]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
e1000: add mmiowb() for IA64 to sync tail writes
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         /* required last entry */
107         {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122                              struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124                              struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145                                 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147                                 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring,
175                                    int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177                                       struct e1000_rx_ring *rx_ring,
178                                       int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181                            int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189                                        struct sk_buff *skb);
190
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
195
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
201
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
206
207 extern void e1000_check_options(struct e1000_adapter *adapter);
208
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210                      pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
213
214 static struct pci_error_handlers e1000_err_handler = {
215         .error_detected = e1000_io_error_detected,
216         .slot_reset = e1000_io_slot_reset,
217         .resume = e1000_io_resume,
218 };
219
220 static struct pci_driver e1000_driver = {
221         .name     = e1000_driver_name,
222         .id_table = e1000_pci_tbl,
223         .probe    = e1000_probe,
224         .remove   = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226         /* Power Managment Hooks */
227         .suspend  = e1000_suspend,
228         .resume   = e1000_resume,
229 #endif
230         .shutdown = e1000_shutdown,
231         .err_handler = &e1000_err_handler
232 };
233
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
238
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
242
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249
250 static int __init
251 e1000_init_module(void)
252 {
253         int ret;
254         printk(KERN_INFO "%s - version %s\n",
255                e1000_driver_string, e1000_driver_version);
256
257         printk(KERN_INFO "%s\n", e1000_copyright);
258
259         ret = pci_register_driver(&e1000_driver);
260
261         return ret;
262 }
263
264 module_init(e1000_init_module);
265
266 /**
267  * e1000_exit_module - Driver Exit Cleanup Routine
268  *
269  * e1000_exit_module is called just before the driver is removed
270  * from memory.
271  **/
272
273 static void __exit
274 e1000_exit_module(void)
275 {
276         pci_unregister_driver(&e1000_driver);
277 }
278
279 module_exit(e1000_exit_module);
280
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283         struct net_device *netdev = adapter->netdev;
284         int flags, err = 0;
285
286         flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288         if (adapter->hw.mac_type > e1000_82547_rev_2) {
289                 adapter->have_msi = TRUE;
290                 if ((err = pci_enable_msi(adapter->pdev))) {
291                         DPRINTK(PROBE, ERR,
292                          "Unable to allocate MSI interrupt Error: %d\n", err);
293                         adapter->have_msi = FALSE;
294                 }
295         }
296         if (adapter->have_msi)
297                 flags &= ~IRQF_SHARED;
298 #endif
299         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300                                netdev->name, netdev)))
301                 DPRINTK(PROBE, ERR,
302                         "Unable to allocate interrupt Error: %d\n", err);
303
304         return err;
305 }
306
307 static void e1000_free_irq(struct e1000_adapter *adapter)
308 {
309         struct net_device *netdev = adapter->netdev;
310
311         free_irq(adapter->pdev->irq, netdev);
312
313 #ifdef CONFIG_PCI_MSI
314         if (adapter->have_msi)
315                 pci_disable_msi(adapter->pdev);
316 #endif
317 }
318
319 /**
320  * e1000_irq_disable - Mask off interrupt generation on the NIC
321  * @adapter: board private structure
322  **/
323
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
326 {
327         atomic_inc(&adapter->irq_sem);
328         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329         E1000_WRITE_FLUSH(&adapter->hw);
330         synchronize_irq(adapter->pdev->irq);
331 }
332
333 /**
334  * e1000_irq_enable - Enable default interrupt generation settings
335  * @adapter: board private structure
336  **/
337
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
340 {
341         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343                 E1000_WRITE_FLUSH(&adapter->hw);
344         }
345 }
346
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
349 {
350         struct net_device *netdev = adapter->netdev;
351         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352         uint16_t old_vid = adapter->mng_vlan_id;
353         if (adapter->vlgrp) {
354                 if (!adapter->vlgrp->vlan_devices[vid]) {
355                         if (adapter->hw.mng_cookie.status &
356                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357                                 e1000_vlan_rx_add_vid(netdev, vid);
358                                 adapter->mng_vlan_id = vid;
359                         } else
360                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
361
362                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363                                         (vid != old_vid) &&
364                                         !adapter->vlgrp->vlan_devices[old_vid])
365                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
366                 } else
367                         adapter->mng_vlan_id = vid;
368         }
369 }
370
371 /**
372  * e1000_release_hw_control - release control of the h/w to f/w
373  * @adapter: address of board private structure
374  *
375  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376  * For ASF and Pass Through versions of f/w this means that the
377  * driver is no longer loaded. For AMT version (only with 82573) i
378  * of the f/w this means that the network i/f is closed.
379  *
380  **/
381
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
384 {
385         uint32_t ctrl_ext;
386         uint32_t swsm;
387         uint32_t extcnf;
388
389         /* Let firmware taken over control of h/w */
390         switch (adapter->hw.mac_type) {
391         case e1000_82571:
392         case e1000_82572:
393         case e1000_80003es2lan:
394                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397                 break;
398         case e1000_82573:
399                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400                 E1000_WRITE_REG(&adapter->hw, SWSM,
401                                 swsm & ~E1000_SWSM_DRV_LOAD);
402         case e1000_ich8lan:
403                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406                 break;
407         default:
408                 break;
409         }
410 }
411
412 /**
413  * e1000_get_hw_control - get control of the h/w from f/w
414  * @adapter: address of board private structure
415  *
416  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417  * For ASF and Pass Through versions of f/w this means that
418  * the driver is loaded. For AMT version (only with 82573)
419  * of the f/w this means that the network i/f is open.
420  *
421  **/
422
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
425 {
426         uint32_t ctrl_ext;
427         uint32_t swsm;
428         uint32_t extcnf;
429
430         /* Let firmware know the driver has taken over */
431         switch (adapter->hw.mac_type) {
432         case e1000_82571:
433         case e1000_82572:
434         case e1000_80003es2lan:
435                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
436                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
437                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
438                 break;
439         case e1000_82573:
440                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
441                 E1000_WRITE_REG(&adapter->hw, SWSM,
442                                 swsm | E1000_SWSM_DRV_LOAD);
443                 break;
444         case e1000_ich8lan:
445                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
446                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
447                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
448                 break;
449         default:
450                 break;
451         }
452 }
453
454 int
455 e1000_up(struct e1000_adapter *adapter)
456 {
457         struct net_device *netdev = adapter->netdev;
458         int i;
459
460         /* hardware has been reset, we need to reload some things */
461
462         e1000_set_multi(netdev);
463
464         e1000_restore_vlan(adapter);
465
466         e1000_configure_tx(adapter);
467         e1000_setup_rctl(adapter);
468         e1000_configure_rx(adapter);
469         /* call E1000_DESC_UNUSED which always leaves
470          * at least 1 descriptor unused to make sure
471          * next_to_use != next_to_clean */
472         for (i = 0; i < adapter->num_rx_queues; i++) {
473                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
474                 adapter->alloc_rx_buf(adapter, ring,
475                                       E1000_DESC_UNUSED(ring));
476         }
477
478         adapter->tx_queue_len = netdev->tx_queue_len;
479
480 #ifdef CONFIG_E1000_NAPI
481         netif_poll_enable(netdev);
482 #endif
483         e1000_irq_enable(adapter);
484
485         clear_bit(__E1000_DOWN, &adapter->flags);
486
487         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
488         return 0;
489 }
490
491 /**
492  * e1000_power_up_phy - restore link in case the phy was powered down
493  * @adapter: address of board private structure
494  *
495  * The phy may be powered down to save power and turn off link when the
496  * driver is unloaded and wake on lan is not enabled (among others)
497  * *** this routine MUST be followed by a call to e1000_reset ***
498  *
499  **/
500
501 void e1000_power_up_phy(struct e1000_adapter *adapter)
502 {
503         uint16_t mii_reg = 0;
504
505         /* Just clear the power down bit to wake the phy back up */
506         if (adapter->hw.media_type == e1000_media_type_copper) {
507                 /* according to the manual, the phy will retain its
508                  * settings across a power-down/up cycle */
509                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
510                 mii_reg &= ~MII_CR_POWER_DOWN;
511                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
512         }
513 }
514
515 static void e1000_power_down_phy(struct e1000_adapter *adapter)
516 {
517         /* Power down the PHY so no link is implied when interface is down *
518          * The PHY cannot be powered down if any of the following is TRUE *
519          * (a) WoL is enabled
520          * (b) AMT is active
521          * (c) SoL/IDER session is active */
522         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
523            adapter->hw.media_type == e1000_media_type_copper) {
524                 uint16_t mii_reg = 0;
525
526                 switch (adapter->hw.mac_type) {
527                 case e1000_82540:
528                 case e1000_82545:
529                 case e1000_82545_rev_3:
530                 case e1000_82546:
531                 case e1000_82546_rev_3:
532                 case e1000_82541:
533                 case e1000_82541_rev_2:
534                 case e1000_82547:
535                 case e1000_82547_rev_2:
536                         if (E1000_READ_REG(&adapter->hw, MANC) &
537                             E1000_MANC_SMBUS_EN)
538                                 goto out;
539                         break;
540                 case e1000_82571:
541                 case e1000_82572:
542                 case e1000_82573:
543                 case e1000_80003es2lan:
544                 case e1000_ich8lan:
545                         if (e1000_check_mng_mode(&adapter->hw) ||
546                             e1000_check_phy_reset_block(&adapter->hw))
547                                 goto out;
548                         break;
549                 default:
550                         goto out;
551                 }
552                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
553                 mii_reg |= MII_CR_POWER_DOWN;
554                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
555                 mdelay(1);
556         }
557 out:
558         return;
559 }
560
561 void
562 e1000_down(struct e1000_adapter *adapter)
563 {
564         struct net_device *netdev = adapter->netdev;
565
566         /* signal that we're down so the interrupt handler does not
567          * reschedule our watchdog timer */
568         set_bit(__E1000_DOWN, &adapter->flags);
569
570         e1000_irq_disable(adapter);
571
572         del_timer_sync(&adapter->tx_fifo_stall_timer);
573         del_timer_sync(&adapter->watchdog_timer);
574         del_timer_sync(&adapter->phy_info_timer);
575
576 #ifdef CONFIG_E1000_NAPI
577         netif_poll_disable(netdev);
578 #endif
579         netdev->tx_queue_len = adapter->tx_queue_len;
580         adapter->link_speed = 0;
581         adapter->link_duplex = 0;
582         netif_carrier_off(netdev);
583         netif_stop_queue(netdev);
584
585         e1000_reset(adapter);
586         e1000_clean_all_tx_rings(adapter);
587         e1000_clean_all_rx_rings(adapter);
588 }
589
590 void
591 e1000_reinit_locked(struct e1000_adapter *adapter)
592 {
593         WARN_ON(in_interrupt());
594         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595                 msleep(1);
596         e1000_down(adapter);
597         e1000_up(adapter);
598         clear_bit(__E1000_RESETTING, &adapter->flags);
599 }
600
601 void
602 e1000_reset(struct e1000_adapter *adapter)
603 {
604         uint32_t pba, manc;
605         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
606
607         /* Repartition Pba for greater than 9k mtu
608          * To take effect CTRL.RST is required.
609          */
610
611         switch (adapter->hw.mac_type) {
612         case e1000_82547:
613         case e1000_82547_rev_2:
614                 pba = E1000_PBA_30K;
615                 break;
616         case e1000_82571:
617         case e1000_82572:
618         case e1000_80003es2lan:
619                 pba = E1000_PBA_38K;
620                 break;
621         case e1000_82573:
622                 pba = E1000_PBA_12K;
623                 break;
624         case e1000_ich8lan:
625                 pba = E1000_PBA_8K;
626                 break;
627         default:
628                 pba = E1000_PBA_48K;
629                 break;
630         }
631
632         if ((adapter->hw.mac_type != e1000_82573) &&
633            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
634                 pba -= 8; /* allocate more FIFO for Tx */
635
636
637         if (adapter->hw.mac_type == e1000_82547) {
638                 adapter->tx_fifo_head = 0;
639                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
640                 adapter->tx_fifo_size =
641                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
642                 atomic_set(&adapter->tx_fifo_stall, 0);
643         }
644
645         E1000_WRITE_REG(&adapter->hw, PBA, pba);
646
647         /* flow control settings */
648         /* Set the FC high water mark to 90% of the FIFO size.
649          * Required to clear last 3 LSB */
650         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
651         /* We can't use 90% on small FIFOs because the remainder
652          * would be less than 1 full frame.  In this case, we size
653          * it to allow at least a full frame above the high water
654          *  mark. */
655         if (pba < E1000_PBA_16K)
656                 fc_high_water_mark = (pba * 1024) - 1600;
657
658         adapter->hw.fc_high_water = fc_high_water_mark;
659         adapter->hw.fc_low_water = fc_high_water_mark - 8;
660         if (adapter->hw.mac_type == e1000_80003es2lan)
661                 adapter->hw.fc_pause_time = 0xFFFF;
662         else
663                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
664         adapter->hw.fc_send_xon = 1;
665         adapter->hw.fc = adapter->hw.original_fc;
666
667         /* Allow time for pending master requests to run */
668         e1000_reset_hw(&adapter->hw);
669         if (adapter->hw.mac_type >= e1000_82544)
670                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
671
672         if (e1000_init_hw(&adapter->hw))
673                 DPRINTK(PROBE, ERR, "Hardware Error\n");
674         e1000_update_mng_vlan(adapter);
675         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
676         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
677
678         e1000_reset_adaptive(&adapter->hw);
679         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
680
681         if (!adapter->smart_power_down &&
682             (adapter->hw.mac_type == e1000_82571 ||
683              adapter->hw.mac_type == e1000_82572)) {
684                 uint16_t phy_data = 0;
685                 /* speed up time to link by disabling smart power down, ignore
686                  * the return value of this function because there is nothing
687                  * different we would do if it failed */
688                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
689                                    &phy_data);
690                 phy_data &= ~IGP02E1000_PM_SPD;
691                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
692                                     phy_data);
693         }
694
695         if ((adapter->en_mng_pt) &&
696             (adapter->hw.mac_type >= e1000_82540) &&
697             (adapter->hw.mac_type < e1000_82571) &&
698             (adapter->hw.media_type == e1000_media_type_copper)) {
699                 manc = E1000_READ_REG(&adapter->hw, MANC);
700                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
701                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
702         }
703 }
704
705 /**
706  * e1000_probe - Device Initialization Routine
707  * @pdev: PCI device information struct
708  * @ent: entry in e1000_pci_tbl
709  *
710  * Returns 0 on success, negative on failure
711  *
712  * e1000_probe initializes an adapter identified by a pci_dev structure.
