) {
407         case e1000_82573:
408                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
409                 E1000_WRITE_REG(&adapter->hw, SWSM,
410                                 swsm & ~E1000_SWSM_DRV_LOAD);
411                 break;
412         case e1000_82571:
413         case e1000_82572:
414         case e1000_80003es2lan:
415         case e1000_ich8lan:
416                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
417                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
418                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
419                 break;
420         default:
421                 break;
422         }
423 }
424
425 /**
426  * e1000_get_hw_control - get control of the h/w from f/w
427  * @adapter: address of board private structure
428  *
429  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430  * For ASF and Pass Through versions of f/w this means that
431  * the driver is loaded. For AMT version (only with 82573)
432  * of the f/w this means that the network i/f is open.
433  *
434  **/
435
436 static void
437 e1000_get_hw_control(struct e1000_adapter *adapter)
438 {
439         uint32_t ctrl_ext;
440         uint32_t swsm;
441
442         /* Let firmware know the driver has taken over */
443         switch (adapter->hw.mac_type) {
444         case e1000_82573:
445                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
446                 E1000_WRITE_REG(&adapter->hw, SWSM,
447                                 swsm | E1000_SWSM_DRV_LOAD);
448                 break;
449         case e1000_82571:
450         case e1000_82572:
451         case e1000_80003es2lan:
452         case e1000_ich8lan:
453                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
454                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
455                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
456                 break;
457         default:
458                 break;
459         }
460 }
461
462 static void
463 e1000_init_manageability(struct e1000_adapter *adapter)
464 {
465         if (adapter->en_mng_pt) {
466                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
467
468                 /* disable hardware interception of ARP */
469                 manc &= ~(E1000_MANC_ARP_EN);
470
471                 /* enable receiving management packets to the host */
472                 /* this will probably generate destination unreachable messages
473                  * from the host OS, but the packets will be handled on SMBUS */
474                 if (adapter->hw.has_manc2h) {
475                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
476
477                         manc |= E1000_MANC_EN_MNG2HOST;
478 #define E1000_MNG2HOST_PORT_623 (1 << 5)
479 #define E1000_MNG2HOST_PORT_664 (1 << 6)
480                         manc2h |= E1000_MNG2HOST_PORT_623;
481                         manc2h |= E1000_MNG2HOST_PORT_664;
482                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
483                 }
484
485                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
486         }
487 }
488
489 static void
490 e1000_release_manageability(struct e1000_adapter *adapter)
491 {
492         if (adapter->en_mng_pt) {
493                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
494
495                 /* re-enable hardware interception of ARP */
496                 manc |= E1000_MANC_ARP_EN;
497
498                 if (adapter->hw.has_manc2h)
499                         manc &= ~E1000_MANC_EN_MNG2HOST;
500
501                 /* don't explicitly have to mess with MANC2H since
502                  * MANC has an enable disable that gates MANC2H */
503
504                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
505         }
506 }
507
508 /**
509  * e1000_configure - configure the hardware for RX and TX
510  * @adapter = private board structure
511  **/
512 static void e1000_configure(struct e1000_adapter *adapter)
513 {
514         struct net_device *netdev = adapter->netdev;
515         int i;
516
517         e1000_set_multi(netdev);
518
519         e1000_restore_vlan(adapter);
520         e1000_init_manageability(adapter);
521
522         e1000_configure_tx(adapter);
523         e1000_setup_rctl(adapter);
524         e1000_configure_rx(adapter);
525         /* call E1000_DESC_UNUSED which always leaves
526          * at least 1 descriptor unused to make sure
527          * next_to_use != next_to_clean */
528         for (i = 0; i < adapter->num_rx_queues; i++) {
529                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
530                 adapter->alloc_rx_buf(adapter, ring,
531                                       E1000_DESC_UNUSED(ring));
532         }
533
534         adapter->tx_queue_len = netdev->tx_queue_len;
535 }
536
537 int e1000_up(struct e1000_adapter *adapter)
538 {
539         /* hardware has been reset, we need to reload some things */
540         e1000_configure(adapter);
541
542         clear_bit(__E1000_DOWN, &adapter->flags);
543
544 #ifdef CONFIG_E1000_NAPI
545         napi_enable(&adapter->napi);
546 #endif
547         e1000_irq_enable(adapter);
548
549         /* fire a link change interrupt to start the watchdog */
550         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
551         return 0;
552 }
553
554 /**
555  * e1000_power_up_phy - restore link in case the phy was powered down
556  * @adapter: address of board private structure
557  *
558  * The phy may be powered down to save power and turn off link when the
559  * driver is unloaded and wake on lan is not enabled (among others)
560  * *** this routine MUST be followed by a call to e1000_reset ***
561  *
562  **/
563
564 void e1000_power_up_phy(struct e1000_adapter *adapter)
565 {
566         uint16_t mii_reg = 0;
567
568         /* Just clear the power down bit to wake the phy back up */
569         if (adapter->hw.media_type == e1000_media_type_copper) {
570                 /* according to the manual, the phy will retain its
571                  * settings across a power-down/up cycle */
572                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
573                 mii_reg &= ~MII_CR_POWER_DOWN;
574                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
575         }
576 }
577
578 static void e1000_power_down_phy(struct e1000_adapter *adapter)
579 {
580         /* Power down the PHY so no link is implied when interface is down *
581          * The PHY cannot be powered down if any of the following is TRUE *
582          * (a) WoL is enabled
583          * (b) AMT is active
584          * (c) SoL/IDER session is active */
585         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
586            adapter->hw.media_type == e1000_media_type_copper) {
587                 uint16_t mii_reg = 0;
588
589                 switch (adapter->hw.mac_type) {
590                 case e1000_82540:
591                 case e1000_82545:
592                 case e1000_82545_rev_3:
593                 case e1000_82546:
594                 case e1000_82546_rev_3:
595                 case e1000_82541:
596                 case e1000_82541_rev_2:
597                 case e1000_82547:
598                 case e1000_82547_rev_2:
599                         if (E1000_READ_REG(&adapter->hw, MANC) &
600                             E1000_MANC_SMBUS_EN)
601                                 goto out;
602                         break;
603                 case e1000_82571:
604                 case e1000_82572:
605                 case e1000_82573:
606                 case e1000_80003es2lan:
607                 case e1000_ich8lan:
608                         if (e1000_check_mng_mode(&adapter->hw) ||
609                             e1000_check_phy_reset_block(&adapter->hw))
610                                 goto out;
611                         break;
612                 default:
613                         goto out;
614                 }
615                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
616                 mii_reg |= MII_CR_POWER_DOWN;
617                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
618                 mdelay(1);
619         }
620 out:
621         return;
622 }
623
624 void
625 e1000_down(struct e1000_adapter *adapter)
626 {
627         struct net_device *netdev = adapter->netdev;
628
629         /* signal that we're down so the interrupt handler does not
630          * reschedule our watchdog timer */
631         set_bit(__E1000_DOWN, &adapter->flags);
632
633 #ifdef CONFIG_E1000_NAPI
634         napi_disable(&adapter->napi);
635         atomic_set(&adapter->irq_sem, 0);
636 #endif
637         e1000_irq_disable(adapter);
638
639         del_timer_sync(&adapter->tx_fifo_stall_timer);
640         del_timer_sync(&adapter->watchdog_timer);
641         del_timer_sync(&adapter->phy_info_timer);
642
643         netdev->tx_queue_len = adapter->tx_queue_len;
644         adapter->link_speed = 0;
645         adapter->link_duplex = 0;
646         netif_carrier_off(netdev);
647         netif_stop_queue(netdev);
648
649         e1000_reset(adapter);
650         e1000_clean_all_tx_rings(adapter);
651         e1000_clean_all_rx_rings(adapter);
652 }
653
654 void
655 e1000_reinit_locked(struct e1000_adapter *adapter)
656 {
657         WARN_ON(in_interrupt());
658         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
659                 msleep(1);
660         e1000_down(adapter);
661         e1000_up(adapter);
662         clear_bit(__E1000_RESETTING, &adapter->flags);
663 }
664
665 void
666 e1000_reset(struct e1000_adapter *adapter)
667 {
668         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
669         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
670         boolean_t legacy_pba_adjust = FALSE;
671
672         /* Repartition Pba for greater than 9k mtu
673          * To take effect CTRL.RST is required.
674          */
675
676         switch (adapter->hw.mac_type) {
677         case e1000_82542_rev2_0:
678         case e1000_82542_rev2_1:
679         case e1000_82543:
680         case e1000_82544:
681         case e1000_82540:
682         case e1000_82541:
683         case e1000_82541_rev_2:
684                 legacy_pba_adjust = TRUE;
685                 pba = E1000_PBA_48K;
686                 break;
687         case e1000_82545:
688         case e1000_82545_rev_3:
689         case e1000_82546:
690         case e1000_82546_rev_3:
691                 pba = E1000_PBA_48K;
692                 break;
693         case e1000_82547:
694         case e1000_82547_rev_2:
695                 legacy_pba_adjust = TRUE;
696                 pba = E1000_PBA_30K;
697                 break;
698         case e1000_82571:
699         case e1000_82572:
700         case e1000_80003es2lan:
701                 pba = E1000_PBA_38K;
702                 break;
703         case e1000_82573:
704                 pba = E1000_PBA_20K;
705                 break;
706         case e1000_ich8lan:
707                 pba = E1000_PBA_8K;
708         case e1000_undefined:
709         case e1000_num_macs:
710                 break;
711         }
712
713         if (legacy_pba_adjust == TRUE) {
714                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
715                         pba -= 8; /* allocate more FIFO for Tx */
716
717                 if (adapter->hw.mac_type == e1000_82547) {
718                         adapter->tx_fifo_head = 0;
719                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
720                         adapter->tx_fifo_size =
721                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
722                         atomic_set(&adapter->tx_fifo_stall, 0);
723                 }
724         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
725                 /* adjust PBA for jumbo frames */
726                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
727
728                 /* To maintain wire speed transmits, the Tx FIFO should be
729                  * large enough to accomodate two full transmit packets,
730                  * rounded up to the next 1KB and expressed in KB.  Likewise,
731                  * the Rx FIFO should be large enough to accomodate at least
732                  * one full receive packet and is similarly rounded up and
733                  * expressed in KB. */
734                 pba = E1000_READ_REG(&adapter->hw, PBA);
735                 /* upper 16 bits has Tx packet buffer allocation size in KB */
736                 tx_space = pba >> 16;
737                 /* lower 16 bits has Rx packet buffer allocation size in KB */
738                 pba &= 0xffff;
739                 /* don't include ethernet FCS because hardware appends/strips */
740                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
741                                VLAN_TAG_SIZE;
742                 min_tx_space = min_rx_space;
743                 min_tx_space *= 2;
744                 min_tx_space = ALIGN(min_tx_space, 1024);
745                 min_tx_space >>= 10;
746                 min_rx_space = ALIGN(min_rx_space, 1024);
747                 min_rx_space >>= 10;
748
749                 /* If current Tx allocation is less than the min Tx FIFO size,
750                  * and the min Tx FIFO size is less than the current Rx FIFO
751                  * allocation, take space away from current Rx allocation */
752                 if (tx_space < min_tx_space &&
753                     ((min_tx_space - tx_space) < pba)) {
754                         pba = pba - (min_tx_space - tx_space);
755
756                         /* PCI/PCIx hardware has PBA alignment constraints */
757                         switch (adapter->hw.mac_type) {
758                         case e1000_82545 ... e1000_82546_rev_3:
759                                 pba &= ~(E1000_PBA_8K - 1);
760                                 break;
761                         default:
762                                 break;
763                         }
764
765                         /* if short on rx space, rx wins and must trump tx
766                          * adjustment or use Early Receive if available */
767                         if (pba < min_rx_space) {
768                                 switch (adapter->hw.mac_type) {
769                                 case e1000_82573:
770                                         /* ERT enabled in e1000_configure_rx */
771                                         break;
772                                 default:
773                                         pba = min_rx_space;
774                                         break;
775                                 }
776                         }
777                 }
778         }
779
780         E1000_WRITE_REG(&adapter->hw, PBA, pba);
781
782         /* flow control settings */
783         /* Set the FC high water mark to 90% of the FIFO size.
784          * Required to clear last 3 LSB */
785         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
786         /* We can't use 90% on small FIFOs because the remainder
787          * would be less than 1 full frame.  In this case, we size
788          * it to allow at least a full frame above the high water
789          *  mark. */
790         if (pba < E1000_PBA_16K)
791                 fc_high_water_mark = (pba * 1024) - 1600;
792
793         adapter->hw.fc_high_water = fc_high_water_mark;
794         adapter->hw.fc_low_water = fc_high_water_mark - 8;
795         if (adapter->hw.mac_type == e1000_80003es2lan)
796                 adapter->hw.fc_pause_time = 0xFFFF;
797         else
798                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
799         adapter->hw.fc_send_xon = 1;
800         adapter->hw.fc = adapter->hw.original_fc;
801
802         /* Allow time for pending master requests to run */
803         e1000_reset_hw(&adapter->hw);
804         if (adapter->hw.mac_type >= e1000_82544)
805                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
806
807         if (e1000_init_hw(&adapter->hw))
808                 DPRINTK(PROBE, ERR, "Hardware Error\n");
809         e1000_update_mng_vlan(adapter);
810
811         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
812         if (adapter->hw.mac_type >= e1000_82544 &&
813             adapter->hw.mac_type <= e1000_82547_rev_2 &&
814             adapter->hw.autoneg == 1 &&
815             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
816                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
817                 /* clear phy power management bit if we are in gig only mode,
818                  * which if enabled will attempt negotiation to 100Mb, which
819                  * can cause a loss of link at power off or driver unload */
820                 ctrl &= ~E1000_CTRL_SWDPIN3;
821                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
822         }
823
824         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
825         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
826
827         e1000_reset_adaptive(&adapter->hw);
828         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
829
830         if (!adapter->smart_power_down &&
831             (adapter->hw.mac_type == e1000_82571 ||
832              adapter->hw.mac_type == e1000_82572)) {
833                 uint16_t phy_data = 0;
834                 /* speed up time to link by disabling smart power down, ignore
835                  * the return value of this function because there is nothing
836                  * different we would do if it failed */
837                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
838                                    &phy_data);
839                 phy_data &= ~IGP02E1000_PM_SPD;
840                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
841                                     phy_data);
842         }
843
844         e1000_release_manageability(adapter);
845 }
846
847 /**
848  * e1000_probe - Device Initialization Routine
849  * @pdev: PCI device information struct
850  * @ent: entry in e1000_pci_tbl
851  *
852  * Returns 0 on success, negative on failure
853  *
854  * e1000_probe initializes an adapter identified by a pci_dev structure.
855  * The OS initialization, configuring of the adapter private structure,
856  * and a hardware reset occur.
