]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
Merge branch 'srp' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 6.0.58       4/20/05
33  *   o Accepted ethtool cleanup patch from Stephen Hemminger 
34  * 6.0.44+      2/15/05
35  *   o applied Anton's patch to resolve tx hang in hardware
36  *   o Applied Andrew Mortons patch - e1000 stops working after resume
37  */
38
39 char e1000_driver_name[] = "e1000";
40 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION "6.1.16-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
49
50 /* e1000_pci_tbl - PCI Device ID Table
51  *
52  * Last entry must be all 0s
53  *
54  * Macro expands to...
55  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56  */
57 static struct pci_device_id e1000_pci_tbl[] = {
58         INTEL_E1000_ETHERNET_DEVICE(0x1000),
59         INTEL_E1000_ETHERNET_DEVICE(0x1001),
60         INTEL_E1000_ETHERNET_DEVICE(0x1004),
61         INTEL_E1000_ETHERNET_DEVICE(0x1008),
62         INTEL_E1000_ETHERNET_DEVICE(0x1009),
63         INTEL_E1000_ETHERNET_DEVICE(0x100C),
64         INTEL_E1000_ETHERNET_DEVICE(0x100D),
65         INTEL_E1000_ETHERNET_DEVICE(0x100E),
66         INTEL_E1000_ETHERNET_DEVICE(0x100F),
67         INTEL_E1000_ETHERNET_DEVICE(0x1010),
68         INTEL_E1000_ETHERNET_DEVICE(0x1011),
69         INTEL_E1000_ETHERNET_DEVICE(0x1012),
70         INTEL_E1000_ETHERNET_DEVICE(0x1013),
71         INTEL_E1000_ETHERNET_DEVICE(0x1014),
72         INTEL_E1000_ETHERNET_DEVICE(0x1015),
73         INTEL_E1000_ETHERNET_DEVICE(0x1016),
74         INTEL_E1000_ETHERNET_DEVICE(0x1017),
75         INTEL_E1000_ETHERNET_DEVICE(0x1018),
76         INTEL_E1000_ETHERNET_DEVICE(0x1019),
77         INTEL_E1000_ETHERNET_DEVICE(0x101A),
78         INTEL_E1000_ETHERNET_DEVICE(0x101D),
79         INTEL_E1000_ETHERNET_DEVICE(0x101E),
80         INTEL_E1000_ETHERNET_DEVICE(0x1026),
81         INTEL_E1000_ETHERNET_DEVICE(0x1027),
82         INTEL_E1000_ETHERNET_DEVICE(0x1028),
83         INTEL_E1000_ETHERNET_DEVICE(0x105E),
84         INTEL_E1000_ETHERNET_DEVICE(0x105F),
85         INTEL_E1000_ETHERNET_DEVICE(0x1060),
86         INTEL_E1000_ETHERNET_DEVICE(0x1075),
87         INTEL_E1000_ETHERNET_DEVICE(0x1076),
88         INTEL_E1000_ETHERNET_DEVICE(0x1077),
89         INTEL_E1000_ETHERNET_DEVICE(0x1078),
90         INTEL_E1000_ETHERNET_DEVICE(0x1079),
91         INTEL_E1000_ETHERNET_DEVICE(0x107A),
92         INTEL_E1000_ETHERNET_DEVICE(0x107B),
93         INTEL_E1000_ETHERNET_DEVICE(0x107C),
94         INTEL_E1000_ETHERNET_DEVICE(0x107D),
95         INTEL_E1000_ETHERNET_DEVICE(0x107E),
96         INTEL_E1000_ETHERNET_DEVICE(0x107F),
97         INTEL_E1000_ETHERNET_DEVICE(0x108A),
98         INTEL_E1000_ETHERNET_DEVICE(0x108B),
99         INTEL_E1000_ETHERNET_DEVICE(0x108C),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         /* required last entry */
102         {0,}
103 };
104
105 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
106
107 int e1000_up(struct e1000_adapter *adapter);
108 void e1000_down(struct e1000_adapter *adapter);
109 void e1000_reset(struct e1000_adapter *adapter);
110 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
111 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
112 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
113 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
114 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
115 int e1000_setup_tx_resources(struct e1000_adapter *adapter,
116                              struct e1000_tx_ring *txdr);
117 int e1000_setup_rx_resources(struct e1000_adapter *adapter,
118                              struct e1000_rx_ring *rxdr);
119 void e1000_free_tx_resources(struct e1000_adapter *adapter,
120                              struct e1000_tx_ring *tx_ring);
121 void e1000_free_rx_resources(struct e1000_adapter *adapter,
122                              struct e1000_rx_ring *rx_ring);
123 void e1000_update_stats(struct e1000_adapter *adapter);
124
125 /* Local Function Prototypes */
126
127 static int e1000_init_module(void);
128 static void e1000_exit_module(void);
129 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
130 static void __devexit e1000_remove(struct pci_dev *pdev);
131 static int e1000_alloc_queues(struct e1000_adapter *adapter);
132 #ifdef CONFIG_E1000_MQ
133 static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
134 #endif
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
142 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
144                                 struct e1000_tx_ring *tx_ring);
145 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
146                                 struct e1000_rx_ring *rx_ring);
147 static void e1000_set_multi(struct net_device *netdev);
148 static void e1000_update_phy_info(unsigned long data);
149 static void e1000_watchdog(unsigned long data);
150 static void e1000_watchdog_task(struct e1000_adapter *adapter);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring);
175 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
176                                       struct e1000_rx_ring *rx_ring);
177 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
178 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
179                            int cmd);
180 void e1000_set_ethtool_ops(struct net_device *netdev);
181 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
182 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
183 static void e1000_tx_timeout(struct net_device *dev);
184 static void e1000_tx_timeout_task(struct net_device *dev);
185 static void e1000_smartspeed(struct e1000_adapter *adapter);
186 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
187                                               struct sk_buff *skb);
188
189 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
190 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
191 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
192 static void e1000_restore_vlan(struct e1000_adapter *adapter);
193
194 #ifdef CONFIG_PM
195 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
196 static int e1000_resume(struct pci_dev *pdev);
197 #endif
198
199 #ifdef CONFIG_NET_POLL_CONTROLLER
200 /* for netdump / net console */
201 static void e1000_netpoll (struct net_device *netdev);
202 #endif
203
204 #ifdef CONFIG_E1000_MQ
205 /* for multiple Rx queues */
206 void e1000_rx_schedule(void *data);
207 #endif
208
209 /* Exported from other modules */
210
211 extern void e1000_check_options(struct e1000_adapter *adapter);
212
213 static struct pci_driver e1000_driver = {
214         .name     = e1000_driver_name,
215         .id_table = e1000_pci_tbl,
216         .probe    = e1000_probe,
217         .remove   = __devexit_p(e1000_remove),
218         /* Power Managment Hooks */
219 #ifdef CONFIG_PM
220         .suspend  = e1000_suspend,
221         .resume   = e1000_resume
222 #endif
223 };
224
225 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
226 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
227 MODULE_LICENSE("GPL");
228 MODULE_VERSION(DRV_VERSION);
229
230 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
231 module_param(debug, int, 0);
232 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
233
234 /**
235  * e1000_init_module - Driver Registration Routine
236  *
237  * e1000_init_module is the first routine called when the driver is
238  * loaded. All it does is register with the PCI subsystem.
239  **/
240
241 static int __init
242 e1000_init_module(void)
243 {
244         int ret;
245         printk(KERN_INFO "%s - version %s\n",
246                e1000_driver_string, e1000_driver_version);
247
248         printk(KERN_INFO "%s\n", e1000_copyright);
249
250         ret = pci_module_init(&e1000_driver);
251
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 /**
273  * e1000_irq_disable - Mask off interrupt generation on the NIC
274  * @adapter: board private structure
275  **/
276
277 static inline void
278 e1000_irq_disable(struct e1000_adapter *adapter)
279 {
280         atomic_inc(&adapter->irq_sem);
281         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
282         E1000_WRITE_FLUSH(&adapter->hw);
283         synchronize_irq(adapter->pdev->irq);
284 }
285
286 /**
287  * e1000_irq_enable - Enable default interrupt generation settings
288  * @adapter: board private structure
289  **/
290
291 static inline void
292 e1000_irq_enable(struct e1000_adapter *adapter)
293 {
294         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
295                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
296                 E1000_WRITE_FLUSH(&adapter->hw);
297         }
298 }
299 void
300 e1000_update_mng_vlan(struct e1000_adapter *adapter)
301 {
302         struct net_device *netdev = adapter->netdev;
303         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
304         uint16_t old_vid = adapter->mng_vlan_id;
305         if(adapter->vlgrp) {
306                 if(!adapter->vlgrp->vlan_devices[vid]) {
307                         if(adapter->hw.mng_cookie.status &
308                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
309                                 e1000_vlan_rx_add_vid(netdev, vid);
310                                 adapter->mng_vlan_id = vid;
311                         } else
312                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
313                                 
314                         if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
315                                         (vid != old_vid) && 
316                                         !adapter->vlgrp->vlan_devices[old_vid])
317                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
318                 }
319         }
320 }
321         
322 int
323 e1000_up(struct e1000_adapter *adapter)
324 {
325         struct net_device *netdev = adapter->netdev;
326         int i, err;
327
328         /* hardware has been reset, we need to reload some things */
329
330         /* Reset the PHY if it was previously powered down */
331         if(adapter->hw.media_type == e1000_media_type_copper) {
332                 uint16_t mii_reg;
333                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
334                 if(mii_reg & MII_CR_POWER_DOWN)
335                         e1000_phy_reset(&adapter->hw);
336         }
337
338         e1000_set_multi(netdev);
339
340         e1000_restore_vlan(adapter);
341
342         e1000_configure_tx(adapter);
343         e1000_setup_rctl(adapter);
344         e1000_configure_rx(adapter);
345         for (i = 0; i < adapter->num_queues; i++)
346                 adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
347
348 #ifdef CONFIG_PCI_MSI
349         if(adapter->hw.mac_type > e1000_82547_rev_2) {
350                 adapter->have_msi = TRUE;
351                 if((err = pci_enable_msi(adapter->pdev))) {
352                         DPRINTK(PROBE, ERR,
353                          "Unable to allocate MSI interrupt Error: %d\n", err);
354                         adapter->have_msi = FALSE;
355                 }
356         }
357 #endif
358         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
359                               SA_SHIRQ | SA_SAMPLE_RANDOM,
360                               netdev->name, netdev))) {
361                 DPRINTK(PROBE, ERR,
362                     "Unable to allocate interrupt Error: %d\n", err);
363                 return err;
364         }
365
366         mod_timer(&adapter->watchdog_timer, jiffies);
367
368 #ifdef CONFIG_E1000_NAPI
369         netif_poll_enable(netdev);
370 #endif
371         e1000_irq_enable(adapter);
372
373         return 0;
374 }
375
376 void
377 e1000_down(struct e1000_adapter *adapter)
378 {
379         struct net_device *netdev = adapter->netdev;
380
381         e1000_irq_disable(adapter);
382 #ifdef CONFIG_E1000_MQ
383         while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
384 #endif
385         free_irq(adapter->pdev->irq, netdev);
386 #ifdef CONFIG_PCI_MSI
387         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
388            adapter->have_msi == TRUE)
389                 pci_disable_msi(adapter->pdev);
390 #endif
391         del_timer_sync(&adapter->tx_fifo_stall_timer);
392         del_timer_sync(&adapter->watchdog_timer);
393         del_timer_sync(&adapter->phy_info_timer);
394
395 #ifdef CONFIG_E1000_NAPI
396         netif_poll_disable(netdev);
397 #endif
398         adapter->link_speed = 0;
399         adapter->link_duplex = 0;
400         netif_carrier_off(netdev);
401         netif_stop_queue(netdev);
402
403         e1000_reset(adapter);
404         e1000_clean_all_tx_rings(adapter);
405         e1000_clean_all_rx_rings(adapter);
406
407         /* If WoL is not enabled and management mode is not IAMT
408          * Power down the PHY so no link is implied when interface is down */
409         if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
410            adapter->hw.media_type == e1000_media_type_copper &&
411            !e1000_check_mng_mode(&adapter->hw) &&
412            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
413                 uint16_t mii_reg;
414                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
415                 mii_reg |= MII_CR_POWER_DOWN;
416                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
417                 mdelay(1);
418         }
419 }
420
421 void
422 e1000_reset(struct e1000_adapter *adapter)
423 {
424         struct net_device *netdev = adapter->netdev;
425         uint32_t pba, manc;
426         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
427         uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
428
429         /* Repartition Pba for greater than 9k mtu
430          * To take effect CTRL.RST is required.
431          */
432
433         switch (adapter->hw.mac_type) {
434         case e1000_82547:
435         case e1000_82547_rev_2:
436                 pba = E1000_PBA_30K;
437                 break;
438         case e1000_82571:
439         case e1000_82572:
440                 pba = E1000_PBA_38K;
441                 break;
442         case e1000_82573:
443                 pba = E1000_PBA_12K;
444                 break;
445         default:
446                 pba = E1000_PBA_48K;
447                 break;
448         }
449
450         if((adapter->hw.mac_type != e1000_82573) &&
451            (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
452                 pba -= 8; /* allocate more FIFO for Tx */
453                 /* send an XOFF when there is enough space in the
454                  * Rx FIFO to hold one extra full size Rx packet 
455                 */
456                 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + 
457                                         ETHERNET_FCS_SIZE + 1;
458                 fc_low_water_mark = fc_high_water_mark + 8;
459         }
460
461
462         if(adapter->hw.mac_type == e1000_82547) {
463                 adapter->tx_fifo_head = 0;
464                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
465                 adapter->tx_fifo_size =
466                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
467                 atomic_set(&adapter->tx_fifo_stall, 0);
468         }
469
470         E1000_WRITE_REG(&adapter->hw, PBA, pba);
471
472         /* flow control settings */
473         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
474                                     fc_high_water_mark;
475         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
476                                    fc_low_water_mark;
477         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
478         adapter->hw.fc_send_xon = 1;
479         adapter->hw.fc = adapter->hw.original_fc;
480
481         /* Allow time for pending master requests to run */
482         e1000_reset_hw(&adapter->hw);
483         if(adapter->hw.mac_type >= e1000_82544)
484                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
485         if(e1000_init_hw(&adapter->hw))
486                 DPRINTK(PROBE, ERR, "Hardware Error\n");
487         e1000_update_mng_vlan(adapter);
488         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
489         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
490
491         e1000_reset_adaptive(&adapter->hw);
492         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
493         if (adapter->en_mng_pt) {
494                 manc = E1000_READ_REG(&adapter->hw, MANC);
495                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
496                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
497         }
498 }
499
500 /**
501  * e1000_probe - Device Initialization Routine
502  * @pdev: PCI device information struct
503  * @ent: entry in e1000_pci_tbl
504  *
505  * Returns 0 on success, negative on failure
506  *
507  * e1000_probe initializes an adapter identified by a pci_dev structure.
508  * The OS initialization, configuring of the adapter private structure,
509  * and a hardware reset occur.