713  * The OS initialization, configuring of the adapter private structure,
714  * and a hardware reset occur.
715  **/
716
717 static int __devinit
718 e1000_probe(struct pci_dev *pdev,
719             const struct pci_device_id *ent)
720 {
721         struct net_device *netdev;
722         struct e1000_adapter *adapter;
723         unsigned long mmio_start, mmio_len;
724         unsigned long flash_start, flash_len;
725
726         static int cards_found = 0;
727         static int global_quad_port_a = 0; /* global ksp3 port a indication */
728         int i, err, pci_using_dac;
729         uint16_t eeprom_data = 0;
730         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
731         if ((err = pci_enable_device(pdev)))
732                 return err;
733
734         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
735             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
736                 pci_using_dac = 1;
737         } else {
738                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
739                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
740                         E1000_ERR("No usable DMA configuration, aborting\n");
741                         goto err_dma;
742                 }
743                 pci_using_dac = 0;
744         }
745
746         if ((err = pci_request_regions(pdev, e1000_driver_name)))
747                 goto err_pci_reg;
748
749         pci_set_master(pdev);
750
751         err = -ENOMEM;
752         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
753         if (!netdev)
754                 goto err_alloc_etherdev;
755
756         SET_MODULE_OWNER(netdev);
757         SET_NETDEV_DEV(netdev, &pdev->dev);
758
759         pci_set_drvdata(pdev, netdev);
760         adapter = netdev_priv(netdev);
761         adapter->netdev = netdev;
762         adapter->pdev = pdev;
763         adapter->hw.back = adapter;
764         adapter->msg_enable = (1 << debug) - 1;
765
766         mmio_start = pci_resource_start(pdev, BAR_0);
767         mmio_len = pci_resource_len(pdev, BAR_0);
768
769         err = -EIO;
770         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
771         if (!adapter->hw.hw_addr)
772                 goto err_ioremap;
773
774         for (i = BAR_1; i <= BAR_5; i++) {
775                 if (pci_resource_len(pdev, i) == 0)
776                         continue;
777                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
778                         adapter->hw.io_base = pci_resource_start(pdev, i);
779                         break;
780                 }
781         }
782
783         netdev->open = &e1000_open;
784         netdev->stop = &e1000_close;
785         netdev->hard_start_xmit = &e1000_xmit_frame;
786         netdev->get_stats = &e1000_get_stats;
787         netdev->set_multicast_list = &e1000_set_multi;
788         netdev->set_mac_address = &e1000_set_mac;
789         netdev->change_mtu = &e1000_change_mtu;
790         netdev->do_ioctl = &e1000_ioctl;
791         e1000_set_ethtool_ops(netdev);
792         netdev->tx_timeout = &e1000_tx_timeout;
793         netdev->watchdog_timeo = 5 * HZ;
794 #ifdef CONFIG_E1000_NAPI
795         netdev->poll = &e1000_clean;
796         netdev->weight = 64;
797 #endif
798         netdev->vlan_rx_register = e1000_vlan_rx_register;
799         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
800         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
801 #ifdef CONFIG_NET_POLL_CONTROLLER
802         netdev->poll_controller = e1000_netpoll;
803 #endif
804         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
805
806         netdev->mem_start = mmio_start;
807         netdev->mem_end = mmio_start + mmio_len;
808         netdev->base_addr = adapter->hw.io_base;
809
810         adapter->bd_number = cards_found;
811
812         /* setup the private structure */
813
814         if ((err = e1000_sw_init(adapter)))
815                 goto err_sw_init;
816
817         err = -EIO;
818         /* Flash BAR mapping must happen after e1000_sw_init
819          * because it depends on mac_type */
820         if ((adapter->hw.mac_type == e1000_ich8lan) &&
821            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
822                 flash_start = pci_resource_start(pdev, 1);
823                 flash_len = pci_resource_len(pdev, 1);
824                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
825                 if (!adapter->hw.flash_address)
826                         goto err_flashmap;
827         }
828
829         if (e1000_check_phy_reset_block(&adapter->hw))
830                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
831
832         if (adapter->hw.mac_type >= e1000_82543) {
833                 netdev->features = NETIF_F_SG |
834                                    NETIF_F_HW_CSUM |
835                                    NETIF_F_HW_VLAN_TX |
836                                    NETIF_F_HW_VLAN_RX |
837                                    NETIF_F_HW_VLAN_FILTER;
838                 if (adapter->hw.mac_type == e1000_ich8lan)
839                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
840         }
841
842 #ifdef NETIF_F_TSO
843         if ((adapter->hw.mac_type >= e1000_82544) &&
844            (adapter->hw.mac_type != e1000_82547))
845                 netdev->features |= NETIF_F_TSO;
846
847 #ifdef NETIF_F_TSO6
848         if (adapter->hw.mac_type > e1000_82547_rev_2)
849                 netdev->features |= NETIF_F_TSO6;
850 #endif
851 #endif
852         if (pci_using_dac)
853                 netdev->features |= NETIF_F_HIGHDMA;
854
855         netdev->features |= NETIF_F_LLTX;
856
857         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
858
859         /* initialize eeprom parameters */
860
861         if (e1000_init_eeprom_params(&adapter->hw)) {
862                 E1000_ERR("EEPROM initialization failed\n");
863                 goto err_eeprom;
864         }
865
866         /* before reading the EEPROM, reset the controller to
867          * put the device in a known good starting state */
868
869         e1000_reset_hw(&adapter->hw);
870
871         /* make sure the EEPROM is good */
872
873         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
874                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
875                 goto err_eeprom;
876         }
877
878         /* copy the MAC address out of the EEPROM */
879
880         if (e1000_read_mac_addr(&adapter->hw))
881                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
882         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
883         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
884
885         if (!is_valid_ether_addr(netdev->perm_addr)) {
886                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
887                 goto err_eeprom;
888         }
889
890         e1000_get_bus_info(&adapter->hw);
891
892         init_timer(&adapter->tx_fifo_stall_timer);
893         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
894         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
895
896         init_timer(&adapter->watchdog_timer);
897         adapter->watchdog_timer.function = &e1000_watchdog;
898         adapter->watchdog_timer.data = (unsigned long) adapter;
899
900         init_timer(&adapter->phy_info_timer);
901         adapter->phy_info_timer.function = &e1000_update_phy_info;
902         adapter->phy_info_timer.data = (unsigned long) adapter;
903
904         INIT_WORK(&adapter->reset_task,
905                 (void (*)(void *))e1000_reset_task, netdev);
906
907         e1000_check_options(adapter);
908
909         /* Initial Wake on LAN setting
910          * If APM wake is enabled in the EEPROM,
911          * enable the ACPI Magic Packet filter
912          */
913
914         switch (adapter->hw.mac_type) {
915         case e1000_82542_rev2_0:
916         case e1000_82542_rev2_1:
917         case e1000_82543:
918                 break;
919         case e1000_82544:
920                 e1000_read_eeprom(&adapter->hw,
921                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
922                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
923                 break;
924         case e1000_ich8lan:
925                 e1000_read_eeprom(&adapter->hw,
926                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
927                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
928                 break;
929         case e1000_82546:
930         case e1000_82546_rev_3:
931         case e1000_82571:
932         case e1000_80003es2lan:
933                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
934                         e1000_read_eeprom(&adapter->hw,
935                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
936                         break;
937                 }
938                 /* Fall Through */
939         default:
940                 e1000_read_eeprom(&adapter->hw,
941                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
942                 break;
943         }
944         if (eeprom_data & eeprom_apme_mask)
945                 adapter->eeprom_wol |= E1000_WUFC_MAG;
946
947         /* now that we have the eeprom settings, apply the special cases
948          * where the eeprom may be wrong or the board simply won't support
949          * wake on lan on a particular port */
950         switch (pdev->device) {
951         case E1000_DEV_ID_82546GB_PCIE:
952                 adapter->eeprom_wol = 0;
953                 break;
954         case E1000_DEV_ID_82546EB_FIBER:
955         case E1000_DEV_ID_82546GB_FIBER:
956         case E1000_DEV_ID_82571EB_FIBER:
957                 /* Wake events only supported on port A for dual fiber
958                  * regardless of eeprom setting */
959                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
960                         adapter->eeprom_wol = 0;
961                 break;
962         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
963         case E1000_DEV_ID_82571EB_QUAD_COPPER:
964                 /* if quad port adapter, disable WoL on all but port A */
965                 if (global_quad_port_a != 0)
966                         adapter->eeprom_wol = 0;
967                 else
968                         adapter->quad_port_a = 1;
969                 /* Reset for multiple quad port adapters */
970                 if (++global_quad_port_a == 4)
971                         global_quad_port_a = 0;
972                 break;
973         }
974
975         /* initialize the wol settings based on the eeprom settings */
976         adapter->wol = adapter->eeprom_wol;
977
978         /* print bus type/speed/width info */
979         {
980         struct e1000_hw *hw = &adapter->hw;
981         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
982                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
983                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
984                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
985                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
986                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
987                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
988                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
989                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
990                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
991                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
992                  "32-bit"));
993         }
994
995         for (i = 0; i < 6; i++)
996                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
997
998         /* reset the hardware with the new settings */
999         e1000_reset(adapter);
1000
1001         /* If the controller is 82573 and f/w is AMT, do not set
1002          * DRV_LOAD until the interface is up.  For all other cases,
1003          * let the f/w know that the h/w is now under the control
1004          * of the driver. */
1005         if (adapter->hw.mac_type != e1000_82573 ||
1006             !e1000_check_mng_mode(&adapter->hw))
1007                 e1000_get_hw_control(adapter);
1008
1009         strcpy(netdev->name, "eth%d");
1010         if ((err = register_netdev(netdev)))
1011                 goto err_register;
1012
1013         /* tell the stack to leave us alone until e1000_open() is called */
1014         netif_carrier_off(netdev);
1015         netif_stop_queue(netdev);
1016
1017         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1018
1019         cards_found++;
1020         return 0;
1021
1022 err_register:
1023         e1000_release_hw_control(adapter);
1024 err_eeprom:
1025         if (!e1000_check_phy_reset_block(&adapter->hw))
1026                 e1000_phy_hw_reset(&adapter->hw);
1027
1028         if (adapter->hw.flash_address)
1029                 iounmap(adapter->hw.flash_address);
1030 err_flashmap:
1031 #ifdef CONFIG_E1000_NAPI
1032         for (i = 0; i < adapter->num_rx_queues; i++)
1033                 dev_put(&adapter->polling_netdev[i]);
1034 #endif
1035
1036         kfree(adapter->tx_ring);
1037         kfree(adapter->rx_ring);
1038 #ifdef CONFIG_E1000_NAPI
1039         kfree(adapter->polling_netdev);
1040 #endif
1041 err_sw_init:
1042         iounmap(adapter->hw.hw_addr);
1043 err_ioremap:
1044         free_netdev(netdev);
1045 err_alloc_etherdev:
1046         pci_release_regions(pdev);
1047 err_pci_reg:
1048 err_dma:
1049         pci_disable_device(pdev);
1050         return err;
1051 }
1052
1053 /**
1054  * e1000_remove - Device Removal Routine
1055  * @pdev: PCI device information struct
1056  *
1057  * e1000_remove is called by the PCI subsystem to alert the driver
1058  * that it should release a PCI device.  The could be caused by a
1059  * Hot-Plug event, or because the driver is going to be removed from
1060  * memory.
1061  **/
1062
1063 static void __devexit
1064 e1000_remove(struct pci_dev *pdev)
1065 {
1066         struct net_device *netdev = pci_get_drvdata(pdev);
1067         struct e1000_adapter *adapter = netdev_priv(netdev);
1068         uint32_t manc;
1069 #ifdef CONFIG_E1000_NAPI
1070         int i;
1071 #endif
1072
1073         flush_scheduled_work();
1074
1075         if (adapter->hw.mac_type >= e1000_82540 &&
1076             adapter->hw.mac_type < e1000_82571 &&
1077             adapter->hw.media_type == e1000_media_type_copper) {
1078                 manc = E1000_READ_REG(&adapter->hw, MANC);
1079                 if (manc & E1000_MANC_SMBUS_EN) {
1080                         manc |= E1000_MANC_ARP_EN;
1081                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1082                 }
1083         }
1084
1085         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1086          * would have already happened in close and is redundant. */
1087         e1000_release_hw_control(adapter);
1088
1089         unregister_netdev(netdev);
1090 #ifdef CONFIG_E1000_NAPI
1091         for (i = 0; i < adapter->num_rx_queues; i++)
1092                 dev_put(&adapter->polling_netdev[i]);
1093 #endif
1094
1095         if (!e1000_check_phy_reset_block(&adapter->hw))
1096                 e1000_phy_hw_reset(&adapter->hw);
1097
1098         kfree(adapter->tx_ring);
1099         kfree(adapter->rx_ring);
1100 #ifdef CONFIG_E1000_NAPI
1101         kfree(adapter->polling_netdev);
1102 #endif
1103
1104         iounmap(adapter->hw.hw_addr);
1105         if (adapter->hw.flash_address)
1106                 iounmap(adapter->hw.flash_address);
1107         pci_release_regions(pdev);
1108
1109         free_netdev(netdev);
1110
1111         pci_disable_device(pdev);
1112 }
1113
1114 /**
1115  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1116  * @adapter: board private structure to initialize
1117  *
1118  * e1000_sw_init initializes the Adapter private data structure.