857  **/
858
859 static int __devinit
860 e1000_probe(struct pci_dev *pdev,
861             const struct pci_device_id *ent)
862 {
863         struct net_device *netdev;
864         struct e1000_adapter *adapter;
865         unsigned long mmio_start, mmio_len;
866         unsigned long flash_start, flash_len;
867
868         static int cards_found = 0;
869         static int global_quad_port_a = 0; /* global ksp3 port a indication */
870         int i, err, pci_using_dac;
871         uint16_t eeprom_data = 0;
872         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
873         DECLARE_MAC_BUF(mac);
874
875         if ((err = pci_enable_device(pdev)))
876                 return err;
877
878         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
879             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
880                 pci_using_dac = 1;
881         } else {
882                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
883                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
884                         E1000_ERR("No usable DMA configuration, aborting\n");
885                         goto err_dma;
886                 }
887                 pci_using_dac = 0;
888         }
889
890         if ((err = pci_request_regions(pdev, e1000_driver_name)))
891                 goto err_pci_reg;
892
893         pci_set_master(pdev);
894
895         err = -ENOMEM;
896         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
897         if (!netdev)
898                 goto err_alloc_etherdev;
899
900         SET_NETDEV_DEV(netdev, &pdev->dev);
901
902         pci_set_drvdata(pdev, netdev);
903         adapter = netdev_priv(netdev);
904         adapter->netdev = netdev;
905         adapter->pdev = pdev;
906         adapter->hw.back = adapter;
907         adapter->msg_enable = (1 << debug) - 1;
908
909         mmio_start = pci_resource_start(pdev, BAR_0);
910         mmio_len = pci_resource_len(pdev, BAR_0);
911
912         err = -EIO;
913         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
914         if (!adapter->hw.hw_addr)
915                 goto err_ioremap;
916
917         for (i = BAR_1; i <= BAR_5; i++) {
918                 if (pci_resource_len(pdev, i) == 0)
919                         continue;
920                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
921                         adapter->hw.io_base = pci_resource_start(pdev, i);
922                         break;
923                 }
924         }
925
926         netdev->open = &e1000_open;
927         netdev->stop = &e1000_close;
928         netdev->hard_start_xmit = &e1000_xmit_frame;
929         netdev->get_stats = &e1000_get_stats;
930         netdev->set_multicast_list = &e1000_set_multi;
931         netdev->set_mac_address = &e1000_set_mac;
932         netdev->change_mtu = &e1000_change_mtu;
933         netdev->do_ioctl = &e1000_ioctl;
934         e1000_set_ethtool_ops(netdev);
935         netdev->tx_timeout = &e1000_tx_timeout;
936         netdev->watchdog_timeo = 5 * HZ;
937 #ifdef CONFIG_E1000_NAPI
938         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
939 #endif
940         netdev->vlan_rx_register = e1000_vlan_rx_register;
941         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
942         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
943 #ifdef CONFIG_NET_POLL_CONTROLLER
944         netdev->poll_controller = e1000_netpoll;
945 #endif
946         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
947
948         netdev->mem_start = mmio_start;
949         netdev->mem_end = mmio_start + mmio_len;
950         netdev->base_addr = adapter->hw.io_base;
951
952         adapter->bd_number = cards_found;
953
954         /* setup the private structure */
955
956         if ((err = e1000_sw_init(adapter)))
957                 goto err_sw_init;
958
959         err = -EIO;
960         /* Flash BAR mapping must happen after e1000_sw_init
961          * because it depends on mac_type */
962         if ((adapter->hw.mac_type == e1000_ich8lan) &&
963            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
964                 flash_start = pci_resource_start(pdev, 1);
965                 flash_len = pci_resource_len(pdev, 1);
966                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
967                 if (!adapter->hw.flash_address)
968                         goto err_flashmap;
969         }
970
971         if (e1000_check_phy_reset_block(&adapter->hw))
972                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
973
974         if (adapter->hw.mac_type >= e1000_82543) {
975                 netdev->features = NETIF_F_SG |
976                                    NETIF_F_HW_CSUM |
977                                    NETIF_F_HW_VLAN_TX |
978                                    NETIF_F_HW_VLAN_RX |
979                                    NETIF_F_HW_VLAN_FILTER;
980                 if (adapter->hw.mac_type == e1000_ich8lan)
981                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
982         }
983
984         if ((adapter->hw.mac_type >= e1000_82544) &&
985            (adapter->hw.mac_type != e1000_82547))
986                 netdev->features |= NETIF_F_TSO;
987
988         if (adapter->hw.mac_type > e1000_82547_rev_2)
989                 netdev->features |= NETIF_F_TSO6;
990         if (pci_using_dac)
991                 netdev->features |= NETIF_F_HIGHDMA;
992
993         netdev->features |= NETIF_F_LLTX;
994
995         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
996
997         /* initialize eeprom parameters */
998
999         if (e1000_init_eeprom_params(&adapter->hw)) {
1000                 E1000_ERR("EEPROM initialization failed\n");
1001                 goto err_eeprom;
1002         }
1003
1004         /* before reading the EEPROM, reset the controller to
1005          * put the device in a known good starting state */
1006
1007         e1000_reset_hw(&adapter->hw);
1008
1009         /* make sure the EEPROM is good */
1010
1011         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1012                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1013                 goto err_eeprom;
1014         }
1015
1016         /* copy the MAC address out of the EEPROM */
1017
1018         if (e1000_read_mac_addr(&adapter->hw))
1019                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1020         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1021         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1022
1023         if (!is_valid_ether_addr(netdev->perm_addr)) {
1024                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1025                 goto err_eeprom;
1026         }
1027
1028         e1000_get_bus_info(&adapter->hw);
1029
1030         init_timer(&adapter->tx_fifo_stall_timer);
1031         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1032         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1033
1034         init_timer(&adapter->watchdog_timer);
1035         adapter->watchdog_timer.function = &e1000_watchdog;
1036         adapter->watchdog_timer.data = (unsigned long) adapter;
1037
1038         init_timer(&adapter->phy_info_timer);
1039         adapter->phy_info_timer.function = &e1000_update_phy_info;
1040         adapter->phy_info_timer.data = (unsigned long) adapter;
1041
1042         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1043
1044         e1000_check_options(adapter);
1045
1046         /* Initial Wake on LAN setting
1047          * If APM wake is enabled in the EEPROM,
1048          * enable the ACPI Magic Packet filter
1049          */
1050
1051         switch (adapter->hw.mac_type) {
1052         case e1000_82542_rev2_0:
1053         case e1000_82542_rev2_1:
1054         case e1000_82543:
1055                 break;
1056         case e1000_82544:
1057                 e1000_read_eeprom(&adapter->hw,
1058                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1059                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1060                 break;
1061         case e1000_ich8lan:
1062                 e1000_read_eeprom(&adapter->hw,
1063                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1064                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1065                 break;
1066         case e1000_82546:
1067         case e1000_82546_rev_3:
1068         case e1000_82571:
1069         case e1000_80003es2lan:
1070                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1071                         e1000_read_eeprom(&adapter->hw,
1072                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1073                         break;
1074                 }
1075                 /* Fall Through */
1076         default:
1077                 e1000_read_eeprom(&adapter->hw,
1078                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1079                 break;
1080         }
1081         if (eeprom_data & eeprom_apme_mask)
1082                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1083
1084         /* now that we have the eeprom settings, apply the special cases
1085          * where the eeprom may be wrong or the board simply won't support
1086          * wake on lan on a particular port */
1087         switch (pdev->device) {
1088         case E1000_DEV_ID_82546GB_PCIE:
1089                 adapter->eeprom_wol = 0;
1090                 break;
1091         case E1000_DEV_ID_82546EB_FIBER:
1092         case E1000_DEV_ID_82546GB_FIBER:
1093         case E1000_DEV_ID_82571EB_FIBER:
1094                 /* Wake events only supported on port A for dual fiber
1095                  * regardless of eeprom setting */
1096                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1097                         adapter->eeprom_wol = 0;
1098                 break;
1099         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1100         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1101         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1102         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1103         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1104                 /* if quad port adapter, disable WoL on all but port A */
1105                 if (global_quad_port_a != 0)
1106                         adapter->eeprom_wol = 0;
1107                 else
1108                         adapter->quad_port_a = 1;
1109                 /* Reset for multiple quad port adapters */
1110                 if (++global_quad_port_a == 4)
1111                         global_quad_port_a = 0;
1112                 break;
1113         }
1114
1115         /* initialize the wol settings based on the eeprom settings */
1116         adapter->wol = adapter->eeprom_wol;
1117
1118         /* print bus type/speed/width info */
1119         {
1120         struct e1000_hw *hw = &adapter->hw;
1121         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1122                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1123                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1124                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1125                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1126                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1127                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1128                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1129                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1130                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1131                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1132                  "32-bit"));
1133         }
1134
1135         printk("%s\n", print_mac(mac, netdev->dev_addr));
1136
1137         /* reset the hardware with the new settings */
1138         e1000_reset(adapter);
1139
1140         /* If the controller is 82573 and f/w is AMT, do not set
1141          * DRV_LOAD until the interface is up.  For all other cases,
1142          * let the f/w know that the h/w is now under the control
1143          * of the driver. */
1144         if (adapter->hw.mac_type != e1000_82573 ||
1145             !e1000_check_mng_mode(&adapter->hw))
1146                 e1000_get_hw_control(adapter);
1147
1148         /* tell the stack to leave us alone until e1000_open() is called */
1149         netif_carrier_off(netdev);
1150         netif_stop_queue(netdev);
1151
1152         strcpy(netdev->name, "eth%d");
1153         if ((err = register_netdev(netdev)))
1154                 goto err_register;
1155
1156         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1157
1158         cards_found++;
1159         return 0;
1160
1161 err_register:
1162         e1000_release_hw_control(adapter);
1163 err_eeprom:
1164         if (!e1000_check_phy_reset_block(&adapter->hw))
1165                 e1000_phy_hw_reset(&adapter->hw);
1166
1167         if (adapter->hw.flash_address)
1168                 iounmap(adapter->hw.flash_address);
1169 err_flashmap:
1170 #ifdef CONFIG_E1000_NAPI
1171         for (i = 0; i < adapter->num_rx_queues; i++)
1172                 dev_put(&adapter->polling_netdev[i]);
1173 #endif
1174
1175         kfree(adapter->tx_ring);
1176         kfree(adapter->rx_ring);
1177 #ifdef CONFIG_E1000_NAPI
1178         kfree(adapter->polling_netdev);
1179 #endif
1180 err_sw_init:
1181         iounmap(adapter->hw.hw_addr);
1182 err_ioremap:
1183         free_netdev(netdev);
1184 err_alloc_etherdev:
1185         pci_release_regions(pdev);
1186 err_pci_reg:
1187 err_dma:
1188         pci_disable_device(pdev);
1189         return err;
1190 }
1191
1192 /**
1193  * e1000_remove - Device Removal Routine
1194  * @pdev: PCI device information struct
1195  *
1196  * e1000_remove is called by the PCI subsystem to alert the driver
1197  * that it should release a PCI device.  The could be caused by a
1198  * Hot-Plug event, or because the driver is going to be removed from
1199  * memory.
1200  **/
1201
1202 static void __devexit
1203 e1000_remove(struct pci_dev *pdev)
1204 {
1205         struct net_device *netdev = pci_get_drvdata(pdev);
1206         struct e1000_adapter *adapter = netdev_priv(netdev);
1207 #ifdef CONFIG_E1000_NAPI
1208         int i;
1209 #endif
1210
1211         cancel_work_sync(&adapter->reset_task);
1212
1213         e1000_release_manageability(adapter);
1214
1215         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1216          * would have already happened in close and is redundant. */
1217         e1000_release_hw_control(adapter);
1218
1219 #ifdef CONFIG_E1000_NAPI
1220         for (i = 0; i < adapter->num_rx_queues; i++)
1221                 dev_put(&adapter->polling_netdev[i]);
1222 #endif
1223
1224         unregister_netdev(netdev);
1225
1226         if (!e1000_check_phy_reset_block(&adapter->hw))
1227                 e1000_phy_hw_reset(&adapter->hw);
1228
1229         kfree(adapter->tx_ring);
1230         kfree(adapter->rx_ring);
1231 #ifdef CONFIG_E1000_NAPI
1232         kfree(adapter->polling_netdev);
1233 #endif
1234
1235         iounmap(adapter->hw.hw_addr);
1236         if (adapter->hw.flash_address)
1237                 iounmap(adapter->hw.flash_address);
1238         pci_release_regions(pdev);
1239
1240         free_netdev(netdev);
1241
1242         pci_disable_device(pdev);
1243 }
1244
1245 /**
1246  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1247  * @adapter: board private structure to initialize
1248  *
1249  * e1000_sw_init initializes the Adapter private data structure.
1250  * Fields are initialized based on PCI device information and
1251  * OS network device settings (MTU size).
1252  **/
1253
1254 static int __devinit
1255 e1000_sw_init(struct e1000_adapter *adapter)
1256 {
1257         struct e1000_hw *hw = &adapter->hw;
1258         struct net_device *netdev = adapter->netdev;
1259         struct pci_dev *pdev = adapter->pdev;
1260 #ifdef CONFIG_E1000_NAPI
1261         int i;
1262 #endif
1263
1264         /* PCI config space info */
1265
1266         hw->vendor_id = pdev->vendor;
1267         hw->device_id = pdev->device;
1268         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1269         hw->subsystem_id = pdev->subsystem_device;
1270         hw->revision_id = pdev->revision;
1271
1272         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1273
1274         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1275         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1276         hw->max_frame_size = netdev->mtu +
1277                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1278         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1279
1280         /* identify the MAC */
1281
1282         if (e1000_set_mac_type(hw)) {
1283                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1284                 return -EIO;
1285         }
1286
1287         switch (hw->mac_type) {
1288         default:
1289                 break;
1290         case e1000_82541:
1291         case e1000_82547:
1292         case e1000_82541_rev_2:
1293         case e1000_82547_rev_2:
1294                 hw->phy_init_script = 1;
1295                 break;
1296         }
1297
1298         e1000_set_media_type(hw);
1299
1300         hw->wait_autoneg_complete = FALSE;
1301         hw->tbi_compatibility_en = TRUE;
1302         hw->adaptive_ifs = TRUE;
1303
1304         /* Copper options */
1305
1306         if (hw->media_type == e1000_media_type_copper) {
1307                 hw->mdix = AUTO_ALL_MODES;
1308                 hw->disable_polarity_correction = FALSE;
1309                 hw->master_slave = E1000_MASTER_SLAVE;
1310         }
1311
1312         adapter->num_tx_queues = 1;
1313         adapter->num_rx_queues = 1;
1314
1315         if (e1000_alloc_queues(adapter)) {
1316                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1317                 return -ENOMEM;
1318         }
1319
1320 #ifdef CONFIG_E1000_NAPI
1321         for (i = 0; i < adapter->num_rx_queues; i++) {
1322                 adapter->polling_netdev[i].priv = adapter;
1323                 dev_hold(&adapter->polling_netdev[i]);
1324                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1325         }
1326         spin_lock_init(&adapter->tx_queue_lock);
1327 #endif
1328
1329         /* Explicitly disable IRQ since the NIC can be in any state. */
1330         atomic_set(&adapter->irq_sem, 0);
1331         e1000_irq_disable(adapter);
1332
1333         spin_lock_init(&adapter->stats_lock);
1334
1335         set_bit(__E1000_DOWN, &adapter->flags);
1336
1337         return 0;
1338 }
1339
1340 /**
1341  * e1000_alloc_queues - Allocate memory for all rings
1342  * @adapter: board private structure to initialize
1343  *
1344  * We allocate one ring per queue at run-time since we don't know the
1345  * number of queues at compile-time.  The polling_netdev array is
1346  * intended for Multiqueue, but should work fine with a single queue.
1347  **/
1348
1349 static int __devinit
1350 e1000_alloc_queues(struct e1000_adapter *adapter)
1351 {
1352         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1353                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1354         if (!adapter->tx_ring)
1355                 return -ENOMEM;
1356
1357         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1358                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1359         if (!adapter->rx_ring) {
1360                 kfree(adapter->tx_ring);
1361                 return -ENOMEM;
1362         }
1363
1364 #ifdef CONFIG_E1000_NAPI
1365         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1366                                           sizeof(struct net_device),
1367                                           GFP_KERNEL);
1368         if (!adapter->polling_netdev) {
1369                 kfree(adapter->tx_ring);
1370                 kfree(adapter->rx_ring);
1371                 return -ENOMEM;
1372         }
1373 #endif
1374
1375         return E1000_SUCCESS;
1376 }
1377
1378 /**
1379  * e1000_open - Called when a network interface is made active
1380  * @netdev: network interface device structure
1381  *
1382  * Returns 0 on success, negative value on failure
1383  *
1384  * The open entry point is called when a network interface is made
1385  * active by the system (IFF_UP).  At this point all resources needed
1386  * for transmit and receive operations are allocated, the interrupt
1387  * handler is registered with the OS, the watchdog timer is started,
1388  * and the stack is notified that the interface is ready.
1389  **/
1390
1391 static int
1392 e1000_open(struct net_device *netdev)
1393 {
1394         struct e1000_adapter *adapter = netdev_priv(netdev);
1395         int err;
1396
1397         /* disallow open during test */
1398         if (test_bit(__E1000_TESTING, &adapter->flags))
1399                 return -EBUSY;
1400
1401         /* allocate transmit descriptors */
1402         err = e1000_setup_all_tx_resources(adapter);
1403         if (err)
1404                 goto err_setup_tx;
1405
1406         /* allocate receive descriptors */
1407         err = e1000_setup_all_rx_resources(adapter);
1408         if (err)
1409                 goto err_setup_rx;
1410
1411         e1000_power_up_phy(adapter);
1412
1413         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1414         if ((adapter->hw.mng_cookie.status &
1415                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1416                 e1000_update_mng_vlan(adapter);
1417         }
1418
1419         /* If AMT is enabled, let the firmware know that the network
1420          * interface is now open */
1421         if (adapter->hw.mac_type == e1000_82573 &&
1422             e1000_check_mng_mode(&adapter->hw))
1423                 e1000_get_hw_control(adapter);
1424
1425         /* before we allocate an interrupt, we must be ready to handle it.
1426          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1427          * as soon as we call pci_request_irq, so we have to setup our
1428          * clean_rx handler before we do so.  */
1429         e1000_configure(adapter);
1430
1431         err = e1000_request_irq(adapter);
1432         if (err)
1433                 goto err_req_irq;
1434
1435         /* From here on the code is the same as e1000_up() */
1436         clear_bit(__E1000_DOWN, &adapter->flags);
1437
1438 #ifdef CONFIG_E1000_NAPI
1439         napi_enable(&adapter->napi);
1440 #endif
1441
1442         e1000_irq_enable(adapter);
1443
1444         /* fire a link status change interrupt to start the watchdog */
1445         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1446
1447         return E1000_SUCCESS;
1448
1449 err_req_irq:
1450         e1000_release_hw_control(adapter);
1451         e1000_power_down_phy(adapter);
1452         e1000_free_all_rx_resources(adapter);
1453 err_setup_rx:
1454         e1000_free_all_tx_resources(adapter);
1455 err_setup_tx:
1456         e1000_reset(adapter);
1457
1458         return err;
1459 }
1460
1461 /**
1462  * e1000_close - Disables a network interface
1463  * @netdev: network interface device structure
1464  *
1465  * Returns 0, this is not allowed to fail
1466  *
1467  * The close entry point is called when an interface is de-activated
1468  * by the OS.  The hardware is still under the drivers control, but
1469  * needs to be disabled.  A global MAC reset is issued to stop the
1470  * hardware, and all transmit and receive resources are freed.
1471  **/
1472
1473 static int
1474 e1000_close(struct net_device *netdev)
1475 {
1476         struct e1000_adapter *adapter = netdev_priv(netdev);
1477
1478         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1479         e1000_down(adapter);
1480         e1000_power_down_phy(adapter);
1481         e1000_free_irq(adapter);
1482
1483         e1000_free_all_tx_resources(adapter);
1484         e1000_free_all_rx_resources(adapter);
1485
1486         /* kill manageability vlan ID if supported, but not if a vlan with
1487          * the same ID is registered on the host OS (let 8021q kill it) */
1488         if ((adapter->hw.mng_cookie.status &
1489                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1490              !(adapter->vlgrp &&
1491                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1492                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1493         }
1494
1495         /* If AMT is enabled, let the firmware know that the network
1496          * interface is now closed */
1497         if (adapter->hw.mac_type == e1000_82573 &&
1498             e1000_check_mng_mode(&adapter->hw))
1499                 e1000_release_hw_control(adapter);
1500
1501         return 0;
1502 }
1503
1504 /**
1505  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1506  * @adapter: address of board private structure
1507  * @start: address of beginning of memory
1508  * @len: length of memory
1509  **/
1510 static boolean_t
1511 e1000_check_64k_bound(struct e1000_adapter *adapter,
1512                       void *start, unsigned long len)
1513 {
1514         unsigned long begin = (unsigned long) start;
1515         unsigned long end = begin + len;
1516
1517         /* First rev 82545 and 82546 need to not allow any memory
1518          * write location to cross 64k boundary due to errata 23 */
1519         if (adapter->hw.mac_type == e1000_82545 ||
1520             adapter->hw.mac_type == e1000_82546) {
1521                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1522         }
1523
1524         return TRUE;
1525 }
1526
1527 /**
1528  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1529  * @adapter: board private structure
1530  * @txdr:    tx descriptor ring (for a specific queue) to setup
1531  *
1532  * Return 0 on success, negative on failure
1533  **/
1534
1535 static int
1536 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1537                          struct e1000_tx_ring *txdr)
1538 {
1539         struct pci_dev *pdev = adapter->pdev;
1540         int size;
1541
1542         size = sizeof(struct e1000_buffer) * txdr->count;
1543         txdr->buffer_info = vmalloc(size);
1544         if (!txdr->buffer_info) {
1545                 DPRINTK(PROBE, ERR,
1546                 "Unable to allocate memory for the transmit descriptor ring\n");
1547                 return -ENOMEM;
1548         }
1549         memset(txdr->buffer_info, 0, size);
1550
1551         /* round up to nearest 4K */
1552
1553         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1554         txdr->size = ALIGN(txdr->size, 4096);
1555
1556         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1557         if (!txdr->desc) {
1558 setup_tx_desc_die:
1559                 vfree(txdr->buffer_info);
1560                 DPRINTK(PROBE, ERR,
1561                 "Unable to allocate memory for the transmit descriptor ring\n");
1562                 return -ENOMEM;
1563         }
1564
1565         /* Fix for errata 23, can't cross 64kB boundary */
1566         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1567                 void *olddesc = txdr->desc;
1568                 dma_addr_t olddma = txdr->dma;
1569                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1570                                      "at %p\n", txdr->size, txdr->desc);
1571                 /* Try again, without freeing the previous */
1572                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1573                 /* Failed allocation, critical failure */
1574                 if (!txdr->desc) {
1575                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1576                         goto setup_tx_desc_die;
1577                 }
1578
1579                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1580                         /* give up */
1581                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1582                                             txdr->dma);
1583                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1584                         DPRINTK(PROBE, ERR,
1585                                 "Unable to allocate aligned memory "
1586                                 "for the transmit descriptor ring\n");
1587                         vfree(txdr->buffer_info);
1588                         return -ENOMEM;
1589                 } else {
1590                         /* Free old allocation, new allocation was successful */
1591                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1592                 }
1593         }
1594         memset(txdr->desc, 0, txdr->size);
1595
1596         txdr->next_to_use = 0;
1597         txdr->next_to_clean = 0;
1598         spin_lock_init(&txdr->tx_lock);
1599
1600         return 0;
1601 }
1602
1603 /**
1604  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1605  *                                (Descriptors) for all queues
1606  * @adapter: board private structure
1607  *
1608  * Return 0 on success, negative on failure
1609  **/
1610
1611 int
1612 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1613 {
1614         int i, err = 0;
1615
1616         for (i = 0; i < adapter->num_tx_queues; i++) {
1617                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1618                 if (err) {
1619                         DPRINTK(PROBE, ERR,
1620                                 "Allocation for Tx Queue %u failed\n", i);
1621                         for (i-- ; i >= 0; i--)
1622                                 e1000_free_tx_resources(adapter,
1623                                                         &adapter->tx_ring[i]);
1624                         break;
1625                 }
1626         }
1627
1628         return err;
1629 }
1630
1631 /**
1632  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1633  * @adapter: board private structure
1634  *
1635  * Configure the Tx unit of the MAC after a reset.