510  **/
511
512 static int __devinit
513 e1000_probe(struct pci_dev *pdev,
514             const struct pci_device_id *ent)
515 {
516         struct net_device *netdev;
517         struct e1000_adapter *adapter;
518         unsigned long mmio_start, mmio_len;
519         uint32_t ctrl_ext;
520         uint32_t swsm;
521
522         static int cards_found = 0;
523         int i, err, pci_using_dac;
524         uint16_t eeprom_data;
525         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
526         if((err = pci_enable_device(pdev)))
527                 return err;
528
529         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
530                 pci_using_dac = 1;
531         } else {
532                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
533                         E1000_ERR("No usable DMA configuration, aborting\n");
534                         return err;
535                 }
536                 pci_using_dac = 0;
537         }
538
539         if((err = pci_request_regions(pdev, e1000_driver_name)))
540                 return err;
541
542         pci_set_master(pdev);
543
544         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
545         if(!netdev) {
546                 err = -ENOMEM;
547                 goto err_alloc_etherdev;
548         }
549
550         SET_MODULE_OWNER(netdev);
551         SET_NETDEV_DEV(netdev, &pdev->dev);
552
553         pci_set_drvdata(pdev, netdev);
554         adapter = netdev_priv(netdev);
555         adapter->netdev = netdev;
556         adapter->pdev = pdev;
557         adapter->hw.back = adapter;
558         adapter->msg_enable = (1 << debug) - 1;
559
560         mmio_start = pci_resource_start(pdev, BAR_0);
561         mmio_len = pci_resource_len(pdev, BAR_0);
562
563         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
564         if(!adapter->hw.hw_addr) {
565                 err = -EIO;
566                 goto err_ioremap;
567         }
568
569         for(i = BAR_1; i <= BAR_5; i++) {
570                 if(pci_resource_len(pdev, i) == 0)
571                         continue;
572                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
573                         adapter->hw.io_base = pci_resource_start(pdev, i);
574                         break;
575                 }
576         }
577
578         netdev->open = &e1000_open;
579         netdev->stop = &e1000_close;
580         netdev->hard_start_xmit = &e1000_xmit_frame;
581         netdev->get_stats = &e1000_get_stats;
582         netdev->set_multicast_list = &e1000_set_multi;
583         netdev->set_mac_address = &e1000_set_mac;
584         netdev->change_mtu = &e1000_change_mtu;
585         netdev->do_ioctl = &e1000_ioctl;
586         e1000_set_ethtool_ops(netdev);
587         netdev->tx_timeout = &e1000_tx_timeout;
588         netdev->watchdog_timeo = 5 * HZ;
589 #ifdef CONFIG_E1000_NAPI
590         netdev->poll = &e1000_clean;
591         netdev->weight = 64;
592 #endif
593         netdev->vlan_rx_register = e1000_vlan_rx_register;
594         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
595         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
596 #ifdef CONFIG_NET_POLL_CONTROLLER
597         netdev->poll_controller = e1000_netpoll;
598 #endif
599         strcpy(netdev->name, pci_name(pdev));
600
601         netdev->mem_start = mmio_start;
602         netdev->mem_end = mmio_start + mmio_len;
603         netdev->base_addr = adapter->hw.io_base;
604
605         adapter->bd_number = cards_found;
606
607         /* setup the private structure */
608
609         if((err = e1000_sw_init(adapter)))
610                 goto err_sw_init;
611
612         if((err = e1000_check_phy_reset_block(&adapter->hw)))
613                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
614
615         if(adapter->hw.mac_type >= e1000_82543) {
616                 netdev->features = NETIF_F_SG |
617                                    NETIF_F_HW_CSUM |
618                                    NETIF_F_HW_VLAN_TX |
619                                    NETIF_F_HW_VLAN_RX |
620                                    NETIF_F_HW_VLAN_FILTER;
621         }
622
623 #ifdef NETIF_F_TSO
624         if((adapter->hw.mac_type >= e1000_82544) &&
625            (adapter->hw.mac_type != e1000_82547))
626                 netdev->features |= NETIF_F_TSO;
627
628 #ifdef NETIF_F_TSO_IPV6
629         if(adapter->hw.mac_type > e1000_82547_rev_2)
630                 netdev->features |= NETIF_F_TSO_IPV6;
631 #endif
632 #endif
633         if(pci_using_dac)
634                 netdev->features |= NETIF_F_HIGHDMA;
635
636         /* hard_start_xmit is safe against parallel locking */
637         netdev->features |= NETIF_F_LLTX; 
638  
639         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
640
641         /* before reading the EEPROM, reset the controller to 
642          * put the device in a known good starting state */
643         
644         e1000_reset_hw(&adapter->hw);
645
646         /* make sure the EEPROM is good */
647
648         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
649                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
650                 err = -EIO;
651                 goto err_eeprom;
652         }
653
654         /* copy the MAC address out of the EEPROM */
655
656         if(e1000_read_mac_addr(&adapter->hw))
657                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
658         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
659         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
660
661         if(!is_valid_ether_addr(netdev->perm_addr)) {
662                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
663                 err = -EIO;
664                 goto err_eeprom;
665         }
666
667         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
668
669         e1000_get_bus_info(&adapter->hw);
670
671         init_timer(&adapter->tx_fifo_stall_timer);
672         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
673         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
674
675         init_timer(&adapter->watchdog_timer);
676         adapter->watchdog_timer.function = &e1000_watchdog;
677         adapter->watchdog_timer.data = (unsigned long) adapter;
678
679         INIT_WORK(&adapter->watchdog_task,
680                 (void (*)(void *))e1000_watchdog_task, adapter);
681
682         init_timer(&adapter->phy_info_timer);
683         adapter->phy_info_timer.function = &e1000_update_phy_info;
684         adapter->phy_info_timer.data = (unsigned long) adapter;
685
686         INIT_WORK(&adapter->tx_timeout_task,
687                 (void (*)(void *))e1000_tx_timeout_task, netdev);
688
689         /* we're going to reset, so assume we have no link for now */
690
691         netif_carrier_off(netdev);
692         netif_stop_queue(netdev);
693
694         e1000_check_options(adapter);
695
696         /* Initial Wake on LAN setting
697          * If APM wake is enabled in the EEPROM,
698          * enable the ACPI Magic Packet filter
699          */
700
701         switch(adapter->hw.mac_type) {
702         case e1000_82542_rev2_0:
703         case e1000_82542_rev2_1:
704         case e1000_82543:
705                 break;
706         case e1000_82544:
707                 e1000_read_eeprom(&adapter->hw,
708                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
709                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
710                 break;
711         case e1000_82546:
712         case e1000_82546_rev_3:
713                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
714                    && (adapter->hw.media_type == e1000_media_type_copper)) {
715                         e1000_read_eeprom(&adapter->hw,
716                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
717                         break;
718                 }
719                 /* Fall Through */
720         default:
721                 e1000_read_eeprom(&adapter->hw,
722                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
723                 break;
724         }
725         if(eeprom_data & eeprom_apme_mask)
726                 adapter->wol |= E1000_WUFC_MAG;
727
728         /* reset the hardware with the new settings */
729         e1000_reset(adapter);
730
731         /* Let firmware know the driver has taken over */
732         switch(adapter->hw.mac_type) {
733         case e1000_82571:
734         case e1000_82572:
735                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
736                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
737                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
738                 break;
739         case e1000_82573:
740                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
741                 E1000_WRITE_REG(&adapter->hw, SWSM,
742                                 swsm | E1000_SWSM_DRV_LOAD);
743                 break;
744         default:
745                 break;
746         }
747
748         strcpy(netdev->name, "eth%d");
749         if((err = register_netdev(netdev)))
750                 goto err_register;
751
752         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
753
754         cards_found++;
755         return 0;
756
757 err_register:
758 err_sw_init:
759 err_eeprom:
760         iounmap(adapter->hw.hw_addr);
761 err_ioremap:
762         free_netdev(netdev);
763 err_alloc_etherdev:
764         pci_release_regions(pdev);
765         return err;
766 }
767
768 /**
769  * e1000_remove - Device Removal Routine
770  * @pdev: PCI device information struct
771  *
772  * e1000_remove is called by the PCI subsystem to alert the driver
773  * that it should release a PCI device.  The could be caused by a
774  * Hot-Plug event, or because the driver is going to be removed from
775  * memory.
776  **/
777
778 static void __devexit
779 e1000_remove(struct pci_dev *pdev)
780 {
781         struct net_device *netdev = pci_get_drvdata(pdev);
782         struct e1000_adapter *adapter = netdev_priv(netdev);
783         uint32_t ctrl_ext;
784         uint32_t manc, swsm;
785 #ifdef CONFIG_E1000_NAPI
786         int i;
787 #endif
788
789         flush_scheduled_work();
790
791         if(adapter->hw.mac_type >= e1000_82540 &&
792            adapter->hw.media_type == e1000_media_type_copper) {
793                 manc = E1000_READ_REG(&adapter->hw, MANC);
794                 if(manc & E1000_MANC_SMBUS_EN) {
795                         manc |= E1000_MANC_ARP_EN;
796                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
797                 }
798         }
799
800         switch(adapter->hw.mac_type) {
801         case e1000_82571:
802         case e1000_82572:
803                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
804                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
805                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
806                 break;
807         case e1000_82573:
808                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
809                 E1000_WRITE_REG(&adapter->hw, SWSM,
810                                 swsm & ~E1000_SWSM_DRV_LOAD);
811                 break;
812
813         default:
814                 break;
815         }
816
817         unregister_netdev(netdev);
818 #ifdef CONFIG_E1000_NAPI
819         for (i = 0; i < adapter->num_queues; i++)
820                 __dev_put(&adapter->polling_netdev[i]);
821 #endif
822
823         if(!e1000_check_phy_reset_block(&adapter->hw))
824                 e1000_phy_hw_reset(&adapter->hw);
825
826         kfree(adapter->tx_ring);
827         kfree(adapter->rx_ring);
828 #ifdef CONFIG_E1000_NAPI
829         kfree(adapter->polling_netdev);
830 #endif
831
832         iounmap(adapter->hw.hw_addr);
833         pci_release_regions(pdev);
834
835 #ifdef CONFIG_E1000_MQ
836         free_percpu(adapter->cpu_netdev);
837         free_percpu(adapter->cpu_tx_ring);
838 #endif
839         free_netdev(netdev);
840
841         pci_disable_device(pdev);
842 }
843
844 /**
845  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
846  * @adapter: board private structure to initialize
847  *
848  * e1000_sw_init initializes the Adapter private data structure.
849  * Fields are initialized based on PCI device information and
850  * OS network device settings (MTU size).
851  **/
852
853 static int __devinit
854 e1000_sw_init(struct e1000_adapter *adapter)
855 {
856         struct e1000_hw *hw = &adapter->hw;
857         struct net_device *netdev = adapter->netdev;
858         struct pci_dev *pdev = adapter->pdev;
859 #ifdef CONFIG_E1000_NAPI
860         int i;
861 #endif
862
863         /* PCI config space info */
864
865         hw->vendor_id = pdev->vendor;
866         hw->device_id = pdev->device;
867         hw->subsystem_vendor_id = pdev->subsystem_vendor;
868         hw->subsystem_id = pdev->subsystem_device;
869
870         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
871
872         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
873
874         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
875         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
876         hw->max_frame_size = netdev->mtu +
877                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
878         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
879
880         /* identify the MAC */
881
882         if(e1000_set_mac_type(hw)) {
883                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
884                 return -EIO;
885         }
886
887         /* initialize eeprom parameters */
888
889         if(e1000_init_eeprom_params(hw)) {
890                 E1000_ERR("EEPROM initialization failed\n");
891                 return -EIO;
892         }
893
894         switch(hw->mac_type) {
895         default:
896                 break;
897         case e1000_82541:
898         case e1000_82547:
899         case e1000_82541_rev_2:
900         case e1000_82547_rev_2:
901                 hw->phy_init_script = 1;
902                 break;
903         }
904
905         e1000_set_media_type(hw);
906
907         hw->wait_autoneg_complete = FALSE;
908         hw->tbi_compatibility_en = TRUE;
909         hw->adaptive_ifs = TRUE;
910
911         /* Copper options */
912
913         if(hw->media_type == e1000_media_type_copper) {
914                 hw->mdix = AUTO_ALL_MODES;
915                 hw->disable_polarity_correction = FALSE;
916                 hw->master_slave = E1000_MASTER_SLAVE;
917         }
918
919 #ifdef CONFIG_E1000_MQ
920         /* Number of supported queues */
921         switch (hw->mac_type) {
922         case e1000_82571:
923         case e1000_82572:
924                 adapter->num_queues = 2;
925                 break;
926         default:
927                 adapter->num_queues = 1;
928                 break;
929         }
930         adapter->num_queues = min(adapter->num_queues, num_online_cpus());
931 #else
932         adapter->num_queues = 1;
933 #endif
934
935         if (e1000_alloc_queues(adapter)) {
936                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
937                 return -ENOMEM;
938         }
939
940 #ifdef CONFIG_E1000_NAPI
941         for (i = 0; i < adapter->num_queues; i++) {
942                 adapter->polling_netdev[i].priv = adapter;
943                 adapter->polling_netdev[i].poll = &e1000_clean;
944                 adapter->polling_netdev[i].weight = 64;
945                 dev_hold(&adapter->polling_netdev[i]);
946                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
947         }
948 #endif
949
950 #ifdef CONFIG_E1000_MQ
951         e1000_setup_queue_mapping(adapter);
952 #endif
953
954         atomic_set(&adapter->irq_sem, 1);
955         spin_lock_init(&adapter->stats_lock);
956
957         return 0;
958 }
959
960 /**
961  * e1000_alloc_queues - Allocate memory for all rings
962  * @adapter: board private structure to initialize
963  *
964  * We allocate one ring per queue at run-time since we don't know the
965  * number of queues at compile-time.  The polling_netdev array is
966  * intended for Multiqueue, but should work fine with a single queue.
967  **/
968
969 static int __devinit
970 e1000_alloc_queues(struct e1000_adapter *adapter)
971 {
972         int size;
973
974         size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
975         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
976         if (!adapter->tx_ring)
977                 return -ENOMEM;
978         memset(adapter->tx_ring, 0, size);
979
980         size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
981         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
982         if (!adapter->rx_ring) {
983                 kfree(adapter->tx_ring);
984                 return -ENOMEM;
985         }
986         memset(adapter->rx_ring, 0, size);
987
988 #ifdef CONFIG_E1000_NAPI
989         size = sizeof(struct net_device) * adapter->num_queues;
990         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
991         if (!adapter->polling_netdev) {
992                 kfree(adapter->tx_ring);
993                 kfree(adapter->rx_ring);
994                 return -ENOMEM;
995         }
996         memset(adapter->polling_netdev, 0, size);
997 #endif
998
999         return E1000_SUCCESS;
1000 }
1001
1002 #ifdef CONFIG_E1000_MQ
1003 static void __devinit
1004 e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1005 {
1006         int i, cpu;
1007
1008         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1009         adapter->rx_sched_call_data.info = adapter->netdev;
1010         cpus_clear(adapter->rx_sched_call_data.cpumask);
1011
1012         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1013         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1014
1015         lock_cpu_hotplug();
1016         i = 0;
1017         for_each_online_cpu(cpu) {
1018                 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_queues];
1019                 /* This is incomplete because we'd like to assign separate
1020                  * physical cpus to these netdev polling structures and
1021                  * avoid saturating a subset of cpus.
1022                  */
1023                 if (i < adapter->num_queues) {
1024                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1025                         adapter->cpu_for_queue[i] = cpu;
1026                 } else
1027                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1028
1029                 i++;
1030         }
1031         unlock_cpu_hotplug();
1032 }
1033 #endif
1034
1035 /**
1036  * e1000_open - Called when a network interface is made active
1037  * @netdev: network interface device structure
1038  *
1039  * Returns 0 on success, negative value on failure
1040  *
1041  * The open entry point is called when a network interface is made
1042  * active by the system (IFF_UP).  At this point all resources needed
1043  * for transmit and receive operations are allocated, the interrupt
1044  * handler is registered with the OS, the watchdog timer is started,
1045  * and the stack is notified that the interface is ready.
1046  **/
1047
1048 static int
1049 e1000_open(struct net_device *netdev)
1050 {
1051         struct e1000_adapter *adapter = netdev_priv(netdev);
1052         int err;
1053
1054         /* allocate transmit descriptors */
1055
1056         if ((err = e1000_setup_all_tx_resources(adapter)))
1057                 goto err_setup_tx;
1058
1059         /* allocate receive descriptors */
1060
1061         if ((err = e1000_setup_all_rx_resources(adapter)))
1062                 goto err_setup_rx;
1063
1064         if((err = e1000_up(adapter)))
1065                 goto err_up;
1066         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1067         if((adapter->hw.mng_cookie.status &
1068                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1069                 e1000_update_mng_vlan(adapter);
1070         }
1071
1072         return E1000_SUCCESS;
1073
1074 err_up:
1075         e1000_free_all_rx_resources(adapter);
1076 err_setup_rx:
1077         e1000_free_all_tx_resources(adapter);
1078 err_setup_tx:
1079         e1000_reset(adapter);
1080
1081         return err;
1082 }
1083
1084 /**
1085  * e1000_close - Disables a network interface
1086  * @netdev: network interface device structure
1087  *
1088  * Returns 0, this is not allowed to fail
1089  *
1090  * The close entry point is called when an interface is de-activated
1091  * by the OS.  The hardware is still under the drivers control, but
1092  * needs to be disabled.  A global MAC reset is issued to stop the
1093  * hardware, and all transmit and receive resources are freed.