1119  * Fields are initialized based on PCI device information and
1120  * OS network device settings (MTU size).
1121  **/
1122
1123 static int __devinit
1124 e1000_sw_init(struct e1000_adapter *adapter)
1125 {
1126         struct e1000_hw *hw = &adapter->hw;
1127         struct net_device *netdev = adapter->netdev;
1128         struct pci_dev *pdev = adapter->pdev;
1129 #ifdef CONFIG_E1000_NAPI
1130         int i;
1131 #endif
1132
1133         /* PCI config space info */
1134
1135         hw->vendor_id = pdev->vendor;
1136         hw->device_id = pdev->device;
1137         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1138         hw->subsystem_id = pdev->subsystem_device;
1139
1140         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1141
1142         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1143
1144         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1145         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1146         hw->max_frame_size = netdev->mtu +
1147                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1148         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1149
1150         /* identify the MAC */
1151
1152         if (e1000_set_mac_type(hw)) {
1153                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1154                 return -EIO;
1155         }
1156
1157         switch (hw->mac_type) {
1158         default:
1159                 break;
1160         case e1000_82541:
1161         case e1000_82547:
1162         case e1000_82541_rev_2:
1163         case e1000_82547_rev_2:
1164                 hw->phy_init_script = 1;
1165                 break;
1166         }
1167
1168         e1000_set_media_type(hw);
1169
1170         hw->wait_autoneg_complete = FALSE;
1171         hw->tbi_compatibility_en = TRUE;
1172         hw->adaptive_ifs = TRUE;
1173
1174         /* Copper options */
1175
1176         if (hw->media_type == e1000_media_type_copper) {
1177                 hw->mdix = AUTO_ALL_MODES;
1178                 hw->disable_polarity_correction = FALSE;
1179                 hw->master_slave = E1000_MASTER_SLAVE;
1180         }
1181
1182         adapter->num_tx_queues = 1;
1183         adapter->num_rx_queues = 1;
1184
1185         if (e1000_alloc_queues(adapter)) {
1186                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1187                 return -ENOMEM;
1188         }
1189
1190 #ifdef CONFIG_E1000_NAPI
1191         for (i = 0; i < adapter->num_rx_queues; i++) {
1192                 adapter->polling_netdev[i].priv = adapter;
1193                 adapter->polling_netdev[i].poll = &e1000_clean;
1194                 adapter->polling_netdev[i].weight = 64;
1195                 dev_hold(&adapter->polling_netdev[i]);
1196                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1197         }
1198         spin_lock_init(&adapter->tx_queue_lock);
1199 #endif
1200
1201         atomic_set(&adapter->irq_sem, 1);
1202         spin_lock_init(&adapter->stats_lock);
1203
1204         set_bit(__E1000_DOWN, &adapter->flags);
1205
1206         return 0;
1207 }
1208
1209 /**
1210  * e1000_alloc_queues - Allocate memory for all rings
1211  * @adapter: board private structure to initialize
1212  *
1213  * We allocate one ring per queue at run-time since we don't know the
1214  * number of queues at compile-time.  The polling_netdev array is
1215  * intended for Multiqueue, but should work fine with a single queue.
1216  **/
1217
1218 static int __devinit
1219 e1000_alloc_queues(struct e1000_adapter *adapter)
1220 {
1221         int size;
1222
1223         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1224         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1225         if (!adapter->tx_ring)
1226                 return -ENOMEM;
1227         memset(adapter->tx_ring, 0, size);
1228
1229         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1230         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1231         if (!adapter->rx_ring) {
1232                 kfree(adapter->tx_ring);
1233                 return -ENOMEM;
1234         }
1235         memset(adapter->rx_ring, 0, size);
1236
1237 #ifdef CONFIG_E1000_NAPI
1238         size = sizeof(struct net_device) * adapter->num_rx_queues;
1239         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1240         if (!adapter->polling_netdev) {
1241                 kfree(adapter->tx_ring);
1242                 kfree(adapter->rx_ring);
1243                 return -ENOMEM;
1244         }
1245         memset(adapter->polling_netdev, 0, size);
1246 #endif
1247
1248         return E1000_SUCCESS;
1249 }
1250
1251 /**
1252  * e1000_open - Called when a network interface is made active
1253  * @netdev: network interface device structure
1254  *
1255  * Returns 0 on success, negative value on failure
1256  *
1257  * The open entry point is called when a network interface is made
1258  * active by the system (IFF_UP).  At this point all resources needed
1259  * for transmit and receive operations are allocated, the interrupt
1260  * handler is registered with the OS, the watchdog timer is started,
1261  * and the stack is notified that the interface is ready.
1262  **/
1263
1264 static int
1265 e1000_open(struct net_device *netdev)
1266 {
1267         struct e1000_adapter *adapter = netdev_priv(netdev);
1268         int err;
1269
1270         /* disallow open during test */
1271         if (test_bit(__E1000_TESTING, &adapter->flags))
1272                 return -EBUSY;
1273
1274         /* allocate transmit descriptors */
1275         if ((err = e1000_setup_all_tx_resources(adapter)))
1276                 goto err_setup_tx;
1277
1278         /* allocate receive descriptors */
1279         if ((err = e1000_setup_all_rx_resources(adapter)))
1280                 goto err_setup_rx;
1281
1282         err = e1000_request_irq(adapter);
1283         if (err)
1284                 goto err_req_irq;
1285
1286         e1000_power_up_phy(adapter);
1287
1288         if ((err = e1000_up(adapter)))
1289                 goto err_up;
1290         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1291         if ((adapter->hw.mng_cookie.status &
1292                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1293                 e1000_update_mng_vlan(adapter);
1294         }
1295
1296         /* If AMT is enabled, let the firmware know that the network
1297          * interface is now open */
1298         if (adapter->hw.mac_type == e1000_82573 &&
1299             e1000_check_mng_mode(&adapter->hw))
1300                 e1000_get_hw_control(adapter);
1301
1302         return E1000_SUCCESS;
1303
1304 err_up:
1305         e1000_power_down_phy(adapter);
1306         e1000_free_irq(adapter);
1307 err_req_irq:
1308         e1000_free_all_rx_resources(adapter);
1309 err_setup_rx:
1310         e1000_free_all_tx_resources(adapter);
1311 err_setup_tx:
1312         e1000_reset(adapter);
1313
1314         return err;
1315 }
1316
1317 /**
1318  * e1000_close - Disables a network interface
1319  * @netdev: network interface device structure
1320  *
1321  * Returns 0, this is not allowed to fail
1322  *
1323  * The close entry point is called when an interface is de-activated
1324  * by the OS.  The hardware is still under the drivers control, but
1325  * needs to be disabled.  A global MAC reset is issued to stop the
1326  * hardware, and all transmit and receive resources are freed.
1327  **/
1328
1329 static int
1330 e1000_close(struct net_device *netdev)
1331 {
1332         struct e1000_adapter *adapter = netdev_priv(netdev);
1333
1334         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1335         e1000_down(adapter);
1336         e1000_power_down_phy(adapter);
1337         e1000_free_irq(adapter);
1338
1339         e1000_free_all_tx_resources(adapter);
1340         e1000_free_all_rx_resources(adapter);
1341
1342         /* kill manageability vlan ID if supported, but not if a vlan with
1343          * the same ID is registered on the host OS (let 8021q kill it) */
1344         if ((adapter->hw.mng_cookie.status &
1345                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1346              !(adapter->vlgrp &&
1347                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1348                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1349         }
1350
1351         /* If AMT is enabled, let the firmware know that the network
1352          * interface is now closed */
1353         if (adapter->hw.mac_type == e1000_82573 &&
1354             e1000_check_mng_mode(&adapter->hw))
1355                 e1000_release_hw_control(adapter);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1362  * @adapter: address of board private structure
1363  * @start: address of beginning of memory
1364  * @len: length of memory
1365  **/
1366 static boolean_t
1367 e1000_check_64k_bound(struct e1000_adapter *adapter,
1368                       void *start, unsigned long len)
1369 {
1370         unsigned long begin = (unsigned long) start;
1371         unsigned long end = begin + len;
1372
1373         /* First rev 82545 and 82546 need to not allow any memory
1374          * write location to cross 64k boundary due to errata 23 */
1375         if (adapter->hw.mac_type == e1000_82545 ||
1376             adapter->hw.mac_type == e1000_82546) {
1377                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1378         }
1379
1380         return TRUE;
1381 }
1382
1383 /**
1384  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1385  * @adapter: board private structure
1386  * @txdr:    tx descriptor ring (for a specific queue) to setup
1387  *
1388  * Return 0 on success, negative on failure
1389  **/
1390
1391 static int
1392 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1393                          struct e1000_tx_ring *txdr)
1394 {
1395         struct pci_dev *pdev = adapter->pdev;
1396         int size;
1397
1398         size = sizeof(struct e1000_buffer) * txdr->count;
1399         txdr->buffer_info = vmalloc(size);
1400         if (!txdr->buffer_info) {
1401                 DPRINTK(PROBE, ERR,
1402                 "Unable to allocate memory for the transmit descriptor ring\n");
1403                 return -ENOMEM;
1404         }
1405         memset(txdr->buffer_info, 0, size);
1406
1407         /* round up to nearest 4K */
1408
1409         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1410         E1000_ROUNDUP(txdr->size, 4096);
1411
1412         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1413         if (!txdr->desc) {
1414 setup_tx_desc_die:
1415                 vfree(txdr->buffer_info);
1416                 DPRINTK(PROBE, ERR,
1417                 "Unable to allocate memory for the transmit descriptor ring\n");
1418                 return -ENOMEM;
1419         }
1420
1421         /* Fix for errata 23, can't cross 64kB boundary */
1422         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1423                 void *olddesc = txdr->desc;
1424                 dma_addr_t olddma = txdr->dma;
1425                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1426                                      "at %p\n", txdr->size, txdr->desc);
1427                 /* Try again, without freeing the previous */
1428                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1429                 /* Failed allocation, critical failure */
1430                 if (!txdr->desc) {
1431                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1432                         goto setup_tx_desc_die;
1433                 }
1434
1435                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1436                         /* give up */
1437                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1438                                             txdr->dma);
1439                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1440                         DPRINTK(PROBE, ERR,
1441                                 "Unable to allocate aligned memory "
1442                                 "for the transmit descriptor ring\n");
1443                         vfree(txdr->buffer_info);
1444                         return -ENOMEM;
1445                 } else {
1446                         /* Free old allocation, new allocation was successful */
1447                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1448                 }
1449         }
1450         memset(txdr->desc, 0, txdr->size);
1451
1452         txdr->next_to_use = 0;
1453         txdr->next_to_clean = 0;
1454         spin_lock_init(&txdr->tx_lock);
1455
1456         return 0;
1457 }
1458
1459 /**
1460  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1461  *                                (Descriptors) for all queues
1462  * @adapter: board private structure
1463  *
1464  * Return 0 on success, negative on failure
1465  **/
1466
1467 int
1468 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1469 {
1470         int i, err = 0;
1471
1472         for (i = 0; i < adapter->num_tx_queues; i++) {
1473                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1474                 if (err) {
1475                         DPRINTK(PROBE, ERR,
1476                                 "Allocation for Tx Queue %u failed\n", i);
1477                         for (i-- ; i >= 0; i--)
1478                                 e1000_free_tx_resources(adapter,
1479                                                         &adapter->tx_ring[i]);
1480                         break;
1481                 }
1482         }
1483
1484         return err;
1485 }
1486
1487 /**
1488  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1489  * @adapter: board private structure
1490  *
1491  * Configure the Tx unit of the MAC after a reset.