1636  **/
1637
1638 static void
1639 e1000_configure_tx(struct e1000_adapter *adapter)
1640 {
1641         uint64_t tdba;
1642         struct e1000_hw *hw = &adapter->hw;
1643         uint32_t tdlen, tctl, tipg, tarc;
1644         uint32_t ipgr1, ipgr2;
1645
1646         /* Setup the HW Tx Head and Tail descriptor pointers */
1647
1648         switch (adapter->num_tx_queues) {
1649         case 1:
1650         default:
1651                 tdba = adapter->tx_ring[0].dma;
1652                 tdlen = adapter->tx_ring[0].count *
1653                         sizeof(struct e1000_tx_desc);
1654                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1655                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1656                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1657                 E1000_WRITE_REG(hw, TDT, 0);
1658                 E1000_WRITE_REG(hw, TDH, 0);
1659                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1660                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1661                 break;
1662         }
1663
1664         /* Set the default values for the Tx Inter Packet Gap timer */
1665         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1666             (hw->media_type == e1000_media_type_fiber ||
1667              hw->media_type == e1000_media_type_internal_serdes))
1668                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1669         else
1670                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1671
1672         switch (hw->mac_type) {
1673         case e1000_82542_rev2_0:
1674         case e1000_82542_rev2_1:
1675                 tipg = DEFAULT_82542_TIPG_IPGT;
1676                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1677                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1678                 break;
1679         case e1000_80003es2lan:
1680                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1681                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1682                 break;
1683         default:
1684                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1685                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1686                 break;
1687         }
1688         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1689         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1690         E1000_WRITE_REG(hw, TIPG, tipg);
1691
1692         /* Set the Tx Interrupt Delay register */
1693
1694         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1695         if (hw->mac_type >= e1000_82540)
1696                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1697
1698         /* Program the Transmit Control Register */
1699
1700         tctl = E1000_READ_REG(hw, TCTL);
1701         tctl &= ~E1000_TCTL_CT;
1702         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1703                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1704
1705         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1706                 tarc = E1000_READ_REG(hw, TARC0);
1707                 /* set the speed mode bit, we'll clear it if we're not at
1708                  * gigabit link later */
1709                 tarc |= (1 << 21);
1710                 E1000_WRITE_REG(hw, TARC0, tarc);
1711         } else if (hw->mac_type == e1000_80003es2lan) {
1712                 tarc = E1000_READ_REG(hw, TARC0);
1713                 tarc |= 1;
1714                 E1000_WRITE_REG(hw, TARC0, tarc);
1715                 tarc = E1000_READ_REG(hw, TARC1);
1716                 tarc |= 1;
1717                 E1000_WRITE_REG(hw, TARC1, tarc);
1718         }
1719
1720         e1000_config_collision_dist(hw);
1721
1722         /* Setup Transmit Descriptor Settings for eop descriptor */
1723         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1724
1725         /* only set IDE if we are delaying interrupts using the timers */
1726         if (adapter->tx_int_delay)
1727                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1728
1729         if (hw->mac_type < e1000_82543)
1730                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1731         else
1732                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1733
1734         /* Cache if we're 82544 running in PCI-X because we'll
1735          * need this to apply a workaround later in the send path. */
1736         if (hw->mac_type == e1000_82544 &&
1737             hw->bus_type == e1000_bus_type_pcix)
1738                 adapter->pcix_82544 = 1;
1739
1740         E1000_WRITE_REG(hw, TCTL, tctl);
1741
1742 }
1743
1744 /**
1745  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1746  * @adapter: board private structure
1747  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1748  *
1749  * Returns 0 on success, negative on failure
1750  **/
1751
1752 static int
1753 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1754                          struct e1000_rx_ring *rxdr)
1755 {
1756         struct pci_dev *pdev = adapter->pdev;
1757         int size, desc_len;
1758
1759         size = sizeof(struct e1000_buffer) * rxdr->count;
1760         rxdr->buffer_info = vmalloc(size);
1761         if (!rxdr->buffer_info) {
1762                 DPRINTK(PROBE, ERR,
1763                 "Unable to allocate memory for the receive descriptor ring\n");
1764                 return -ENOMEM;
1765         }
1766         memset(rxdr->buffer_info, 0, size);
1767
1768         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1769                                 GFP_KERNEL);
1770         if (!rxdr->ps_page) {
1771                 vfree(rxdr->buffer_info);
1772                 DPRINTK(PROBE, ERR,
1773                 "Unable to allocate memory for the receive descriptor ring\n");
1774                 return -ENOMEM;
1775         }
1776
1777         rxdr->ps_page_dma = kcalloc(rxdr->count,
1778                                     sizeof(struct e1000_ps_page_dma),
1779                                     GFP_KERNEL);
1780         if (!rxdr->ps_page_dma) {
1781                 vfree(rxdr->buffer_info);
1782                 kfree(rxdr->ps_page);
1783                 DPRINTK(PROBE, ERR,
1784                 "Unable to allocate memory for the receive descriptor ring\n");
1785                 return -ENOMEM;
1786         }
1787
1788         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1789                 desc_len = sizeof(struct e1000_rx_desc);
1790         else
1791                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1792
1793         /* Round up to nearest 4K */
1794
1795         rxdr->size = rxdr->count * desc_len;
1796         rxdr->size = ALIGN(rxdr->size, 4096);
1797
1798         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1799
1800         if (!rxdr->desc) {
1801                 DPRINTK(PROBE, ERR,
1802                 "Unable to allocate memory for the receive descriptor ring\n");
1803 setup_rx_desc_die:
1804                 vfree(rxdr->buffer_info);
1805                 kfree(rxdr->ps_page);
1806                 kfree(rxdr->ps_page_dma);
1807                 return -ENOMEM;
1808         }
1809
1810         /* Fix for errata 23, can't cross 64kB boundary */
1811         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1812                 void *olddesc = rxdr->desc;
1813                 dma_addr_t olddma = rxdr->dma;
1814                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1815                                      "at %p\n", rxdr->size, rxdr->desc);
1816                 /* Try again, without freeing the previous */
1817                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818                 /* Failed allocation, critical failure */
1819                 if (!rxdr->desc) {
1820                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1821                         DPRINTK(PROBE, ERR,
1822                                 "Unable to allocate memory "
1823                                 "for the receive descriptor ring\n");
1824                         goto setup_rx_desc_die;
1825                 }
1826
1827                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1828                         /* give up */
1829                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1830                                             rxdr->dma);
1831                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1832                         DPRINTK(PROBE, ERR,
1833                                 "Unable to allocate aligned memory "
1834                                 "for the receive descriptor ring\n");
1835                         goto setup_rx_desc_die;
1836                 } else {
1837                         /* Free old allocation, new allocation was successful */
1838                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1839                 }
1840         }
1841         memset(rxdr->desc, 0, rxdr->size);
1842
1843         rxdr->next_to_clean = 0;
1844         rxdr->next_to_use = 0;
1845
1846         return 0;
1847 }
1848
1849 /**
1850  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1851  *                                (Descriptors) for all queues
1852  * @adapter: board private structure
1853  *
1854  * Return 0 on success, negative on failure
1855  **/
1856
1857 int
1858 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1859 {
1860         int i, err = 0;
1861
1862         for (i = 0; i < adapter->num_rx_queues; i++) {
1863                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1864                 if (err) {
1865                         DPRINTK(PROBE, ERR,
1866                                 "Allocation for Rx Queue %u failed\n", i);
1867                         for (i-- ; i >= 0; i--)
1868                                 e1000_free_rx_resources(adapter,
1869                                                         &adapter->rx_ring[i]);
1870                         break;
1871                 }
1872         }
1873
1874         return err;
1875 }
1876
1877 /**
1878  * e1000_setup_rctl - configure the receive control registers
1879  * @adapter: Board private structure
1880  **/
1881 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1882                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1883 static void
1884 e1000_setup_rctl(struct e1000_adapter *adapter)
1885 {
1886         uint32_t rctl, rfctl;
1887         uint32_t psrctl = 0;
1888 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1889         uint32_t pages = 0;
1890 #endif
1891
1892         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1893
1894         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1895
1896         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1897                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1898                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1899
1900         if (adapter->hw.tbi_compatibility_on == 1)
1901                 rctl |= E1000_RCTL_SBP;
1902         else
1903                 rctl &= ~E1000_RCTL_SBP;
1904
1905         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1906                 rctl &= ~E1000_RCTL_LPE;
1907         else
1908                 rctl |= E1000_RCTL_LPE;
1909
1910         /* Setup buffer sizes */
1911         rctl &= ~E1000_RCTL_SZ_4096;
1912         rctl |= E1000_RCTL_BSEX;
1913         switch (adapter->rx_buffer_len) {
1914                 case E1000_RXBUFFER_256:
1915                         rctl |= E1000_RCTL_SZ_256;
1916                         rctl &= ~E1000_RCTL_BSEX;
1917                         break;
1918                 case E1000_RXBUFFER_512:
1919                         rctl |= E1000_RCTL_SZ_512;
1920                         rctl &= ~E1000_RCTL_BSEX;
1921                         break;
1922                 case E1000_RXBUFFER_1024:
1923                         rctl |= E1000_RCTL_SZ_1024;
1924                         rctl &= ~E1000_RCTL_BSEX;
1925                         break;
1926                 case E1000_RXBUFFER_2048:
1927                 default:
1928                         rctl |= E1000_RCTL_SZ_2048;
1929                         rctl &= ~E1000_RCTL_BSEX;
1930                         break;
1931                 case E1000_RXBUFFER_4096:
1932                         rctl |= E1000_RCTL_SZ_4096;
1933                         break;
1934                 case E1000_RXBUFFER_8192:
1935                         rctl |= E1000_RCTL_SZ_8192;
1936                         break;
1937                 case E1000_RXBUFFER_16384:
1938                         rctl |= E1000_RCTL_SZ_16384;
1939                         break;
1940         }
1941
1942 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1943         /* 82571 and greater support packet-split where the protocol
1944          * header is placed in skb->data and the packet data is
1945          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1946          * In the case of a non-split, skb->data is linearly filled,
1947          * followed by the page buffers.  Therefore, skb->data is
1948          * sized to hold the largest protocol header.
1949          */
1950         /* allocations using alloc_page take too long for regular MTU
1951          * so only enable packet split for jumbo frames */
1952         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1953         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1954             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1955                 adapter->rx_ps_pages = pages;
1956         else
1957                 adapter->rx_ps_pages = 0;
1958 #endif
1959         if (adapter->rx_ps_pages) {
1960                 /* Configure extra packet-split registers */
1961                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1962                 rfctl |= E1000_RFCTL_EXTEN;
1963                 /* disable packet split support for IPv6 extension headers,
1964                  * because some malformed IPv6 headers can hang the RX */
1965                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1966                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1967
1968                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1969
1970                 rctl |= E1000_RCTL_DTYP_PS;
1971
1972                 psrctl |= adapter->rx_ps_bsize0 >>
1973                         E1000_PSRCTL_BSIZE0_SHIFT;
1974
1975                 switch (adapter->rx_ps_pages) {
1976                 case 3:
1977                         psrctl |= PAGE_SIZE <<
1978                                 E1000_PSRCTL_BSIZE3_SHIFT;
1979                 case 2:
1980                         psrctl |= PAGE_SIZE <<
1981                                 E1000_PSRCTL_BSIZE2_SHIFT;
1982                 case 1:
1983                         psrctl |= PAGE_SIZE >>
1984                                 E1000_PSRCTL_BSIZE1_SHIFT;
1985                         break;
1986                 }
1987
1988                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1989         }
1990
1991         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1992 }
1993
1994 /**
1995  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1996  * @adapter: board private structure
1997  *
1998  * Configure the Rx unit of the MAC after a reset.
1999  **/
2000
2001 static void
2002 e1000_configure_rx(struct e1000_adapter *adapter)
2003 {
2004         uint64_t rdba;
2005         struct e1000_hw *hw = &adapter->hw;
2006         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2007
2008         if (adapter->rx_ps_pages) {
2009                 /* this is a 32 byte descriptor */
2010                 rdlen = adapter->rx_ring[0].count *
2011                         sizeof(union e1000_rx_desc_packet_split);
2012                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2013                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2014         } else {
2015                 rdlen = adapter->rx_ring[0].count *
2016                         sizeof(struct e1000_rx_desc);
2017                 adapter->clean_rx = e1000_clean_rx_irq;
2018                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2019         }
2020
2021         /* disable receives while setting up the descriptors */
2022         rctl = E1000_READ_REG(hw, RCTL);
2023         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2024
2025         /* set the Receive Delay Timer Register */
2026         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2027
2028         if (hw->mac_type >= e1000_82540) {
2029                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2030                 if (adapter->itr_setting != 0)
2031                         E1000_WRITE_REG(hw, ITR,
2032                                 1000000000 / (adapter->itr * 256));
2033         }
2034
2035         if (hw->mac_type >= e1000_82571) {
2036                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2037                 /* Reset delay timers after every interrupt */
2038                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2039 #ifdef CONFIG_E1000_NAPI
2040                 /* Auto-Mask interrupts upon ICR access */
2041                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2042                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2043 #endif
2044                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2045                 E1000_WRITE_FLUSH(hw);
2046         }
2047
2048         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2049          * the Base and Length of the Rx Descriptor Ring */
2050         switch (adapter->num_rx_queues) {
2051         case 1:
2052         default:
2053                 rdba = adapter->rx_ring[0].dma;
2054                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2055                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2056                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2057                 E1000_WRITE_REG(hw, RDT, 0);
2058                 E1000_WRITE_REG(hw, RDH, 0);
2059                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2060                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2061                 break;
2062         }
2063
2064         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2065         if (hw->mac_type >= e1000_82543) {
2066                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2067                 if (adapter->rx_csum == TRUE) {
2068                         rxcsum |= E1000_RXCSUM_TUOFL;
2069
2070                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2071                          * Must be used in conjunction with packet-split. */
2072                         if ((hw->mac_type >= e1000_82571) &&
2073                             (adapter->rx_ps_pages)) {
2074                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2075                         }
2076                 } else {
2077                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2078                         /* don't need to clear IPPCSE as it defaults to 0 */
2079                 }
2080                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2081         }
2082
2083         /* enable early receives on 82573, only takes effect if using > 2048
2084          * byte total frame size.  for example only for jumbo frames */
2085 #define E1000_ERT_2048 0x100
2086         if (hw->mac_type == e1000_82573)
2087                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2088
2089         /* Enable Receives */
2090         E1000_WRITE_REG(hw, RCTL, rctl);
2091 }
2092
2093 /**
2094  * e1000_free_tx_resources - Free Tx Resources per Queue
2095  * @adapter: board private structure
2096  * @tx_ring: Tx descriptor ring for a specific queue
2097  *
2098  * Free all transmit software resources
2099  **/
2100
2101 static void
2102 e1000_free_tx_resources(struct e1000_adapter *adapter,
2103                         struct e1000_tx_ring *tx_ring)
2104 {
2105         struct pci_dev *pdev = adapter->pdev;
2106
2107         e1000_clean_tx_ring(adapter, tx_ring);
2108
2109         vfree(tx_ring->buffer_info);
2110         tx_ring->buffer_info = NULL;
2111
2112         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2113
2114         tx_ring->desc = NULL;
2115 }
2116
2117 /**
2118  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2119  * @adapter: board private structure
2120  *
2121  * Free all transmit software resources
2122  **/
2123
2124 void
2125 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2126 {
2127         int i;
2128
2129         for (i = 0; i < adapter->num_tx_queues; i++)
2130                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2131 }
2132
2133 static void
2134 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2135                         struct e1000_buffer *buffer_info)
2136 {
2137         if (buffer_info->dma) {
2138                 pci_unmap_page(adapter->pdev,
2139                                 buffer_info->dma,
2140                                 buffer_info->length,
2141                                 PCI_DMA_TODEVICE);
2142                 buffer_info->dma = 0;
2143         }
2144         if (buffer_info->skb) {
2145                 dev_kfree_skb_any(buffer_info->skb);
2146                 buffer_info->skb = NULL;
2147         }
2148         /* buffer_info must be completely set up in the transmit path */
2149 }
2150
2151 /**
2152  * e1000_clean_tx_ring - Free Tx Buffers
2153  * @adapter: board private structure
2154  * @tx_ring: ring to be cleaned
2155  **/
2156
2157 static void
2158 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2159                     struct e1000_tx_ring *tx_ring)
2160 {
2161         struct e1000_buffer *buffer_info;
2162         unsigned long size;
2163         unsigned int i;
2164
2165         /* Free all the Tx ring sk_buffs */
2166
2167         for (i = 0; i < tx_ring->count; i++) {
2168                 buffer_info = &tx_ring->buffer_info[i];
2169                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2170         }
2171
2172         size = sizeof(struct e1000_buffer) * tx_ring->count;
2173         memset(tx_ring->buffer_info, 0, size);
2174
2175         /* Zero out the descriptor ring */
2176
2177         memset(tx_ring->desc, 0, tx_ring->size);
2178
2179         tx_ring->next_to_use = 0;
2180         tx_ring->next_to_clean = 0;
2181         tx_ring->last_tx_tso = 0;
2182
2183         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2184         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2185 }
2186
2187 /**
2188  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2189  * @adapter: board private structure
2190  **/
2191
2192 static void
2193 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2194 {
2195         int i;
2196
2197         for (i = 0; i < adapter->num_tx_queues; i++)
2198                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2199 }
2200
2201 /**
2202  * e1000_free_rx_resources - Free Rx Resources
2203  * @adapter: board private structure
2204  * @rx_ring: ring to clean the resources from
2205  *
2206  * Free all receive software resources
2207  **/
2208
2209 static void
2210 e1000_free_rx_resources(struct e1000_adapter *adapter,
2211                         struct e1000_rx_ring *rx_ring)
2212 {
2213         struct pci_dev *pdev = adapter->pdev;
2214
2215         e1000_clean_rx_ring(adapter, rx_ring);
2216
2217         vfree(rx_ring->buffer_info);
2218         rx_ring->buffer_info = NULL;
2219         kfree(rx_ring->ps_page);
2220         rx_ring->ps_page = NULL;
2221         kfree(rx_ring->ps_page_dma);
2222         rx_ring->ps_page_dma = NULL;
2223
2224         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2225
2226         rx_ring->desc = NULL;
2227 }
2228
2229 /**
2230  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2231  * @adapter: board private structure
2232  *
2233  * Free all receive software resources
2234  **/
2235
2236 void
2237 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2238 {
2239         int i;
2240
2241         for (i = 0; i < adapter->num_rx_queues; i++)
2242                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2243 }
2244
2245 /**
2246  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2247  * @adapter: board private structure
2248  * @rx_ring: ring to free buffers from
2249  **/
2250
2251 static void
2252 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2253                     struct e1000_rx_ring *rx_ring)
2254 {
2255         struct e1000_buffer *buffer_info;
2256         struct e1000_ps_page *ps_page;
2257         struct e1000_ps_page_dma *ps_page_dma;
2258         struct pci_dev *pdev = adapter->pdev;
2259         unsigned long size;
2260         unsigned int i, j;
2261
2262         /* Free all the Rx ring sk_buffs */
2263         for (i = 0; i < rx_ring->count; i++) {
2264                 buffer_info = &rx_ring->buffer_info[i];
2265                 if (buffer_info->skb) {
2266                         pci_unmap_single(pdev,
2267                                          buffer_info->dma,
2268                                          buffer_info->length,
2269                                          PCI_DMA_FROMDEVICE);
2270
2271                         dev_kfree_skb(buffer_info->skb);
2272                         buffer_info->skb = NULL;
2273                 }
2274                 ps_page = &rx_ring->ps_page[i];
2275                 ps_page_dma = &rx_ring->ps_page_dma[i];
2276                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2277                         if (!ps_page->ps_page[j]) break;
2278                         pci_unmap_page(pdev,
2279                                        ps_page_dma->ps_page_dma[j],
2280                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2281                         ps_page_dma->ps_page_dma[j] = 0;
2282                         put_page(ps_page->ps_page[j]);
2283                         ps_page->ps_page[j] = NULL;
2284                 }
2285         }
2286
2287         size = sizeof(struct e1000_buffer) * rx_ring->count;
2288         memset(rx_ring->buffer_info, 0, size);
2289         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2290         memset(rx_ring->ps_page, 0, size);
2291         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2292         memset(rx_ring->ps_page_dma, 0, size);
2293
2294         /* Zero out the descriptor ring */
2295
2296         memset(rx_ring->desc, 0, rx_ring->size);
2297
2298         rx_ring->next_to_clean = 0;
2299         rx_ring->next_to_use = 0;
2300
2301         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2302         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2303 }
2304
2305 /**
2306  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2307  * @adapter: board private structure
2308  **/
2309
2310 static void
2311 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2312 {
2313         int i;
2314
2315         for (i = 0; i < adapter->num_rx_queues; i++)
2316                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2317 }
2318
2319 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2320  * and memory write and invalidate disabled for certain operations
2321  */
2322 static void
2323 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2324 {
2325         struct net_device *netdev = adapter->netdev;
2326         uint32_t rctl;
2327
2328         e1000_pci_clear_mwi(&adapter->hw);
2329
2330         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2331         rctl |= E1000_RCTL_RST;
2332         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2333         E1000_WRITE_FLUSH(&adapter->hw);
2334         mdelay(5);
2335
2336         if (netif_running(netdev))
2337                 e1000_clean_all_rx_rings(adapter);
2338 }
2339
2340 static void
2341 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2342 {
2343         struct net_device *netdev = adapter->netdev;
2344         uint32_t rctl;
2345
2346         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2347         rctl &= ~E1000_RCTL_RST;
2348         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2349         E1000_WRITE_FLUSH(&adapter->hw);
2350         mdelay(5);
2351
2352         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2353                 e1000_pci_set_mwi(&adapter->hw);
2354
2355         if (netif_running(netdev)) {
2356                 /* No need to loop, because 82542 supports only 1 queue */
2357                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2358                 e1000_configure_rx(adapter);
2359                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2360         }
2361 }
2362
2363 /**
2364  * e1000_set_mac - Change the Ethernet Address of the NIC
2365  * @netdev: network interface device structure
2366  * @p: pointer to an address structure
2367  *
2368  * Returns 0 on success, negative on failure
2369  **/
2370
2371 static int
2372 e1000_set_mac(struct net_device *netdev, void *p)
2373 {
2374         struct e1000_adapter *adapter = netdev_priv(netdev);
2375         struct sockaddr *addr = p;
2376
2377         if (!is_valid_ether_addr(addr->sa_data))
2378                 return -EADDRNOTAVAIL;
2379
2380         /* 82542 2.0 needs to be in reset to write receive address registers */
2381
2382         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2383                 e1000_enter_82542_rst(adapter);
2384
2385         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2386         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2387
2388         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2389
2390         /* With 82571 controllers, LAA may be overwritten (with the default)
2391          * due to controller reset from the other port. */
2392         if (adapter->hw.mac_type == e1000_82571) {
2393                 /* activate the work around */
2394                 adapter->hw.laa_is_present = 1;
2395
2396                 /* Hold a copy of the LAA in RAR[14] This is done so that
2397                  * between the time RAR[0] gets clobbered  and the time it
2398                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2399                  * of the RARs and no incoming packets directed to this port
2400                  * are dropped. Eventaully the LAA will be in RAR[0] and
2401                  * RAR[14] */
2402                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2403                                         E1000_RAR_ENTRIES - 1);
2404         }
2405
2406         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2407                 e1000_leave_82542_rst(adapter);
2408
2409         return 0;
2410 }
2411
2412 /**
2413  * e1000_set_multi - Multicast and Promiscuous mode set
2414  * @netdev: network interface device structure
2415  *
2416  * The set_multi entry point is called whenever the multicast address
2417  * list or the network interface flags are updated.  This routine is
2418  * responsible for configuring the hardware for proper multicast,
2419  * promiscuous mode, and all-multi behavior.