1094  **/
1095
1096 static int
1097 e1000_close(struct net_device *netdev)
1098 {
1099         struct e1000_adapter *adapter = netdev_priv(netdev);
1100
1101         e1000_down(adapter);
1102
1103         e1000_free_all_tx_resources(adapter);
1104         e1000_free_all_rx_resources(adapter);
1105
1106         if((adapter->hw.mng_cookie.status &
1107                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1108                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1109         }
1110         return 0;
1111 }
1112
1113 /**
1114  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1115  * @adapter: address of board private structure
1116  * @start: address of beginning of memory
1117  * @len: length of memory
1118  **/
1119 static inline boolean_t
1120 e1000_check_64k_bound(struct e1000_adapter *adapter,
1121                       void *start, unsigned long len)
1122 {
1123         unsigned long begin = (unsigned long) start;
1124         unsigned long end = begin + len;
1125
1126         /* First rev 82545 and 82546 need to not allow any memory
1127          * write location to cross 64k boundary due to errata 23 */
1128         if (adapter->hw.mac_type == e1000_82545 ||
1129             adapter->hw.mac_type == e1000_82546) {
1130                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1131         }
1132
1133         return TRUE;
1134 }
1135
1136 /**
1137  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1138  * @adapter: board private structure
1139  * @txdr:    tx descriptor ring (for a specific queue) to setup
1140  *
1141  * Return 0 on success, negative on failure
1142  **/
1143
1144 int
1145 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1146                          struct e1000_tx_ring *txdr)
1147 {
1148         struct pci_dev *pdev = adapter->pdev;
1149         int size;
1150
1151         size = sizeof(struct e1000_buffer) * txdr->count;
1152
1153         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1154         if(!txdr->buffer_info) {
1155                 DPRINTK(PROBE, ERR,
1156                 "Unable to allocate memory for the transmit descriptor ring\n");
1157                 return -ENOMEM;
1158         }
1159         memset(txdr->buffer_info, 0, size);
1160         memset(&txdr->previous_buffer_info, 0, sizeof(struct e1000_buffer));
1161
1162         /* round up to nearest 4K */
1163
1164         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1165         E1000_ROUNDUP(txdr->size, 4096);
1166
1167         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1168         if(!txdr->desc) {
1169 setup_tx_desc_die:
1170                 vfree(txdr->buffer_info);
1171                 DPRINTK(PROBE, ERR,
1172                 "Unable to allocate memory for the transmit descriptor ring\n");
1173                 return -ENOMEM;
1174         }
1175
1176         /* Fix for errata 23, can't cross 64kB boundary */
1177         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1178                 void *olddesc = txdr->desc;
1179                 dma_addr_t olddma = txdr->dma;
1180                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1181                                      "at %p\n", txdr->size, txdr->desc);
1182                 /* Try again, without freeing the previous */
1183                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1184                 if(!txdr->desc) {
1185                 /* Failed allocation, critical failure */
1186                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1187                         goto setup_tx_desc_die;
1188                 }
1189
1190                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1191                         /* give up */
1192                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1193                                             txdr->dma);
1194                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1195                         DPRINTK(PROBE, ERR,
1196                                 "Unable to allocate aligned memory "
1197                                 "for the transmit descriptor ring\n");
1198                         vfree(txdr->buffer_info);
1199                         return -ENOMEM;
1200                 } else {
1201                         /* Free old allocation, new allocation was successful */
1202                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1203                 }
1204         }
1205         memset(txdr->desc, 0, txdr->size);
1206
1207         txdr->next_to_use = 0;
1208         txdr->next_to_clean = 0;
1209         spin_lock_init(&txdr->tx_lock);
1210
1211         return 0;
1212 }
1213
1214 /**
1215  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1216  *                                (Descriptors) for all queues
1217  * @adapter: board private structure
1218  *
1219  * If this function returns with an error, then it's possible one or
1220  * more of the rings is populated (while the rest are not).  It is the
1221  * callers duty to clean those orphaned rings.
1222  *
1223  * Return 0 on success, negative on failure
1224  **/
1225
1226 int
1227 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1228 {
1229         int i, err = 0;
1230
1231         for (i = 0; i < adapter->num_queues; i++) {
1232                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1233                 if (err) {
1234                         DPRINTK(PROBE, ERR,
1235                                 "Allocation for Tx Queue %u failed\n", i);
1236                         break;
1237                 }
1238         }
1239
1240         return err;
1241 }
1242
1243 /**
1244  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1245  * @adapter: board private structure
1246  *
1247  * Configure the Tx unit of the MAC after a reset.
1248  **/
1249
1250 static void
1251 e1000_configure_tx(struct e1000_adapter *adapter)
1252 {
1253         uint64_t tdba;
1254         struct e1000_hw *hw = &adapter->hw;
1255         uint32_t tdlen, tctl, tipg, tarc;
1256
1257         /* Setup the HW Tx Head and Tail descriptor pointers */
1258
1259         switch (adapter->num_queues) {
1260         case 2:
1261                 tdba = adapter->tx_ring[1].dma;
1262                 tdlen = adapter->tx_ring[1].count *
1263                         sizeof(struct e1000_tx_desc);
1264                 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1265                 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1266                 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1267                 E1000_WRITE_REG(hw, TDH1, 0);
1268                 E1000_WRITE_REG(hw, TDT1, 0);
1269                 adapter->tx_ring[1].tdh = E1000_TDH1;
1270                 adapter->tx_ring[1].tdt = E1000_TDT1;
1271                 /* Fall Through */
1272         case 1:
1273         default:
1274                 tdba = adapter->tx_ring[0].dma;
1275                 tdlen = adapter->tx_ring[0].count *
1276                         sizeof(struct e1000_tx_desc);
1277                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1278                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1279                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1280                 E1000_WRITE_REG(hw, TDH, 0);
1281                 E1000_WRITE_REG(hw, TDT, 0);
1282                 adapter->tx_ring[0].tdh = E1000_TDH;
1283                 adapter->tx_ring[0].tdt = E1000_TDT;
1284                 break;
1285         }
1286
1287         /* Set the default values for the Tx Inter Packet Gap timer */
1288
1289         switch (hw->mac_type) {
1290         case e1000_82542_rev2_0:
1291         case e1000_82542_rev2_1:
1292                 tipg = DEFAULT_82542_TIPG_IPGT;
1293                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1294                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1295                 break;
1296         default:
1297                 if (hw->media_type == e1000_media_type_fiber ||
1298                     hw->media_type == e1000_media_type_internal_serdes)
1299                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1300                 else
1301                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1302                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1303                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1304         }
1305         E1000_WRITE_REG(hw, TIPG, tipg);
1306
1307         /* Set the Tx Interrupt Delay register */
1308
1309         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1310         if (hw->mac_type >= e1000_82540)
1311                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1312
1313         /* Program the Transmit Control Register */
1314
1315         tctl = E1000_READ_REG(hw, TCTL);
1316
1317         tctl &= ~E1000_TCTL_CT;
1318         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1319                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1320
1321         E1000_WRITE_REG(hw, TCTL, tctl);
1322
1323         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1324                 tarc = E1000_READ_REG(hw, TARC0);
1325                 tarc |= ((1 << 25) | (1 << 21));
1326                 E1000_WRITE_REG(hw, TARC0, tarc);
1327                 tarc = E1000_READ_REG(hw, TARC1);
1328                 tarc |= (1 << 25);
1329                 if (tctl & E1000_TCTL_MULR)
1330                         tarc &= ~(1 << 28);
1331                 else
1332                         tarc |= (1 << 28);
1333                 E1000_WRITE_REG(hw, TARC1, tarc);
1334         }
1335
1336         e1000_config_collision_dist(hw);
1337
1338         /* Setup Transmit Descriptor Settings for eop descriptor */
1339         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1340                 E1000_TXD_CMD_IFCS;
1341
1342         if (hw->mac_type < e1000_82543)
1343                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1344         else
1345                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1346
1347         /* Cache if we're 82544 running in PCI-X because we'll
1348          * need this to apply a workaround later in the send path. */
1349         if (hw->mac_type == e1000_82544 &&
1350             hw->bus_type == e1000_bus_type_pcix)
1351                 adapter->pcix_82544 = 1;
1352 }
1353
1354 /**
1355  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1356  * @adapter: board private structure
1357  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1358  *
1359  * Returns 0 on success, negative on failure
1360  **/
1361
1362 int
1363 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1364                          struct e1000_rx_ring *rxdr)
1365 {
1366         struct pci_dev *pdev = adapter->pdev;
1367         int size, desc_len;
1368
1369         size = sizeof(struct e1000_buffer) * rxdr->count;
1370         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1371         if (!rxdr->buffer_info) {
1372                 DPRINTK(PROBE, ERR,
1373                 "Unable to allocate memory for the receive descriptor ring\n");
1374                 return -ENOMEM;
1375         }
1376         memset(rxdr->buffer_info, 0, size);
1377
1378         size = sizeof(struct e1000_ps_page) * rxdr->count;
1379         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1380         if(!rxdr->ps_page) {
1381                 vfree(rxdr->buffer_info);
1382                 DPRINTK(PROBE, ERR,
1383                 "Unable to allocate memory for the receive descriptor ring\n");
1384                 return -ENOMEM;
1385         }
1386         memset(rxdr->ps_page, 0, size);
1387
1388         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1389         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1390         if(!rxdr->ps_page_dma) {
1391                 vfree(rxdr->buffer_info);
1392                 kfree(rxdr->ps_page);
1393                 DPRINTK(PROBE, ERR,
1394                 "Unable to allocate memory for the receive descriptor ring\n");
1395                 return -ENOMEM;
1396         }
1397         memset(rxdr->ps_page_dma, 0, size);
1398
1399         if(adapter->hw.mac_type <= e1000_82547_rev_2)
1400                 desc_len = sizeof(struct e1000_rx_desc);
1401         else
1402                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1403
1404         /* Round up to nearest 4K */
1405
1406         rxdr->size = rxdr->count * desc_len;
1407         E1000_ROUNDUP(rxdr->size, 4096);
1408
1409         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1410
1411         if (!rxdr->desc) {
1412                 DPRINTK(PROBE, ERR,
1413                 "Unable to allocate memory for the receive descriptor ring\n");
1414 setup_rx_desc_die:
1415                 vfree(rxdr->buffer_info);
1416                 kfree(rxdr->ps_page);
1417                 kfree(rxdr->ps_page_dma);
1418                 return -ENOMEM;
1419         }
1420
1421         /* Fix for errata 23, can't cross 64kB boundary */
1422         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1423                 void *olddesc = rxdr->desc;
1424                 dma_addr_t olddma = rxdr->dma;
1425                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1426                                      "at %p\n", rxdr->size, rxdr->desc);
1427                 /* Try again, without freeing the previous */
1428                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1429                 /* Failed allocation, critical failure */
1430                 if (!rxdr->desc) {
1431                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1432                         DPRINTK(PROBE, ERR,
1433                                 "Unable to allocate memory "
1434                                 "for the receive descriptor ring\n");
1435                         goto setup_rx_desc_die;
1436                 }
1437
1438                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1439                         /* give up */
1440                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1441                                             rxdr->dma);
1442                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1443                         DPRINTK(PROBE, ERR,
1444                                 "Unable to allocate aligned memory "
1445                                 "for the receive descriptor ring\n");
1446                         goto setup_rx_desc_die;
1447                 } else {
1448                         /* Free old allocation, new allocation was successful */
1449                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1450                 }
1451         }
1452         memset(rxdr->desc, 0, rxdr->size);
1453
1454         rxdr->next_to_clean = 0;
1455         rxdr->next_to_use = 0;
1456
1457         return 0;
1458 }
1459
1460 /**
1461  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1462  *                                (Descriptors) for all queues
1463  * @adapter: board private structure
1464  *
1465  * If this function returns with an error, then it's possible one or
1466  * more of the rings is populated (while the rest are not).  It is the
1467  * callers duty to clean those orphaned rings.
1468  *
1469  * Return 0 on success, negative on failure
1470  **/
1471
1472 int
1473 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1474 {
1475         int i, err = 0;
1476
1477         for (i = 0; i < adapter->num_queues; i++) {
1478                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1479                 if (err) {
1480                         DPRINTK(PROBE, ERR,
1481                                 "Allocation for Rx Queue %u failed\n", i);
1482                         break;
1483                 }
1484         }
1485
1486         return err;
1487 }
1488
1489 /**
1490  * e1000_setup_rctl - configure the receive control registers
1491  * @adapter: Board private structure
1492  **/
1493 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1494                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1495 static void
1496 e1000_setup_rctl(struct e1000_adapter *adapter)
1497 {
1498         uint32_t rctl, rfctl;
1499         uint32_t psrctl = 0;
1500 #ifdef CONFIG_E1000_PACKET_SPLIT
1501         uint32_t pages = 0;
1502 #endif
1503
1504         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1505
1506         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1507
1508         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1509                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1510                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1511
1512         if(adapter->hw.tbi_compatibility_on == 1)
1513                 rctl |= E1000_RCTL_SBP;
1514         else
1515                 rctl &= ~E1000_RCTL_SBP;
1516
1517         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1518                 rctl &= ~E1000_RCTL_LPE;
1519         else
1520                 rctl |= E1000_RCTL_LPE;
1521
1522         /* Setup buffer sizes */
1523         if(adapter->hw.mac_type >= e1000_82571) {
1524                 /* We can now specify buffers in 1K increments.
1525                  * BSIZE and BSEX are ignored in this case. */
1526                 rctl |= adapter->rx_buffer_len << 0x11;
1527         } else {
1528                 rctl &= ~E1000_RCTL_SZ_4096;
1529                 rctl |= E1000_RCTL_BSEX; 
1530                 switch (adapter->rx_buffer_len) {
1531                 case E1000_RXBUFFER_2048:
1532                 default:
1533                         rctl |= E1000_RCTL_SZ_2048;
1534                         rctl &= ~E1000_RCTL_BSEX;
1535                         break;
1536                 case E1000_RXBUFFER_4096:
1537                         rctl |= E1000_RCTL_SZ_4096;
1538                         break;
1539                 case E1000_RXBUFFER_8192:
1540                         rctl |= E1000_RCTL_SZ_8192;
1541                         break;
1542                 case E1000_RXBUFFER_16384:
1543                         rctl |= E1000_RCTL_SZ_16384;
1544                         break;
1545                 }
1546         }
1547
1548 #ifdef CONFIG_E1000_PACKET_SPLIT
1549         /* 82571 and greater support packet-split where the protocol
1550          * header is placed in skb->data and the packet data is
1551          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1552          * In the case of a non-split, skb->data is linearly filled,
1553          * followed by the page buffers.  Therefore, skb->data is
1554          * sized to hold the largest protocol header.
1555          */
1556         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1557         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1558             PAGE_SIZE <= 16384)
1559                 adapter->rx_ps_pages = pages;
1560         else
1561                 adapter->rx_ps_pages = 0;
1562 #endif
1563         if (adapter->rx_ps_pages) {
1564                 /* Configure extra packet-split registers */
1565                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1566                 rfctl |= E1000_RFCTL_EXTEN;
1567                 /* disable IPv6 packet split support */
1568                 rfctl |= E1000_RFCTL_IPV6_DIS;
1569                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1570
1571                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1572                 
1573                 psrctl |= adapter->rx_ps_bsize0 >>
1574                         E1000_PSRCTL_BSIZE0_SHIFT;
1575
1576                 switch (adapter->rx_ps_pages) {
1577                 case 3:
1578                         psrctl |= PAGE_SIZE <<
1579                                 E1000_PSRCTL_BSIZE3_SHIFT;
1580                 case 2:
1581                         psrctl |= PAGE_SIZE <<
1582                                 E1000_PSRCTL_BSIZE2_SHIFT;
1583                 case 1:
1584                         psrctl |= PAGE_SIZE >>
1585                                 E1000_PSRCTL_BSIZE1_SHIFT;
1586                         break;
1587                 }
1588
1589                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1590         }
1591
1592         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1593 }
1594
1595 /**
1596  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1597  * @adapter: board private structure
1598  *
1599  * Configure the Rx unit of the MAC after a reset.