1492  **/
1493
1494 static void
1495 e1000_configure_tx(struct e1000_adapter *adapter)
1496 {
1497         uint64_t tdba;
1498         struct e1000_hw *hw = &adapter->hw;
1499         uint32_t tdlen, tctl, tipg, tarc;
1500         uint32_t ipgr1, ipgr2;
1501
1502         /* Setup the HW Tx Head and Tail descriptor pointers */
1503
1504         switch (adapter->num_tx_queues) {
1505         case 1:
1506         default:
1507                 tdba = adapter->tx_ring[0].dma;
1508                 tdlen = adapter->tx_ring[0].count *
1509                         sizeof(struct e1000_tx_desc);
1510                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1511                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1512                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1513                 E1000_WRITE_REG(hw, TDT, 0);
1514                 E1000_WRITE_REG(hw, TDH, 0);
1515                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1516                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1517                 break;
1518         }
1519
1520         /* Set the default values for the Tx Inter Packet Gap timer */
1521
1522         if (hw->media_type == e1000_media_type_fiber ||
1523             hw->media_type == e1000_media_type_internal_serdes)
1524                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1525         else
1526                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1527
1528         switch (hw->mac_type) {
1529         case e1000_82542_rev2_0:
1530         case e1000_82542_rev2_1:
1531                 tipg = DEFAULT_82542_TIPG_IPGT;
1532                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1533                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1534                 break;
1535         case e1000_80003es2lan:
1536                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1537                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1538                 break;
1539         default:
1540                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1541                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1542                 break;
1543         }
1544         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1545         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1546         E1000_WRITE_REG(hw, TIPG, tipg);
1547
1548         /* Set the Tx Interrupt Delay register */
1549
1550         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1551         if (hw->mac_type >= e1000_82540)
1552                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1553
1554         /* Program the Transmit Control Register */
1555
1556         tctl = E1000_READ_REG(hw, TCTL);
1557         tctl &= ~E1000_TCTL_CT;
1558         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1559                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1560
1561         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1562                 tarc = E1000_READ_REG(hw, TARC0);
1563                 /* set the speed mode bit, we'll clear it if we're not at
1564                  * gigabit link later */
1565                 tarc |= (1 << 21);
1566                 E1000_WRITE_REG(hw, TARC0, tarc);
1567         } else if (hw->mac_type == e1000_80003es2lan) {
1568                 tarc = E1000_READ_REG(hw, TARC0);
1569                 tarc |= 1;
1570                 E1000_WRITE_REG(hw, TARC0, tarc);
1571                 tarc = E1000_READ_REG(hw, TARC1);
1572                 tarc |= 1;
1573                 E1000_WRITE_REG(hw, TARC1, tarc);
1574         }
1575
1576         e1000_config_collision_dist(hw);
1577
1578         /* Setup Transmit Descriptor Settings for eop descriptor */
1579         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1580                 E1000_TXD_CMD_IFCS;
1581
1582         if (hw->mac_type < e1000_82543)
1583                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1584         else
1585                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1586
1587         /* Cache if we're 82544 running in PCI-X because we'll
1588          * need this to apply a workaround later in the send path. */
1589         if (hw->mac_type == e1000_82544 &&
1590             hw->bus_type == e1000_bus_type_pcix)
1591                 adapter->pcix_82544 = 1;
1592
1593         E1000_WRITE_REG(hw, TCTL, tctl);
1594
1595 }
1596
1597 /**
1598  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1599  * @adapter: board private structure
1600  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1601  *
1602  * Returns 0 on success, negative on failure
1603  **/
1604
1605 static int
1606 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1607                          struct e1000_rx_ring *rxdr)
1608 {
1609         struct pci_dev *pdev = adapter->pdev;
1610         int size, desc_len;
1611
1612         size = sizeof(struct e1000_buffer) * rxdr->count;
1613         rxdr->buffer_info = vmalloc(size);
1614         if (!rxdr->buffer_info) {
1615                 DPRINTK(PROBE, ERR,
1616                 "Unable to allocate memory for the receive descriptor ring\n");
1617                 return -ENOMEM;
1618         }
1619         memset(rxdr->buffer_info, 0, size);
1620
1621         size = sizeof(struct e1000_ps_page) * rxdr->count;
1622         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1623         if (!rxdr->ps_page) {
1624                 vfree(rxdr->buffer_info);
1625                 DPRINTK(PROBE, ERR,
1626                 "Unable to allocate memory for the receive descriptor ring\n");
1627                 return -ENOMEM;
1628         }
1629         memset(rxdr->ps_page, 0, size);
1630
1631         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1632         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1633         if (!rxdr->ps_page_dma) {
1634                 vfree(rxdr->buffer_info);
1635                 kfree(rxdr->ps_page);
1636                 DPRINTK(PROBE, ERR,
1637                 "Unable to allocate memory for the receive descriptor ring\n");
1638                 return -ENOMEM;
1639         }
1640         memset(rxdr->ps_page_dma, 0, size);
1641
1642         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1643                 desc_len = sizeof(struct e1000_rx_desc);
1644         else
1645                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1646
1647         /* Round up to nearest 4K */
1648
1649         rxdr->size = rxdr->count * desc_len;
1650         E1000_ROUNDUP(rxdr->size, 4096);
1651
1652         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1653
1654         if (!rxdr->desc) {
1655                 DPRINTK(PROBE, ERR,
1656                 "Unable to allocate memory for the receive descriptor ring\n");
1657 setup_rx_desc_die:
1658                 vfree(rxdr->buffer_info);
1659                 kfree(rxdr->ps_page);
1660                 kfree(rxdr->ps_page_dma);
1661                 return -ENOMEM;
1662         }
1663
1664         /* Fix for errata 23, can't cross 64kB boundary */
1665         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1666                 void *olddesc = rxdr->desc;
1667                 dma_addr_t olddma = rxdr->dma;
1668                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1669                                      "at %p\n", rxdr->size, rxdr->desc);
1670                 /* Try again, without freeing the previous */
1671                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1672                 /* Failed allocation, critical failure */
1673                 if (!rxdr->desc) {
1674                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1675                         DPRINTK(PROBE, ERR,
1676                                 "Unable to allocate memory "
1677                                 "for the receive descriptor ring\n");
1678                         goto setup_rx_desc_die;
1679                 }
1680
1681                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1682                         /* give up */
1683                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1684                                             rxdr->dma);
1685                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1686                         DPRINTK(PROBE, ERR,
1687                                 "Unable to allocate aligned memory "
1688                                 "for the receive descriptor ring\n");
1689                         goto setup_rx_desc_die;
1690                 } else {
1691                         /* Free old allocation, new allocation was successful */
1692                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1693                 }
1694         }
1695         memset(rxdr->desc, 0, rxdr->size);
1696
1697         rxdr->next_to_clean = 0;
1698         rxdr->next_to_use = 0;
1699
1700         return 0;
1701 }
1702
1703 /**
1704  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1705  *                                (Descriptors) for all queues
1706  * @adapter: board private structure
1707  *
1708  * Return 0 on success, negative on failure
1709  **/
1710
1711 int
1712 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1713 {
1714         int i, err = 0;
1715
1716         for (i = 0; i < adapter->num_rx_queues; i++) {
1717                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1718                 if (err) {
1719                         DPRINTK(PROBE, ERR,
1720                                 "Allocation for Rx Queue %u failed\n", i);
1721                         for (i-- ; i >= 0; i--)
1722                                 e1000_free_rx_resources(adapter,
1723                                                         &adapter->rx_ring[i]);
1724                         break;
1725                 }
1726         }
1727
1728         return err;
1729 }
1730
1731 /**
1732  * e1000_setup_rctl - configure the receive control registers
1733  * @adapter: Board private structure
1734  **/
1735 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1736                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1737 static void
1738 e1000_setup_rctl(struct e1000_adapter *adapter)
1739 {
1740         uint32_t rctl, rfctl;
1741         uint32_t psrctl = 0;
1742 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1743         uint32_t pages = 0;
1744 #endif
1745
1746         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1747
1748         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1749
1750         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1751                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1752                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1753
1754         if (adapter->hw.tbi_compatibility_on == 1)
1755                 rctl |= E1000_RCTL_SBP;
1756         else
1757                 rctl &= ~E1000_RCTL_SBP;
1758
1759         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1760                 rctl &= ~E1000_RCTL_LPE;
1761         else
1762                 rctl |= E1000_RCTL_LPE;
1763
1764         /* Setup buffer sizes */
1765         rctl &= ~E1000_RCTL_SZ_4096;
1766         rctl |= E1000_RCTL_BSEX;
1767         switch (adapter->rx_buffer_len) {
1768                 case E1000_RXBUFFER_256:
1769                         rctl |= E1000_RCTL_SZ_256;
1770                         rctl &= ~E1000_RCTL_BSEX;
1771                         break;
1772                 case E1000_RXBUFFER_512:
1773                         rctl |= E1000_RCTL_SZ_512;
1774                         rctl &= ~E1000_RCTL_BSEX;
1775                         break;
1776                 case E1000_RXBUFFER_1024:
1777                         rctl |= E1000_RCTL_SZ_1024;
1778                         rctl &= ~E1000_RCTL_BSEX;
1779                         break;
1780                 case E1000_RXBUFFER_2048:
1781                 default:
1782                         rctl |= E1000_RCTL_SZ_2048;
1783                         rctl &= ~E1000_RCTL_BSEX;
1784                         break;
1785                 case E1000_RXBUFFER_4096:
1786                         rctl |= E1000_RCTL_SZ_4096;
1787                         break;
1788                 case E1000_RXBUFFER_8192:
1789                         rctl |= E1000_RCTL_SZ_8192;
1790                         break;
1791                 case E1000_RXBUFFER_16384:
1792                         rctl |= E1000_RCTL_SZ_16384;
1793                         break;
1794         }
1795
1796 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1797         /* 82571 and greater support packet-split where the protocol
1798          * header is placed in skb->data and the packet data is
1799          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1800          * In the case of a non-split, skb->data is linearly filled,
1801          * followed by the page buffers.  Therefore, skb->data is
1802          * sized to hold the largest protocol header.
1803          */
1804         /* allocations using alloc_page take too long for regular MTU
1805          * so only enable packet split for jumbo frames */
1806         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1807         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1808             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1809                 adapter->rx_ps_pages = pages;
1810         else
1811                 adapter->rx_ps_pages = 0;
1812 #endif
1813         if (adapter->rx_ps_pages) {
1814                 /* Configure extra packet-split registers */
1815                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1816                 rfctl |= E1000_RFCTL_EXTEN;
1817                 /* disable packet split support for IPv6 extension headers,
1818                  * because some malformed IPv6 headers can hang the RX */
1819                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1820                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1821
1822                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1823
1824                 rctl |= E1000_RCTL_DTYP_PS;
1825
1826                 psrctl |= adapter->rx_ps_bsize0 >>
1827                         E1000_PSRCTL_BSIZE0_SHIFT;
1828
1829                 switch (adapter->rx_ps_pages) {
1830                 case 3:
1831                         psrctl |= PAGE_SIZE <<
1832                                 E1000_PSRCTL_BSIZE3_SHIFT;
1833                 case 2:
1834                         psrctl |= PAGE_SIZE <<
1835                                 E1000_PSRCTL_BSIZE2_SHIFT;
1836                 case 1:
1837                         psrctl |= PAGE_SIZE >>
1838                                 E1000_PSRCTL_BSIZE1_SHIFT;
1839                         break;
1840                 }
1841
1842                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1843         }
1844
1845         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1846 }
1847
1848 /**
1849  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850  * @adapter: board private structure
1851  *
1852  * Configure the Rx unit of the MAC after a reset.