2420  **/
2421
2422 static void
2423 e1000_set_multi(struct net_device *netdev)
2424 {
2425         struct e1000_adapter *adapter = netdev_priv(netdev);
2426         struct e1000_hw *hw = &adapter->hw;
2427         struct dev_mc_list *mc_ptr;
2428         uint32_t rctl;
2429         uint32_t hash_value;
2430         int i, rar_entries = E1000_RAR_ENTRIES;
2431         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2432                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2433                                 E1000_NUM_MTA_REGISTERS;
2434
2435         if (adapter->hw.mac_type == e1000_ich8lan)
2436                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2437
2438         /* reserve RAR[14] for LAA over-write work-around */
2439         if (adapter->hw.mac_type == e1000_82571)
2440                 rar_entries--;
2441
2442         /* Check for Promiscuous and All Multicast modes */
2443
2444         rctl = E1000_READ_REG(hw, RCTL);
2445
2446         if (netdev->flags & IFF_PROMISC) {
2447                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2448         } else if (netdev->flags & IFF_ALLMULTI) {
2449                 rctl |= E1000_RCTL_MPE;
2450                 rctl &= ~E1000_RCTL_UPE;
2451         } else {
2452                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2453         }
2454
2455         E1000_WRITE_REG(hw, RCTL, rctl);
2456
2457         /* 82542 2.0 needs to be in reset to write receive address registers */
2458
2459         if (hw->mac_type == e1000_82542_rev2_0)
2460                 e1000_enter_82542_rst(adapter);
2461
2462         /* load the first 14 multicast address into the exact filters 1-14
2463          * RAR 0 is used for the station MAC adddress
2464          * if there are not 14 addresses, go ahead and clear the filters
2465          * -- with 82571 controllers only 0-13 entries are filled here
2466          */
2467         mc_ptr = netdev->mc_list;
2468
2469         for (i = 1; i < rar_entries; i++) {
2470                 if (mc_ptr) {
2471                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2472                         mc_ptr = mc_ptr->next;
2473                 } else {
2474                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2475                         E1000_WRITE_FLUSH(hw);
2476                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2477                         E1000_WRITE_FLUSH(hw);
2478                 }
2479         }
2480
2481         /* clear the old settings from the multicast hash table */
2482
2483         for (i = 0; i < mta_reg_count; i++) {
2484                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2485                 E1000_WRITE_FLUSH(hw);
2486         }
2487
2488         /* load any remaining addresses into the hash table */
2489
2490         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2491                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2492                 e1000_mta_set(hw, hash_value);
2493         }
2494
2495         if (hw->mac_type == e1000_82542_rev2_0)
2496                 e1000_leave_82542_rst(adapter);
2497 }
2498
2499 /* Need to wait a few seconds after link up to get diagnostic information from
2500  * the phy */
2501
2502 static void
2503 e1000_update_phy_info(unsigned long data)
2504 {
2505         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2506         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2507 }
2508
2509 /**
2510  * e1000_82547_tx_fifo_stall - Timer Call-back
2511  * @data: pointer to adapter cast into an unsigned long
2512  **/
2513
2514 static void
2515 e1000_82547_tx_fifo_stall(unsigned long data)
2516 {
2517         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2518         struct net_device *netdev = adapter->netdev;
2519         uint32_t tctl;
2520
2521         if (atomic_read(&adapter->tx_fifo_stall)) {
2522                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2523                     E1000_READ_REG(&adapter->hw, TDH)) &&
2524                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2525                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2526                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2527                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2528                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2529                         E1000_WRITE_REG(&adapter->hw, TCTL,
2530                                         tctl & ~E1000_TCTL_EN);
2531                         E1000_WRITE_REG(&adapter->hw, TDFT,
2532                                         adapter->tx_head_addr);
2533                         E1000_WRITE_REG(&adapter->hw, TDFH,
2534                                         adapter->tx_head_addr);
2535                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2536                                         adapter->tx_head_addr);
2537                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2538                                         adapter->tx_head_addr);
2539                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2540                         E1000_WRITE_FLUSH(&adapter->hw);
2541
2542                         adapter->tx_fifo_head = 0;
2543                         atomic_set(&adapter->tx_fifo_stall, 0);
2544                         netif_wake_queue(netdev);
2545                 } else {
2546                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2547                 }
2548         }
2549 }
2550
2551 /**
2552  * e1000_watchdog - Timer Call-back
2553  * @data: pointer to adapter cast into an unsigned long
2554  **/
2555 static void
2556 e1000_watchdog(unsigned long data)
2557 {
2558         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2559         struct net_device *netdev = adapter->netdev;
2560         struct e1000_tx_ring *txdr = adapter->tx_ring;
2561         uint32_t link, tctl;
2562         int32_t ret_val;
2563
2564         ret_val = e1000_check_for_link(&adapter->hw);
2565         if ((ret_val == E1000_ERR_PHY) &&
2566             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2567             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2568                 /* See e1000_kumeran_lock_loss_workaround() */
2569                 DPRINTK(LINK, INFO,
2570                         "Gigabit has been disabled, downgrading speed\n");
2571         }
2572
2573         if (adapter->hw.mac_type == e1000_82573) {
2574                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2575                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2576                         e1000_update_mng_vlan(adapter);
2577         }
2578
2579         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2580            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2581                 link = !adapter->hw.serdes_link_down;
2582         else
2583                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2584
2585         if (link) {
2586                 if (!netif_carrier_ok(netdev)) {
2587                         uint32_t ctrl;
2588                         boolean_t txb2b = 1;
2589                         e1000_get_speed_and_duplex(&adapter->hw,
2590                                                    &adapter->link_speed,
2591                                                    &adapter->link_duplex);
2592
2593                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2594                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2595                                 "Flow Control: %s\n",
2596                                 adapter->link_speed,
2597                                 adapter->link_duplex == FULL_DUPLEX ?
2598                                 "Full Duplex" : "Half Duplex",
2599                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2600                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2601                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2602                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2603
2604                         /* tweak tx_queue_len according to speed/duplex
2605                          * and adjust the timeout factor */
2606                         netdev->tx_queue_len = adapter->tx_queue_len;
2607                         adapter->tx_timeout_factor = 1;
2608                         switch (adapter->link_speed) {
2609                         case SPEED_10:
2610                                 txb2b = 0;
2611                                 netdev->tx_queue_len = 10;
2612                                 adapter->tx_timeout_factor = 8;
2613                                 break;
2614                         case SPEED_100:
2615                                 txb2b = 0;
2616                                 netdev->tx_queue_len = 100;
2617                                 /* maybe add some timeout factor ? */
2618                                 break;
2619                         }
2620
2621                         if ((adapter->hw.mac_type == e1000_82571 ||
2622                              adapter->hw.mac_type == e1000_82572) &&
2623                             txb2b == 0) {
2624                                 uint32_t tarc0;
2625                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2626                                 tarc0 &= ~(1 << 21);
2627                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2628                         }
2629
2630                         /* disable TSO for pcie and 10/100 speeds, to avoid
2631                          * some hardware issues */
2632                         if (!adapter->tso_force &&
2633                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2634                                 switch (adapter->link_speed) {
2635                                 case SPEED_10:
2636                                 case SPEED_100:
2637                                         DPRINTK(PROBE,INFO,
2638                                         "10/100 speed: disabling TSO\n");
2639                                         netdev->features &= ~NETIF_F_TSO;
2640                                         netdev->features &= ~NETIF_F_TSO6;
2641                                         break;
2642                                 case SPEED_1000:
2643                                         netdev->features |= NETIF_F_TSO;
2644                                         netdev->features |= NETIF_F_TSO6;
2645                                         break;
2646                                 default:
2647                                         /* oops */
2648                                         break;
2649                                 }
2650                         }
2651
2652                         /* enable transmits in the hardware, need to do this
2653                          * after setting TARC0 */
2654                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2655                         tctl |= E1000_TCTL_EN;
2656                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2657
2658                         netif_carrier_on(netdev);
2659                         netif_wake_queue(netdev);
2660                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2661                         adapter->smartspeed = 0;
2662                 } else {
2663                         /* make sure the receive unit is started */
2664                         if (adapter->hw.rx_needs_kicking) {
2665                                 struct e1000_hw *hw = &adapter->hw;
2666                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2667                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2668                         }
2669                 }
2670         } else {
2671                 if (netif_carrier_ok(netdev)) {
2672                         adapter->link_speed = 0;
2673                         adapter->link_duplex = 0;
2674                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2675                         netif_carrier_off(netdev);
2676                         netif_stop_queue(netdev);
2677                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2678
2679                         /* 80003ES2LAN workaround--
2680                          * For packet buffer work-around on link down event;
2681                          * disable receives in the ISR and
2682                          * reset device here in the watchdog
2683                          */
2684                         if (adapter->hw.mac_type == e1000_80003es2lan)
2685                                 /* reset device */
2686                                 schedule_work(&adapter->reset_task);
2687                 }
2688
2689                 e1000_smartspeed(adapter);
2690         }
2691
2692         e1000_update_stats(adapter);
2693
2694         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2695         adapter->tpt_old = adapter->stats.tpt;
2696         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2697         adapter->colc_old = adapter->stats.colc;
2698
2699         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2700         adapter->gorcl_old = adapter->stats.gorcl;
2701         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2702         adapter->gotcl_old = adapter->stats.gotcl;
2703
2704         e1000_update_adaptive(&adapter->hw);
2705
2706         if (!netif_carrier_ok(netdev)) {
2707                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2708                         /* We've lost link, so the controller stops DMA,
2709                          * but we've got queued Tx work that's never going
2710                          * to get done, so reset controller to flush Tx.
2711                          * (Do the reset outside of interrupt context). */
2712                         adapter->tx_timeout_count++;
2713                         schedule_work(&adapter->reset_task);
2714                 }
2715         }
2716
2717         /* Cause software interrupt to ensure rx ring is cleaned */
2718         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2719
2720         /* Force detection of hung controller every watchdog period */
2721         adapter->detect_tx_hung = TRUE;
2722
2723         /* With 82571 controllers, LAA may be overwritten due to controller
2724          * reset from the other port. Set the appropriate LAA in RAR[0] */
2725         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2726                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2727
2728         /* Reset the timer */
2729         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2730 }
2731
2732 enum latency_range {
2733         lowest_latency = 0,
2734         low_latency = 1,
2735         bulk_latency = 2,
2736         latency_invalid = 255
2737 };
2738
2739 /**
2740  * e1000_update_itr - update the dynamic ITR value based on statistics
2741  *      Stores a new ITR value based on packets and byte
2742  *      counts during the last interrupt.  The advantage of per interrupt
2743  *      computation is faster updates and more accurate ITR for the current
2744  *      traffic pattern.  Constants in this function were computed
2745  *      based on theoretical maximum wire speed and thresholds were set based
2746  *      on testing data as well as attempting to minimize response time
2747  *      while increasing bulk throughput.
2748  *      this functionality is controlled by the InterruptThrottleRate module
2749  *      parameter (see e1000_param.c)
2750  * @adapter: pointer to adapter
2751  * @itr_setting: current adapter->itr
2752  * @packets: the number of packets during this measurement interval
2753  * @bytes: the number of bytes during this measurement interval
2754  **/
2755 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2756                                    uint16_t itr_setting,
2757                                    int packets,
2758                                    int bytes)
2759 {
2760         unsigned int retval = itr_setting;
2761         struct e1000_hw *hw = &adapter->hw;
2762
2763         if (unlikely(hw->mac_type < e1000_82540))
2764                 goto update_itr_done;
2765
2766         if (packets == 0)
2767                 goto update_itr_done;
2768
2769         switch (itr_setting) {
2770         case lowest_latency:
2771                 /* jumbo frames get bulk treatment*/
2772                 if (bytes/packets > 8000)
2773                         retval = bulk_latency;
2774                 else if ((packets < 5) && (bytes > 512))
2775                         retval = low_latency;
2776                 break;
2777         case low_latency:  /* 50 usec aka 20000 ints/s */
2778                 if (bytes > 10000) {
2779                         /* jumbo frames need bulk latency setting */
2780                         if (bytes/packets > 8000)
2781                                 retval = bulk_latency;
2782                         else if ((packets < 10) || ((bytes/packets) > 1200))
2783                                 retval = bulk_latency;
2784                         else if ((packets > 35))
2785                                 retval = lowest_latency;
2786                 } else if (bytes/packets > 2000)
2787                         retval = bulk_latency;
2788                 else if (packets <= 2 && bytes < 512)
2789                         retval = lowest_latency;
2790                 break;
2791         case bulk_latency: /* 250 usec aka 4000 ints/s */
2792                 if (bytes > 25000) {
2793                         if (packets > 35)
2794                                 retval = low_latency;
2795                 } else if (bytes < 6000) {
2796                         retval = low_latency;
2797                 }
2798                 break;
2799         }
2800
2801 update_itr_done:
2802         return retval;
2803 }
2804
2805 static void e1000_set_itr(struct e1000_adapter *adapter)
2806 {
2807         struct e1000_hw *hw = &adapter->hw;
2808         uint16_t current_itr;
2809         uint32_t new_itr = adapter->itr;
2810
2811         if (unlikely(hw->mac_type < e1000_82540))
2812                 return;
2813
2814         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2815         if (unlikely(adapter->link_speed != SPEED_1000)) {
2816                 current_itr = 0;
2817                 new_itr = 4000;
2818                 goto set_itr_now;
2819         }
2820
2821         adapter->tx_itr = e1000_update_itr(adapter,
2822                                     adapter->tx_itr,
2823                                     adapter->total_tx_packets,
2824                                     adapter->total_tx_bytes);
2825         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2826         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2827                 adapter->tx_itr = low_latency;
2828
2829         adapter->rx_itr = e1000_update_itr(adapter,
2830                                     adapter->rx_itr,
2831                                     adapter->total_rx_packets,
2832                                     adapter->total_rx_bytes);
2833         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2834         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2835                 adapter->rx_itr = low_latency;
2836
2837         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2838
2839         switch (current_itr) {
2840         /* counts and packets in update_itr are dependent on these numbers */
2841         case lowest_latency:
2842                 new_itr = 70000;
2843                 break;
2844         case low_latency:
2845                 new_itr = 20000; /* aka hwitr = ~200 */
2846                 break;
2847         case bulk_latency:
2848                 new_itr = 4000;
2849                 break;
2850         default:
2851                 break;
2852         }
2853
2854 set_itr_now:
2855         if (new_itr != adapter->itr) {
2856                 /* this attempts to bias the interrupt rate towards Bulk
2857                  * by adding intermediate steps when interrupt rate is
2858                  * increasing */
2859                 new_itr = new_itr > adapter->itr ?