1600  **/
1601
1602 static void
1603 e1000_configure_rx(struct e1000_adapter *adapter)
1604 {
1605         uint64_t rdba;
1606         struct e1000_hw *hw = &adapter->hw;
1607         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1608 #ifdef CONFIG_E1000_MQ
1609         uint32_t reta, mrqc;
1610         int i;
1611 #endif
1612
1613         if (adapter->rx_ps_pages) {
1614                 rdlen = adapter->rx_ring[0].count *
1615                         sizeof(union e1000_rx_desc_packet_split);
1616                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1617                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1618         } else {
1619                 rdlen = adapter->rx_ring[0].count *
1620                         sizeof(struct e1000_rx_desc);
1621                 adapter->clean_rx = e1000_clean_rx_irq;
1622                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1623         }
1624
1625         /* disable receives while setting up the descriptors */
1626         rctl = E1000_READ_REG(hw, RCTL);
1627         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1628
1629         /* set the Receive Delay Timer Register */
1630         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1631
1632         if (hw->mac_type >= e1000_82540) {
1633                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1634                 if(adapter->itr > 1)
1635                         E1000_WRITE_REG(hw, ITR,
1636                                 1000000000 / (adapter->itr * 256));
1637         }
1638
1639         if (hw->mac_type >= e1000_82571) {
1640                 /* Reset delay timers after every interrupt */
1641                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1642                 ctrl_ext |= E1000_CTRL_EXT_CANC;
1643                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1644                 E1000_WRITE_FLUSH(hw);
1645         }
1646
1647         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1648          * the Base and Length of the Rx Descriptor Ring */
1649         switch (adapter->num_queues) {
1650 #ifdef CONFIG_E1000_MQ
1651         case 2:
1652                 rdba = adapter->rx_ring[1].dma;
1653                 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1654                 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1655                 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1656                 E1000_WRITE_REG(hw, RDH1, 0);
1657                 E1000_WRITE_REG(hw, RDT1, 0);
1658                 adapter->rx_ring[1].rdh = E1000_RDH1;
1659                 adapter->rx_ring[1].rdt = E1000_RDT1;
1660                 /* Fall Through */
1661 #endif
1662         case 1:
1663         default:
1664                 rdba = adapter->rx_ring[0].dma;
1665                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1666                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1667                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1668                 E1000_WRITE_REG(hw, RDH, 0);
1669                 E1000_WRITE_REG(hw, RDT, 0);
1670                 adapter->rx_ring[0].rdh = E1000_RDH;
1671                 adapter->rx_ring[0].rdt = E1000_RDT;
1672                 break;
1673         }
1674
1675 #ifdef CONFIG_E1000_MQ
1676         if (adapter->num_queues > 1) {
1677                 uint32_t random[10];
1678
1679                 get_random_bytes(&random[0], 40);
1680
1681                 if (hw->mac_type <= e1000_82572) {
1682                         E1000_WRITE_REG(hw, RSSIR, 0);
1683                         E1000_WRITE_REG(hw, RSSIM, 0);
1684                 }
1685
1686                 switch (adapter->num_queues) {
1687                 case 2:
1688                 default:
1689                         reta = 0x00800080;
1690                         mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1691                         break;
1692                 }
1693
1694                 /* Fill out redirection table */
1695                 for (i = 0; i < 32; i++)
1696                         E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1697                 /* Fill out hash function seeds */
1698                 for (i = 0; i < 10; i++)
1699                         E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1700
1701                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1702                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1703                 E1000_WRITE_REG(hw, MRQC, mrqc);
1704         }
1705
1706         /* Multiqueue and packet checksumming are mutually exclusive. */
1707         if (hw->mac_type >= e1000_82571) {
1708                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1709                 rxcsum |= E1000_RXCSUM_PCSD;
1710                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1711         }
1712
1713 #else
1714
1715         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1716         if (hw->mac_type >= e1000_82543) {
1717                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1718                 if(adapter->rx_csum == TRUE) {
1719                         rxcsum |= E1000_RXCSUM_TUOFL;
1720
1721                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1722                          * Must be used in conjunction with packet-split. */
1723                         if ((hw->mac_type >= e1000_82571) && 
1724                            (adapter->rx_ps_pages)) {
1725                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1726                         }
1727                 } else {
1728                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1729                         /* don't need to clear IPPCSE as it defaults to 0 */
1730                 }
1731                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1732         }
1733 #endif /* CONFIG_E1000_MQ */
1734
1735         if (hw->mac_type == e1000_82573)
1736                 E1000_WRITE_REG(hw, ERT, 0x0100);
1737
1738         /* Enable Receives */
1739         E1000_WRITE_REG(hw, RCTL, rctl);
1740 }
1741
1742 /**
1743  * e1000_free_tx_resources - Free Tx Resources per Queue
1744  * @adapter: board private structure
1745  * @tx_ring: Tx descriptor ring for a specific queue
1746  *
1747  * Free all transmit software resources
1748  **/
1749
1750 void
1751 e1000_free_tx_resources(struct e1000_adapter *adapter,
1752                         struct e1000_tx_ring *tx_ring)
1753 {
1754         struct pci_dev *pdev = adapter->pdev;
1755
1756         e1000_clean_tx_ring(adapter, tx_ring);
1757
1758         vfree(tx_ring->buffer_info);
1759         tx_ring->buffer_info = NULL;
1760
1761         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1762
1763         tx_ring->desc = NULL;
1764 }
1765
1766 /**
1767  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1768  * @adapter: board private structure
1769  *
1770  * Free all transmit software resources
1771  **/
1772
1773 void
1774 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1775 {
1776         int i;
1777
1778         for (i = 0; i < adapter->num_queues; i++)
1779                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1780 }
1781
1782 static inline void
1783 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1784                         struct e1000_buffer *buffer_info)
1785 {
1786         if(buffer_info->dma) {
1787                 pci_unmap_page(adapter->pdev,
1788                                 buffer_info->dma,
1789                                 buffer_info->length,
1790                                 PCI_DMA_TODEVICE);
1791                 buffer_info->dma = 0;
1792         }
1793         if(buffer_info->skb) {
1794                 dev_kfree_skb_any(buffer_info->skb);
1795                 buffer_info->skb = NULL;
1796         }
1797 }
1798
1799 /**
1800  * e1000_clean_tx_ring - Free Tx Buffers
1801  * @adapter: board private structure
1802  * @tx_ring: ring to be cleaned
1803  **/
1804
1805 static void
1806 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1807                     struct e1000_tx_ring *tx_ring)
1808 {
1809         struct e1000_buffer *buffer_info;
1810         unsigned long size;
1811         unsigned int i;
1812
1813         /* Free all the Tx ring sk_buffs */
1814
1815         if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
1816                 e1000_unmap_and_free_tx_resource(adapter,
1817                                 &tx_ring->previous_buffer_info);
1818         }
1819
1820         for(i = 0; i < tx_ring->count; i++) {
1821                 buffer_info = &tx_ring->buffer_info[i];
1822                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1823         }
1824
1825         size = sizeof(struct e1000_buffer) * tx_ring->count;
1826         memset(tx_ring->buffer_info, 0, size);
1827
1828         /* Zero out the descriptor ring */
1829
1830         memset(tx_ring->desc, 0, tx_ring->size);
1831
1832         tx_ring->next_to_use = 0;
1833         tx_ring->next_to_clean = 0;
1834
1835         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1836         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1837 }
1838
1839 /**
1840  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1841  * @adapter: board private structure
1842  **/
1843
1844 static void
1845 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1846 {
1847         int i;
1848
1849         for (i = 0; i < adapter->num_queues; i++)
1850                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1851 }
1852
1853 /**
1854  * e1000_free_rx_resources - Free Rx Resources
1855  * @adapter: board private structure
1856  * @rx_ring: ring to clean the resources from
1857  *
1858  * Free all receive software resources
1859  **/
1860
1861 void
1862 e1000_free_rx_resources(struct e1000_adapter *adapter,
1863                         struct e1000_rx_ring *rx_ring)
1864 {
1865         struct pci_dev *pdev = adapter->pdev;
1866
1867         e1000_clean_rx_ring(adapter, rx_ring);
1868
1869         vfree(rx_ring->buffer_info);
1870         rx_ring->buffer_info = NULL;
1871         kfree(rx_ring->ps_page);
1872         rx_ring->ps_page = NULL;
1873         kfree(rx_ring->ps_page_dma);
1874         rx_ring->ps_page_dma = NULL;
1875
1876         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1877
1878         rx_ring->desc = NULL;
1879 }
1880
1881 /**
1882  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1883  * @adapter: board private structure
1884  *
1885  * Free all receive software resources
1886  **/
1887
1888 void
1889 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1890 {
1891         int i;
1892
1893         for (i = 0; i < adapter->num_queues; i++)
1894                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1895 }
1896
1897 /**
1898  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1899  * @adapter: board private structure
1900  * @rx_ring: ring to free buffers from
1901  **/
1902
1903 static void
1904 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1905                     struct e1000_rx_ring *rx_ring)
1906 {
1907         struct e1000_buffer *buffer_info;
1908         struct e1000_ps_page *ps_page;
1909         struct e1000_ps_page_dma *ps_page_dma;
1910         struct pci_dev *pdev = adapter->pdev;
1911         unsigned long size;
1912         unsigned int i, j;
1913
1914         /* Free all the Rx ring sk_buffs */
1915
1916         for(i = 0; i < rx_ring->count; i++) {
1917                 buffer_info = &rx_ring->buffer_info[i];
1918                 if(buffer_info->skb) {
1919                         ps_page = &rx_ring->ps_page[i];
1920                         ps_page_dma = &rx_ring->ps_page_dma[i];
1921                         pci_unmap_single(pdev,
1922                                          buffer_info->dma,
1923                                          buffer_info->length,
1924                                          PCI_DMA_FROMDEVICE);
1925
1926                         dev_kfree_skb(buffer_info->skb);
1927                         buffer_info->skb = NULL;
1928
1929                         for(j = 0; j < adapter->rx_ps_pages; j++) {
1930                                 if(!ps_page->ps_page[j]) break;
1931                                 pci_unmap_single(pdev,
1932                                                  ps_page_dma->ps_page_dma[j],
1933                                                  PAGE_SIZE, PCI_DMA_FROMDEVICE);
1934                                 ps_page_dma->ps_page_dma[j] = 0;
1935                                 put_page(ps_page->ps_page[j]);
1936                                 ps_page->ps_page[j] = NULL;
1937                         }
1938                 }
1939         }
1940
1941         size = sizeof(struct e1000_buffer) * rx_ring->count;
1942         memset(rx_ring->buffer_info, 0, size);
1943         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1944         memset(rx_ring->ps_page, 0, size);
1945         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1946         memset(rx_ring->ps_page_dma, 0, size);
1947
1948         /* Zero out the descriptor ring */
1949
1950         memset(rx_ring->desc, 0, rx_ring->size);
1951
1952         rx_ring->next_to_clean = 0;
1953         rx_ring->next_to_use = 0;
1954
1955         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1956         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1957 }
1958
1959 /**
1960  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1961  * @adapter: board private structure
1962  **/
1963
1964 static void
1965 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1966 {
1967         int i;
1968
1969         for (i = 0; i < adapter->num_queues; i++)
1970                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1971 }
1972
1973 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1974  * and memory write and invalidate disabled for certain operations
1975  */
1976 static void
1977 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1978 {
1979         struct net_device *netdev = adapter->netdev;
1980         uint32_t rctl;
1981
1982         e1000_pci_clear_mwi(&adapter->hw);
1983
1984         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1985         rctl |= E1000_RCTL_RST;
1986         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1987         E1000_WRITE_FLUSH(&adapter->hw);
1988         mdelay(5);
1989
1990         if(netif_running(netdev))
1991                 e1000_clean_all_rx_rings(adapter);
1992 }
1993
1994 static void
1995 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1996 {
1997         struct net_device *netdev = adapter->netdev;
1998         uint32_t rctl;
1999
2000         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2001         rctl &= ~E1000_RCTL_RST;
2002         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2003         E1000_WRITE_FLUSH(&adapter->hw);
2004         mdelay(5);
2005
2006         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2007                 e1000_pci_set_mwi(&adapter->hw);
2008
2009         if(netif_running(netdev)) {
2010                 e1000_configure_rx(adapter);
2011                 e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
2012         }
2013 }
2014
2015 /**
2016  * e1000_set_mac - Change the Ethernet Address of the NIC
2017  * @netdev: network interface device structure
2018  * @p: pointer to an address structure
2019  *
2020  * Returns 0 on success, negative on failure
2021  **/
2022
2023 static int
2024 e1000_set_mac(struct net_device *netdev, void *p)
2025 {
2026         struct e1000_adapter *adapter = netdev_priv(netdev);
2027         struct sockaddr *addr = p;
2028
2029         if(!is_valid_ether_addr(addr->sa_data))
2030                 return -EADDRNOTAVAIL;
2031
2032         /* 82542 2.0 needs to be in reset to write receive address registers */
2033
2034         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2035                 e1000_enter_82542_rst(adapter);
2036
2037         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2038         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2039
2040         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2041
2042         /* With 82571 controllers, LAA may be overwritten (with the default)
2043          * due to controller reset from the other port. */
2044         if (adapter->hw.mac_type == e1000_82571) {
2045                 /* activate the work around */
2046                 adapter->hw.laa_is_present = 1;
2047
2048                 /* Hold a copy of the LAA in RAR[14] This is done so that 
2049                  * between the time RAR[0] gets clobbered  and the time it 
2050                  * gets fixed (in e1000_watchdog), the actual LAA is in one 
2051                  * of the RARs and no incoming packets directed to this port
2052                  * are dropped. Eventaully the LAA will be in RAR[0] and 
2053                  * RAR[14] */
2054                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 
2055                                         E1000_RAR_ENTRIES - 1);
2056         }
2057
2058         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2059                 e1000_leave_82542_rst(adapter);
2060
2061         return 0;
2062 }
2063
2064 /**
2065  * e1000_set_multi - Multicast and Promiscuous mode set
2066  * @netdev: network interface device structure
2067  *
2068  * The set_multi entry point is called whenever the multicast address
2069  * list or the network interface flags are updated.  This routine is
2070  * responsible for configuring the hardware for proper multicast,
2071  * promiscuous mode, and all-multi behavior.
2072  **/
2073
2074 static void
2075 e1000_set_multi(struct net_device *netdev)
2076 {
2077         struct e1000_adapter *adapter = netdev_priv(netdev);
2078         struct e1000_hw *hw = &adapter->hw;
2079         struct dev_mc_list *mc_ptr;
2080         uint32_t rctl;
2081         uint32_t hash_value;
2082         int i, rar_entries = E1000_RAR_ENTRIES;
2083
2084         /* reserve RAR[14] for LAA over-write work-around */
2085         if (adapter->hw.mac_type == e1000_82571)
2086                 rar_entries--;
2087
2088         /* Check for Promiscuous and All Multicast modes */
2089
2090         rctl = E1000_READ_REG(hw, RCTL);
2091
2092         if(netdev->flags & IFF_PROMISC) {
2093                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2094         } else if(netdev->flags & IFF_ALLMULTI) {
2095                 rctl |= E1000_RCTL_MPE;
2096                 rctl &= ~E1000_RCTL_UPE;
2097         } else {
2098                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2099         }
2100
2101         E1000_WRITE_REG(hw, RCTL, rctl);
2102
2103         /* 82542 2.0 needs to be in reset to write receive address registers */
2104
2105         if(hw->mac_type == e1000_82542_rev2_0)
2106                 e1000_enter_82542_rst(adapter);
2107
2108         /* load the first 14 multicast address into the exact filters 1-14
2109          * RAR 0 is used for the station MAC adddress
2110          * if there are not 14 addresses, go ahead and clear the filters
2111          * -- with 82571 controllers only 0-13 entries are filled here
2112          */
2113         mc_ptr = netdev->mc_list;
2114
2115         for(i = 1; i < rar_entries; i++) {
2116                 if (mc_ptr) {
2117                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2118                         mc_ptr = mc_ptr->next;
2119                 } else {
2120                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2121                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2122                 }
2123         }
2124
2125         /* clear the old settings from the multicast hash table */
2126
2127         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2128                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2129
2130         /* load any remaining addresses into the hash table */
2131
2132         for(; mc_ptr; mc_ptr = mc_ptr->next) {
2133                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2134                 e1000_mta_set(hw, hash_value);
2135         }
2136
2137         if(hw->mac_type == e1000_82542_rev2_0)
2138                 e1000_leave_82542_rst(adapter);
2139 }
2140
2141 /* Need to wait a few seconds after link up to get diagnostic information from
2142  * the phy */
2143
2144 static void
2145 e1000_update_phy_info(unsigned long data)
2146 {
2147         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2148         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2149 }
2150
2151 /**
2152  * e1000_82547_tx_fifo_stall - Timer Call-back
2153  * @data: pointer to adapter cast into an unsigned long
2154  **/
2155
2156 static void
2157 e1000_82547_tx_fifo_stall(unsigned long data)
2158 {
2159         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2160         struct net_device *netdev = adapter->netdev;
2161         uint32_t tctl;
2162
2163         if(atomic_read(&adapter->tx_fifo_stall)) {
2164                 if((E1000_READ_REG(&adapter->hw, TDT) ==
2165                     E1000_READ_REG(&adapter->hw, TDH)) &&
2166                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2167                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2168                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2169                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2170                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2171                         E1000_WRITE_REG(&adapter->hw, TCTL,
2172                                         tctl & ~E1000_TCTL_EN);
2173                         E1000_WRITE_REG(&adapter->hw, TDFT,
2174                                         adapter->tx_head_addr);
2175                         E1000_WRITE_REG(&adapter->hw, TDFH,
2176                                         adapter->tx_head_addr);
2177                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2178                                         adapter->tx_head_addr);
2179                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2180                                         adapter->tx_head_addr);
2181                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2182                         E1000_WRITE_FLUSH(&adapter->hw);
2183
2184                         adapter->tx_fifo_head = 0;
2185                         atomic_set(&adapter->tx_fifo_stall, 0);
2186                         netif_wake_queue(netdev);
2187                 } else {
2188                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2189                 }
2190         }
2191 }
2192
2193 /**
2194  * e1000_watchdog - Timer Call-back
2195  * @data: pointer to adapter cast into an unsigned long
2196  **/
2197 static void
2198 e1000_watchdog(unsigned long data)
2199 {
2200         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2201
2202         /* Do the rest outside of interrupt context */
2203         schedule_work(&adapter->watchdog_task);
2204 }
2205
2206 static void
2207 e1000_watchdog_task(struct e1000_adapter *adapter)
2208 {
2209         struct net_device *netdev = adapter->netdev;
2210         struct e1000_tx_ring *txdr = &adapter->tx_ring[0];
2211         uint32_t link;
2212
2213         e1000_check_for_link(&adapter->hw);
2214         if (adapter->hw.mac_type == e1000_82573) {
2215                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2216                 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2217                         e1000_update_mng_vlan(adapter);
2218         }       
2219
2220         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2221            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2222                 link = !adapter->hw.serdes_link_down;
2223         else
2224                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2225
2226         if(link) {
2227                 if(!netif_carrier_ok(netdev)) {
2228                         e1000_get_speed_and_duplex(&adapter->hw,
2229                                                    &adapter->link_speed,
2230                                                    &adapter->link_duplex);
2231
2232                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2233                                adapter->link_speed,
2234                                adapter->link_duplex == FULL_DUPLEX ?