1853  **/
1854
1855 static void
1856 e1000_configure_rx(struct e1000_adapter *adapter)
1857 {
1858         uint64_t rdba;
1859         struct e1000_hw *hw = &adapter->hw;
1860         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1861
1862         if (adapter->rx_ps_pages) {
1863                 /* this is a 32 byte descriptor */
1864                 rdlen = adapter->rx_ring[0].count *
1865                         sizeof(union e1000_rx_desc_packet_split);
1866                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1867                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1868         } else {
1869                 rdlen = adapter->rx_ring[0].count *
1870                         sizeof(struct e1000_rx_desc);
1871                 adapter->clean_rx = e1000_clean_rx_irq;
1872                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1873         }
1874
1875         /* disable receives while setting up the descriptors */
1876         rctl = E1000_READ_REG(hw, RCTL);
1877         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1878
1879         /* set the Receive Delay Timer Register */
1880         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1881
1882         if (hw->mac_type >= e1000_82540) {
1883                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1884                 if (adapter->itr > 1)
1885                         E1000_WRITE_REG(hw, ITR,
1886                                 1000000000 / (adapter->itr * 256));
1887         }
1888
1889         if (hw->mac_type >= e1000_82571) {
1890                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1891                 /* Reset delay timers after every interrupt */
1892                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1893 #ifdef CONFIG_E1000_NAPI
1894                 /* Auto-Mask interrupts upon ICR read. */
1895                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1896 #endif
1897                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1898                 E1000_WRITE_REG(hw, IAM, ~0);
1899                 E1000_WRITE_FLUSH(hw);
1900         }
1901
1902         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1903          * the Base and Length of the Rx Descriptor Ring */
1904         switch (adapter->num_rx_queues) {
1905         case 1:
1906         default:
1907                 rdba = adapter->rx_ring[0].dma;
1908                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1909                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1910                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1911                 E1000_WRITE_REG(hw, RDT, 0);
1912                 E1000_WRITE_REG(hw, RDH, 0);
1913                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1914                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1915                 break;
1916         }
1917
1918         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1919         if (hw->mac_type >= e1000_82543) {
1920                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1921                 if (adapter->rx_csum == TRUE) {
1922                         rxcsum |= E1000_RXCSUM_TUOFL;
1923
1924                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1925                          * Must be used in conjunction with packet-split. */
1926                         if ((hw->mac_type >= e1000_82571) &&
1927                             (adapter->rx_ps_pages)) {
1928                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1929                         }
1930                 } else {
1931                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1932                         /* don't need to clear IPPCSE as it defaults to 0 */
1933                 }
1934                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1935         }
1936
1937         /* enable early receives on 82573, only takes effect if using > 2048
1938          * byte total frame size.  for example only for jumbo frames */
1939 #define E1000_ERT_2048 0x100
1940         if (hw->mac_type == e1000_82573)
1941                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
1942
1943         /* Enable Receives */
1944         E1000_WRITE_REG(hw, RCTL, rctl);
1945 }
1946
1947 /**
1948  * e1000_free_tx_resources - Free Tx Resources per Queue
1949  * @adapter: board private structure
1950  * @tx_ring: Tx descriptor ring for a specific queue
1951  *
1952  * Free all transmit software resources
1953  **/
1954
1955 static void
1956 e1000_free_tx_resources(struct e1000_adapter *adapter,
1957                         struct e1000_tx_ring *tx_ring)
1958 {
1959         struct pci_dev *pdev = adapter->pdev;
1960
1961         e1000_clean_tx_ring(adapter, tx_ring);
1962
1963         vfree(tx_ring->buffer_info);
1964         tx_ring->buffer_info = NULL;
1965
1966         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1967
1968         tx_ring->desc = NULL;
1969 }
1970
1971 /**
1972  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1973  * @adapter: board private structure
1974  *
1975  * Free all transmit software resources
1976  **/
1977
1978 void
1979 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1980 {
1981         int i;
1982
1983         for (i = 0; i < adapter->num_tx_queues; i++)
1984                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1985 }
1986
1987 static void
1988 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1989                         struct e1000_buffer *buffer_info)
1990 {
1991         if (buffer_info->dma) {
1992                 pci_unmap_page(adapter->pdev,
1993                                 buffer_info->dma,
1994                                 buffer_info->length,
1995                                 PCI_DMA_TODEVICE);
1996         }
1997         if (buffer_info->skb)
1998                 dev_kfree_skb_any(buffer_info->skb);
1999         memset(buffer_info, 0, sizeof(struct e1000_buffer));
2000 }
2001
2002 /**
2003  * e1000_clean_tx_ring - Free Tx Buffers
2004  * @adapter: board private structure
2005  * @tx_ring: ring to be cleaned
2006  **/
2007
2008 static void
2009 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2010                     struct e1000_tx_ring *tx_ring)
2011 {
2012         struct e1000_buffer *buffer_info;
2013         unsigned long size;
2014         unsigned int i;
2015
2016         /* Free all the Tx ring sk_buffs */
2017
2018         for (i = 0; i < tx_ring->count; i++) {
2019                 buffer_info = &tx_ring->buffer_info[i];
2020                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2021         }
2022
2023         size = sizeof(struct e1000_buffer) * tx_ring->count;
2024         memset(tx_ring->buffer_info, 0, size);
2025
2026         /* Zero out the descriptor ring */
2027
2028         memset(tx_ring->desc, 0, tx_ring->size);
2029
2030         tx_ring->next_to_use = 0;
2031         tx_ring->next_to_clean = 0;
2032         tx_ring->last_tx_tso = 0;
2033
2034         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2035         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2036 }
2037
2038 /**
2039  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2040  * @adapter: board private structure
2041  **/
2042
2043 static void
2044 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2045 {
2046         int i;
2047
2048         for (i = 0; i < adapter->num_tx_queues; i++)
2049                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2050 }
2051
2052 /**
2053  * e1000_free_rx_resources - Free Rx Resources
2054  * @adapter: board private structure
2055  * @rx_ring: ring to clean the resources from
2056  *
2057  * Free all receive software resources
2058  **/
2059
2060 static void
2061 e1000_free_rx_resources(struct e1000_adapter *adapter,
2062                         struct e1000_rx_ring *rx_ring)
2063 {
2064         struct pci_dev *pdev = adapter->pdev;
2065
2066         e1000_clean_rx_ring(adapter, rx_ring);
2067
2068         vfree(rx_ring->buffer_info);
2069         rx_ring->buffer_info = NULL;
2070         kfree(rx_ring->ps_page);
2071         rx_ring->ps_page = NULL;
2072         kfree(rx_ring->ps_page_dma);
2073         rx_ring->ps_page_dma = NULL;
2074
2075         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2076
2077         rx_ring->desc = NULL;
2078 }
2079
2080 /**
2081  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2082  * @adapter: board private structure
2083  *
2084  * Free all receive software resources
2085  **/
2086
2087 void
2088 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2089 {
2090         int i;
2091
2092         for (i = 0; i < adapter->num_rx_queues; i++)
2093                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2094 }
2095
2096 /**
2097  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2098  * @adapter: board private structure
2099  * @rx_ring: ring to free buffers from
2100  **/
2101
2102 static void
2103 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2104                     struct e1000_rx_ring *rx_ring)
2105 {
2106         struct e1000_buffer *buffer_info;
2107         struct e1000_ps_page *ps_page;
2108         struct e1000_ps_page_dma *ps_page_dma;
2109         struct pci_dev *pdev = adapter->pdev;
2110         unsigned long size;
2111         unsigned int i, j;
2112
2113         /* Free all the Rx ring sk_buffs */
2114         for (i = 0; i < rx_ring->count; i++) {
2115                 buffer_info = &rx_ring->buffer_info[i];
2116                 if (buffer_info->skb) {
2117                         pci_unmap_single(pdev,
2118                                          buffer_info->dma,
2119                                          buffer_info->length,
2120                                          PCI_DMA_FROMDEVICE);
2121
2122                         dev_kfree_skb(buffer_info->skb);
2123                         buffer_info->skb = NULL;
2124                 }
2125                 ps_page = &rx_ring->ps_page[i];
2126                 ps_page_dma = &rx_ring->ps_page_dma[i];
2127                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2128                         if (!ps_page->ps_page[j]) break;
2129                         pci_unmap_page(pdev,
2130                                        ps_page_dma->ps_page_dma[j],
2131                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2132                         ps_page_dma->ps_page_dma[j] = 0;
2133                         put_page(ps_page->ps_page[j]);
2134                         ps_page->ps_page[j] = NULL;
2135                 }
2136         }
2137
2138         size = sizeof(struct e1000_buffer) * rx_ring->count;
2139         memset(rx_ring->buffer_info, 0, size);
2140         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2141         memset(rx_ring->ps_page, 0, size);
2142         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2143         memset(rx_ring->ps_page_dma, 0, size);
2144
2145         /* Zero out the descriptor ring */
2146
2147         memset(rx_ring->desc, 0, rx_ring->size);
2148
2149         rx_ring->next_to_clean = 0;
2150         rx_ring->next_to_use = 0;
2151
2152         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2153         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2154 }
2155
2156 /**
2157  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2158  * @adapter: board private structure
2159  **/
2160
2161 static void
2162 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2163 {
2164         int i;
2165
2166         for (i = 0; i < adapter->num_rx_queues; i++)
2167                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2168 }
2169
2170 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2171  * and memory write and invalidate disabled for certain operations
2172  */
2173 static void
2174 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2175 {
2176         struct net_device *netdev = adapter->netdev;
2177         uint32_t rctl;
2178
2179         e1000_pci_clear_mwi(&adapter->hw);
2180
2181         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2182         rctl |= E1000_RCTL_RST;
2183         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2184         E1000_WRITE_FLUSH(&adapter->hw);
2185         mdelay(5);
2186
2187         if (netif_running(netdev))
2188                 e1000_clean_all_rx_rings(adapter);
2189 }
2190
2191 static void
2192 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2193 {
2194         struct net_device *netdev = adapter->netdev;
2195         uint32_t rctl;
2196
2197         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2198         rctl &= ~E1000_RCTL_RST;
2199         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2200         E1000_WRITE_FLUSH(&adapter->hw);
2201         mdelay(5);
2202
2203         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2204                 e1000_pci_set_mwi(&adapter->hw);
2205
2206         if (netif_running(netdev)) {
2207                 /* No need to loop, because 82542 supports only 1 queue */
2208                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2209                 e1000_configure_rx(adapter);
2210                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2211         }
2212 }
2213
2214 /**
2215  * e1000_set_mac - Change the Ethernet Address of the NIC
2216  * @netdev: network interface device structure
2217  * @p: pointer to an address structure
2218  *
2219  * Returns 0 on success, negative on failure
2220  **/
2221
2222 static int
2223 e1000_set_mac(struct net_device *netdev, void *p)
2224 {
2225         struct e1000_adapter *adapter = netdev_priv(netdev);
2226         struct sockaddr *addr = p;
2227
2228         if (!is_valid_ether_addr(addr->sa_data))
2229                 return -EADDRNOTAVAIL;
2230
2231         /* 82542 2.0 needs to be in reset to write receive address registers */
2232
2233         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2234                 e1000_enter_82542_rst(adapter);
2235
2236         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2237         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2238
2239         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2240
2241         /* With 82571 controllers, LAA may be overwritten (with the default)
2242          * due to controller reset from the other port. */
2243         if (adapter->hw.mac_type == e1000_82571) {
2244                 /* activate the work around */
2245                 adapter->hw.laa_is_present = 1;
2246
2247                 /* Hold a copy of the LAA in RAR[14] This is done so that
2248                  * between the time RAR[0] gets clobbered  and the time it
2249                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2250                  * of the RARs and no incoming packets directed to this port
2251                  * are dropped. Eventaully the LAA will be in RAR[0] and
2252                  * RAR[14] */
2253                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2254                                         E1000_RAR_ENTRIES - 1);
2255         }
2256
2257         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2258                 e1000_leave_82542_rst(adapter);
2259
2260         return 0;
2261 }
2262
2263 /**
2264  * e1000_set_multi - Multicast and Promiscuous mode set
2265  * @netdev: network interface device structure
2266  *
2267  * The set_multi entry point is called whenever the multicast address
2268  * list or the network interface flags are updated.  This routine is
2269  * responsible for configuring the hardware for proper multicast,
2270  * promiscuous mode, and all-multi behavior.
2271  **/
2272
2273 static void
2274 e1000_set_multi(struct net_device *netdev)
2275 {
2276         struct e1000_adapter *adapter = netdev_priv(netdev);
2277         struct e1000_hw *hw = &adapter->hw;
2278         struct dev_mc_list *mc_ptr;
2279         uint32_t rctl;
2280         uint32_t hash_value;
2281         int i, rar_entries = E1000_RAR_ENTRIES;
2282         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2283                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2284                                 E1000_NUM_MTA_REGISTERS;
2285
2286         if (adapter->hw.mac_type == e1000_ich8lan)
2287                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2288
2289         /* reserve RAR[14] for LAA over-write work-around */
2290         if (adapter->hw.mac_type == e1000_82571)
2291                 rar_entries--;
2292
2293         /* Check for Promiscuous and All Multicast modes */
2294
2295         rctl = E1000_READ_REG(hw, RCTL);
2296
2297         if (netdev->flags & IFF_PROMISC) {
2298                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2299         } else if (netdev->flags & IFF_ALLMULTI) {
2300                 rctl |= E1000_RCTL_MPE;
2301                 rctl &= ~E1000_RCTL_UPE;
2302         } else {
2303                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2304         }
2305
2306         E1000_WRITE_REG(hw, RCTL, rctl);
2307
2308         /* 82542 2.0 needs to be in reset to write receive address registers */
2309
2310         if (hw->mac_type == e1000_82542_rev2_0)
2311                 e1000_enter_82542_rst(adapter);
2312
2313         /* load the first 14 multicast address into the exact filters 1-14
2314          * RAR 0 is used for the station MAC adddress
2315          * if there are not 14 addresses, go ahead and clear the filters
2316          * -- with 82571 controllers only 0-13 entries are filled here
2317          */
2318         mc_ptr = netdev->mc_list;
2319
2320         for (i = 1; i < rar_entries; i++) {
2321                 if (mc_ptr) {
2322                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2323                         mc_ptr = mc_ptr->next;
2324                 } else {
2325                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2326                         E1000_WRITE_FLUSH(hw);
2327                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2328                         E1000_WRITE_FLUSH(hw);
2329                 }
2330         }
2331
2332         /* clear the old settings from the multicast hash table */
2333
2334         for (i = 0; i < mta_reg_count; i++) {
2335                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2336                 E1000_WRITE_FLUSH(hw);
2337         }
2338
2339         /* load any remaining addresses into the hash table */
2340
2341         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2342                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2343                 e1000_mta_set(hw, hash_value);
2344         }
2345
2346         if (hw->mac_type == e1000_82542_rev2_0)
2347                 e1000_leave_82542_rst(adapter);
2348 }
2349
2350 /* Need to wait a few seconds after link up to get diagnostic information from
2351  * the phy */
2352
2353 static void
2354 e1000_update_phy_info(unsigned long data)
2355 {
2356         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2357         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2358 }
2359
2360 /**
2361  * e1000_82547_tx_fifo_stall - Timer Call-back
2362  * @data: pointer to adapter cast into an unsigned long
2363  **/
2364
2365 static void
2366 e1000_82547_tx_fifo_stall(unsigned long data)
2367 {
2368         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2369         struct net_device *netdev = adapter->netdev;
2370         uint32_t tctl;
2371
2372         if (atomic_read(&adapter->tx_fifo_stall)) {
2373                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2374                     E1000_READ_REG(&adapter->hw, TDH)) &&
2375                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2376                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2377                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2378                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2379                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2380                         E1000_WRITE_REG(&adapter->hw, TCTL,
2381                                         tctl & ~E1000_TCTL_EN);
2382                         E1000_WRITE_REG(&adapter->hw, TDFT,
2383                                         adapter->tx_head_addr);
2384                         E1000_WRITE_REG(&adapter->hw, TDFH,
2385                                         adapter->tx_head_addr);
2386                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2387                                         adapter->tx_head_addr);
2388                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2389                                         adapter->tx_head_addr);
2390                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2391                         E1000_WRITE_FLUSH(&adapter->hw);
2392
2393                         adapter->tx_fifo_head = 0;
2394                         atomic_set(&adapter->tx_fifo_stall, 0);
2395                         netif_wake_queue(netdev);
2396                 } else {
2397                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2398                 }
2399         }
2400 }
2401
2402 /**
2403  * e1000_watchdog - Timer Call-back
2404  * @data: pointer to adapter cast into an unsigned long
2405  **/
2406 static void
2407 e1000_watchdog(unsigned long data)
2408 {
2409         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2410         struct net_device *netdev = adapter->netdev;
2411         struct e1000_tx_ring *txdr = adapter->tx_ring;
2412         uint32_t link, tctl;
2413         int32_t ret_val;
2414
2415         ret_val = e1000_check_for_link(&adapter->hw);
2416         if ((ret_val == E1000_ERR_PHY) &&
2417             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2418             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2419                 /* See e1000_kumeran_lock_loss_workaround() */
2420                 DPRINTK(LINK, INFO,
2421                         "Gigabit has been disabled, downgrading speed\n");
2422         }
2423
2424         if (adapter->hw.mac_type == e1000_82573) {
2425                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2426                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2427                         e1000_update_mng_vlan(adapter);
2428         }
2429
2430         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2431            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2432                 link = !adapter->hw.serdes_link_down;
2433         else
2434                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2435
2436         if (link) {
2437                 if (!netif_carrier_ok(netdev)) {
2438                         boolean_t txb2b = 1;
2439                         e1000_get_speed_and_duplex(&adapter->hw,
2440                                                    &adapter->link_speed,
2441                                                    &adapter->link_duplex);
2442
2443                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2444                                adapter->link_speed,
2445                                adapter->link_duplex == FULL_DUPLEX ?