2860                              min(adapter->itr + (new_itr >> 2), new_itr) :
2861                              new_itr;
2862                 adapter->itr = new_itr;
2863                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2864         }
2865
2866         return;
2867 }
2868
2869 #define E1000_TX_FLAGS_CSUM             0x00000001
2870 #define E1000_TX_FLAGS_VLAN             0x00000002
2871 #define E1000_TX_FLAGS_TSO              0x00000004
2872 #define E1000_TX_FLAGS_IPV4             0x00000008
2873 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2874 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2875
2876 static int
2877 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2878           struct sk_buff *skb)
2879 {
2880         struct e1000_context_desc *context_desc;
2881         struct e1000_buffer *buffer_info;
2882         unsigned int i;
2883         uint32_t cmd_length = 0;
2884         uint16_t ipcse = 0, tucse, mss;
2885         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2886         int err;
2887
2888         if (skb_is_gso(skb)) {
2889                 if (skb_header_cloned(skb)) {
2890                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2891                         if (err)
2892                                 return err;
2893                 }
2894
2895                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2896                 mss = skb_shinfo(skb)->gso_size;
2897                 if (skb->protocol == htons(ETH_P_IP)) {
2898                         struct iphdr *iph = ip_hdr(skb);
2899                         iph->tot_len = 0;
2900                         iph->check = 0;
2901                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2902                                                                  iph->daddr, 0,
2903                                                                  IPPROTO_TCP,
2904                                                                  0);
2905                         cmd_length = E1000_TXD_CMD_IP;
2906                         ipcse = skb_transport_offset(skb) - 1;
2907                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2908                         ipv6_hdr(skb)->payload_len = 0;
2909                         tcp_hdr(skb)->check =
2910                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2911                                                  &ipv6_hdr(skb)->daddr,
2912                                                  0, IPPROTO_TCP, 0);
2913                         ipcse = 0;
2914                 }
2915                 ipcss = skb_network_offset(skb);
2916                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2917                 tucss = skb_transport_offset(skb);
2918                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2919                 tucse = 0;
2920
2921                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2922                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2923
2924                 i = tx_ring->next_to_use;
2925                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2926                 buffer_info = &tx_ring->buffer_info[i];
2927
2928                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2929                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2930                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2931                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2932                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2933                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2934                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2935                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2936                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2937
2938                 buffer_info->time_stamp = jiffies;
2939                 buffer_info->next_to_watch = i;
2940
2941                 if (++i == tx_ring->count) i = 0;
2942                 tx_ring->next_to_use = i;
2943
2944                 return TRUE;
2945         }
2946         return FALSE;
2947 }
2948
2949 static boolean_t
2950 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2951               struct sk_buff *skb)
2952 {
2953         struct e1000_context_desc *context_desc;
2954         struct e1000_buffer *buffer_info;
2955         unsigned int i;
2956         uint8_t css;
2957
2958         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2959                 css = skb_transport_offset(skb);
2960
2961                 i = tx_ring->next_to_use;
2962                 buffer_info = &tx_ring->buffer_info[i];
2963                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2964
2965                 context_desc->lower_setup.ip_config = 0;
2966                 context_desc->upper_setup.tcp_fields.tucss = css;
2967                 context_desc->upper_setup.tcp_fields.tucso =
2968                         css + skb->csum_offset;
2969                 context_desc->upper_setup.tcp_fields.tucse = 0;
2970                 context_desc->tcp_seg_setup.data = 0;
2971                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2972
2973                 buffer_info->time_stamp = jiffies;
2974                 buffer_info->next_to_watch = i;
2975
2976                 if (unlikely(++i == tx_ring->count)) i = 0;
2977                 tx_ring->next_to_use = i;
2978
2979                 return TRUE;
2980         }
2981
2982         return FALSE;
2983 }
2984
2985 #define E1000_MAX_TXD_PWR       12
2986 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2987
2988 static int
2989 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2990              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2991              unsigned int nr_frags, unsigned int mss)
2992 {
2993         struct e1000_buffer *buffer_info;
2994         unsigned int len = skb->len;
2995         unsigned int offset = 0, size, count = 0, i;
2996         unsigned int f;
2997         len -= skb->data_len;
2998
2999         i = tx_ring->next_to_use;
3000
3001         while (len) {
3002                 buffer_info = &tx_ring->buffer_info[i];
3003                 size = min(len, max_per_txd);
3004                 /* Workaround for Controller erratum --
3005                  * descriptor for non-tso packet in a linear SKB that follows a
3006                  * tso gets written back prematurely before the data is fully
3007                  * DMA'd to the controller */
3008                 if (!skb->data_len && tx_ring->last_tx_tso &&
3009                     !skb_is_gso(skb)) {
3010                         tx_ring->last_tx_tso = 0;
3011                         size -= 4;
3012                 }
3013
3014                 /* Workaround for premature desc write-backs
3015                  * in TSO mode.  Append 4-byte sentinel desc */
3016                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3017                         size -= 4;
3018                 /* work-around for errata 10 and it applies
3019                  * to all controllers in PCI-X mode
3020                  * The fix is to make sure that the first descriptor of a
3021                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3022                  */
3023                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3024                                 (size > 2015) && count == 0))
3025                         size = 2015;
3026
3027                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3028                  * terminating buffers within evenly-aligned dwords. */
3029                 if (unlikely(adapter->pcix_82544 &&
3030                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3031                    size > 4))
3032                         size -= 4;
3033
3034                 buffer_info->length = size;
3035                 buffer_info->dma =
3036                         pci_map_single(adapter->pdev,
3037                                 skb->data + offset,
3038                                 size,
3039                                 PCI_DMA_TODEVICE);
3040                 buffer_info->time_stamp = jiffies;
3041                 buffer_info->next_to_watch = i;
3042
3043                 len -= size;
3044                 offset += size;
3045                 count++;
3046                 if (unlikely(++i == tx_ring->count)) i = 0;
3047         }
3048
3049         for (f = 0; f < nr_frags; f++) {
3050                 struct skb_frag_struct *frag;
3051
3052                 frag = &skb_shinfo(skb)->frags[f];
3053                 len = frag->size;
3054                 offset = frag->page_offset;
3055
3056                 while (len) {
3057                         buffer_info = &tx_ring->buffer_info[i];
3058                         size = min(len, max_per_txd);
3059                         /* Workaround for premature desc write-backs
3060                          * in TSO mode.  Append 4-byte sentinel desc */
3061                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3062                                 size -= 4;
3063                         /* Workaround for potential 82544 hang in PCI-X.
3064                          * Avoid terminating buffers within evenly-aligned
3065                          * dwords. */
3066                         if (unlikely(adapter->pcix_82544 &&
3067                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3068                            size > 4))
3069                                 size -= 4;
3070
3071                         buffer_info->length = size;
3072                         buffer_info->dma =
3073                                 pci_map_page(adapter->pdev,
3074                                         frag->page,
3075                                         offset,
3076                                         size,
3077                                         PCI_DMA_TODEVICE);
3078                         buffer_info->time_stamp = jiffies;
3079                         buffer_info->next_to_watch = i;
3080
3081                         len -= size;
3082                         offset += size;
3083                         count++;
3084                         if (unlikely(++i == tx_ring->count)) i = 0;
3085                 }
3086         }
3087
3088         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3089         tx_ring->buffer_info[i].skb = skb;
3090         tx_ring->buffer_info[first].next_to_watch = i;
3091
3092         return count;
3093 }
3094
3095 static void
3096 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3097                int tx_flags, int count)
3098 {
3099         struct e1000_tx_desc *tx_desc = NULL;
3100         struct e1000_buffer *buffer_info;
3101         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3102         unsigned int i;
3103
3104         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3105                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3106                              E1000_TXD_CMD_TSE;
3107                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3108
3109                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3110                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3111         }
3112
3113         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3114                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3115                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3116         }
3117
3118         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3119                 txd_lower |= E1000_TXD_CMD_VLE;
3120                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3121         }
3122
3123         i = tx_ring->next_to_use;
3124
3125         while (count--) {
3126                 buffer_info = &tx_ring->buffer_info[i];
3127                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3128                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3129                 tx_desc->lower.data =
3130                         cpu_to_le32(txd_lower | buffer_info->length);
3131                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3132                 if (unlikely(++i == tx_ring->count)) i = 0;
3133         }
3134
3135         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3136
3137         /* Force memory writes to complete before letting h/w
3138          * know there are new descriptors to fetch.  (Only
3139          * applicable for weak-ordered memory model archs,
3140          * such as IA-64). */
3141         wmb();
3142
3143         tx_ring->next_to_use = i;
3144         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3145         /* we need this if more than one processor can write to our tail
3146          * at a time, it syncronizes IO on IA64/Altix systems */
3147         mmiowb();
3148 }
3149
3150 /**
3151  * 82547 workaround to avoid controller hang in half-duplex environment.
3152  * The workaround is to avoid queuing a large packet that would span
3153  * the internal Tx FIFO ring boundary by notifying the stack to resend
3154  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3155  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3156  * to the beginning of the Tx FIFO.
3157  **/
3158
3159 #define E1000_FIFO_HDR                  0x10
3160 #define E1000_82547_PAD_LEN             0x3E0
3161
3162 static int
3163 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3164 {
3165         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3166         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3167
3168         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3169
3170         if (adapter->link_duplex != HALF_DUPLEX)
3171                 goto no_fifo_stall_required;
3172
3173         if (atomic_read(&adapter->tx_fifo_stall))
3174                 return 1;
3175
3176         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3177                 atomic_set(&adapter->tx_fifo_stall, 1);
3178                 return 1;
3179         }
3180
3181 no_fifo_stall_required:
3182         adapter->tx_fifo_head += skb_fifo_len;
3183         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3184                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3185         return 0;
3186 }
3187
3188 #define MINIMUM_DHCP_PACKET_SIZE 282
3189 static int
3190 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3191 {
3192         struct e1000_hw *hw =  &adapter->hw;
3193         uint16_t length, offset;
3194         if (vlan_tx_tag_present(skb)) {
3195                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3196                         ( adapter->hw.mng_cookie.status &
3197                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3198                         return 0;
3199         }
3200         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3201                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3202                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3203                         const struct iphdr *ip =
3204                                 (struct iphdr *)((uint8_t *)skb->data+14);
3205                         if (IPPROTO_UDP == ip->protocol) {
3206                                 struct udphdr *udp =
3207                                         (struct udphdr *)((uint8_t *)ip +
3208                                                 (ip->ihl << 2));
3209                                 if (ntohs(udp->dest) == 67) {
3210                                         offset = (uint8_t *)udp + 8 - skb->data;
3211                                         length = skb->len - offset;
3212
3213                                         return e1000_mng_write_dhcp_info(hw,
3214                                                         (uint8_t *)udp + 8,
3215                                                         length);
3216                                 }
3217                         }
3218                 }
3219         }
3220         return 0;
3221 }
3222
3223 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3224 {
3225         struct e1000_adapter *adapter = netdev_priv(netdev);
3226         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3227
3228         netif_stop_queue(netdev);
3229         /* Herbert's original patch had:
3230          *  smp_mb__after_netif_stop_queue();
3231          * but since that doesn't exist yet, just open code it. */
3232         smp_mb();
3233
3234         /* We need to check again in a case another CPU has just
3235          * made room available. */
3236         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3237                 return -EBUSY;
3238
3239         /* A reprieve! */
3240         netif_start_queue(netdev);
3241         ++adapter->restart_queue;
3242         return 0;
3243 }
3244
3245 static int e1000_maybe_stop_tx(struct net_device *netdev,
3246                                struct e1000_tx_ring *tx_ring, int size)
3247 {
3248         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3249                 return 0;
3250         return __e1000_maybe_stop_tx(netdev, size);
3251 }
3252
3253 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3254 static int
3255 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3256 {
3257         struct e1000_adapter *adapter = netdev_priv(netdev);
3258         struct e1000_tx_ring *tx_ring;
3259         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3260         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3261         unsigned int tx_flags = 0;
3262         unsigned int len = skb->len - skb->data_len;
3263         unsigned long flags;
3264         unsigned int nr_frags;
3265         unsigned int mss;
3266         int count = 0;
3267         int tso;
3268         unsigned int f;
3269
3270         /* This goes back to the question of how to logically map a tx queue
3271          * to a flow.  Right now, performance is impacted slightly negatively
3272          * if using multiple tx queues.  If the stack breaks away from a
3273          * single qdisc implementation, we can look at this again. */
3274         tx_ring = adapter->tx_ring;
3275
3276         if (unlikely(skb->len <= 0)) {
3277                 dev_kfree_skb_any(skb);
3278                 return NETDEV_TX_OK;
3279         }
3280
3281         /* 82571 and newer doesn't need the workaround that limited descriptor
3282          * length to 4kB */
3283         if (adapter->hw.mac_type >= e1000_82571)
3284                 max_per_txd = 8192;
3285
3286         mss = skb_shinfo(skb)->gso_size;
3287         /* The controller does a simple calculation to
3288          * make sure there is enough room in the FIFO before
3289          * initiating the DMA for each buffer.  The calc is:
3290          * 4 = ceil(buffer len/mss).  To make sure we don't
3291          * overrun the FIFO, adjust the max buffer len if mss
3292          * drops. */
3293         if (mss) {
3294                 uint8_t hdr_len;
3295                 max_per_txd = min(mss << 2, max_per_txd);
3296                 max_txd_pwr = fls(max_per_txd) - 1;
3297
3298                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3299                 * points to just header, pull a few bytes of payload from
3300                 * frags into skb->data */
3301                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3302                 if (skb->data_len && hdr_len == len) {
3303                         switch (adapter->hw.mac_type) {
3304                                 unsigned int pull_size;
3305                         case e1000_82544:
3306                                 /* Make sure we have room to chop off 4 bytes,
3307                                  * and that the end alignment will work out to
3308                                  * this hardware's requirements
3309                                  * NOTE: this is a TSO only workaround
3310                                  * if end byte alignment not correct move us
3311                                  * into the next dword */
3312                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3313                                         break;
3314                                 /* fall through */
3315                         case e1000_82571:
3316                         case e1000_82572:
3317                         case e1000_82573:
3318                         case e1000_ich8lan:
3319                                 pull_size = min((unsigned int)4, skb->data_len);
3320                                 if (!__pskb_pull_tail(skb, pull_size)) {
3321                                         DPRINTK(DRV, ERR,
3322                                                 "__pskb_pull_tail failed.\n");
3323                                         dev_kfree_skb_any(skb);
3324                                         return NETDEV_TX_OK;
3325                                 }
3326                                 len = skb->len - skb->data_len;
3327                                 break;
3328                         default:
3329                                 /* do nothing */
3330                                 break;
3331                         }
3332                 }
3333         }
3334
3335         /* reserve a descriptor for the offload context */
3336         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3337                 count++;
3338         count++;
3339
3340         /* Controller Erratum workaround */
3341         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3342                 count++;
3343
3344         count += TXD_USE_COUNT(len, max_txd_pwr);
3345
3346         if (adapter->pcix_82544)
3347                 count++;
3348
3349         /* work-around for errata 10 and it applies to all controllers
3350          * in PCI-X mode, so add one more descriptor to the count
3351          */
3352         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3353                         (len > 2015)))
3354                 count++;
3355
3356         nr_frags = skb_shinfo(skb)->nr_frags;
3357         for (f = 0; f < nr_frags; f++)
3358                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3359                                        max_txd_pwr);
3360         if (adapter->pcix_82544)
3361                 count += nr_frags;
3362
3363
3364         if (adapter->hw.tx_pkt_filtering &&
3365             (adapter->hw.mac_type == e1000_82573))
3366                 e1000_transfer_dhcp_info(adapter, skb);
3367
3368         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3369                 /* Collision - tell upper layer to requeue */
3370                 return NETDEV_TX_LOCKED;
3371
3372         /* need: count + 2 desc gap to keep tail from touching
3373          * head, otherwise try next time */
3374         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3375                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3376                 return NETDEV_TX_BUSY;
3377         }
3378
3379         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3380                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3381                         netif_stop_queue(netdev);
3382                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3383                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3384                         return NETDEV_TX_BUSY;
3385                 }
3386         }
3387
3388         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3389                 tx_flags |= E1000_TX_FLAGS_VLAN;
3390                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3391         }
3392
3393         first = tx_ring->next_to_use;
3394
3395         tso = e1000_tso(adapter, tx_ring, skb);
3396         if (tso < 0) {
3397                 dev_kfree_skb_any(skb);
3398                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3399                 return NETDEV_TX_OK;
3400         }
3401
3402         if (likely(tso)) {
3403                 tx_ring->last_tx_tso = 1;
3404                 tx_flags |= E1000_TX_FLAGS_TSO;
3405         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3406                 tx_flags |= E1000_TX_FLAGS_CSUM;
3407
3408         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3409          * 82571 hardware supports TSO capabilities for IPv6 as well...
3410          * no longer assume, we must. */
3411         if (likely(skb->protocol == htons(ETH_P_IP)))
3412                 tx_flags |= E1000_TX_FLAGS_IPV4;
3413
3414         e1000_tx_queue(adapter, tx_ring, tx_flags,
3415                        e1000_tx_map(adapter, tx_ring, skb, first,
3416                                     max_per_txd, nr_frags, mss));
3417
3418         netdev->trans_start = jiffies;
3419
3420         /* Make sure there is space in the ring for the next send. */
3421         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3422
3423         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3424         return NETDEV_TX_OK;
3425 }
3426
3427 /**
3428  * e1000_tx_timeout - Respond to a Tx Hang
3429  * @netdev: network interface device structure
3430  **/
3431
3432 static void
3433 e1000_tx_timeout(struct net_device *netdev)
3434 {
3435         struct e1000_adapter *adapter = netdev_priv(netdev);
3436
3437         /* Do the reset outside of interrupt context */
3438         adapter->tx_timeout_count++;
3439         schedule_work(&adapter->reset_task);
3440 }
3441
3442 static void
3443 e1000_reset_task(struct work_struct *work)
3444 {
3445         struct e1000_adapter *adapter =
3446                 container_of(work, struct e1000_adapter, reset_task);
3447
3448         e1000_reinit_locked(adapter);
3449 }
3450
3451 /**
3452  * e1000_get_stats - Get System Network Statistics
3453  * @netdev: network interface device structure
3454  *
3455  * Returns the address of the device statistics structure.
3456  * The statistics are actually updated from the timer callback.