2235                                "Full Duplex" : "Half Duplex");
2236
2237                         netif_carrier_on(netdev);
2238                         netif_wake_queue(netdev);
2239                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2240                         adapter->smartspeed = 0;
2241                 }
2242         } else {
2243                 if(netif_carrier_ok(netdev)) {
2244                         adapter->link_speed = 0;
2245                         adapter->link_duplex = 0;
2246                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2247                         netif_carrier_off(netdev);
2248                         netif_stop_queue(netdev);
2249                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2250                 }
2251
2252                 e1000_smartspeed(adapter);
2253         }
2254
2255         e1000_update_stats(adapter);
2256
2257         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2258         adapter->tpt_old = adapter->stats.tpt;
2259         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2260         adapter->colc_old = adapter->stats.colc;
2261
2262         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2263         adapter->gorcl_old = adapter->stats.gorcl;
2264         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2265         adapter->gotcl_old = adapter->stats.gotcl;
2266
2267         e1000_update_adaptive(&adapter->hw);
2268
2269         if (adapter->num_queues == 1 && !netif_carrier_ok(netdev)) {
2270                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2271                         /* We've lost link, so the controller stops DMA,
2272                          * but we've got queued Tx work that's never going
2273                          * to get done, so reset controller to flush Tx.
2274                          * (Do the reset outside of interrupt context). */
2275                         schedule_work(&adapter->tx_timeout_task);
2276                 }
2277         }
2278
2279         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2280         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2281                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2282                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2283                  * else is between 2000-8000. */
2284                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2285                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
2286                         adapter->gotcl - adapter->gorcl :
2287                         adapter->gorcl - adapter->gotcl) / 10000;
2288                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2289                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2290         }
2291
2292         /* Cause software interrupt to ensure rx ring is cleaned */
2293         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2294
2295         /* Force detection of hung controller every watchdog period */
2296         adapter->detect_tx_hung = TRUE;
2297
2298         /* With 82571 controllers, LAA may be overwritten due to controller 
2299          * reset from the other port. Set the appropriate LAA in RAR[0] */
2300         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2301                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2302
2303         /* Reset the timer */
2304         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2305 }
2306
2307 #define E1000_TX_FLAGS_CSUM             0x00000001
2308 #define E1000_TX_FLAGS_VLAN             0x00000002
2309 #define E1000_TX_FLAGS_TSO              0x00000004
2310 #define E1000_TX_FLAGS_IPV4             0x00000008
2311 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2312 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2313
2314 static inline int
2315 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2316           struct sk_buff *skb)
2317 {
2318 #ifdef NETIF_F_TSO
2319         struct e1000_context_desc *context_desc;
2320         unsigned int i;
2321         uint32_t cmd_length = 0;
2322         uint16_t ipcse = 0, tucse, mss;
2323         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2324         int err;
2325
2326         if(skb_shinfo(skb)->tso_size) {
2327                 if (skb_header_cloned(skb)) {
2328                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2329                         if (err)
2330                                 return err;
2331                 }
2332
2333                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2334                 mss = skb_shinfo(skb)->tso_size;
2335                 if(skb->protocol == ntohs(ETH_P_IP)) {
2336                         skb->nh.iph->tot_len = 0;
2337                         skb->nh.iph->check = 0;
2338                         skb->h.th->check =
2339                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2340                                                    skb->nh.iph->daddr,
2341                                                    0,
2342                                                    IPPROTO_TCP,
2343                                                    0);
2344                         cmd_length = E1000_TXD_CMD_IP;
2345                         ipcse = skb->h.raw - skb->data - 1;
2346 #ifdef NETIF_F_TSO_IPV6
2347                 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
2348                         skb->nh.ipv6h->payload_len = 0;
2349                         skb->h.th->check =
2350                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2351                                                  &skb->nh.ipv6h->daddr,
2352                                                  0,
2353                                                  IPPROTO_TCP,
2354                                                  0);
2355                         ipcse = 0;
2356 #endif
2357                 }
2358                 ipcss = skb->nh.raw - skb->data;
2359                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2360                 tucss = skb->h.raw - skb->data;
2361                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2362                 tucse = 0;
2363
2364                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2365                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2366
2367                 i = tx_ring->next_to_use;
2368                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2369
2370                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2371                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2372                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2373                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2374                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2375                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2376                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2377                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2378                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2379
2380                 if (++i == tx_ring->count) i = 0;
2381                 tx_ring->next_to_use = i;
2382
2383                 return 1;
2384         }
2385 #endif
2386
2387         return 0;
2388 }
2389
2390 static inline boolean_t
2391 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2392               struct sk_buff *skb)
2393 {
2394         struct e1000_context_desc *context_desc;
2395         unsigned int i;
2396         uint8_t css;
2397
2398         if(likely(skb->ip_summed == CHECKSUM_HW)) {
2399                 css = skb->h.raw - skb->data;
2400
2401                 i = tx_ring->next_to_use;
2402                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2403
2404                 context_desc->upper_setup.tcp_fields.tucss = css;
2405                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2406                 context_desc->upper_setup.tcp_fields.tucse = 0;
2407                 context_desc->tcp_seg_setup.data = 0;
2408                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2409
2410                 if (unlikely(++i == tx_ring->count)) i = 0;
2411                 tx_ring->next_to_use = i;
2412
2413                 return TRUE;
2414         }
2415
2416         return FALSE;
2417 }
2418
2419 #define E1000_MAX_TXD_PWR       12
2420 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2421
2422 static inline int
2423 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2424              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2425              unsigned int nr_frags, unsigned int mss)
2426 {
2427         struct e1000_buffer *buffer_info;
2428         unsigned int len = skb->len;
2429         unsigned int offset = 0, size, count = 0, i;
2430         unsigned int f;
2431         len -= skb->data_len;
2432
2433         i = tx_ring->next_to_use;
2434
2435         while(len) {
2436                 buffer_info = &tx_ring->buffer_info[i];
2437                 size = min(len, max_per_txd);
2438 #ifdef NETIF_F_TSO
2439                 /* Workaround for premature desc write-backs
2440                  * in TSO mode.  Append 4-byte sentinel desc */
2441                 if(unlikely(mss && !nr_frags && size == len && size > 8))
2442                         size -= 4;
2443 #endif
2444                 /* work-around for errata 10 and it applies
2445                  * to all controllers in PCI-X mode
2446                  * The fix is to make sure that the first descriptor of a
2447                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2448                  */
2449                 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2450                                 (size > 2015) && count == 0))
2451                         size = 2015;
2452                                                                                 
2453                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2454                  * terminating buffers within evenly-aligned dwords. */
2455                 if(unlikely(adapter->pcix_82544 &&
2456                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2457                    size > 4))
2458                         size -= 4;
2459
2460                 buffer_info->length = size;
2461                 buffer_info->dma =
2462                         pci_map_single(adapter->pdev,
2463                                 skb->data + offset,
2464                                 size,
2465                                 PCI_DMA_TODEVICE);
2466                 buffer_info->time_stamp = jiffies;
2467
2468                 len -= size;
2469                 offset += size;
2470                 count++;
2471                 if(unlikely(++i == tx_ring->count)) i = 0;
2472         }
2473
2474         for(f = 0; f < nr_frags; f++) {
2475                 struct skb_frag_struct *frag;
2476
2477                 frag = &skb_shinfo(skb)->frags[f];
2478                 len = frag->size;
2479                 offset = frag->page_offset;
2480
2481                 while(len) {
2482                         buffer_info = &tx_ring->buffer_info[i];
2483                         size = min(len, max_per_txd);
2484 #ifdef NETIF_F_TSO
2485                         /* Workaround for premature desc write-backs
2486                          * in TSO mode.  Append 4-byte sentinel desc */
2487                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2488                                 size -= 4;
2489 #endif
2490                         /* Workaround for potential 82544 hang in PCI-X.
2491                          * Avoid terminating buffers within evenly-aligned
2492                          * dwords. */
2493                         if(unlikely(adapter->pcix_82544 &&
2494                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2495                            size > 4))
2496                                 size -= 4;
2497
2498                         buffer_info->length = size;
2499                         buffer_info->dma =
2500                                 pci_map_page(adapter->pdev,
2501                                         frag->page,
2502                                         offset,
2503                                         size,
2504                                         PCI_DMA_TODEVICE);
2505                         buffer_info->time_stamp = jiffies;
2506
2507                         len -= size;
2508                         offset += size;
2509                         count++;
2510                         if(unlikely(++i == tx_ring->count)) i = 0;
2511                 }
2512         }
2513
2514         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2515         tx_ring->buffer_info[i].skb = skb;
2516         tx_ring->buffer_info[first].next_to_watch = i;
2517
2518         return count;
2519 }
2520
2521 static inline void
2522 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2523                int tx_flags, int count)
2524 {
2525         struct e1000_tx_desc *tx_desc = NULL;
2526         struct e1000_buffer *buffer_info;
2527         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2528         unsigned int i;
2529
2530         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2531                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2532                              E1000_TXD_CMD_TSE;
2533                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2534
2535                 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2536                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2537         }
2538
2539         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2540                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2541                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2542         }
2543
2544         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2545                 txd_lower |= E1000_TXD_CMD_VLE;
2546                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2547         }
2548
2549         i = tx_ring->next_to_use;
2550
2551         while(count--) {
2552                 buffer_info = &tx_ring->buffer_info[i];
2553                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2554                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2555                 tx_desc->lower.data =
2556                         cpu_to_le32(txd_lower | buffer_info->length);
2557                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2558                 if(unlikely(++i == tx_ring->count)) i = 0;
2559         }
2560
2561         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2562
2563         /* Force memory writes to complete before letting h/w
2564          * know there are new descriptors to fetch.  (Only
2565          * applicable for weak-ordered memory model archs,
2566          * such as IA-64). */
2567         wmb();
2568
2569         tx_ring->next_to_use = i;
2570         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2571 }
2572
2573 /**
2574  * 82547 workaround to avoid controller hang in half-duplex environment.
2575  * The workaround is to avoid queuing a large packet that would span
2576  * the internal Tx FIFO ring boundary by notifying the stack to resend
2577  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2578  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2579  * to the beginning of the Tx FIFO.
2580  **/
2581
2582 #define E1000_FIFO_HDR                  0x10
2583 #define E1000_82547_PAD_LEN             0x3E0
2584
2585 static inline int
2586 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2587 {
2588         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2589         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2590
2591         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2592
2593         if(adapter->link_duplex != HALF_DUPLEX)
2594                 goto no_fifo_stall_required;
2595
2596         if(atomic_read(&adapter->tx_fifo_stall))
2597                 return 1;
2598
2599         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2600                 atomic_set(&adapter->tx_fifo_stall, 1);
2601                 return 1;
2602         }
2603
2604 no_fifo_stall_required:
2605         adapter->tx_fifo_head += skb_fifo_len;
2606         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2607                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2608         return 0;
2609 }
2610
2611 #define MINIMUM_DHCP_PACKET_SIZE 282
2612 static inline int
2613 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2614 {
2615         struct e1000_hw *hw =  &adapter->hw;
2616         uint16_t length, offset;
2617         if(vlan_tx_tag_present(skb)) {
2618                 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2619                         ( adapter->hw.mng_cookie.status &
2620                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2621                         return 0;
2622         }
2623         if(htons(ETH_P_IP) == skb->protocol) {
2624                 const struct iphdr *ip = skb->nh.iph;
2625                 if(IPPROTO_UDP == ip->protocol) {
2626                         struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2627                         if(ntohs(udp->dest) == 67) {
2628                                 offset = (uint8_t *)udp + 8 - skb->data;
2629                                 length = skb->len - offset;
2630
2631                                 return e1000_mng_write_dhcp_info(hw,
2632                                                 (uint8_t *)udp + 8, length);
2633                         }
2634                 }
2635         } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2636                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2637                 if((htons(ETH_P_IP) == eth->h_proto)) {
2638                         const struct iphdr *ip = 
2639                                 (struct iphdr *)((uint8_t *)skb->data+14);
2640                         if(IPPROTO_UDP == ip->protocol) {
2641                                 struct udphdr *udp = 
2642                                         (struct udphdr *)((uint8_t *)ip + 
2643                                                 (ip->ihl << 2));
2644                                 if(ntohs(udp->dest) == 67) {
2645                                         offset = (uint8_t *)udp + 8 - skb->data;
2646                                         length = skb->len - offset;
2647
2648                                         return e1000_mng_write_dhcp_info(hw,
2649                                                         (uint8_t *)udp + 8, 
2650                                                         length);
2651                                 }
2652                         }
2653                 }
2654         }
2655         return 0;
2656 }
2657
2658 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2659 static int
2660 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2661 {
2662         struct e1000_adapter *adapter = netdev_priv(netdev);
2663         struct e1000_tx_ring *tx_ring;
2664         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2665         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2666         unsigned int tx_flags = 0;
2667         unsigned int len = skb->len;
2668         unsigned long flags;
2669         unsigned int nr_frags = 0;
2670         unsigned int mss = 0;
2671         int count = 0;
2672         int tso;
2673         unsigned int f;
2674         len -= skb->data_len;
2675
2676 #ifdef CONFIG_E1000_MQ
2677         tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2678 #else
2679         tx_ring = adapter->tx_ring;
2680 #endif
2681
2682         if (unlikely(skb->len <= 0)) {
2683                 dev_kfree_skb_any(skb);
2684                 return NETDEV_TX_OK;
2685         }
2686
2687 #ifdef NETIF_F_TSO
2688         mss = skb_shinfo(skb)->tso_size;
2689         /* The controller does a simple calculation to 
2690          * make sure there is enough room in the FIFO before
2691          * initiating the DMA for each buffer.  The calc is:
2692          * 4 = ceil(buffer len/mss).  To make sure we don't
2693          * overrun the FIFO, adjust the max buffer len if mss
2694          * drops. */
2695         if(mss) {
2696                 max_per_txd = min(mss << 2, max_per_txd);
2697                 max_txd_pwr = fls(max_per_txd) - 1;
2698         }
2699
2700         if((mss) || (skb->ip_summed == CHECKSUM_HW))
2701                 count++;
2702         count++;
2703 #else
2704         if(skb->ip_summed == CHECKSUM_HW)
2705                 count++;
2706 #endif
2707         count += TXD_USE_COUNT(len, max_txd_pwr);
2708
2709         if(adapter->pcix_82544)
2710                 count++;
2711
2712         /* work-around for errata 10 and it applies to all controllers 
2713          * in PCI-X mode, so add one more descriptor to the count
2714          */
2715         if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2716                         (len > 2015)))
2717                 count++;
2718
2719         nr_frags = skb_shinfo(skb)->nr_frags;
2720         for(f = 0; f < nr_frags; f++)
2721                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2722                                        max_txd_pwr);
2723         if(adapter->pcix_82544)
2724                 count += nr_frags;
2725
2726 #ifdef NETIF_F_TSO
2727         /* TSO Workaround for 82571/2 Controllers -- if skb->data
2728          * points to just header, pull a few bytes of payload from 
2729          * frags into skb->data */
2730         if (skb_shinfo(skb)->tso_size) {
2731                 uint8_t hdr_len;
2732                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2733                 if (skb->data_len && (hdr_len < (skb->len - skb->data_len)) && 
2734                         (adapter->hw.mac_type == e1000_82571 ||
2735                         adapter->hw.mac_type == e1000_82572)) {
2736                         unsigned int pull_size;
2737                         pull_size = min((unsigned int)4, skb->data_len);
2738                         if (!__pskb_pull_tail(skb, pull_size)) {
2739                                 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2740                                 dev_kfree_skb_any(skb);
2741                                 return -EFAULT;
2742                         }
2743                 }
2744         }
2745 #endif
2746
2747         if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2748                 e1000_transfer_dhcp_info(adapter, skb);
2749
2750         local_irq_save(flags);
2751         if (!spin_trylock(&tx_ring->tx_lock)) {
2752                 /* Collision - tell upper layer to requeue */
2753                 local_irq_restore(flags);
2754                 return NETDEV_TX_LOCKED;
2755         }
2756
2757         /* need: count + 2 desc gap to keep tail from touching
2758          * head, otherwise try next time */
2759         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2760                 netif_stop_queue(netdev);
2761                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2762                 return NETDEV_TX_BUSY;
2763         }
2764
2765         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2766                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2767                         netif_stop_queue(netdev);
2768                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2769                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2770                         return NETDEV_TX_BUSY;
2771                 }
2772         }
2773
2774         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2775                 tx_flags |= E1000_TX_FLAGS_VLAN;
2776                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2777         }
2778
2779         first = tx_ring->next_to_use;
2780         
2781         tso = e1000_tso(adapter, tx_ring, skb);
2782         if (tso < 0) {
2783                 dev_kfree_skb_any(skb);
2784                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2785                 return NETDEV_TX_OK;
2786         }
2787
2788         if (likely(tso))
2789                 tx_flags |= E1000_TX_FLAGS_TSO;
2790         else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2791                 tx_flags |= E1000_TX_FLAGS_CSUM;
2792
2793         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2794          * 82571 hardware supports TSO capabilities for IPv6 as well...