2446                                "Full Duplex" : "Half Duplex");
2447
2448                         /* tweak tx_queue_len according to speed/duplex
2449                          * and adjust the timeout factor */
2450                         netdev->tx_queue_len = adapter->tx_queue_len;
2451                         adapter->tx_timeout_factor = 1;
2452                         switch (adapter->link_speed) {
2453                         case SPEED_10:
2454                                 txb2b = 0;
2455                                 netdev->tx_queue_len = 10;
2456                                 adapter->tx_timeout_factor = 8;
2457                                 break;
2458                         case SPEED_100:
2459                                 txb2b = 0;
2460                                 netdev->tx_queue_len = 100;
2461                                 /* maybe add some timeout factor ? */
2462                                 break;
2463                         }
2464
2465                         if ((adapter->hw.mac_type == e1000_82571 ||
2466                              adapter->hw.mac_type == e1000_82572) &&
2467                             txb2b == 0) {
2468                                 uint32_t tarc0;
2469                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2470                                 tarc0 &= ~(1 << 21);
2471                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2472                         }
2473
2474 #ifdef NETIF_F_TSO
2475                         /* disable TSO for pcie and 10/100 speeds, to avoid
2476                          * some hardware issues */
2477                         if (!adapter->tso_force &&
2478                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2479                                 switch (adapter->link_speed) {
2480                                 case SPEED_10:
2481                                 case SPEED_100:
2482                                         DPRINTK(PROBE,INFO,
2483                                         "10/100 speed: disabling TSO\n");
2484                                         netdev->features &= ~NETIF_F_TSO;
2485 #ifdef NETIF_F_TSO6
2486                                         netdev->features &= ~NETIF_F_TSO6;
2487 #endif
2488                                         break;
2489                                 case SPEED_1000:
2490                                         netdev->features |= NETIF_F_TSO;
2491 #ifdef NETIF_F_TSO6
2492                                         netdev->features |= NETIF_F_TSO6;
2493 #endif
2494                                         break;
2495                                 default:
2496                                         /* oops */
2497                                         break;
2498                                 }
2499                         }
2500 #endif
2501
2502                         /* enable transmits in the hardware, need to do this
2503                          * after setting TARC0 */
2504                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2505                         tctl |= E1000_TCTL_EN;
2506                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2507
2508                         netif_carrier_on(netdev);
2509                         netif_wake_queue(netdev);
2510                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2511                         adapter->smartspeed = 0;
2512                 }
2513         } else {
2514                 if (netif_carrier_ok(netdev)) {
2515                         adapter->link_speed = 0;
2516                         adapter->link_duplex = 0;
2517                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2518                         netif_carrier_off(netdev);
2519                         netif_stop_queue(netdev);
2520                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2521
2522                         /* 80003ES2LAN workaround--
2523                          * For packet buffer work-around on link down event;
2524                          * disable receives in the ISR and
2525                          * reset device here in the watchdog
2526                          */
2527                         if (adapter->hw.mac_type == e1000_80003es2lan)
2528                                 /* reset device */
2529                                 schedule_work(&adapter->reset_task);
2530                 }
2531
2532                 e1000_smartspeed(adapter);
2533         }
2534
2535         e1000_update_stats(adapter);
2536
2537         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2538         adapter->tpt_old = adapter->stats.tpt;
2539         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2540         adapter->colc_old = adapter->stats.colc;
2541
2542         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2543         adapter->gorcl_old = adapter->stats.gorcl;
2544         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2545         adapter->gotcl_old = adapter->stats.gotcl;
2546
2547         e1000_update_adaptive(&adapter->hw);
2548
2549         if (!netif_carrier_ok(netdev)) {
2550                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2551                         /* We've lost link, so the controller stops DMA,
2552                          * but we've got queued Tx work that's never going
2553                          * to get done, so reset controller to flush Tx.
2554                          * (Do the reset outside of interrupt context). */
2555                         adapter->tx_timeout_count++;
2556                         schedule_work(&adapter->reset_task);
2557                 }
2558         }
2559
2560         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2561         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2562                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2563                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2564                  * else is between 2000-8000. */
2565                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2566                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2567                         adapter->gotcl - adapter->gorcl :
2568                         adapter->gorcl - adapter->gotcl) / 10000;
2569                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2570                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2571         }
2572
2573         /* Cause software interrupt to ensure rx ring is cleaned */
2574         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2575
2576         /* Force detection of hung controller every watchdog period */
2577         adapter->detect_tx_hung = TRUE;
2578
2579         /* With 82571 controllers, LAA may be overwritten due to controller
2580          * reset from the other port. Set the appropriate LAA in RAR[0] */
2581         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2582                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2583
2584         /* Reset the timer */
2585         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2586 }
2587
2588 #define E1000_TX_FLAGS_CSUM             0x00000001
2589 #define E1000_TX_FLAGS_VLAN             0x00000002
2590 #define E1000_TX_FLAGS_TSO              0x00000004
2591 #define E1000_TX_FLAGS_IPV4             0x00000008
2592 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2593 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2594
2595 static int
2596 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2597           struct sk_buff *skb)
2598 {
2599 #ifdef NETIF_F_TSO
2600         struct e1000_context_desc *context_desc;
2601         struct e1000_buffer *buffer_info;
2602         unsigned int i;
2603         uint32_t cmd_length = 0;
2604         uint16_t ipcse = 0, tucse, mss;
2605         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2606         int err;
2607
2608         if (skb_is_gso(skb)) {
2609                 if (skb_header_cloned(skb)) {
2610                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2611                         if (err)
2612                                 return err;
2613                 }
2614
2615                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2616                 mss = skb_shinfo(skb)->gso_size;
2617                 if (skb->protocol == htons(ETH_P_IP)) {
2618                         skb->nh.iph->tot_len = 0;
2619                         skb->nh.iph->check = 0;
2620                         skb->h.th->check =
2621                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2622                                                    skb->nh.iph->daddr,
2623                                                    0,
2624                                                    IPPROTO_TCP,
2625                                                    0);
2626                         cmd_length = E1000_TXD_CMD_IP;
2627                         ipcse = skb->h.raw - skb->data - 1;
2628 #ifdef NETIF_F_TSO6
2629                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2630                         skb->nh.ipv6h->payload_len = 0;
2631                         skb->h.th->check =
2632                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2633                                                  &skb->nh.ipv6h->daddr,
2634                                                  0,
2635                                                  IPPROTO_TCP,
2636                                                  0);
2637                         ipcse = 0;
2638 #endif
2639                 }
2640                 ipcss = skb->nh.raw - skb->data;
2641                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2642                 tucss = skb->h.raw - skb->data;
2643                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2644                 tucse = 0;
2645
2646                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2647                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2648
2649                 i = tx_ring->next_to_use;
2650                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2651                 buffer_info = &tx_ring->buffer_info[i];
2652
2653                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2654                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2655                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2656                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2657                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2658                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2659                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2660                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2661                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2662
2663                 buffer_info->time_stamp = jiffies;
2664
2665                 if (++i == tx_ring->count) i = 0;
2666                 tx_ring->next_to_use = i;
2667
2668                 return TRUE;
2669         }
2670 #endif
2671
2672         return FALSE;
2673 }
2674
2675 static boolean_t
2676 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2677               struct sk_buff *skb)
2678 {
2679         struct e1000_context_desc *context_desc;
2680         struct e1000_buffer *buffer_info;
2681         unsigned int i;
2682         uint8_t css;
2683
2684         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2685                 css = skb->h.raw - skb->data;
2686
2687                 i = tx_ring->next_to_use;
2688                 buffer_info = &tx_ring->buffer_info[i];
2689                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2690
2691                 context_desc->upper_setup.tcp_fields.tucss = css;
2692                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2693                 context_desc->upper_setup.tcp_fields.tucse = 0;
2694                 context_desc->tcp_seg_setup.data = 0;
2695                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2696
2697                 buffer_info->time_stamp = jiffies;
2698
2699                 if (unlikely(++i == tx_ring->count)) i = 0;
2700                 tx_ring->next_to_use = i;
2701
2702                 return TRUE;
2703         }
2704
2705         return FALSE;
2706 }
2707
2708 #define E1000_MAX_TXD_PWR       12
2709 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2710
2711 static int
2712 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2713              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2714              unsigned int nr_frags, unsigned int mss)
2715 {
2716         struct e1000_buffer *buffer_info;
2717         unsigned int len = skb->len;
2718         unsigned int offset = 0, size, count = 0, i;
2719         unsigned int f;
2720         len -= skb->data_len;
2721
2722         i = tx_ring->next_to_use;
2723
2724         while (len) {
2725                 buffer_info = &tx_ring->buffer_info[i];
2726                 size = min(len, max_per_txd);
2727 #ifdef NETIF_F_TSO
2728                 /* Workaround for Controller erratum --
2729                  * descriptor for non-tso packet in a linear SKB that follows a
2730                  * tso gets written back prematurely before the data is fully
2731                  * DMA'd to the controller */
2732                 if (!skb->data_len && tx_ring->last_tx_tso &&
2733                     !skb_is_gso(skb)) {
2734                         tx_ring->last_tx_tso = 0;
2735                         size -= 4;
2736                 }
2737
2738                 /* Workaround for premature desc write-backs
2739                  * in TSO mode.  Append 4-byte sentinel desc */
2740                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2741                         size -= 4;
2742 #endif
2743                 /* work-around for errata 10 and it applies
2744                  * to all controllers in PCI-X mode
2745                  * The fix is to make sure that the first descriptor of a
2746                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2747                  */
2748                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2749                                 (size > 2015) && count == 0))
2750                         size = 2015;
2751
2752                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2753                  * terminating buffers within evenly-aligned dwords. */
2754                 if (unlikely(adapter->pcix_82544 &&
2755                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2756                    size > 4))
2757                         size -= 4;
2758
2759                 buffer_info->length = size;
2760                 buffer_info->dma =
2761                         pci_map_single(adapter->pdev,
2762                                 skb->data + offset,
2763                                 size,
2764                                 PCI_DMA_TODEVICE);
2765                 buffer_info->time_stamp = jiffies;
2766
2767                 len -= size;
2768                 offset += size;
2769                 count++;
2770                 if (unlikely(++i == tx_ring->count)) i = 0;
2771         }
2772
2773         for (f = 0; f < nr_frags; f++) {
2774                 struct skb_frag_struct *frag;
2775
2776                 frag = &skb_shinfo(skb)->frags[f];
2777                 len = frag->size;
2778                 offset = frag->page_offset;
2779
2780                 while (len) {
2781                         buffer_info = &tx_ring->buffer_info[i];
2782                         size = min(len, max_per_txd);
2783 #ifdef NETIF_F_TSO
2784                         /* Workaround for premature desc write-backs
2785                          * in TSO mode.  Append 4-byte sentinel desc */
2786                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2787                                 size -= 4;
2788 #endif
2789                         /* Workaround for potential 82544 hang in PCI-X.