3457  **/
3458
3459 static struct net_device_stats *
3460 e1000_get_stats(struct net_device *netdev)
3461 {
3462         struct e1000_adapter *adapter = netdev_priv(netdev);
3463
3464         /* only return the current stats */
3465         return &adapter->net_stats;
3466 }
3467
3468 /**
3469  * e1000_change_mtu - Change the Maximum Transfer Unit
3470  * @netdev: network interface device structure
3471  * @new_mtu: new value for maximum frame size
3472  *
3473  * Returns 0 on success, negative on failure
3474  **/
3475
3476 static int
3477 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3478 {
3479         struct e1000_adapter *adapter = netdev_priv(netdev);
3480         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3481         uint16_t eeprom_data = 0;
3482
3483         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3484             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3485                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3486                 return -EINVAL;
3487         }
3488
3489         /* Adapter-specific max frame size limits. */
3490         switch (adapter->hw.mac_type) {
3491         case e1000_undefined ... e1000_82542_rev2_1:
3492         case e1000_ich8lan:
3493                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3494                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3495                         return -EINVAL;
3496                 }
3497                 break;
3498         case e1000_82573:
3499                 /* Jumbo Frames not supported if:
3500                  * - this is not an 82573L device
3501                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3502                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3503                                   &eeprom_data);
3504                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3505                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3506                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3507                                 DPRINTK(PROBE, ERR,
3508                                         "Jumbo Frames not supported.\n");
3509                                 return -EINVAL;
3510                         }
3511                         break;
3512                 }
3513                 /* ERT will be enabled later to enable wire speed receives */
3514
3515                 /* fall through to get support */
3516         case e1000_82571:
3517         case e1000_82572:
3518         case e1000_80003es2lan:
3519 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3520                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3521                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3522                         return -EINVAL;
3523                 }
3524                 break;
3525         default:
3526                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3527                 break;
3528         }
3529
3530         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3531          * means we reserve 2 more, this pushes us to allocate from the next
3532          * larger slab size
3533          * i.e. RXBUFFER_2048 --> size-4096 slab */
3534
3535         if (max_frame <= E1000_RXBUFFER_256)
3536                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3537         else if (max_frame <= E1000_RXBUFFER_512)
3538                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3539         else if (max_frame <= E1000_RXBUFFER_1024)
3540                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3541         else if (max_frame <= E1000_RXBUFFER_2048)
3542                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3543         else if (max_frame <= E1000_RXBUFFER_4096)
3544                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3545         else if (max_frame <= E1000_RXBUFFER_8192)
3546                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3547         else if (max_frame <= E1000_RXBUFFER_16384)
3548                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3549
3550         /* adjust allocation if LPE protects us, and we aren't using SBP */
3551         if (!adapter->hw.tbi_compatibility_on &&
3552             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3553              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3554                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3555
3556         netdev->mtu = new_mtu;
3557         adapter->hw.max_frame_size = max_frame;
3558
3559         if (netif_running(netdev))
3560                 e1000_reinit_locked(adapter);
3561
3562         return 0;
3563 }
3564
3565 /**
3566  * e1000_update_stats - Update the board statistics counters
3567  * @adapter: board private structure
3568  **/
3569
3570 void
3571 e1000_update_stats(struct e1000_adapter *adapter)
3572 {
3573         struct e1000_hw *hw = &adapter->hw;
3574         struct pci_dev *pdev = adapter->pdev;
3575         unsigned long flags;
3576         uint16_t phy_tmp;
3577
3578 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3579
3580         /*
3581          * Prevent stats update while adapter is being reset, or if the pci
3582          * connection is down.
3583          */
3584         if (adapter->link_speed == 0)
3585                 return;
3586         if (pci_channel_offline(pdev))
3587                 return;
3588
3589         spin_lock_irqsave(&adapter->stats_lock, flags);
3590
3591         /* these counters are modified from e1000_tbi_adjust_stats,
3592          * called from the interrupt context, so they must only
3593          * be written while holding adapter->stats_lock
3594          */
3595
3596         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3597         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3598         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3599         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3600         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3601         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3602         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3603
3604         if (adapter->hw.mac_type != e1000_ich8lan) {
3605                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3606                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3607                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3608                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3609                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3610                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3611         }
3612
3613         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3614         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3615         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3616         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3617         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3618         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3619         adapter->stats.dc += E1000_READ_REG(hw, DC);
3620         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3621         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3622         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3623         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3624         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3625         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3626         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3627         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3628         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3629         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3630         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3631         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3632         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3633         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3634         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3635         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3636         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3637         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3638         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3639
3640         if (adapter->hw.mac_type != e1000_ich8lan) {
3641                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3642                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3643                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3644                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3645                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3646                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3647         }
3648
3649         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3650         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3651
3652         /* used for adaptive IFS */
3653
3654         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3655         adapter->stats.tpt += hw->tx_packet_delta;
3656         hw->collision_delta = E1000_READ_REG(hw, COLC);
3657         adapter->stats.colc += hw->collision_delta;
3658
3659         if (hw->mac_type >= e1000_82543) {
3660                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3661                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3662                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3663                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3664                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3665                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3666         }
3667         if (hw->mac_type > e1000_82547_rev_2) {
3668                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3669                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3670
3671                 if (adapter->hw.mac_type != e1000_ich8lan) {
3672                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3673                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3674                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3675                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3676                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3677                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3678                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3679                 }
3680         }
3681
3682         /* Fill out the OS statistics structure */
3683         adapter->net_stats.rx_packets = adapter->stats.gprc;
3684         adapter->net_stats.tx_packets = adapter->stats.gptc;
3685         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3686         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3687         adapter->net_stats.multicast = adapter->stats.mprc;
3688         adapter->net_stats.collisions = adapter->stats.colc;
3689
3690         /* Rx Errors */
3691
3692         /* RLEC on some newer hardware can be incorrect so build
3693         * our own version based on RUC and ROC */
3694         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3695                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3696                 adapter->stats.ruc + adapter->stats.roc +
3697                 adapter->stats.cexterr;
3698         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3699         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3700         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3701         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3702         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3703
3704         /* Tx Errors */
3705         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3706         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3707         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3708         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3709         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3710         if (adapter->hw.bad_tx_carr_stats_fd &&
3711             adapter->link_duplex == FULL_DUPLEX) {
3712                 adapter->net_stats.tx_carrier_errors = 0;
3713                 adapter->stats.tncrs = 0;
3714         }
3715
3716         /* Tx Dropped needs to be maintained elsewhere */
3717
3718         /* Phy Stats */
3719         if (hw->media_type == e1000_media_type_copper) {
3720                 if ((adapter->link_speed == SPEED_1000) &&
3721                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3722                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3723                         adapter->phy_stats.idle_errors += phy_tmp;
3724                 }
3725
3726                 if ((hw->mac_type <= e1000_82546) &&
3727                    (hw->phy_type == e1000_phy_m88) &&
3728                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3729                         adapter->phy_stats.receive_errors += phy_tmp;
3730         }
3731
3732         /* Management Stats */
3733         if (adapter->hw.has_smbus) {
3734                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3735                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3736                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3737         }
3738
3739         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3740 }
3741
3742 /**
3743  * e1000_intr_msi - Interrupt Handler
3744  * @irq: interrupt number
3745  * @data: pointer to a network interface device structure
3746  **/
3747
3748 static irqreturn_t
3749 e1000_intr_msi(int irq, void *data)
3750 {
3751         struct net_device *netdev = data;
3752         struct e1000_adapter *adapter = netdev_priv(netdev);
3753         struct e1000_hw *hw = &adapter->hw;
3754 #ifndef CONFIG_E1000_NAPI
3755         int i;
3756 #endif
3757         uint32_t icr = E1000_READ_REG(hw, ICR);
3758
3759 #ifdef CONFIG_E1000_NAPI
3760         /* read ICR disables interrupts using IAM, so keep up with our
3761          * enable/disable accounting */
3762         atomic_inc(&adapter->irq_sem);
3763 #endif
3764         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3765                 hw->get_link_status = 1;
3766                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3767                  * link down event; disable receives here in the ISR and reset
3768                  * adapter in watchdog */
3769                 if (netif_carrier_ok(netdev) &&
3770                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3771                         /* disable receives */
3772                         uint32_t rctl = E1000_READ_REG(hw, RCTL);
3773                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3774                 }
3775                 /* guard against interrupt when we're going down */
3776                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3777                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3778         }
3779
3780 #ifdef CONFIG_E1000_NAPI
3781         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3782                 adapter->total_tx_bytes = 0;
3783                 adapter->total_tx_packets = 0;
3784                 adapter->total_rx_bytes = 0;
3785                 adapter->total_rx_packets = 0;
3786                 __netif_rx_schedule(netdev, &adapter->napi);
3787         } else
3788                 e1000_irq_enable(adapter);
3789 #else
3790         adapter->total_tx_bytes = 0;
3791         adapter->total_rx_bytes = 0;
3792         adapter->total_tx_packets = 0;
3793         adapter->total_rx_packets = 0;
3794
3795         for (i = 0; i < E1000_MAX_INTR; i++)
3796                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3797                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3798                         break;
3799
3800         if (likely(adapter->itr_setting & 3))
3801                 e1000_set_itr(adapter);
3802 #endif
3803
3804         return IRQ_HANDLED;
3805 }
3806
3807 /**
3808  * e1000_intr - Interrupt Handler
3809  * @irq: interrupt number
3810  * @data: pointer to a network interface device structure
3811  **/
3812
3813 static irqreturn_t
3814 e1000_intr(int irq, void *data)
3815 {
3816         struct net_device *netdev = data;
3817         struct e1000_adapter *adapter = netdev_priv(netdev);
3818         struct e1000_hw *hw = &adapter->hw;
3819         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3820 #ifndef CONFIG_E1000_NAPI
3821         int i;
3822 #endif
3823         if (unlikely(!icr))
3824                 return IRQ_NONE;  /* Not our interrupt */
3825
3826 #ifdef CONFIG_E1000_NAPI
3827         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3828          * not set, then the adapter didn't send an interrupt */
3829         if (unlikely(hw->mac_type >= e1000_82571 &&
3830                      !(icr & E1000_ICR_INT_ASSERTED)))
3831                 return IRQ_NONE;
3832
3833         /* Interrupt Auto-Mask...upon reading ICR,
3834          * interrupts are masked.  No need for the
3835          * IMC write, but it does mean we should
3836          * account for it ASAP. */
3837         if (likely(hw->mac_type >= e1000_82571))
3838                 atomic_inc(&adapter->irq_sem);
3839 #endif
3840
3841         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3842                 hw->get_link_status = 1;
3843                 /* 80003ES2LAN workaround--
3844                  * For packet buffer work-around on link down event;
3845                  * disable receives here in the ISR and
3846                  * reset adapter in watchdog
3847                  */
3848                 if (netif_carrier_ok(netdev) &&
3849                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3850                         /* disable receives */
3851                         rctl = E1000_READ_REG(hw, RCTL);
3852                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3853                 }
3854                 /* guard against interrupt when we're going down */
3855                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3856                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3857         }
3858
3859 #ifdef CONFIG_E1000_NAPI
3860         if (unlikely(hw->mac_type < e1000_82571)) {
3861                 /* disable interrupts, without the synchronize_irq bit */
3862                 atomic_inc(&adapter->irq_sem);
3863                 E1000_WRITE_REG(hw, IMC, ~0);
3864                 E1000_WRITE_FLUSH(hw);
3865         }
3866         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3867                 adapter->total_tx_bytes = 0;
3868                 adapter->total_tx_packets = 0;
3869                 adapter->total_rx_bytes = 0;
3870                 adapter->total_rx_packets = 0;
3871                 __netif_rx_schedule(netdev, &adapter->napi);
3872         } else
3873                 /* this really should not happen! if it does it is basically a
3874                  * bug, but not a hard error, so enable ints and continue */
3875                 e1000_irq_enable(adapter);
3876 #else
3877         /* Writing IMC and IMS is needed for 82547.
3878          * Due to Hub Link bus being occupied, an interrupt
3879          * de-assertion message is not able to be sent.
3880          * When an interrupt assertion message is generated later,
3881          * two messages are re-ordered and sent out.
3882          * That causes APIC to think 82547 is in de-assertion
3883          * state, while 82547 is in assertion state, resulting
3884          * in dead lock. Writing IMC forces 82547 into
3885          * de-assertion state.
3886          */
3887         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3888                 atomic_inc(&adapter->irq_sem);
3889                 E1000_WRITE_REG(hw, IMC, ~0);
3890         }
3891
3892         adapter->total_tx_bytes = 0;
3893         adapter->total_rx_bytes = 0;
3894         adapter->total_tx_packets = 0;
3895         adapter->total_rx_packets = 0;
3896
3897         for (i = 0; i < E1000_MAX_INTR; i++)
3898                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3899                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3900                         break;
3901
3902         if (likely(adapter->itr_setting & 3))
3903                 e1000_set_itr(adapter);
3904
3905         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3906                 e1000_irq_enable(adapter);
3907
3908 #endif
3909         return IRQ_HANDLED;
3910 }
3911
3912 #ifdef CONFIG_E1000_NAPI
3913 /**
3914  * e1000_clean - NAPI Rx polling callback
3915  * @adapter: board private structure
3916  **/
3917
3918 static int
3919 e1000_clean(struct napi_struct *napi, int budget)
3920 {
3921         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3922         struct net_device *poll_dev = adapter->netdev;
3923         int tx_cleaned = 0, work_done = 0;
3924
3925         /* Must NOT use netdev_priv macro here. */
3926         adapter = poll_dev->priv;
3927
3928         /* e1000_clean is called per-cpu.  This lock protects
3929          * tx_ring[0] from being cleaned by multiple cpus
3930          * simultaneously.  A failure obtaining the lock means
3931          * tx_ring[0] is currently being cleaned anyway. */
3932         if (spin_trylock(&adapter->tx_queue_lock)) {
3933                 tx_cleaned = e1000_clean_tx_irq(adapter,
3934                                                 &adapter->tx_ring[0]);
3935                 spin_unlock(&adapter->tx_queue_lock);
3936         }
3937
3938         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3939                           &work_done, budget);
3940
3941         if (tx_cleaned)
3942                 work_done = budget;
3943
3944         /* If budget not fully consumed, exit the polling mode */
3945         if (work_done < budget) {
3946                 if (likely(adapter->itr_setting & 3))
3947                         e1000_set_itr(adapter);
3948                 netif_rx_complete(poll_dev, napi);
3949                 e1000_irq_enable(adapter);
3950         }
3951
3952         return work_done;
3953 }
3954
3955 #endif
3956 /**
3957  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3958  * @adapter: board private structure
3959  **/
3960
3961 static boolean_t
3962 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3963                    struct e1000_tx_ring *tx_ring)
3964 {
3965         struct net_device *netdev = adapter->netdev;
3966         struct e1000_tx_desc *tx_desc, *eop_desc;
3967         struct e1000_buffer *buffer_info;
3968         unsigned int i, eop;
3969 #ifdef CONFIG_E1000_NAPI
3970         unsigned int count = 0;
3971 #endif
3972         boolean_t cleaned = FALSE;
3973         unsigned int total_tx_bytes=0, total_tx_packets=0;
3974
3975         i = tx_ring->next_to_clean;
3976         eop = tx_ring->buffer_info[i].next_to_watch;
3977         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3978
3979         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3980                 for (cleaned = FALSE; !cleaned; ) {
3981                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3982                         buffer_info = &tx_ring->buffer_info[i];
3983                         cleaned = (i == eop);
3984
3985                         if (cleaned) {
3986                                 struct sk_buff *skb = buffer_info->skb;
3987                                 unsigned int segs, bytecount;
3988                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3989                                 /* multiply data chunks by size of headers */
3990                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3991                                             skb->len;
3992                                 total_tx_packets += segs;
3993                                 total_tx_bytes += bytecount;
3994                         }
3995                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3996                         tx_desc->upper.data = 0;
3997
3998                         if (unlikely(++i == tx_ring->count)) i = 0;
3999                 }
4000
4001                 eop = tx_ring->buffer_info[i].next_to_watch;
4002                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4003 #ifdef CONFIG_E1000_NAPI
4004 #define E1000_TX_WEIGHT 64
4005                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4006                 if (count++ == E1000_TX_WEIGHT) break;
4007 #endif
4008         }
4009
4010         tx_ring->next_to_clean = i;
4011
4012 #define TX_WAKE_THRESHOLD 32
4013         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4014                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4015                 /* Make sure that anybody stopping the queue after this
4016                  * sees the new next_to_clean.
4017                  */
4018                 smp_mb();
4019                 if (netif_queue_stopped(netdev)) {
4020                         netif_wake_queue(netdev);
4021                         ++adapter->restart_queue;
4022                 }
4023         }
4024
4025         if (adapter->detect_tx_hung) {
4026                 /* Detect a transmit hang in hardware, this serializes the
4027                  * check with the clearing of time_stamp and movement of i */
4028                 adapter->detect_tx_hung = FALSE;
4029                 if (tx_ring->buffer_info[eop].dma &&
4030                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4031                                (adapter->tx_timeout_factor * HZ))
4032                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4033                          E1000_STATUS_TXOFF)) {
4034
4035                         /* detected Tx unit hang */
4036                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4037                                         "  Tx Queue             <%lu>\n"
4038                                         "  TDH                  <%x>\n"
4039                                         "  TDT                  <%x>\n"
4040                                         "  next_to_use          <%x>\n"
4041                                         "  next_to_clean        <%x>\n"
4042                                         "buffer_info[next_to_clean]\n"
4043                                         "  time_stamp           <%lx>\n"
4044                                         "  next_to_watch        <%x>\n"
4045                                         "  jiffies              <%lx>\n"
4046                                         "  next_to_watch.status <%x>\n",
4047                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4048                                         sizeof(struct e1000_tx_ring)),
4049                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4050                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4051                                 tx_ring->next_to_use,
4052                                 tx_ring->next_to_clean,
4053                                 tx_ring->buffer_info[eop].time_stamp,
4054                                 eop,
4055                                 jiffies,
4056                                 eop_desc->upper.fields.status);
4057                         netif_stop_queue(netdev);
4058                 }
4059         }
4060         adapter->total_tx_bytes += total_tx_bytes;
4061         adapter->total_tx_packets += total_tx_packets;
4062         return cleaned;
4063 }
4064
4065 /**
4066  * e1000_rx_checksum - Receive Checksum Offload for 82543
4067  * @adapter:     board private structure
4068  * @status_err:  receive descriptor status and error fields
4069  * @csum:        receive descriptor csum field
4070  * @sk_buff:     socket buffer with received data
4071  **/
4072
4073 static void
4074 e1000_rx_checksum(struct e1000_adapter *adapter,
4075                   uint32_t status_err, uint32_t csum,
4076                   struct sk_buff *skb)
4077 {
4078         uint16_t status = (uint16_t)status_err;
4079         uint8_t errors = (uint8_t)(status_err >> 24);
4080         skb->ip_summed = CHECKSUM_NONE;
4081
4082         /* 82543 or newer only */
4083         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4084         /* Ignore Checksum bit is set */
4085         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4086         /* TCP/UDP checksum error bit is set */
4087         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4088                 /* let the stack verify checksum errors */
4089                 adapter->hw_csum_err++;
4090                 return;
4091         }
4092         /* TCP/UDP Checksum has not been calculated */
4093         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4094                 if (!(status & E1000_RXD_STAT_TCPCS))
4095                         return;
4096         } else {
4097                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4098                         return;
4099         }
4100         /* It must be a TCP or UDP packet with a valid checksum */
4101         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4102                 /* TCP checksum is good */
4103                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4104         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4105                 /* IP fragment with UDP payload */
4106                 /* Hardware complements the payload checksum, so we undo it
4107                  * and then put the value in host order for further stack use.