2795          * no longer assume, we must. */
2796         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2797                 tx_flags |= E1000_TX_FLAGS_IPV4;
2798
2799         e1000_tx_queue(adapter, tx_ring, tx_flags,
2800                        e1000_tx_map(adapter, tx_ring, skb, first,
2801                                     max_per_txd, nr_frags, mss));
2802
2803         netdev->trans_start = jiffies;
2804
2805         /* Make sure there is space in the ring for the next send. */
2806         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2807                 netif_stop_queue(netdev);
2808
2809         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2810         return NETDEV_TX_OK;
2811 }
2812
2813 /**
2814  * e1000_tx_timeout - Respond to a Tx Hang
2815  * @netdev: network interface device structure
2816  **/
2817
2818 static void
2819 e1000_tx_timeout(struct net_device *netdev)
2820 {
2821         struct e1000_adapter *adapter = netdev_priv(netdev);
2822
2823         /* Do the reset outside of interrupt context */
2824         schedule_work(&adapter->tx_timeout_task);
2825 }
2826
2827 static void
2828 e1000_tx_timeout_task(struct net_device *netdev)
2829 {
2830         struct e1000_adapter *adapter = netdev_priv(netdev);
2831
2832         e1000_down(adapter);
2833         e1000_up(adapter);
2834 }
2835
2836 /**
2837  * e1000_get_stats - Get System Network Statistics
2838  * @netdev: network interface device structure
2839  *
2840  * Returns the address of the device statistics structure.
2841  * The statistics are actually updated from the timer callback.
2842  **/
2843
2844 static struct net_device_stats *
2845 e1000_get_stats(struct net_device *netdev)
2846 {
2847         struct e1000_adapter *adapter = netdev_priv(netdev);
2848
2849         e1000_update_stats(adapter);
2850         return &adapter->net_stats;
2851 }
2852
2853 /**
2854  * e1000_change_mtu - Change the Maximum Transfer Unit
2855  * @netdev: network interface device structure
2856  * @new_mtu: new value for maximum frame size
2857  *
2858  * Returns 0 on success, negative on failure
2859  **/
2860
2861 static int
2862 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2863 {
2864         struct e1000_adapter *adapter = netdev_priv(netdev);
2865         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2866
2867         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2868                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2869                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2870                         return -EINVAL;
2871         }
2872
2873 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2874         /* might want this to be bigger enum check... */
2875         /* 82571 controllers limit jumbo frame size to 10500 bytes */
2876         if ((adapter->hw.mac_type == e1000_82571 || 
2877              adapter->hw.mac_type == e1000_82572) &&
2878             max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2879                 DPRINTK(PROBE, ERR, "MTU > 9216 bytes not supported "
2880                                     "on 82571 and 82572 controllers.\n");
2881                 return -EINVAL;
2882         }
2883
2884         if(adapter->hw.mac_type == e1000_82573 &&
2885             max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2886                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2887                                     "on 82573\n");
2888                 return -EINVAL;
2889         }
2890
2891         if(adapter->hw.mac_type > e1000_82547_rev_2) {
2892                 adapter->rx_buffer_len = max_frame;
2893                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2894         } else {
2895                 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2896                    (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2897                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2898                                             "on 82542\n");
2899                         return -EINVAL;
2900
2901                 } else {
2902                         if(max_frame <= E1000_RXBUFFER_2048) {
2903                                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2904                         } else if(max_frame <= E1000_RXBUFFER_4096) {
2905                                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2906                         } else if(max_frame <= E1000_RXBUFFER_8192) {
2907                                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2908                         } else if(max_frame <= E1000_RXBUFFER_16384) {
2909                                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2910                         }
2911                 }
2912         }
2913
2914         netdev->mtu = new_mtu;
2915
2916         if(netif_running(netdev)) {
2917                 e1000_down(adapter);
2918                 e1000_up(adapter);
2919         }
2920
2921         adapter->hw.max_frame_size = max_frame;
2922
2923         return 0;
2924 }
2925
2926 /**
2927  * e1000_update_stats - Update the board statistics counters
2928  * @adapter: board private structure
2929  **/
2930
2931 void
2932 e1000_update_stats(struct e1000_adapter *adapter)
2933 {
2934         struct e1000_hw *hw = &adapter->hw;
2935         unsigned long flags;
2936         uint16_t phy_tmp;
2937
2938 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2939
2940         spin_lock_irqsave(&adapter->stats_lock, flags);
2941
2942         /* these counters are modified from e1000_adjust_tbi_stats,
2943          * called from the interrupt context, so they must only
2944          * be written while holding adapter->stats_lock
2945          */
2946
2947         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2948         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2949         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2950         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2951         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2952         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2953         adapter->stats.roc += E1000_READ_REG(hw, ROC);
2954         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2955         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2956         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2957         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2958         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2959         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2960
2961         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2962         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2963         adapter->stats.scc += E1000_READ_REG(hw, SCC);
2964         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2965         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2966         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2967         adapter->stats.dc += E1000_READ_REG(hw, DC);
2968         adapter->stats.sec += E1000_READ_REG(hw, SEC);
2969         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2970         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2971         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2972         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2973         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2974         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2975         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2976         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2977         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2978         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2979         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2980         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2981         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2982         adapter->stats.torl += E1000_READ_REG(hw, TORL);
2983         adapter->stats.torh += E1000_READ_REG(hw, TORH);
2984         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2985         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2986         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2987         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2988         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2989         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2990         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2991         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2992         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2993         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2994         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2995
2996         /* used for adaptive IFS */
2997
2998         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2999         adapter->stats.tpt += hw->tx_packet_delta;
3000         hw->collision_delta = E1000_READ_REG(hw, COLC);
3001         adapter->stats.colc += hw->collision_delta;
3002
3003         if(hw->mac_type >= e1000_82543) {
3004                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3005                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3006                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3007                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3008                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3009                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3010         }
3011         if(hw->mac_type > e1000_82547_rev_2) {
3012                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3013                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3014                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3015                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3016                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3017                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3018                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3019                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3020                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3021         }
3022
3023         /* Fill out the OS statistics structure */
3024
3025         adapter->net_stats.rx_packets = adapter->stats.gprc;
3026         adapter->net_stats.tx_packets = adapter->stats.gptc;
3027         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3028         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3029         adapter->net_stats.multicast = adapter->stats.mprc;
3030         adapter->net_stats.collisions = adapter->stats.colc;
3031
3032         /* Rx Errors */
3033
3034         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3035                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3036                 adapter->stats.rlec + adapter->stats.mpc + 
3037                 adapter->stats.cexterr;
3038         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3039         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3040         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3041         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
3042         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3043
3044         /* Tx Errors */
3045
3046         adapter->net_stats.tx_errors = adapter->stats.ecol +
3047                                        adapter->stats.latecol;
3048         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3049         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3050         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3051
3052         /* Tx Dropped needs to be maintained elsewhere */
3053
3054         /* Phy Stats */
3055
3056         if(hw->media_type == e1000_media_type_copper) {
3057                 if((adapter->link_speed == SPEED_1000) &&
3058                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3059                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3060                         adapter->phy_stats.idle_errors += phy_tmp;
3061                 }
3062
3063                 if((hw->mac_type <= e1000_82546) &&
3064                    (hw->phy_type == e1000_phy_m88) &&
3065                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3066                         adapter->phy_stats.receive_errors += phy_tmp;
3067         }
3068
3069         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3070 }
3071
3072 #ifdef CONFIG_E1000_MQ
3073 void
3074 e1000_rx_schedule(void *data)
3075 {
3076         struct net_device *poll_dev, *netdev = data;
3077         struct e1000_adapter *adapter = netdev->priv;
3078         int this_cpu = get_cpu();
3079
3080         poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3081         if (poll_dev == NULL) {
3082                 put_cpu();
3083                 return;
3084         }
3085
3086         if (likely(netif_rx_schedule_prep(poll_dev)))
3087                 __netif_rx_schedule(poll_dev);
3088         else
3089                 e1000_irq_enable(adapter);
3090
3091         put_cpu();
3092 }
3093 #endif
3094
3095 /**
3096  * e1000_intr - Interrupt Handler
3097  * @irq: interrupt number
3098  * @data: pointer to a network interface device structure
3099  * @pt_regs: CPU registers structure
3100  **/
3101
3102 static irqreturn_t
3103 e1000_intr(int irq, void *data, struct pt_regs *regs)
3104 {
3105         struct net_device *netdev = data;
3106         struct e1000_adapter *adapter = netdev_priv(netdev);
3107         struct e1000_hw *hw = &adapter->hw;
3108         uint32_t icr = E1000_READ_REG(hw, ICR);
3109 #if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI)
3110         int i;
3111 #endif
3112
3113         if(unlikely(!icr))
3114                 return IRQ_NONE;  /* Not our interrupt */
3115
3116         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3117                 hw->get_link_status = 1;
3118                 mod_timer(&adapter->watchdog_timer, jiffies);
3119         }
3120
3121 #ifdef CONFIG_E1000_NAPI
3122         atomic_inc(&adapter->irq_sem);
3123         E1000_WRITE_REG(hw, IMC, ~0);
3124         E1000_WRITE_FLUSH(hw);
3125 #ifdef CONFIG_E1000_MQ
3126         if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3127                 cpu_set(adapter->cpu_for_queue[0],
3128                         adapter->rx_sched_call_data.cpumask);
3129                 for (i = 1; i < adapter->num_queues; i++) {
3130                         cpu_set(adapter->cpu_for_queue[i],
3131                                 adapter->rx_sched_call_data.cpumask);
3132                         atomic_inc(&adapter->irq_sem);
3133                 }
3134                 atomic_set(&adapter->rx_sched_call_data.count, i);
3135                 smp_call_async_mask(&adapter->rx_sched_call_data);
3136         } else {
3137                 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
3138         }
3139 #else /* if !CONFIG_E1000_MQ */
3140         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3141                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3142         else
3143                 e1000_irq_enable(adapter);
3144 #endif /* CONFIG_E1000_MQ */
3145
3146 #else /* if !CONFIG_E1000_NAPI */
3147         /* Writing IMC and IMS is needed for 82547.
3148            Due to Hub Link bus being occupied, an interrupt
3149            de-assertion message is not able to be sent.
3150            When an interrupt assertion message is generated later,
3151            two messages are re-ordered and sent out.
3152            That causes APIC to think 82547 is in de-assertion
3153            state, while 82547 is in assertion state, resulting
3154            in dead lock. Writing IMC forces 82547 into
3155            de-assertion state.
3156         */
3157         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
3158                 atomic_inc(&adapter->irq_sem);
3159                 E1000_WRITE_REG(hw, IMC, ~0);
3160         }
3161
3162         for(i = 0; i < E1000_MAX_INTR; i++)
3163                 if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3164                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3165                         break;
3166
3167         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3168                 e1000_irq_enable(adapter);
3169
3170 #endif /* CONFIG_E1000_NAPI */
3171
3172         return IRQ_HANDLED;
3173 }
3174
3175 #ifdef CONFIG_E1000_NAPI
3176 /**
3177  * e1000_clean - NAPI Rx polling callback
3178  * @adapter: board private structure
3179  **/
3180
3181 static int
3182 e1000_clean(struct net_device *poll_dev, int *budget)
3183 {
3184         struct e1000_adapter *adapter;
3185         int work_to_do = min(*budget, poll_dev->quota);
3186         int tx_cleaned, i = 0, work_done = 0;
3187
3188         /* Must NOT use netdev_priv macro here. */
3189         adapter = poll_dev->priv;
3190
3191         /* Keep link state information with original netdev */
3192         if (!netif_carrier_ok(adapter->netdev))
3193                 goto quit_polling;
3194
3195         while (poll_dev != &adapter->polling_netdev[i]) {
3196                 i++;
3197                 if (unlikely(i == adapter->num_queues))
3198                         BUG();
3199         }
3200
3201         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3202         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3203                           &work_done, work_to_do);
3204
3205         *budget -= work_done;
3206         poll_dev->quota -= work_done;
3207         
3208         /* If no Tx and not enough Rx work done, exit the polling mode */
3209         if((!tx_cleaned && (work_done == 0)) ||
3210            !netif_running(adapter->netdev)) {
3211 quit_polling:
3212                 netif_rx_complete(poll_dev);
3213                 e1000_irq_enable(adapter);
3214                 return 0;
3215         }
3216
3217         return 1;
3218 }
3219
3220 #endif
3221 /**
3222  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3223  * @adapter: board private structure
3224  **/
3225
3226 static boolean_t
3227 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3228                    struct e1000_tx_ring *tx_ring)
3229 {
3230         struct net_device *netdev = adapter->netdev;
3231         struct e1000_tx_desc *tx_desc, *eop_desc;
3232         struct e1000_buffer *buffer_info;
3233         unsigned int i, eop;
3234         boolean_t cleaned = FALSE;
3235
3236         i = tx_ring->next_to_clean;
3237         eop = tx_ring->buffer_info[i].next_to_watch;
3238         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3239
3240         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3241                 /* Premature writeback of Tx descriptors clear (free buffers
3242                  * and unmap pci_mapping) previous_buffer_info */
3243                 if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
3244                         e1000_unmap_and_free_tx_resource(adapter,
3245                                         &tx_ring->previous_buffer_info);
3246                 }
3247
3248                 for(cleaned = FALSE; !cleaned; ) {
3249                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3250                         buffer_info = &tx_ring->buffer_info[i];
3251                         cleaned = (i == eop);
3252
3253 #ifdef NETIF_F_TSO
3254                         if (!(netdev->features & NETIF_F_TSO)) {
3255 #endif
3256                                 e1000_unmap_and_free_tx_resource(adapter,
3257                                                                  buffer_info);
3258 #ifdef NETIF_F_TSO
3259                         } else {
3260                                 if (cleaned) {
3261                                         memcpy(&tx_ring->previous_buffer_info,
3262                                                buffer_info,
3263                                                sizeof(struct e1000_buffer));
3264                                         memset(buffer_info, 0,
3265                                                sizeof(struct e1000_buffer));
3266                                 } else {
3267                                         e1000_unmap_and_free_tx_resource(
3268                                             adapter, buffer_info);
3269                                 }
3270                         }
3271 #endif
3272
3273                         tx_desc->buffer_addr = 0;
3274                         tx_desc->lower.data = 0;
3275                         tx_desc->upper.data = 0;
3276
3277                         if(unlikely(++i == tx_ring->count)) i = 0;
3278                 }
3279
3280                 tx_ring->pkt++;
3281                 
3282                 eop = tx_ring->buffer_info[i].next_to_watch;
3283                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3284         }
3285
3286         tx_ring->next_to_clean = i;
3287
3288         spin_lock(&tx_ring->tx_lock);
3289
3290         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
3291                     netif_carrier_ok(netdev)))
3292                 netif_wake_queue(netdev);
3293
3294         spin_unlock(&tx_ring->tx_lock);
3295
3296         if (adapter->detect_tx_hung) {
3297                 /* Detect a transmit hang in hardware, this serializes the
3298                  * check with the clearing of time_stamp and movement of i */
3299                 adapter->detect_tx_hung = FALSE;
3300                 if (tx_ring->buffer_info[i].dma &&
3301                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
3302                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3303                         E1000_STATUS_TXOFF)) {
3304
3305                         /* detected Tx unit hang */
3306                         i = tx_ring->next_to_clean;
3307                         eop = tx_ring->buffer_info[i].next_to_watch;
3308                         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3309                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3310                                         "  TDH                  <%x>\n"
3311                                         "  TDT                  <%x>\n"
3312                                         "  next_to_use          <%x>\n"
3313                                         "  next_to_clean        <%x>\n"
3314                                         "buffer_info[next_to_clean]\n"
3315                                         "  dma                  <%llx>\n"
3316                                         "  time_stamp           <%lx>\n"
3317                                         "  next_to_watch        <%x>\n"
3318                                         "  jiffies              <%lx>\n"
3319                                         "  next_to_watch.status <%x>\n",
3320                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3321                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3322                                 tx_ring->next_to_use,
3323                                 i,
3324                                 (unsigned long long)tx_ring->buffer_info[i].dma,
3325                                 tx_ring->buffer_info[i].time_stamp,
3326                                 eop,
3327                                 jiffies,
3328                                 eop_desc->upper.fields.status);
3329                         netif_stop_queue(netdev);
3330                 }
3331         }
3332 #ifdef NETIF_F_TSO
3333         if (unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3334             time_after(jiffies, tx_ring->previous_buffer_info.time_stamp + HZ)))
3335                 e1000_unmap_and_free_tx_resource(
3336                     adapter, &tx_ring->previous_buffer_info);
3337 #endif
3338         return cleaned;
3339 }
3340
3341 /**
3342  * e1000_rx_checksum - Receive Checksum Offload for 82543
3343  * @adapter:     board private structure
3344  * @status_err:  receive descriptor status and error fields
3345  * @csum:        receive descriptor csum field
3346  * @sk_buff:     socket buffer with received data
3347  **/
3348
3349 static inline void
3350 e1000_rx_checksum(struct e1000_adapter *adapter,
3351                   uint32_t status_err, uint32_t csum,
3352                   struct sk_buff *skb)
3353 {
3354         uint16_t status = (uint16_t)status_err;
3355         uint8_t errors = (uint8_t)(status_err >> 24);
3356         skb->ip_summed = CHECKSUM_NONE;
3357
3358         /* 82543 or newer only */
3359         if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
3360         /* Ignore Checksum bit is set */
3361         if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
3362         /* TCP/UDP checksum error bit is set */
3363         if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
3364                 /* let the stack verify checksum errors */
3365                 adapter->hw_csum_err++;
3366                 return;
3367         }
3368         /* TCP/UDP Checksum has not been calculated */
3369         if(adapter->hw.mac_type <= e1000_82547_rev_2) {
3370                 if(!(status & E1000_RXD_STAT_TCPCS))
3371                         return;
3372         } else {
3373                 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3374                         return;
3375         }
3376         /* It must be a TCP or UDP packet with a valid checksum */
3377         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3378                 /* TCP checksum is good */
3379                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3380         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3381                 /* IP fragment with UDP payload */
3382                 /* Hardware complements the payload checksum, so we undo it
3383                  * and then put the value in host order for further stack use.