2790                          * Avoid terminating buffers within evenly-aligned
2791                          * dwords. */
2792                         if (unlikely(adapter->pcix_82544 &&
2793                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2794                            size > 4))
2795                                 size -= 4;
2796
2797                         buffer_info->length = size;
2798                         buffer_info->dma =
2799                                 pci_map_page(adapter->pdev,
2800                                         frag->page,
2801                                         offset,
2802                                         size,
2803                                         PCI_DMA_TODEVICE);
2804                         buffer_info->time_stamp = jiffies;
2805
2806                         len -= size;
2807                         offset += size;
2808                         count++;
2809                         if (unlikely(++i == tx_ring->count)) i = 0;
2810                 }
2811         }
2812
2813         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2814         tx_ring->buffer_info[i].skb = skb;
2815         tx_ring->buffer_info[first].next_to_watch = i;
2816
2817         return count;
2818 }
2819
2820 static void
2821 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2822                int tx_flags, int count)
2823 {
2824         struct e1000_tx_desc *tx_desc = NULL;
2825         struct e1000_buffer *buffer_info;
2826         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2827         unsigned int i;
2828
2829         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2830                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2831                              E1000_TXD_CMD_TSE;
2832                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2833
2834                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2835                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2836         }
2837
2838         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2839                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2840                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2841         }
2842
2843         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2844                 txd_lower |= E1000_TXD_CMD_VLE;
2845                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2846         }
2847
2848         i = tx_ring->next_to_use;
2849
2850         while (count--) {
2851                 buffer_info = &tx_ring->buffer_info[i];
2852                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2853                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2854                 tx_desc->lower.data =
2855                         cpu_to_le32(txd_lower | buffer_info->length);
2856                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2857                 if (unlikely(++i == tx_ring->count)) i = 0;
2858         }
2859
2860         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2861
2862         /* Force memory writes to complete before letting h/w
2863          * know there are new descriptors to fetch.  (Only
2864          * applicable for weak-ordered memory model archs,
2865          * such as IA-64). */
2866         wmb();
2867
2868         tx_ring->next_to_use = i;
2869         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2870         /* we need this if more than one processor can write to our tail
2871          * at a time, it syncronizes IO on IA64/Altix systems */
2872         mmiowb();
2873 }
2874
2875 /**
2876  * 82547 workaround to avoid controller hang in half-duplex environment.
2877  * The workaround is to avoid queuing a large packet that would span
2878  * the internal Tx FIFO ring boundary by notifying the stack to resend
2879  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2880  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2881  * to the beginning of the Tx FIFO.
2882  **/
2883
2884 #define E1000_FIFO_HDR                  0x10
2885 #define E1000_82547_PAD_LEN             0x3E0
2886
2887 static int
2888 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2889 {
2890         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2891         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2892
2893         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2894
2895         if (adapter->link_duplex != HALF_DUPLEX)
2896                 goto no_fifo_stall_required;
2897
2898         if (atomic_read(&adapter->tx_fifo_stall))
2899                 return 1;
2900
2901         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2902                 atomic_set(&adapter->tx_fifo_stall, 1);
2903                 return 1;
2904         }
2905
2906 no_fifo_stall_required:
2907         adapter->tx_fifo_head += skb_fifo_len;
2908         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2909                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2910         return 0;
2911 }
2912
2913 #define MINIMUM_DHCP_PACKET_SIZE 282
2914 static int
2915 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2916 {
2917         struct e1000_hw *hw =  &adapter->hw;
2918         uint16_t length, offset;
2919         if (vlan_tx_tag_present(skb)) {
2920                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2921                         ( adapter->hw.mng_cookie.status &
2922                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2923                         return 0;
2924         }
2925         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2926                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2927                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2928                         const struct iphdr *ip =
2929                                 (struct iphdr *)((uint8_t *)skb->data+14);
2930                         if (IPPROTO_UDP == ip->protocol) {
2931                                 struct udphdr *udp =
2932                                         (struct udphdr *)((uint8_t *)ip +
2933                                                 (ip->ihl << 2));
2934                                 if (ntohs(udp->dest) == 67) {
2935                                         offset = (uint8_t *)udp + 8 - skb->data;
2936                                         length = skb->len - offset;
2937
2938                                         return e1000_mng_write_dhcp_info(hw,
2939                                                         (uint8_t *)udp + 8,
2940                                                         length);
2941                                 }
2942                         }
2943                 }
2944         }
2945         return 0;
2946 }
2947
2948 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2949 {
2950         struct e1000_adapter *adapter = netdev_priv(netdev);
2951         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2952
2953         netif_stop_queue(netdev);
2954         /* Herbert's original patch had:
2955          *  smp_mb__after_netif_stop_queue();
2956          * but since that doesn't exist yet, just open code it. */
2957         smp_mb();
2958
2959         /* We need to check again in a case another CPU has just
2960          * made room available. */
2961         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2962                 return -EBUSY;
2963
2964         /* A reprieve! */
2965         netif_start_queue(netdev);
2966         return 0;
2967 }
2968
2969 static int e1000_maybe_stop_tx(struct net_device *netdev,
2970                                struct e1000_tx_ring *tx_ring, int size)
2971 {
2972         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2973                 return 0;
2974         return __e1000_maybe_stop_tx(netdev, size);
2975 }
2976
2977 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2978 static int
2979 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2980 {
2981         struct e1000_adapter *adapter = netdev_priv(netdev);
2982         struct e1000_tx_ring *tx_ring;
2983         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2984         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2985         unsigned int tx_flags = 0;
2986         unsigned int len = skb->len;
2987         unsigned long flags;
2988         unsigned int nr_frags = 0;
2989         unsigned int mss = 0;
2990         int count = 0;
2991         int tso;
2992         unsigned int f;
2993         len -= skb->data_len;
2994
2995         /* This goes back to the question of how to logically map a tx queue
2996          * to a flow.  Right now, performance is impacted slightly negatively
2997          * if using multiple tx queues.  If the stack breaks away from a
2998          * single qdisc implementation, we can look at this again. */
2999         tx_ring = adapter->tx_ring;
3000
3001         if (unlikely(skb->len <= 0)) {
3002                 dev_kfree_skb_any(skb);
3003                 return NETDEV_TX_OK;
3004         }
3005
3006         /* 82571 and newer doesn't need the workaround that limited descriptor
3007          * length to 4kB */
3008         if (adapter->hw.mac_type >= e1000_82571)
3009                 max_per_txd = 8192;
3010
3011 #ifdef NETIF_F_TSO
3012         mss = skb_shinfo(skb)->gso_size;
3013         /* The controller does a simple calculation to
3014          * make sure there is enough room in the FIFO before
3015          * initiating the DMA for each buffer.  The calc is:
3016          * 4 = ceil(buffer len/mss).  To make sure we don't
3017          * overrun the FIFO, adjust the max buffer len if mss
3018          * drops. */
3019         if (mss) {
3020                 uint8_t hdr_len;
3021                 max_per_txd = min(mss << 2, max_per_txd);
3022                 max_txd_pwr = fls(max_per_txd) - 1;
3023
3024                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3025                 * points to just header, pull a few bytes of payload from
3026                 * frags into skb->data */
3027                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3028                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3029                         switch (adapter->hw.mac_type) {
3030                                 unsigned int pull_size;
3031                         case e1000_82571:
3032                         case e1000_82572:
3033                         case e1000_82573:
3034                         case e1000_ich8lan:
3035                                 pull_size = min((unsigned int)4, skb->data_len);
3036                                 if (!__pskb_pull_tail(skb, pull_size)) {
3037                                         DPRINTK(DRV, ERR,
3038                                                 "__pskb_pull_tail failed.\n");
3039                                         dev_kfree_skb_any(skb);
3040                                         return NETDEV_TX_OK;
3041                                 }
3042                                 len = skb->len - skb->data_len;
3043                                 break;
3044                         default:
3045                                 /* do nothing */
3046                                 break;
3047                         }
3048                 }
3049         }
3050
3051         /* reserve a descriptor for the offload context */
3052         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3053                 count++;
3054         count++;
3055 #else
3056         if (skb->ip_summed == CHECKSUM_PARTIAL)
3057                 count++;
3058 #endif
3059
3060 #ifdef NETIF_F_TSO
3061         /* Controller Erratum workaround */
3062         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3063                 count++;
3064 #endif
3065
3066         count += TXD_USE_COUNT(len, max_txd_pwr);
3067
3068         if (adapter->pcix_82544)
3069                 count++;
3070
3071         /* work-around for errata 10 and it applies to all controllers
3072          * in PCI-X mode, so add one more descriptor to the count
3073          */
3074         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3075                         (len > 2015)))
3076                 count++;
3077
3078         nr_frags = skb_shinfo(skb)->nr_frags;
3079         for (f = 0; f < nr_frags; f++)
3080                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3081                                        max_txd_pwr);
3082         if (adapter->pcix_82544)
3083                 count += nr_frags;
3084
3085
3086         if (adapter->hw.tx_pkt_filtering &&
3087             (adapter->hw.mac_type == e1000_82573))
3088                 e1000_transfer_dhcp_info(adapter, skb);
3089
3090         local_irq_save(flags);
3091         if (!spin_trylock(&tx_ring->tx_lock)) {
3092                 /* Collision - tell upper layer to requeue */
3093                 local_irq_restore(flags);
3094                 return NETDEV_TX_LOCKED;
3095         }
3096
3097         /* need: count + 2 desc gap to keep tail from touching
3098          * head, otherwise try next time */
3099         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3100                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3101                 return NETDEV_TX_BUSY;
3102         }
3103
3104         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3105                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3106                         netif_stop_queue(netdev);
3107                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3108                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3109                         return NETDEV_TX_BUSY;
3110                 }
3111         }
3112
3113         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3114                 tx_flags |= E1000_TX_FLAGS_VLAN;
3115                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3116         }
3117
3118         first = tx_ring->next_to_use;
3119
3120         tso = e1000_tso(adapter, tx_ring, skb);
3121         if (tso < 0) {
3122                 dev_kfree_skb_any(skb);
3123                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3124                 return NETDEV_TX_OK;
3125         }
3126
3127         if (likely(tso)) {
3128                 tx_ring->last_tx_tso = 1;
3129                 tx_flags |= E1000_TX_FLAGS_TSO;
3130         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3131                 tx_flags |= E1000_TX_FLAGS_CSUM;
3132
3133         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3134          * 82571 hardware supports TSO capabilities for IPv6 as well...
3135          * no longer assume, we must. */
3136         if (likely(skb->protocol == htons(ETH_P_IP)))
3137                 tx_flags |= E1000_TX_FLAGS_IPV4;
3138
3139         e1000_tx_queue(adapter, tx_ring, tx_flags,
3140                        e1000_tx_map(adapter, tx_ring, skb, first,
3141                                     max_per_txd, nr_frags, mss));
3142
3143         netdev->trans_start = jiffies;
3144
3145         /* Make sure there is space in the ring for the next send. */
3146         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3147
3148         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3149         return NETDEV_TX_OK;
3150 }
3151
3152 /**
3153  * e1000_tx_timeout - Respond to a Tx Hang
3154  * @netdev: network interface device structure
3155  **/
3156
3157 static void
3158 e1000_tx_timeout(struct net_device *netdev)
3159 {
3160         struct e1000_adapter *adapter = netdev_priv(netdev);
3161
3162         /* Do the reset outside of interrupt context */
3163         adapter->tx_timeout_count++;
3164         schedule_work(&adapter->reset_task);
3165 }
3166
3167 static void
3168 e1000_reset_task(struct net_device *netdev)
3169 {
3170         struct e1000_adapter *adapter = netdev_priv(netdev);
3171
3172         e1000_reinit_locked(adapter);
3173 }
3174
3175 /**
3176  * e1000_get_stats - Get System Network Statistics
3177  * @netdev: network interface device structure
3178  *
3179  * Returns the address of the device statistics structure.
3180  * The statistics are actually updated from the timer callback.
3181  **/
3182
3183 static struct net_device_stats *
3184 e1000_get_stats(struct net_device *netdev)
3185 {
3186         struct e1000_adapter *adapter = netdev_priv(netdev);
3187
3188         /* only return the current stats */
3189         return &adapter->net_stats;
3190 }
3191
3192 /**
3193  * e1000_change_mtu - Change the Maximum Transfer Unit
3194  * @netdev: network interface device structure
3195  * @new_mtu: new value for maximum frame size
3196  *
3197  * Returns 0 on success, negative on failure
3198  **/
3199
3200 static int
3201 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3202 {
3203         struct e1000_adapter *adapter = netdev_priv(netdev);
3204         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3205         uint16_t eeprom_data = 0;
3206
3207         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3208             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3209                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3210                 return -EINVAL;
3211         }
3212
3213         /* Adapter-specific max frame size limits. */
3214         switch (adapter->hw.mac_type) {
3215         case e1000_undefined ... e1000_82542_rev2_1:
3216         case e1000_ich8lan:
3217                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3218                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3219                         return -EINVAL;
3220                 }
3221                 break;
3222         case e1000_82573:
3223                 /* Jumbo Frames not supported if:
3224                  * - this is not an 82573L device
3225                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3226                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3227                                   &eeprom_data);
3228                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3229                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3230                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3231                                 DPRINTK(PROBE, ERR,
3232                                         "Jumbo Frames not supported.\n");
3233                                 return -EINVAL;
3234                         }
3235                         break;
3236                 }
3237                 /* ERT will be enabled later to enable wire speed receives */
3238
3239                 /* fall through to get support */
3240         case e1000_82571:
3241         case e1000_82572:
3242         case e1000_80003es2lan:
3243 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3244                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3245                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3246                         return -EINVAL;
3247                 }
3248                 break;
3249         default:
3250                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3251                 break;
3252         }
3253
3254         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3255          * means we reserve 2 more, this pushes us to allocate from the next
3256          * larger slab size
3257          * i.e. RXBUFFER_2048 --> size-4096 slab */
3258
3259         if (max_frame <= E1000_RXBUFFER_256)
3260                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3261         else if (max_frame <= E1000_RXBUFFER_512)
3262                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3263         else if (max_frame <= E1000_RXBUFFER_1024)
3264                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3265         else if (max_frame <= E1000_RXBUFFER_2048)
3266                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3267         else if (max_frame <= E1000_RXBUFFER_4096)
3268                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3269         else if (max_frame <= E1000_RXBUFFER_8192)
3270                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3271         else if (max_frame <= E1000_RXBUFFER_16384)
3272                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3273
3274         /* adjust allocation if LPE protects us, and we aren't using SBP */
3275         if (!adapter->hw.tbi_compatibility_on &&
3276             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3277              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3278                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3279
3280         netdev->mtu = new_mtu;
3281
3282         if (netif_running(netdev))
3283                 e1000_reinit_locked(adapter);
3284
3285         adapter->hw.max_frame_size = max_frame;
3286
3287         return 0;
3288 }
3289
3290 /**
3291  * e1000_update_stats - Update the board statistics counters
3292  * @adapter: board private structure
3293  **/
3294
3295 void
3296 e1000_update_stats(struct e1000_adapter *adapter)
3297 {
3298         struct e1000_hw *hw = &adapter->hw;
3299         struct pci_dev *pdev = adapter->pdev;
3300         unsigned long flags;
3301         uint16_t phy_tmp;
3302
3303 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3304
3305         /*
3306          * Prevent stats update while adapter is being reset, or if the pci
3307          * connection is down.