4108                  */
4109                 csum = ntohl(csum ^ 0xFFFF);
4110                 skb->csum = csum;
4111                 skb->ip_summed = CHECKSUM_COMPLETE;
4112         }
4113         adapter->hw_csum_good++;
4114 }
4115
4116 /**
4117  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4118  * @adapter: board private structure
4119  **/
4120
4121 static boolean_t
4122 #ifdef CONFIG_E1000_NAPI
4123 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4124                    struct e1000_rx_ring *rx_ring,
4125                    int *work_done, int work_to_do)
4126 #else
4127 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4128                    struct e1000_rx_ring *rx_ring)
4129 #endif
4130 {
4131         struct net_device *netdev = adapter->netdev;
4132         struct pci_dev *pdev = adapter->pdev;
4133         struct e1000_rx_desc *rx_desc, *next_rxd;
4134         struct e1000_buffer *buffer_info, *next_buffer;
4135         unsigned long flags;
4136         uint32_t length;
4137         uint8_t last_byte;
4138         unsigned int i;
4139         int cleaned_count = 0;
4140         boolean_t cleaned = FALSE;
4141         unsigned int total_rx_bytes=0, total_rx_packets=0;
4142
4143         i = rx_ring->next_to_clean;
4144         rx_desc = E1000_RX_DESC(*rx_ring, i);
4145         buffer_info = &rx_ring->buffer_info[i];
4146
4147         while (rx_desc->status & E1000_RXD_STAT_DD) {
4148                 struct sk_buff *skb;
4149                 u8 status;
4150
4151 #ifdef CONFIG_E1000_NAPI
4152                 if (*work_done >= work_to_do)
4153                         break;
4154                 (*work_done)++;
4155 #endif
4156                 status = rx_desc->status;
4157                 skb = buffer_info->skb;
4158                 buffer_info->skb = NULL;
4159
4160                 prefetch(skb->data - NET_IP_ALIGN);
4161
4162                 if (++i == rx_ring->count) i = 0;
4163                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4164                 prefetch(next_rxd);
4165
4166                 next_buffer = &rx_ring->buffer_info[i];
4167
4168                 cleaned = TRUE;
4169                 cleaned_count++;
4170                 pci_unmap_single(pdev,
4171                                  buffer_info->dma,
4172                                  buffer_info->length,
4173                                  PCI_DMA_FROMDEVICE);
4174
4175                 length = le16_to_cpu(rx_desc->length);
4176
4177                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4178                         /* All receives must fit into a single buffer */
4179                         E1000_DBG("%s: Receive packet consumed multiple"
4180                                   " buffers\n", netdev->name);
4181                         /* recycle */
4182                         buffer_info->skb = skb;
4183                         goto next_desc;
4184                 }
4185
4186                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4187                         last_byte = *(skb->data + length - 1);
4188                         if (TBI_ACCEPT(&adapter->hw, status,
4189                                       rx_desc->errors, length, last_byte)) {
4190                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4191                                 e1000_tbi_adjust_stats(&adapter->hw,
4192                                                        &adapter->stats,
4193                                                        length, skb->data);
4194                                 spin_unlock_irqrestore(&adapter->stats_lock,
4195                                                        flags);
4196                                 length--;
4197                         } else {
4198                                 /* recycle */
4199                                 buffer_info->skb = skb;
4200                                 goto next_desc;
4201                         }
4202                 }
4203
4204                 /* adjust length to remove Ethernet CRC, this must be
4205                  * done after the TBI_ACCEPT workaround above */
4206                 length -= 4;
4207
4208                 /* probably a little skewed due to removing CRC */
4209                 total_rx_bytes += length;
4210                 total_rx_packets++;
4211
4212                 /* code added for copybreak, this should improve
4213                  * performance for small packets with large amounts
4214                  * of reassembly being done in the stack */
4215                 if (length < copybreak) {
4216                         struct sk_buff *new_skb =
4217                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4218                         if (new_skb) {
4219                                 skb_reserve(new_skb, NET_IP_ALIGN);
4220                                 skb_copy_to_linear_data_offset(new_skb,
4221                                                                -NET_IP_ALIGN,
4222                                                                (skb->data -
4223                                                                 NET_IP_ALIGN),
4224                                                                (length +
4225                                                                 NET_IP_ALIGN));
4226                                 /* save the skb in buffer_info as good */
4227                                 buffer_info->skb = skb;
4228                                 skb = new_skb;
4229                         }
4230                         /* else just continue with the old one */
4231                 }
4232                 /* end copybreak code */
4233                 skb_put(skb, length);
4234
4235                 /* Receive Checksum Offload */
4236                 e1000_rx_checksum(adapter,
4237                                   (uint32_t)(status) |
4238                                   ((uint32_t)(rx_desc->errors) << 24),
4239                                   le16_to_cpu(rx_desc->csum), skb);
4240
4241                 skb->protocol = eth_type_trans(skb, netdev);
4242 #ifdef CONFIG_E1000_NAPI
4243                 if (unlikely(adapter->vlgrp &&
4244                             (status & E1000_RXD_STAT_VP))) {
4245                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4246                                                  le16_to_cpu(rx_desc->special) &
4247                                                  E1000_RXD_SPC_VLAN_MASK);
4248                 } else {
4249                         netif_receive_skb(skb);
4250                 }
4251 #else /* CONFIG_E1000_NAPI */
4252                 if (unlikely(adapter->vlgrp &&
4253                             (status & E1000_RXD_STAT_VP))) {
4254                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4255                                         le16_to_cpu(rx_desc->special) &
4256                                         E1000_RXD_SPC_VLAN_MASK);
4257                 } else {
4258                         netif_rx(skb);
4259                 }
4260 #endif /* CONFIG_E1000_NAPI */
4261                 netdev->last_rx = jiffies;
4262
4263 next_desc:
4264                 rx_desc->status = 0;
4265
4266                 /* return some buffers to hardware, one at a time is too slow */
4267                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4268                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4269                         cleaned_count = 0;
4270                 }
4271
4272                 /* use prefetched values */
4273                 rx_desc = next_rxd;
4274                 buffer_info = next_buffer;
4275         }
4276         rx_ring->next_to_clean = i;
4277
4278         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4279         if (cleaned_count)
4280                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4281
4282         adapter->total_rx_packets += total_rx_packets;
4283         adapter->total_rx_bytes += total_rx_bytes;
4284         return cleaned;
4285 }
4286
4287 /**
4288  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4289  * @adapter: board private structure
4290  **/
4291
4292 static boolean_t
4293 #ifdef CONFIG_E1000_NAPI
4294 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4295                       struct e1000_rx_ring *rx_ring,
4296                       int *work_done, int work_to_do)
4297 #else
4298 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4299                       struct e1000_rx_ring *rx_ring)
4300 #endif
4301 {
4302         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4303         struct net_device *netdev = adapter->netdev;
4304         struct pci_dev *pdev = adapter->pdev;
4305         struct e1000_buffer *buffer_info, *next_buffer;
4306         struct e1000_ps_page *ps_page;
4307         struct e1000_ps_page_dma *ps_page_dma;
4308         struct sk_buff *skb;
4309         unsigned int i, j;
4310         uint32_t length, staterr;
4311         int cleaned_count = 0;
4312         boolean_t cleaned = FALSE;
4313         unsigned int total_rx_bytes=0, total_rx_packets=0;
4314
4315         i = rx_ring->next_to_clean;
4316         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4317         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4318         buffer_info = &rx_ring->buffer_info[i];
4319
4320         while (staterr & E1000_RXD_STAT_DD) {
4321                 ps_page = &rx_ring->ps_page[i];
4322                 ps_page_dma = &rx_ring->ps_page_dma[i];
4323 #ifdef CONFIG_E1000_NAPI
4324                 if (unlikely(*work_done >= work_to_do))
4325                         break;
4326                 (*work_done)++;
4327 #endif
4328                 skb = buffer_info->skb;
4329
4330                 /* in the packet split case this is header only */
4331                 prefetch(skb->data - NET_IP_ALIGN);
4332
4333                 if (++i == rx_ring->count) i = 0;
4334                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4335                 prefetch(next_rxd);
4336
4337                 next_buffer = &rx_ring->buffer_info[i];
4338
4339                 cleaned = TRUE;
4340                 cleaned_count++;
4341                 pci_unmap_single(pdev, buffer_info->dma,
4342                                  buffer_info->length,
4343                                  PCI_DMA_FROMDEVICE);
4344
4345                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4346                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4347                                   " the full packet\n", netdev->name);
4348                         dev_kfree_skb_irq(skb);
4349                         goto next_desc;
4350                 }
4351
4352                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4353                         dev_kfree_skb_irq(skb);
4354                         goto next_desc;
4355                 }
4356
4357                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4358
4359                 if (unlikely(!length)) {
4360                         E1000_DBG("%s: Last part of the packet spanning"
4361                                   " multiple descriptors\n", netdev->name);
4362                         dev_kfree_skb_irq(skb);
4363                         goto next_desc;
4364                 }
4365
4366                 /* Good Receive */
4367                 skb_put(skb, length);
4368
4369                 {
4370                 /* this looks ugly, but it seems compiler issues make it
4371                    more efficient than reusing j */
4372                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4373
4374                 /* page alloc/put takes too long and effects small packet
4375                  * throughput, so unsplit small packets and save the alloc/put*/
4376                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4377                         u8 *vaddr;
4378                         /* there is no documentation about how to call
4379                          * kmap_atomic, so we can't hold the mapping
4380                          * very long */
4381                         pci_dma_sync_single_for_cpu(pdev,
4382                                 ps_page_dma->ps_page_dma[0],
4383                                 PAGE_SIZE,
4384                                 PCI_DMA_FROMDEVICE);
4385                         vaddr = kmap_atomic(ps_page->ps_page[0],
4386                                             KM_SKB_DATA_SOFTIRQ);
4387                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4388                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4389                         pci_dma_sync_single_for_device(pdev,
4390                                 ps_page_dma->ps_page_dma[0],
4391                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4392                         /* remove the CRC */
4393                         l1 -= 4;
4394                         skb_put(skb, l1);
4395                         goto copydone;
4396                 } /* if */
4397                 }
4398
4399                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4400                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4401                                 break;
4402                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4403                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4404                         ps_page_dma->ps_page_dma[j] = 0;
4405                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4406                                            length);
4407                         ps_page->ps_page[j] = NULL;
4408                         skb->len += length;
4409                         skb->data_len += length;
4410                         skb->truesize += length;
4411                 }
4412
4413                 /* strip the ethernet crc, problem is we're using pages now so
4414                  * this whole operation can get a little cpu intensive */
4415                 pskb_trim(skb, skb->len - 4);
4416
4417 copydone:
4418                 total_rx_bytes += skb->len;
4419                 total_rx_packets++;
4420
4421                 e1000_rx_checksum(adapter, staterr,
4422                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4423                 skb->protocol = eth_type_trans(skb, netdev);
4424
4425                 if (likely(rx_desc->wb.upper.header_status &
4426                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4427                         adapter->rx_hdr_split++;
4428 #ifdef CONFIG_E1000_NAPI
4429                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4430                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4431                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4432                                 E1000_RXD_SPC_VLAN_MASK);
4433                 } else {
4434                         netif_receive_skb(skb);
4435                 }
4436 #else /* CONFIG_E1000_NAPI */
4437                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4438                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4439                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4440                                 E1000_RXD_SPC_VLAN_MASK);
4441                 } else {
4442                         netif_rx(skb);
4443                 }
4444 #endif /* CONFIG_E1000_NAPI */
4445                 netdev->last_rx = jiffies;
4446
4447 next_desc:
4448                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4449                 buffer_info->skb = NULL;
4450
4451                 /* return some buffers to hardware, one at a time is too slow */
4452                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4453                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4454                         cleaned_count = 0;
4455                 }
4456
4457                 /* use prefetched values */
4458                 rx_desc = next_rxd;
4459                 buffer_info = next_buffer;
4460
4461                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4462         }
4463         rx_ring->next_to_clean = i;
4464
4465         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4466         if (cleaned_count)
4467                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4468
4469         adapter->total_rx_packets += total_rx_packets;
4470         adapter->total_rx_bytes += total_rx_bytes;
4471         return cleaned;
4472 }
4473
4474 /**
4475  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4476  * @adapter: address of board private structure
4477  **/
4478
4479 static void
4480 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4481                        struct e1000_rx_ring *rx_ring,
4482                        int cleaned_count)
4483 {
4484         struct net_device *netdev = adapter->netdev;
4485         struct pci_dev *pdev = adapter->pdev;
4486         struct e1000_rx_desc *rx_desc;
4487         struct e1000_buffer *buffer_info;
4488         struct sk_buff *skb;
4489         unsigned int i;
4490         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4491
4492         i = rx_ring->next_to_use;
4493         buffer_info = &rx_ring->buffer_info[i];
4494
4495         while (cleaned_count--) {
4496                 skb = buffer_info->skb;
4497                 if (skb) {
4498                         skb_trim(skb, 0);
4499                         goto map_skb;
4500                 }
4501
4502                 skb = netdev_alloc_skb(netdev, bufsz);
4503                 if (unlikely(!skb)) {
4504                         /* Better luck next round */
4505                         adapter->alloc_rx_buff_failed++;
4506                         break;
4507                 }
4508
4509                 /* Fix for errata 23, can't cross 64kB boundary */
4510                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4511                         struct sk_buff *oldskb = skb;
4512                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4513                                              "at %p\n", bufsz, skb->data);
4514                         /* Try again, without freeing the previous */
4515                         skb = netdev_alloc_skb(netdev, bufsz);
4516                         /* Failed allocation, critical failure */
4517                         if (!skb) {
4518                                 dev_kfree_skb(oldskb);
4519                                 break;
4520                         }
4521
4522                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4523                                 /* give up */
4524                                 dev_kfree_skb(skb);
4525                                 dev_kfree_skb(oldskb);
4526                                 break; /* while !buffer_info->skb */
4527                         }
4528
4529                         /* Use new allocation */
4530                         dev_kfree_skb(oldskb);
4531                 }
4532                 /* Make buffer alignment 2 beyond a 16 byte boundary
4533                  * this will result in a 16 byte aligned IP header after
4534                  * the 14 byte MAC header is removed
4535                  */
4536                 skb_reserve(skb, NET_IP_ALIGN);
4537
4538                 buffer_info->skb = skb;
4539                 buffer_info->length = adapter->rx_buffer_len;
4540 map_skb:
4541                 buffer_info->dma = pci_map_single(pdev,
4542                                                   skb->data,
4543                                                   adapter->rx_buffer_len,
4544                                                   PCI_DMA_FROMDEVICE);
4545
4546                 /* Fix for errata 23, can't cross 64kB boundary */
4547                 if (!e1000_check_64k_bound(adapter,
4548                                         (void *)(unsigned long)buffer_info->dma,
4549                                         adapter->rx_buffer_len)) {
4550                         DPRINTK(RX_ERR, ERR,
4551                                 "dma align check failed: %u bytes at %p\n",
4552                                 adapter->rx_buffer_len,
4553                                 (void *)(unsigned long)buffer_info->dma);
4554                         dev_kfree_skb(skb);
4555                         buffer_info->skb = NULL;
4556
4557                         pci_unmap_single(pdev, buffer_info->dma,
4558                                          adapter->rx_buffer_len,
4559                                          PCI_DMA_FROMDEVICE);
4560
4561                         break; /* while !buffer_info->skb */
4562                 }
4563                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4564                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4565
4566                 if (unlikely(++i == rx_ring->count))
4567                         i = 0;
4568                 buffer_info = &rx_ring->buffer_info[i];
4569         }
4570
4571         if (likely(rx_ring->next_to_use != i)) {
4572                 rx_ring->next_to_use = i;
4573                 if (unlikely(i-- == 0))
4574                         i = (rx_ring->count - 1);
4575
4576                 /* Force memory writes to complete before letting h/w
4577                  * know there are new descriptors to fetch.  (Only
4578                  * applicable for weak-ordered memory model archs,
4579                  * such as IA-64). */
4580                 wmb();
4581                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4582         }
4583 }
4584
4585 /**
4586  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4587  * @adapter: address of board private structure
4588  **/
4589
4590 static void
4591 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4592                           struct e1000_rx_ring *rx_ring,
4593                           int cleaned_count)
4594 {
4595         struct net_device *netdev = adapter->netdev;
4596         struct pci_dev *pdev = adapter->pdev;
4597         union e1000_rx_desc_packet_split *rx_desc;
4598         struct e1000_buffer *buffer_info;
4599         struct e1000_ps_page *ps_page;
4600         struct e1000_ps_page_dma *ps_page_dma;
4601         struct sk_buff *skb;
4602         unsigned int i, j;
4603
4604         i = rx_ring->next_to_use;
4605         buffer_info = &rx_ring->buffer_info[i];
4606         ps_page = &rx_ring->ps_page[i];
4607         ps_page_dma = &rx_ring->ps_page_dma[i];
4608
4609         while (cleaned_count--) {
4610                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4611
4612                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4613                         if (j < adapter->rx_ps_pages) {
4614                                 if (likely(!ps_page->ps_page[j])) {
4615                                         ps_page->ps_page[j] =
4616                                                 alloc_page(GFP_ATOMIC);
4617                                         if (unlikely(!ps_page->ps_page[j])) {
4618                                                 adapter->alloc_rx_buff_failed++;
4619                                                 goto no_buffers;
4620                                         }
4621                                         ps_page_dma->ps_page_dma[j] =
4622                                                 pci_map_page(pdev,
4623                                                             ps_page->ps_page[j],
4624                                                             0, PAGE_SIZE,
4625                                                             PCI_DMA_FROMDEVICE);
4626                                 }
4627                                 /* Refresh the desc even if buffer_addrs didn't
4628                                  * change because each write-back erases
4629                                  * this info.
4630                                  */
4631                                 rx_desc->read.buffer_addr[j+1] =
4632                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4633                         } else
4634                                 rx_desc->read.buffer_addr[j+1] = ~0;
4635                 }
4636
4637                 skb = netdev_alloc_skb(netdev,
4638                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4639
4640                 if (unlikely(!skb)) {
4641                         adapter->alloc_rx_buff_failed++;
4642                         break;
4643                 }
4644
4645                 /* Make buffer alignment 2 beyond a 16 byte boundary
4646                  * this will result in a 16 byte aligned IP header after
4647                  * the 14 byte MAC header is removed
4648                  */
4649                 skb_reserve(skb, NET_IP_ALIGN);
4650
4651                 buffer_info->skb = skb;
4652                 buffer_info->length = adapter->rx_ps_bsize0;
4653                 buffer_info->dma = pci_map_single(pdev, skb->data,
4654                                                   adapter->rx_ps_bsize0,
4655                                                   PCI_DMA_FROMDEVICE);
4656
4657                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4658
4659                 if (unlikely(++i == rx_ring->count)) i = 0;
4660                 buffer_info = &rx_ring->buffer_info[i];
4661                 ps_page = &rx_ring->ps_page[i];
4662                 ps_page_dma = &rx_ring->ps_page_dma[i];
4663         }
4664
4665 no_buffers:
4666         if (likely(rx_ring->next_to_use != i)) {
4667                 rx_ring->next_to_use = i;
4668                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4669
4670                 /* Force memory writes to complete before letting h/w
4671                  * know there are new descriptors to fetch.  (Only
4672                  * applicable for weak-ordered memory model archs,
4673                  * such as IA-64). */
4674                 wmb();
4675                 /* Hardware increments by 16 bytes, but packet split
4676                  * descriptors are 32 bytes...so we increment tail
4677                  * twice as much.