3384                  */
3385                 csum = ntohl(csum ^ 0xFFFF);
3386                 skb->csum = csum;
3387                 skb->ip_summed = CHECKSUM_HW;
3388         }
3389         adapter->hw_csum_good++;
3390 }
3391
3392 /**
3393  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3394  * @adapter: board private structure
3395  **/
3396
3397 static boolean_t
3398 #ifdef CONFIG_E1000_NAPI
3399 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3400                    struct e1000_rx_ring *rx_ring,
3401                    int *work_done, int work_to_do)
3402 #else
3403 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3404                    struct e1000_rx_ring *rx_ring)
3405 #endif
3406 {
3407         struct net_device *netdev = adapter->netdev;
3408         struct pci_dev *pdev = adapter->pdev;
3409         struct e1000_rx_desc *rx_desc;
3410         struct e1000_buffer *buffer_info;
3411         struct sk_buff *skb;
3412         unsigned long flags;
3413         uint32_t length;
3414         uint8_t last_byte;
3415         unsigned int i;
3416         boolean_t cleaned = FALSE;
3417
3418         i = rx_ring->next_to_clean;
3419         rx_desc = E1000_RX_DESC(*rx_ring, i);
3420
3421         while(rx_desc->status & E1000_RXD_STAT_DD) {
3422                 buffer_info = &rx_ring->buffer_info[i];
3423 #ifdef CONFIG_E1000_NAPI
3424                 if(*work_done >= work_to_do)
3425                         break;
3426                 (*work_done)++;
3427 #endif
3428                 cleaned = TRUE;
3429
3430                 pci_unmap_single(pdev,
3431                                  buffer_info->dma,
3432                                  buffer_info->length,
3433                                  PCI_DMA_FROMDEVICE);
3434
3435                 skb = buffer_info->skb;
3436                 length = le16_to_cpu(rx_desc->length);
3437
3438                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
3439                         /* All receives must fit into a single buffer */
3440                         E1000_DBG("%s: Receive packet consumed multiple"
3441                                   " buffers\n", netdev->name);
3442                         dev_kfree_skb_irq(skb);
3443                         goto next_desc;
3444                 }
3445
3446                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3447                         last_byte = *(skb->data + length - 1);
3448                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
3449                                       rx_desc->errors, length, last_byte)) {
3450                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3451                                 e1000_tbi_adjust_stats(&adapter->hw,
3452                                                        &adapter->stats,
3453                                                        length, skb->data);
3454                                 spin_unlock_irqrestore(&adapter->stats_lock,
3455                                                        flags);
3456                                 length--;
3457                         } else {
3458                                 dev_kfree_skb_irq(skb);
3459                                 goto next_desc;
3460                         }
3461                 }
3462
3463                 /* Good Receive */
3464                 skb_put(skb, length - ETHERNET_FCS_SIZE);
3465
3466                 /* Receive Checksum Offload */
3467                 e1000_rx_checksum(adapter,
3468                                   (uint32_t)(rx_desc->status) |
3469                                   ((uint32_t)(rx_desc->errors) << 24),
3470                                   rx_desc->csum, skb);
3471                 skb->protocol = eth_type_trans(skb, netdev);
3472 #ifdef CONFIG_E1000_NAPI
3473                 if(unlikely(adapter->vlgrp &&
3474                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3475                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3476                                                  le16_to_cpu(rx_desc->special) &
3477                                                  E1000_RXD_SPC_VLAN_MASK);
3478                 } else {
3479                         netif_receive_skb(skb);
3480                 }
3481 #else /* CONFIG_E1000_NAPI */
3482                 if(unlikely(adapter->vlgrp &&
3483                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3484                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3485                                         le16_to_cpu(rx_desc->special) &
3486                                         E1000_RXD_SPC_VLAN_MASK);
3487                 } else {
3488                         netif_rx(skb);
3489                 }
3490 #endif /* CONFIG_E1000_NAPI */
3491                 netdev->last_rx = jiffies;
3492                 rx_ring->pkt++;
3493
3494 next_desc:
3495                 rx_desc->status = 0;
3496                 buffer_info->skb = NULL;
3497                 if(unlikely(++i == rx_ring->count)) i = 0;
3498
3499                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3500         }
3501         rx_ring->next_to_clean = i;
3502         adapter->alloc_rx_buf(adapter, rx_ring);
3503
3504         return cleaned;
3505 }
3506
3507 /**
3508  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3509  * @adapter: board private structure
3510  **/
3511
3512 static boolean_t
3513 #ifdef CONFIG_E1000_NAPI
3514 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3515                       struct e1000_rx_ring *rx_ring,
3516                       int *work_done, int work_to_do)
3517 #else
3518 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3519                       struct e1000_rx_ring *rx_ring)
3520 #endif
3521 {
3522         union e1000_rx_desc_packet_split *rx_desc;
3523         struct net_device *netdev = adapter->netdev;
3524         struct pci_dev *pdev = adapter->pdev;
3525         struct e1000_buffer *buffer_info;
3526         struct e1000_ps_page *ps_page;
3527         struct e1000_ps_page_dma *ps_page_dma;
3528         struct sk_buff *skb;
3529         unsigned int i, j;
3530         uint32_t length, staterr;
3531         boolean_t cleaned = FALSE;
3532
3533         i = rx_ring->next_to_clean;
3534         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3535         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3536
3537         while(staterr & E1000_RXD_STAT_DD) {
3538                 buffer_info = &rx_ring->buffer_info[i];
3539                 ps_page = &rx_ring->ps_page[i];
3540                 ps_page_dma = &rx_ring->ps_page_dma[i];
3541 #ifdef CONFIG_E1000_NAPI
3542                 if(unlikely(*work_done >= work_to_do))
3543                         break;
3544                 (*work_done)++;
3545 #endif
3546                 cleaned = TRUE;
3547                 pci_unmap_single(pdev, buffer_info->dma,
3548                                  buffer_info->length,
3549                                  PCI_DMA_FROMDEVICE);
3550
3551                 skb = buffer_info->skb;
3552
3553                 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3554                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3555                                   " the full packet\n", netdev->name);
3556                         dev_kfree_skb_irq(skb);
3557                         goto next_desc;
3558                 }
3559
3560                 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3561                         dev_kfree_skb_irq(skb);
3562                         goto next_desc;
3563                 }
3564
3565                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3566
3567                 if(unlikely(!length)) {
3568                         E1000_DBG("%s: Last part of the packet spanning"
3569                                   " multiple descriptors\n", netdev->name);
3570                         dev_kfree_skb_irq(skb);
3571                         goto next_desc;
3572                 }
3573
3574                 /* Good Receive */
3575                 skb_put(skb, length);
3576
3577                 for(j = 0; j < adapter->rx_ps_pages; j++) {
3578                         if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3579                                 break;
3580
3581                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3582                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3583                         ps_page_dma->ps_page_dma[j] = 0;
3584                         skb_shinfo(skb)->frags[j].page =
3585                                 ps_page->ps_page[j];
3586                         ps_page->ps_page[j] = NULL;
3587                         skb_shinfo(skb)->frags[j].page_offset = 0;
3588                         skb_shinfo(skb)->frags[j].size = length;
3589                         skb_shinfo(skb)->nr_frags++;
3590                         skb->len += length;
3591                         skb->data_len += length;
3592                 }
3593
3594                 e1000_rx_checksum(adapter, staterr,
3595                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3596                 skb->protocol = eth_type_trans(skb, netdev);
3597
3598                 if(likely(rx_desc->wb.upper.header_status &
3599                           E1000_RXDPS_HDRSTAT_HDRSP)) {
3600                         adapter->rx_hdr_split++;
3601 #ifdef HAVE_RX_ZERO_COPY
3602                         skb_shinfo(skb)->zero_copy = TRUE;
3603 #endif
3604                 }
3605 #ifdef CONFIG_E1000_NAPI
3606                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3607                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3608                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3609                                 E1000_RXD_SPC_VLAN_MASK);
3610                 } else {
3611                         netif_receive_skb(skb);
3612                 }
3613 #else /* CONFIG_E1000_NAPI */
3614                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3615                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3616                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3617                                 E1000_RXD_SPC_VLAN_MASK);
3618                 } else {
3619                         netif_rx(skb);
3620                 }
3621 #endif /* CONFIG_E1000_NAPI */
3622                 netdev->last_rx = jiffies;
3623                 rx_ring->pkt++;
3624
3625 next_desc:
3626                 rx_desc->wb.middle.status_error &= ~0xFF;
3627                 buffer_info->skb = NULL;
3628                 if(unlikely(++i == rx_ring->count)) i = 0;
3629
3630                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3631                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3632         }
3633         rx_ring->next_to_clean = i;
3634         adapter->alloc_rx_buf(adapter, rx_ring);
3635
3636         return cleaned;
3637 }
3638
3639 /**
3640  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3641  * @adapter: address of board private structure
3642  **/
3643
3644 static void
3645 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3646                        struct e1000_rx_ring *rx_ring)
3647 {
3648         struct net_device *netdev = adapter->netdev;
3649         struct pci_dev *pdev = adapter->pdev;
3650         struct e1000_rx_desc *rx_desc;
3651         struct e1000_buffer *buffer_info;
3652         struct sk_buff *skb;
3653         unsigned int i;
3654         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3655
3656         i = rx_ring->next_to_use;
3657         buffer_info = &rx_ring->buffer_info[i];
3658
3659         while(!buffer_info->skb) {
3660                 skb = dev_alloc_skb(bufsz);
3661
3662                 if(unlikely(!skb)) {
3663                         /* Better luck next round */
3664                         break;
3665                 }
3666
3667                 /* Fix for errata 23, can't cross 64kB boundary */
3668                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3669                         struct sk_buff *oldskb = skb;
3670                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3671                                              "at %p\n", bufsz, skb->data);
3672                         /* Try again, without freeing the previous */
3673                         skb = dev_alloc_skb(bufsz);
3674                         /* Failed allocation, critical failure */
3675                         if (!skb) {
3676                                 dev_kfree_skb(oldskb);
3677                                 break;
3678                         }
3679
3680                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3681                                 /* give up */
3682                                 dev_kfree_skb(skb);
3683                                 dev_kfree_skb(oldskb);
3684                                 break; /* while !buffer_info->skb */
3685                         } else {
3686                                 /* Use new allocation */
3687                                 dev_kfree_skb(oldskb);
3688                         }
3689                 }
3690                 /* Make buffer alignment 2 beyond a 16 byte boundary
3691                  * this will result in a 16 byte aligned IP header after
3692                  * the 14 byte MAC header is removed
3693                  */
3694                 skb_reserve(skb, NET_IP_ALIGN);
3695
3696                 skb->dev = netdev;
3697
3698                 buffer_info->skb = skb;
3699                 buffer_info->length = adapter->rx_buffer_len;
3700                 buffer_info->dma = pci_map_single(pdev,
3701                                                   skb->data,
3702                                                   adapter->rx_buffer_len,
3703                                                   PCI_DMA_FROMDEVICE);
3704
3705                 /* Fix for errata 23, can't cross 64kB boundary */
3706                 if (!e1000_check_64k_bound(adapter,
3707                                         (void *)(unsigned long)buffer_info->dma,
3708                                         adapter->rx_buffer_len)) {
3709                         DPRINTK(RX_ERR, ERR,
3710                                 "dma align check failed: %u bytes at %p\n",
3711                                 adapter->rx_buffer_len,
3712                                 (void *)(unsigned long)buffer_info->dma);
3713                         dev_kfree_skb(skb);
3714                         buffer_info->skb = NULL;
3715
3716                         pci_unmap_single(pdev, buffer_info->dma,
3717                                          adapter->rx_buffer_len,
3718                                          PCI_DMA_FROMDEVICE);
3719
3720                         break; /* while !buffer_info->skb */
3721                 }
3722                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3723                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3724
3725                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3726                         /* Force memory writes to complete before letting h/w
3727                          * know there are new descriptors to fetch.  (Only
3728                          * applicable for weak-ordered memory model archs,
3729                          * such as IA-64). */
3730                         wmb();
3731                         writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3732                 }
3733
3734                 if(unlikely(++i == rx_ring->count)) i = 0;
3735                 buffer_info = &rx_ring->buffer_info[i];
3736         }
3737
3738         rx_ring->next_to_use = i;
3739 }
3740
3741 /**
3742  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3743  * @adapter: address of board private structure
3744  **/
3745
3746 static void
3747 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3748                           struct e1000_rx_ring *rx_ring)
3749 {
3750         struct net_device *netdev = adapter->netdev;
3751         struct pci_dev *pdev = adapter->pdev;
3752         union e1000_rx_desc_packet_split *rx_desc;
3753         struct e1000_buffer *buffer_info;
3754         struct e1000_ps_page *ps_page;
3755         struct e1000_ps_page_dma *ps_page_dma;
3756         struct sk_buff *skb;
3757         unsigned int i, j;
3758
3759         i = rx_ring->next_to_use;
3760         buffer_info = &rx_ring->buffer_info[i];
3761         ps_page = &rx_ring->ps_page[i];
3762         ps_page_dma = &rx_ring->ps_page_dma[i];
3763
3764         while(!buffer_info->skb) {
3765                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3766
3767                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3768                         if (j < adapter->rx_ps_pages) {
3769                                 if (likely(!ps_page->ps_page[j])) {
3770                                         ps_page->ps_page[j] =
3771                                                 alloc_page(GFP_ATOMIC);
3772                                         if (unlikely(!ps_page->ps_page[j]))
3773                                                 goto no_buffers;
3774                                         ps_page_dma->ps_page_dma[j] =
3775                                                 pci_map_page(pdev,
3776                                                             ps_page->ps_page[j],
3777                                                             0, PAGE_SIZE,
3778                                                             PCI_DMA_FROMDEVICE);
3779                                 }
3780                                 /* Refresh the desc even if buffer_addrs didn't
3781                                  * change because each write-back erases 
3782                                  * this info.