4678                  */
4679                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4680         }
4681 }
4682
4683 /**
4684  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4685  * @adapter:
4686  **/
4687
4688 static void
4689 e1000_smartspeed(struct e1000_adapter *adapter)
4690 {
4691         uint16_t phy_status;
4692         uint16_t phy_ctrl;
4693
4694         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4695            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4696                 return;
4697
4698         if (adapter->smartspeed == 0) {
4699                 /* If Master/Slave config fault is asserted twice,
4700                  * we assume back-to-back */
4701                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4702                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4703                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4704                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4705                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4706                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4707                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4708                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4709                                             phy_ctrl);
4710                         adapter->smartspeed++;
4711                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4712                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4713                                                &phy_ctrl)) {
4714                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4715                                              MII_CR_RESTART_AUTO_NEG);
4716                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4717                                                     phy_ctrl);
4718                         }
4719                 }
4720                 return;
4721         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4722                 /* If still no link, perhaps using 2/3 pair cable */
4723                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4724                 phy_ctrl |= CR_1000T_MS_ENABLE;
4725                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4726                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4727                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4728                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4729                                      MII_CR_RESTART_AUTO_NEG);
4730                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4731                 }
4732         }
4733         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4734         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4735                 adapter->smartspeed = 0;
4736 }
4737
4738 /**
4739  * e1000_ioctl -
4740  * @netdev:
4741  * @ifreq:
4742  * @cmd:
4743  **/
4744
4745 static int
4746 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4747 {
4748         switch (cmd) {
4749         case SIOCGMIIPHY:
4750         case SIOCGMIIREG:
4751         case SIOCSMIIREG:
4752                 return e1000_mii_ioctl(netdev, ifr, cmd);
4753         default:
4754                 return -EOPNOTSUPP;
4755         }
4756 }
4757
4758 /**
4759  * e1000_mii_ioctl -
4760  * @netdev:
4761  * @ifreq:
4762  * @cmd:
4763  **/
4764
4765 static int
4766 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4767 {
4768         struct e1000_adapter *adapter = netdev_priv(netdev);
4769         struct mii_ioctl_data *data = if_mii(ifr);
4770         int retval;
4771         uint16_t mii_reg;
4772         uint16_t spddplx;
4773         unsigned long flags;
4774
4775         if (adapter->hw.media_type != e1000_media_type_copper)
4776                 return -EOPNOTSUPP;
4777
4778         switch (cmd) {
4779         case SIOCGMIIPHY:
4780                 data->phy_id = adapter->hw.phy_addr;
4781                 break;
4782         case SIOCGMIIREG:
4783                 if (!capable(CAP_NET_ADMIN))
4784                         return -EPERM;
4785                 spin_lock_irqsave(&adapter->stats_lock, flags);
4786                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4787                                    &data->val_out)) {
4788                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789                         return -EIO;
4790                 }
4791                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4792                 break;
4793         case SIOCSMIIREG:
4794                 if (!capable(CAP_NET_ADMIN))
4795                         return -EPERM;
4796                 if (data->reg_num & ~(0x1F))
4797                         return -EFAULT;
4798                 mii_reg = data->val_in;
4799                 spin_lock_irqsave(&adapter->stats_lock, flags);
4800                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4801                                         mii_reg)) {
4802                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4803                         return -EIO;
4804                 }
4805                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4806                 if (adapter->hw.media_type == e1000_media_type_copper) {
4807                         switch (data->reg_num) {
4808                         case PHY_CTRL:
4809                                 if (mii_reg & MII_CR_POWER_DOWN)
4810                                         break;
4811                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4812                                         adapter->hw.autoneg = 1;
4813                                         adapter->hw.autoneg_advertised = 0x2F;
4814                                 } else {
4815                                         if (mii_reg & 0x40)
4816                                                 spddplx = SPEED_1000;
4817                                         else if (mii_reg & 0x2000)
4818                                                 spddplx = SPEED_100;
4819                                         else
4820                                                 spddplx = SPEED_10;
4821                                         spddplx += (mii_reg & 0x100)
4822                                                    ? DUPLEX_FULL :
4823                                                    DUPLEX_HALF;
4824                                         retval = e1000_set_spd_dplx(adapter,
4825                                                                     spddplx);
4826                                         if (retval)
4827                                                 return retval;
4828                                 }
4829                                 if (netif_running(adapter->netdev))
4830                                         e1000_reinit_locked(adapter);
4831                                 else
4832                                         e1000_reset(adapter);
4833                                 break;
4834                         case M88E1000_PHY_SPEC_CTRL:
4835                         case M88E1000_EXT_PHY_SPEC_CTRL:
4836                                 if (e1000_phy_reset(&adapter->hw))
4837                                         return -EIO;
4838                                 break;
4839                         }
4840                 } else {
4841                         switch (data->reg_num) {
4842                         case PHY_CTRL:
4843                                 if (mii_reg & MII_CR_POWER_DOWN)
4844                                         break;
4845                                 if (netif_running(adapter->netdev))
4846                                         e1000_reinit_locked(adapter);
4847                                 else
4848                                         e1000_reset(adapter);
4849                                 break;
4850                         }
4851                 }
4852                 break;
4853         default:
4854                 return -EOPNOTSUPP;
4855         }
4856         return E1000_SUCCESS;
4857 }
4858
4859 void
4860 e1000_pci_set_mwi(struct e1000_hw *hw)
4861 {
4862         struct e1000_adapter *adapter = hw->back;
4863         int ret_val = pci_set_mwi(adapter->pdev);
4864
4865         if (ret_val)
4866                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4867 }
4868
4869 void
4870 e1000_pci_clear_mwi(struct e1000_hw *hw)
4871 {
4872         struct e1000_adapter *adapter = hw->back;
4873
4874         pci_clear_mwi(adapter->pdev);
4875 }
4876
4877 void
4878 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4879 {
4880         struct e1000_adapter *adapter = hw->back;
4881
4882         pci_read_config_word(adapter->pdev, reg, value);
4883 }
4884
4885 void
4886 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4887 {
4888         struct e1000_adapter *adapter = hw->back;
4889
4890         pci_write_config_word(adapter->pdev, reg, *value);
4891 }
4892
4893 int
4894 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4895 {
4896         struct e1000_adapter *adapter = hw->back;
4897         return pcix_get_mmrbc(adapter->pdev);
4898 }
4899
4900 void
4901 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4902 {
4903         struct e1000_adapter *adapter = hw->back;
4904         pcix_set_mmrbc(adapter->pdev, mmrbc);
4905 }
4906
4907 int32_t
4908 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4909 {
4910     struct e1000_adapter *adapter = hw->back;
4911     uint16_t cap_offset;
4912
4913     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4914     if (!cap_offset)
4915         return -E1000_ERR_CONFIG;
4916
4917     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4918
4919     return E1000_SUCCESS;
4920 }
4921
4922 void
4923 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4924 {
4925         outl(value, port);
4926 }
4927
4928 static void
4929 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4930 {
4931         struct e1000_adapter *adapter = netdev_priv(netdev);
4932         uint32_t ctrl, rctl;
4933
4934         e1000_irq_disable(adapter);
4935         adapter->vlgrp = grp;
4936
4937         if (grp) {
4938                 /* enable VLAN tag insert/strip */
4939                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4940                 ctrl |= E1000_CTRL_VME;
4941                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4942
4943                 if (adapter->hw.mac_type != e1000_ich8lan) {
4944                         /* enable VLAN receive filtering */
4945                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4946                         rctl |= E1000_RCTL_VFE;
4947                         rctl &= ~E1000_RCTL_CFIEN;
4948                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4949                         e1000_update_mng_vlan(adapter);
4950                 }
4951         } else {
4952                 /* disable VLAN tag insert/strip */
4953                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4954                 ctrl &= ~E1000_CTRL_VME;
4955                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4956
4957                 if (adapter->hw.mac_type != e1000_ich8lan) {
4958                         /* disable VLAN filtering */
4959                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4960                         rctl &= ~E1000_RCTL_VFE;
4961                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4962                         if (adapter->mng_vlan_id !=
4963                             (uint16_t)E1000_MNG_VLAN_NONE) {
4964                                 e1000_vlan_rx_kill_vid(netdev,
4965                                                        adapter->mng_vlan_id);
4966                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4967                         }
4968                 }
4969         }
4970
4971         e1000_irq_enable(adapter);
4972 }
4973
4974 static void
4975 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4976 {
4977         struct e1000_adapter *adapter = netdev_priv(netdev);
4978         uint32_t vfta, index;
4979
4980         if ((adapter->hw.mng_cookie.status &
4981              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4982             (vid == adapter->mng_vlan_id))
4983                 return;
4984         /* add VID to filter table */
4985         index = (vid >> 5) & 0x7F;
4986         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4987         vfta |= (1 << (vid & 0x1F));
4988         e1000_write_vfta(&adapter->hw, index, vfta);
4989 }
4990
4991 static void
4992 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4993 {
4994         struct e1000_adapter *adapter = netdev_priv(netdev);
4995         uint32_t vfta, index;
4996
4997         e1000_irq_disable(adapter);
4998         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4999         e1000_irq_enable(adapter);
5000
5001         if ((adapter->hw.mng_cookie.status &
5002              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5003             (vid == adapter->mng_vlan_id)) {
5004                 /* release control to f/w */
5005                 e1000_release_hw_control(adapter);
5006                 return;
5007         }
5008
5009         /* remove VID from filter table */
5010         index = (vid >> 5) & 0x7F;
5011         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5012         vfta &= ~(1 << (vid & 0x1F));
5013         e1000_write_vfta(&adapter->hw, index, vfta);
5014 }
5015
5016 static void
5017 e1000_restore_vlan(struct e1000_adapter *adapter)
5018 {
5019         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5020
5021         if (adapter->vlgrp) {
5022                 uint16_t vid;
5023                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5024                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5025                                 continue;
5026                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5027                 }
5028         }
5029 }
5030
5031 int
5032 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5033 {
5034         adapter->hw.autoneg = 0;
5035
5036         /* Fiber NICs only allow 1000 gbps Full duplex */
5037         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5038                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5039                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5040                 return -EINVAL;
5041         }
5042
5043         switch (spddplx) {
5044         case SPEED_10 + DUPLEX_HALF:
5045                 adapter->hw.forced_speed_duplex = e1000_10_half;
5046                 break;
5047         case SPEED_10 + DUPLEX_FULL:
5048                 adapter->hw.forced_speed_duplex = e1000_10_full;
5049                 break;
5050         case SPEED_100 + DUPLEX_HALF:
5051                 adapter->hw.forced_speed_duplex = e1000_100_half;
5052                 break;
5053         case SPEED_100 + DUPLEX_FULL:
5054                 adapter->hw.forced_speed_duplex = e1000_100_full;
5055                 break;
5056         case SPEED_1000 + DUPLEX_FULL:
5057                 adapter->hw.autoneg = 1;
5058                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5059                 break;
5060         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5061         default:
5062                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5063                 return -EINVAL;
5064         }
5065         return 0;
5066 }
5067
5068 static int
5069 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5070 {
5071         struct net_device *netdev = pci_get_drvdata(pdev);
5072         struct e1000_adapter *adapter = netdev_priv(netdev);
5073         uint32_t ctrl, ctrl_ext, rctl, status;
5074         uint32_t wufc = adapter->wol;
5075 #ifdef CONFIG_PM
5076         int retval = 0;
5077 #endif
5078
5079         netif_device_detach(netdev);
5080
5081         if (netif_running(netdev)) {
5082                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5083                 e1000_down(adapter);
5084         }
5085
5086 #ifdef CONFIG_PM
5087         retval = pci_save_state(pdev);
5088         if (retval)
5089                 return retval;
5090 #endif
5091
5092         status = E1000_READ_REG(&adapter->hw, STATUS);
5093         if (status & E1000_STATUS_LU)
5094                 wufc &= ~E1000_WUFC_LNKC;
5095
5096         if (wufc) {
5097                 e1000_setup_rctl(adapter);
5098                 e1000_set_multi(netdev);
5099
5100                 /* turn on all-multi mode if wake on multicast is enabled */
5101                 if (wufc & E1000_WUFC_MC) {
5102                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5103                         rctl |= E1000_RCTL_MPE;
5104                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5105                 }
5106
5107                 if (adapter->hw.mac_type >= e1000_82540) {
5108                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5109                         /* advertise wake from D3Cold */
5110                         #define E1000_CTRL_ADVD3WUC 0x00100000
5111                         /* phy power management enable */
5112                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5113                         ctrl |= E1000_CTRL_ADVD3WUC |
5114                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5115                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5116                 }
5117
5118                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5119                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5120                         /* keep the laser running in D3 */
5121                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5122                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5123                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5124                 }
5125
5126                 /* Allow time for pending master requests to run */
5127                 e1000_disable_pciex_master(&adapter->hw);
5128
5129                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5130                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5131                 pci_enable_wake(pdev, PCI_D3hot, 1);
5132                 pci_enable_wake(pdev, PCI_D3cold, 1);
5133         } else {
5134                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5135                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5136                 pci_enable_wake(pdev, PCI_D3hot, 0);
5137                 pci_enable_wake(pdev, PCI_D3cold, 0);
5138         }
5139
5140         e1000_release_manageability(adapter);
5141
5142         /* make sure adapter isn't asleep if manageability is enabled */
5143         if (adapter->en_mng_pt) {
5144                 pci_enable_wake(pdev, PCI_D3hot, 1);
5145                 pci_enable_wake(pdev, PCI_D3cold, 1);
5146         }
5147
5148         if (adapter->hw.phy_type == e1000_phy_igp_3)
5149                 e1000_phy_powerdown_workaround(&adapter->hw);
5150
5151         if (netif_running(netdev))
5152                 e1000_free_irq(adapter);
5153
5154         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5155          * would have already happened in close and is redundant. */
5156         e1000_release_hw_control(adapter);
5157
5158         pci_disable_device(pdev);
5159
5160         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5161
5162         return 0;
5163 }
5164
5165 #ifdef CONFIG_PM
5166 static int
5167 e1000_resume(struct pci_dev *pdev)
5168 {
5169         struct net_device *netdev = pci_get_drvdata(pdev);
5170         struct e1000_adapter *adapter = netdev_priv(netdev);
5171         uint32_t err;
5172
5173         pci_set_power_state(pdev, PCI_D0);
5174         pci_restore_state(pdev);
5175         if ((err = pci_enable_device(pdev))) {
5176                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5177                 return err;
5178         }
5179         pci_set_master(pdev);
5180
5181         pci_enable_wake(pdev, PCI_D3hot, 0);
5182         pci_enable_wake(pdev, PCI_D3cold, 0);
5183
5184         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5185                 return err;
5186
5187         e1000_power_up_phy(adapter);
5188         e1000_reset(adapter);
5189         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5190
5191         e1000_init_manageability(adapter);
5192
5193         if (netif_running(netdev))
5194                 e1000_up(adapter);
5195
5196         netif_device_attach(netdev);
5197
5198         /* If the controller is 82573 and f/w is AMT, do not set
5199          * DRV_LOAD until the interface is up.  For all other cases,
5200          * let the f/w know that the h/w is now under the control
5201          * of the driver. */
5202         if (adapter->hw.mac_type != e1000_82573 ||
5203             !e1000_check_mng_mode(&adapter->hw))
5204                 e1000_get_hw_control(adapter);
5205
5206         return 0;
5207 }
5208 #endif
5209
5210 static void e1000_shutdown(struct pci_dev *pdev)
5211 {
5212         e1000_suspend(pdev, PMSG_SUSPEND);
5213 }
5214
5215 #ifdef CONFIG_NET_POLL_CONTROLLER
5216 /*
5217  * Polling 'interrupt' - used by things like netconsole to send skbs
5218  * without having to re-enable interrupts. It's not called while
5219  * the interrupt routine is executing.
5220  */
5221 static void
5222 e1000_netpoll(struct net_device *netdev)
5223 {
5224         struct e1000_adapter *adapter = netdev_priv(netdev);
5225
5226         disable_irq(adapter->pdev->irq);
5227         e1000_intr(adapter->pdev->irq, netdev);
5228         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5229 #ifndef CONFIG_E1000_NAPI
5230         adapter->clean_rx(adapter, adapter->rx_ring);
5231 #endif
5232         enable_irq(adapter->pdev->irq);
5233 }
5234 #endif
5235
5236 /**
5237  * e1000_io_error_detected - called when PCI error is detected
5238  * @pdev: Pointer to PCI device
5239  * @state: The current pci conneection state
5240  *
5241  * This function is called after a PCI bus error affecting
5242  * this device has been detected.
5243  */
5244 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5245 {
5246         struct net_device *netdev = pci_get_drvdata(pdev);
5247         struct e1000_adapter *adapter = netdev->priv;
5248
5249         netif_device_detach(netdev);
5250
5251         if (netif_running(netdev))
5252                 e1000_down(adapter);
5253         pci_disable_device(pdev);
5254
5255         /* Request a slot slot reset. */
5256         return PCI_ERS_RESULT_NEED_RESET;
5257 }
5258
5259 /**
5260  * e1000_io_slot_reset - called after the pci bus has been reset.
5261  * @pdev: Pointer to PCI device
5262  *
5263  * Restart the card from scratch, as if from a cold-boot. Implementation
5264  * resembles the first-half of the e1000_resume routine.
5265  */
5266 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5267 {
5268         struct net_device *netdev = pci_get_drvdata(pdev);
5269         struct e1000_adapter *adapter = netdev->priv;
5270
5271         if (pci_enable_device(pdev)) {
5272                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5273                 return PCI_ERS_RESULT_DISCONNECT;
5274         }
5275         pci_set_master(pdev);
5276
5277         pci_enable_wake(pdev, PCI_D3hot, 0);
5278         pci_enable_wake(pdev, PCI_D3cold, 0);
5279
5280         e1000_reset(adapter);
5281         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5282
5283         return PCI_ERS_RESULT_RECOVERED;
5284 }
5285
5286 /**
5287  * e1000_io_resume - called when traffic can start flowing again.
5288  * @pdev: Pointer to PCI device
5289  *
5290  * This callback is called when the error recovery driver tells us that
5291  * its OK to resume normal operation. Implementation resembles the
5292  * second-half of the e1000_resume routine.
5293  */
5294 static void e1000_io_resume(struct pci_dev *pdev)
5295 {
5296         struct net_device *netdev = pci_get_drvdata(pdev);
5297         struct e1000_adapter *adapter = netdev->priv;
5298
5299         e1000_init_manageability(adapter);
5300
5301         if (netif_running(netdev)) {
5302                 if (e1000_up(adapter)) {
5303                         printk("e1000: can't bring device back up after reset\n");
5304                         return;
5305                 }
5306         }
5307
5308         netif_device_attach(netdev);
5309
5310         /* If the controller is 82573 and f/w is AMT, do not set
5311          * DRV_LOAD until the interface is up.  For all other cases,
5312          * let the f/w know that the h/w is now under the control
5313          * of the driver. */
5314         if (adapter->hw.mac_type != e1000_82573 ||
5315             !e1000_check_mng_mode(&adapter->hw))
5316                 e1000_get_hw_control(adapter);
5317
5318 }
5319
5320 /* e1000_main.c */