3783                                  */
3784                                 rx_desc->read.buffer_addr[j+1] =
3785                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3786                         } else
3787                                 rx_desc->read.buffer_addr[j+1] = ~0;
3788                 }
3789
3790                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3791
3792                 if(unlikely(!skb))
3793                         break;
3794
3795                 /* Make buffer alignment 2 beyond a 16 byte boundary
3796                  * this will result in a 16 byte aligned IP header after
3797                  * the 14 byte MAC header is removed
3798                  */
3799                 skb_reserve(skb, NET_IP_ALIGN);
3800
3801                 skb->dev = netdev;
3802
3803                 buffer_info->skb = skb;
3804                 buffer_info->length = adapter->rx_ps_bsize0;
3805                 buffer_info->dma = pci_map_single(pdev, skb->data,
3806                                                   adapter->rx_ps_bsize0,
3807                                                   PCI_DMA_FROMDEVICE);
3808
3809                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3810
3811                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3812                         /* Force memory writes to complete before letting h/w
3813                          * know there are new descriptors to fetch.  (Only
3814                          * applicable for weak-ordered memory model archs,
3815                          * such as IA-64). */
3816                         wmb();
3817                         /* Hardware increments by 16 bytes, but packet split
3818                          * descriptors are 32 bytes...so we increment tail
3819                          * twice as much.
3820                          */
3821                         writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
3822                 }
3823
3824                 if(unlikely(++i == rx_ring->count)) i = 0;
3825                 buffer_info = &rx_ring->buffer_info[i];
3826                 ps_page = &rx_ring->ps_page[i];
3827                 ps_page_dma = &rx_ring->ps_page_dma[i];
3828         }
3829
3830 no_buffers:
3831         rx_ring->next_to_use = i;
3832 }
3833
3834 /**
3835  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3836  * @adapter:
3837  **/
3838
3839 static void
3840 e1000_smartspeed(struct e1000_adapter *adapter)
3841 {
3842         uint16_t phy_status;
3843         uint16_t phy_ctrl;
3844
3845         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3846            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3847                 return;
3848
3849         if(adapter->smartspeed == 0) {
3850                 /* If Master/Slave config fault is asserted twice,
3851                  * we assume back-to-back */
3852                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3853                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3854                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3855                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3856                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3857                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3858                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
3859                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3860                                             phy_ctrl);
3861                         adapter->smartspeed++;
3862                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3863                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3864                                                &phy_ctrl)) {
3865                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3866                                              MII_CR_RESTART_AUTO_NEG);
3867                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3868                                                     phy_ctrl);
3869                         }
3870                 }
3871                 return;
3872         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3873                 /* If still no link, perhaps using 2/3 pair cable */
3874                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3875                 phy_ctrl |= CR_1000T_MS_ENABLE;
3876                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3877                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3878                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3879                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3880                                      MII_CR_RESTART_AUTO_NEG);
3881                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3882                 }
3883         }
3884         /* Restart process after E1000_SMARTSPEED_MAX iterations */
3885         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3886                 adapter->smartspeed = 0;
3887 }
3888
3889 /**
3890  * e1000_ioctl -
3891  * @netdev:
3892  * @ifreq:
3893  * @cmd:
3894  **/
3895
3896 static int
3897 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3898 {
3899         switch (cmd) {
3900         case SIOCGMIIPHY:
3901         case SIOCGMIIREG:
3902         case SIOCSMIIREG:
3903                 return e1000_mii_ioctl(netdev, ifr, cmd);
3904         default:
3905                 return -EOPNOTSUPP;
3906         }
3907 }
3908
3909 /**
3910  * e1000_mii_ioctl -
3911  * @netdev:
3912  * @ifreq:
3913  * @cmd:
3914  **/
3915
3916 static int
3917 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3918 {
3919         struct e1000_adapter *adapter = netdev_priv(netdev);
3920         struct mii_ioctl_data *data = if_mii(ifr);
3921         int retval;
3922         uint16_t mii_reg;
3923         uint16_t spddplx;
3924         unsigned long flags;
3925
3926         if(adapter->hw.media_type != e1000_media_type_copper)
3927                 return -EOPNOTSUPP;
3928
3929         switch (cmd) {
3930         case SIOCGMIIPHY:
3931                 data->phy_id = adapter->hw.phy_addr;
3932                 break;
3933         case SIOCGMIIREG:
3934                 if(!capable(CAP_NET_ADMIN))
3935                         return -EPERM;
3936                 spin_lock_irqsave(&adapter->stats_lock, flags);
3937                 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3938                                    &data->val_out)) {
3939                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3940                         return -EIO;
3941                 }
3942                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3943                 break;
3944         case SIOCSMIIREG:
3945                 if(!capable(CAP_NET_ADMIN))
3946                         return -EPERM;
3947                 if(data->reg_num & ~(0x1F))
3948                         return -EFAULT;
3949                 mii_reg = data->val_in;
3950                 spin_lock_irqsave(&adapter->stats_lock, flags);
3951                 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3952                                         mii_reg)) {
3953                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3954                         return -EIO;
3955                 }
3956                 if(adapter->hw.phy_type == e1000_phy_m88) {
3957                         switch (data->reg_num) {
3958                         case PHY_CTRL:
3959                                 if(mii_reg & MII_CR_POWER_DOWN)
3960                                         break;
3961                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3962                                         adapter->hw.autoneg = 1;
3963                                         adapter->hw.autoneg_advertised = 0x2F;
3964                                 } else {
3965                                         if (mii_reg & 0x40)
3966                                                 spddplx = SPEED_1000;
3967                                         else if (mii_reg & 0x2000)
3968                                                 spddplx = SPEED_100;
3969                                         else
3970                                                 spddplx = SPEED_10;
3971                                         spddplx += (mii_reg & 0x100)
3972                                                    ? FULL_DUPLEX :
3973                                                    HALF_DUPLEX;
3974                                         retval = e1000_set_spd_dplx(adapter,
3975                                                                     spddplx);
3976                                         if(retval) {
3977                                                 spin_unlock_irqrestore(
3978                                                         &adapter->stats_lock, 
3979                                                         flags);
3980                                                 return retval;
3981                                         }
3982                                 }
3983                                 if(netif_running(adapter->netdev)) {
3984                                         e1000_down(adapter);
3985                                         e1000_up(adapter);
3986                                 } else
3987                                         e1000_reset(adapter);
3988                                 break;
3989                         case M88E1000_PHY_SPEC_CTRL:
3990                         case M88E1000_EXT_PHY_SPEC_CTRL:
3991                                 if(e1000_phy_reset(&adapter->hw)) {
3992                                         spin_unlock_irqrestore(
3993                                                 &adapter->stats_lock, flags);
3994                                         return -EIO;
3995                                 }
3996                                 break;
3997                         }
3998                 } else {
3999                         switch (data->reg_num) {
4000                         case PHY_CTRL:
4001                                 if(mii_reg & MII_CR_POWER_DOWN)
4002                                         break;
4003                                 if(netif_running(adapter->netdev)) {
4004                                         e1000_down(adapter);
4005                                         e1000_up(adapter);
4006                                 } else
4007                                         e1000_reset(adapter);
4008                                 break;
4009                         }
4010                 }
4011                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4012                 break;
4013         default:
4014                 return -EOPNOTSUPP;
4015         }
4016         return E1000_SUCCESS;
4017 }
4018
4019 void
4020 e1000_pci_set_mwi(struct e1000_hw *hw)
4021 {
4022         struct e1000_adapter *adapter = hw->back;
4023         int ret_val = pci_set_mwi(adapter->pdev);
4024
4025         if(ret_val)
4026                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4027 }
4028
4029 void
4030 e1000_pci_clear_mwi(struct e1000_hw *hw)
4031 {
4032         struct e1000_adapter *adapter = hw->back;
4033
4034         pci_clear_mwi(adapter->pdev);
4035 }
4036
4037 void
4038 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4039 {
4040         struct e1000_adapter *adapter = hw->back;
4041
4042         pci_read_config_word(adapter->pdev, reg, value);
4043 }
4044
4045 void
4046 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4047 {
4048         struct e1000_adapter *adapter = hw->back;
4049
4050         pci_write_config_word(adapter->pdev, reg, *value);
4051 }
4052
4053 uint32_t
4054 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4055 {
4056         return inl(port);
4057 }
4058
4059 void
4060 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4061 {
4062         outl(value, port);
4063 }
4064
4065 static void
4066 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4067 {
4068         struct e1000_adapter *adapter = netdev_priv(netdev);
4069         uint32_t ctrl, rctl;
4070
4071         e1000_irq_disable(adapter);
4072         adapter->vlgrp = grp;
4073
4074         if(grp) {
4075                 /* enable VLAN tag insert/strip */
4076                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4077                 ctrl |= E1000_CTRL_VME;
4078                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4079
4080                 /* enable VLAN receive filtering */
4081                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4082                 rctl |= E1000_RCTL_VFE;
4083                 rctl &= ~E1000_RCTL_CFIEN;
4084                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4085                 e1000_update_mng_vlan(adapter);
4086         } else {
4087                 /* disable VLAN tag insert/strip */
4088                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4089                 ctrl &= ~E1000_CTRL_VME;
4090                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4091
4092                 /* disable VLAN filtering */
4093                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4094                 rctl &= ~E1000_RCTL_VFE;
4095                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4096                 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4097                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4098                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4099                 }
4100         }
4101
4102         e1000_irq_enable(adapter);
4103 }
4104
4105 static void
4106 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4107 {
4108         struct e1000_adapter *adapter = netdev_priv(netdev);
4109         uint32_t vfta, index;
4110         if((adapter->hw.mng_cookie.status &
4111                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4112                 (vid == adapter->mng_vlan_id))
4113                 return;
4114         /* add VID to filter table */
4115         index = (vid >> 5) & 0x7F;
4116         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4117         vfta |= (1 << (vid & 0x1F));
4118         e1000_write_vfta(&adapter->hw, index, vfta);
4119 }
4120
4121 static void
4122 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4123 {
4124         struct e1000_adapter *adapter = netdev_priv(netdev);
4125         uint32_t vfta, index;
4126
4127         e1000_irq_disable(adapter);
4128
4129         if(adapter->vlgrp)
4130                 adapter->vlgrp->vlan_devices[vid] = NULL;
4131
4132         e1000_irq_enable(adapter);
4133
4134         if((adapter->hw.mng_cookie.status &
4135                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4136                 (vid == adapter->mng_vlan_id))
4137                 return;
4138         /* remove VID from filter table */
4139         index = (vid >> 5) & 0x7F;
4140         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4141         vfta &= ~(1 << (vid & 0x1F));
4142         e1000_write_vfta(&adapter->hw, index, vfta);
4143 }
4144
4145 static void
4146 e1000_restore_vlan(struct e1000_adapter *adapter)
4147 {
4148         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4149
4150         if(adapter->vlgrp) {
4151                 uint16_t vid;
4152                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4153                         if(!adapter->vlgrp->vlan_devices[vid])
4154                                 continue;
4155                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4156                 }
4157         }
4158 }
4159
4160 int
4161 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4162 {
4163         adapter->hw.autoneg = 0;
4164
4165         /* Fiber NICs only allow 1000 gbps Full duplex */
4166         if((adapter->hw.media_type == e1000_media_type_fiber) &&
4167                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4168                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4169                 return -EINVAL;
4170         }
4171
4172         switch(spddplx) {
4173         case SPEED_10 + DUPLEX_HALF:
4174                 adapter->hw.forced_speed_duplex = e1000_10_half;
4175                 break;
4176         case SPEED_10 + DUPLEX_FULL:
4177                 adapter->hw.forced_speed_duplex = e1000_10_full;
4178                 break;
4179         case SPEED_100 + DUPLEX_HALF:
4180                 adapter->hw.forced_speed_duplex = e1000_100_half;
4181                 break;
4182         case SPEED_100 + DUPLEX_FULL:
4183                 adapter->hw.forced_speed_duplex = e1000_100_full;
4184                 break;
4185         case SPEED_1000 + DUPLEX_FULL:
4186                 adapter->hw.autoneg = 1;
4187                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4188                 break;
4189         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4190         default:
4191                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4192                 return -EINVAL;
4193         }
4194         return 0;
4195 }
4196
4197 #ifdef CONFIG_PM
4198 static int
4199 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4200 {
4201         struct net_device *netdev = pci_get_drvdata(pdev);
4202         struct e1000_adapter *adapter = netdev_priv(netdev);
4203         uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
4204         uint32_t wufc = adapter->wol;
4205
4206         netif_device_detach(netdev);
4207
4208         if(netif_running(netdev))
4209                 e1000_down(adapter);
4210
4211         status = E1000_READ_REG(&adapter->hw, STATUS);
4212         if(status & E1000_STATUS_LU)
4213                 wufc &= ~E1000_WUFC_LNKC;
4214
4215         if(wufc) {
4216                 e1000_setup_rctl(adapter);
4217                 e1000_set_multi(netdev);
4218
4219                 /* turn on all-multi mode if wake on multicast is enabled */
4220                 if(adapter->wol & E1000_WUFC_MC) {
4221                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4222                         rctl |= E1000_RCTL_MPE;
4223                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4224                 }
4225
4226                 if(adapter->hw.mac_type >= e1000_82540) {
4227                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4228                         /* advertise wake from D3Cold */
4229                         #define E1000_CTRL_ADVD3WUC 0x00100000
4230                         /* phy power management enable */
4231                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4232                         ctrl |= E1000_CTRL_ADVD3WUC |
4233                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4234                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4235                 }
4236
4237                 if(adapter->hw.media_type == e1000_media_type_fiber ||
4238                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4239                         /* keep the laser running in D3 */
4240                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4241                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4242                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4243                 }
4244
4245                 /* Allow time for pending master requests to run */
4246                 e1000_disable_pciex_master(&adapter->hw);
4247
4248                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4249                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4250                 pci_enable_wake(pdev, 3, 1);
4251                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4252         } else {
4253                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4254                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4255                 pci_enable_wake(pdev, 3, 0);
4256                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4257         }
4258
4259         pci_save_state(pdev);
4260
4261         if(adapter->hw.mac_type >= e1000_82540 &&
4262            adapter->hw.media_type == e1000_media_type_copper) {
4263                 manc = E1000_READ_REG(&adapter->hw, MANC);
4264                 if(manc & E1000_MANC_SMBUS_EN) {
4265                         manc |= E1000_MANC_ARP_EN;
4266                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4267                         pci_enable_wake(pdev, 3, 1);
4268                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4269                 }
4270         }
4271
4272         switch(adapter->hw.mac_type) {
4273         case e1000_82571:
4274         case e1000_82572:
4275                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4276                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4277                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4278                 break;
4279         case e1000_82573:
4280                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4281                 E1000_WRITE_REG(&adapter->hw, SWSM,
4282                                 swsm & ~E1000_SWSM_DRV_LOAD);
4283                 break;
4284         default:
4285                 break;
4286         }
4287
4288         pci_disable_device(pdev);
4289         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4290
4291         return 0;
4292 }
4293
4294 static int
4295 e1000_resume(struct pci_dev *pdev)
4296 {
4297         struct net_device *netdev = pci_get_drvdata(pdev);
4298         struct e1000_adapter *adapter = netdev_priv(netdev);
4299         uint32_t manc, ret_val, swsm;
4300         uint32_t ctrl_ext;
4301
4302         pci_set_power_state(pdev, PCI_D0);
4303         pci_restore_state(pdev);
4304         ret_val = pci_enable_device(pdev);
4305         pci_set_master(pdev);
4306
4307         pci_enable_wake(pdev, PCI_D3hot, 0);
4308         pci_enable_wake(pdev, PCI_D3cold, 0);
4309
4310         e1000_reset(adapter);
4311         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4312
4313         if(netif_running(netdev))
4314                 e1000_up(adapter);
4315
4316         netif_device_attach(netdev);
4317
4318         if(adapter->hw.mac_type >= e1000_82540 &&
4319            adapter->hw.media_type == e1000_media_type_copper) {
4320                 manc = E1000_READ_REG(&adapter->hw, MANC);
4321                 manc &= ~(E1000_MANC_ARP_EN);
4322                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4323         }
4324
4325         switch(adapter->hw.mac_type) {
4326         case e1000_82571:
4327         case e1000_82572:
4328                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4329                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4330                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4331                 break;
4332         case e1000_82573:
4333                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4334                 E1000_WRITE_REG(&adapter->hw, SWSM,
4335                                 swsm | E1000_SWSM_DRV_LOAD);
4336                 break;
4337         default:
4338                 break;
4339         }
4340
4341         return 0;
4342 }
4343 #endif
4344 #ifdef CONFIG_NET_POLL_CONTROLLER
4345 /*
4346  * Polling 'interrupt' - used by things like netconsole to send skbs
4347  * without having to re-enable interrupts. It's not called while
4348  * the interrupt routine is executing.
4349  */
4350 static void
4351 e1000_netpoll(struct net_device *netdev)
4352 {
4353         struct e1000_adapter *adapter = netdev_priv(netdev);
4354         disable_irq(adapter->pdev->irq);
4355         e1000_intr(adapter->pdev->irq, netdev, NULL);
4356         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4357         enable_irq(adapter->pdev->irq);
4358 }
4359 #endif
4360
4361 /* e1000_main.c */