3308          */
3309         if (adapter->link_speed == 0)
3310                 return;
3311         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3312                 return;
3313
3314         spin_lock_irqsave(&adapter->stats_lock, flags);
3315
3316         /* these counters are modified from e1000_adjust_tbi_stats,
3317          * called from the interrupt context, so they must only
3318          * be written while holding adapter->stats_lock
3319          */
3320
3321         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3322         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3323         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3324         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3325         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3326         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3327         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3328
3329         if (adapter->hw.mac_type != e1000_ich8lan) {
3330                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3331                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3332                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3333                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3334                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3335                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3336         }
3337
3338         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3339         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3340         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3341         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3342         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3343         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3344         adapter->stats.dc += E1000_READ_REG(hw, DC);
3345         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3346         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3347         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3348         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3349         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3350         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3351         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3352         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3353         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3354         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3355         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3356         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3357         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3358         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3359         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3360         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3361         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3362         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3363         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3364
3365         if (adapter->hw.mac_type != e1000_ich8lan) {
3366                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3367                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3368                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3369                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3370                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3371                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3372         }
3373
3374         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3375         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3376
3377         /* used for adaptive IFS */
3378
3379         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3380         adapter->stats.tpt += hw->tx_packet_delta;
3381         hw->collision_delta = E1000_READ_REG(hw, COLC);
3382         adapter->stats.colc += hw->collision_delta;
3383
3384         if (hw->mac_type >= e1000_82543) {
3385                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3386                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3387                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3388                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3389                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3390                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3391         }
3392         if (hw->mac_type > e1000_82547_rev_2) {
3393                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3394                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3395
3396                 if (adapter->hw.mac_type != e1000_ich8lan) {
3397                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3398                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3399                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3400                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3401                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3402                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3403                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3404                 }
3405         }
3406
3407         /* Fill out the OS statistics structure */
3408         adapter->net_stats.rx_packets = adapter->stats.gprc;
3409         adapter->net_stats.tx_packets = adapter->stats.gptc;
3410         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3411         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3412         adapter->net_stats.multicast = adapter->stats.mprc;
3413         adapter->net_stats.collisions = adapter->stats.colc;
3414
3415         /* Rx Errors */
3416
3417         /* RLEC on some newer hardware can be incorrect so build
3418         * our own version based on RUC and ROC */
3419         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3420                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3421                 adapter->stats.ruc + adapter->stats.roc +
3422                 adapter->stats.cexterr;
3423         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3424         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3425         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3426         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3427         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3428
3429         /* Tx Errors */
3430         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3431         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3432         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3433         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3434         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3435
3436         /* Tx Dropped needs to be maintained elsewhere */
3437
3438         /* Phy Stats */
3439         if (hw->media_type == e1000_media_type_copper) {
3440                 if ((adapter->link_speed == SPEED_1000) &&
3441                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3442                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3443                         adapter->phy_stats.idle_errors += phy_tmp;
3444                 }
3445
3446                 if ((hw->mac_type <= e1000_82546) &&
3447                    (hw->phy_type == e1000_phy_m88) &&
3448                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3449                         adapter->phy_stats.receive_errors += phy_tmp;
3450         }
3451
3452         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3453 }
3454
3455 /**
3456  * e1000_intr - Interrupt Handler
3457  * @irq: interrupt number
3458  * @data: pointer to a network interface device structure
3459  **/
3460
3461 static irqreturn_t
3462 e1000_intr(int irq, void *data)
3463 {
3464         struct net_device *netdev = data;
3465         struct e1000_adapter *adapter = netdev_priv(netdev);
3466         struct e1000_hw *hw = &adapter->hw;
3467         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3468 #ifndef CONFIG_E1000_NAPI
3469         int i;
3470 #else
3471         /* Interrupt Auto-Mask...upon reading ICR,
3472          * interrupts are masked.  No need for the
3473          * IMC write, but it does mean we should
3474          * account for it ASAP. */
3475         if (likely(hw->mac_type >= e1000_82571))
3476                 atomic_inc(&adapter->irq_sem);
3477 #endif
3478
3479         if (unlikely(!icr)) {
3480 #ifdef CONFIG_E1000_NAPI
3481                 if (hw->mac_type >= e1000_82571)
3482                         e1000_irq_enable(adapter);
3483 #endif
3484                 return IRQ_NONE;  /* Not our interrupt */
3485         }
3486
3487         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3488                 hw->get_link_status = 1;
3489                 /* 80003ES2LAN workaround--
3490                  * For packet buffer work-around on link down event;
3491                  * disable receives here in the ISR and
3492                  * reset adapter in watchdog
3493                  */
3494                 if (netif_carrier_ok(netdev) &&
3495                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3496                         /* disable receives */
3497                         rctl = E1000_READ_REG(hw, RCTL);
3498                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3499                 }
3500                 /* guard against interrupt when we're going down */
3501                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3502                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3503         }
3504
3505 #ifdef CONFIG_E1000_NAPI
3506         if (unlikely(hw->mac_type < e1000_82571)) {
3507                 atomic_inc(&adapter->irq_sem);
3508                 E1000_WRITE_REG(hw, IMC, ~0);
3509                 E1000_WRITE_FLUSH(hw);
3510         }
3511         if (likely(netif_rx_schedule_prep(netdev)))
3512                 __netif_rx_schedule(netdev);
3513         else
3514                 /* this really should not happen! if it does it is basically a
3515                  * bug, but not a hard error, so enable ints and continue */
3516                 e1000_irq_enable(adapter);
3517 #else
3518         /* Writing IMC and IMS is needed for 82547.
3519          * Due to Hub Link bus being occupied, an interrupt
3520          * de-assertion message is not able to be sent.
3521          * When an interrupt assertion message is generated later,
3522          * two messages are re-ordered and sent out.
3523          * That causes APIC to think 82547 is in de-assertion
3524          * state, while 82547 is in assertion state, resulting
3525          * in dead lock. Writing IMC forces 82547 into
3526          * de-assertion state.
3527          */
3528         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3529                 atomic_inc(&adapter->irq_sem);
3530                 E1000_WRITE_REG(hw, IMC, ~0);
3531         }
3532
3533         for (i = 0; i < E1000_MAX_INTR; i++)
3534                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3535                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3536                         break;
3537
3538         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3539                 e1000_irq_enable(adapter);
3540
3541 #endif
3542         return IRQ_HANDLED;
3543 }
3544
3545 #ifdef CONFIG_E1000_NAPI
3546 /**
3547  * e1000_clean - NAPI Rx polling callback
3548  * @adapter: board private structure
3549  **/
3550
3551 static int
3552 e1000_clean(struct net_device *poll_dev, int *budget)
3553 {
3554         struct e1000_adapter *adapter;
3555         int work_to_do = min(*budget, poll_dev->quota);
3556         int tx_cleaned = 0, work_done = 0;
3557
3558         /* Must NOT use netdev_priv macro here. */
3559         adapter = poll_dev->priv;
3560
3561         /* Keep link state information with original netdev */
3562         if (!netif_carrier_ok(poll_dev))
3563                 goto quit_polling;
3564
3565         /* e1000_clean is called per-cpu.  This lock protects
3566          * tx_ring[0] from being cleaned by multiple cpus
3567          * simultaneously.  A failure obtaining the lock means
3568          * tx_ring[0] is currently being cleaned anyway. */
3569         if (spin_trylock(&adapter->tx_queue_lock)) {
3570                 tx_cleaned = e1000_clean_tx_irq(adapter,
3571                                                 &adapter->tx_ring[0]);
3572                 spin_unlock(&adapter->tx_queue_lock);
3573         }
3574
3575         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3576                           &work_done, work_to_do);
3577
3578         *budget -= work_done;
3579         poll_dev->quota -= work_done;
3580
3581         /* If no Tx and not enough Rx work done, exit the polling mode */
3582         if ((!tx_cleaned && (work_done == 0)) ||
3583            !netif_running(poll_dev)) {
3584 quit_polling:
3585                 netif_rx_complete(poll_dev);
3586                 e1000_irq_enable(adapter);
3587                 return 0;
3588         }
3589
3590         return 1;
3591 }
3592
3593 #endif
3594 /**
3595  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3596  * @adapter: board private structure
3597  **/
3598
3599 static boolean_t
3600 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3601                    struct e1000_tx_ring *tx_ring)
3602 {
3603         struct net_device *netdev = adapter->netdev;
3604         struct e1000_tx_desc *tx_desc, *eop_desc;
3605         struct e1000_buffer *buffer_info;
3606         unsigned int i, eop;
3607 #ifdef CONFIG_E1000_NAPI
3608         unsigned int count = 0;
3609 #endif
3610         boolean_t cleaned = FALSE;
3611
3612         i = tx_ring->next_to_clean;
3613         eop = tx_ring->buffer_info[i].next_to_watch;
3614         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3615
3616         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3617                 for (cleaned = FALSE; !cleaned; ) {
3618                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3619                         buffer_info = &tx_ring->buffer_info[i];
3620                         cleaned = (i == eop);
3621
3622                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3623                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3624
3625                         if (unlikely(++i == tx_ring->count)) i = 0;
3626                 }
3627
3628                 eop = tx_ring->buffer_info[i].next_to_watch;
3629                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3630 #ifdef CONFIG_E1000_NAPI
3631 #define E1000_TX_WEIGHT 64
3632                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3633                 if (count++ == E1000_TX_WEIGHT) break;
3634 #endif
3635         }
3636
3637         tx_ring->next_to_clean = i;
3638
3639 #define TX_WAKE_THRESHOLD 32
3640         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3641                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3642                 /* Make sure that anybody stopping the queue after this
3643                  * sees the new next_to_clean.
3644                  */
3645                 smp_mb();
3646                 if (netif_queue_stopped(netdev))
3647                         netif_wake_queue(netdev);
3648         }
3649
3650         if (adapter->detect_tx_hung) {
3651                 /* Detect a transmit hang in hardware, this serializes the
3652                  * check with the clearing of time_stamp and movement of i */
3653                 adapter->detect_tx_hung = FALSE;
3654                 if (tx_ring->buffer_info[eop].dma &&
3655                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3656                                (adapter->tx_timeout_factor * HZ))
3657                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3658                          E1000_STATUS_TXOFF)) {
3659
3660                         /* detected Tx unit hang */
3661                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3662                                         "  Tx Queue             <%lu>\n"
3663                                         "  TDH                  <%x>\n"
3664                                         "  TDT                  <%x>\n"
3665                                         "  next_to_use          <%x>\n"
3666                                         "  next_to_clean        <%x>\n"
3667                                         "buffer_info[next_to_clean]\n"
3668                                         "  time_stamp           <%lx>\n"
3669                                         "  next_to_watch        <%x>\n"
3670                                         "  jiffies              <%lx>\n"
3671                                         "  next_to_watch.status <%x>\n",
3672                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3673                                         sizeof(struct e1000_tx_ring)),
3674                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3675                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3676                                 tx_ring->next_to_use,
3677                                 tx_ring->next_to_clean,
3678                                 tx_ring->buffer_info[eop].time_stamp,
3679                                 eop,
3680                                 jiffies,
3681                                 eop_desc->upper.fields.status);
3682                         netif_stop_queue(netdev);
3683                 }
3684         }
3685         return cleaned;
3686 }
3687
3688 /**
3689  * e1000_rx_checksum - Receive Checksum Offload for 82543
3690  * @adapter:     board private structure
3691  * @status_err:  receive descriptor status and error fields
3692  * @csum:        receive descriptor csum field
3693  * @sk_buff:     socket buffer with received data
3694  **/
3695
3696 static void
3697 e1000_rx_checksum(struct e1000_adapter *adapter,
3698                   uint32_t status_err, uint32_t csum,
3699                   struct sk_buff *skb)
3700 {
3701         uint16_t status = (uint16_t)status_err;
3702         uint8_t errors = (uint8_t)(status_err >> 24);
3703         skb->ip_summed = CHECKSUM_NONE;
3704
3705         /* 82543 or newer only */
3706         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3707         /* Ignore Checksum bit is set */
3708         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3709         /* TCP/UDP checksum error bit is set */
3710         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3711                 /* let the stack verify checksum errors */
3712                 adapter->hw_csum_err++;
3713                 return;
3714         }
3715         /* TCP/UDP Checksum has not been calculated */
3716         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3717                 if (!(status & E1000_RXD_STAT_TCPCS))
3718                         return;
3719         } else {
3720                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3721                         return;
3722         }
3723         /* It must be a TCP or UDP packet with a valid checksum */
3724         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3725                 /* TCP checksum is good */
3726                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3727         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3728                 /* IP fragment with UDP payload */
3729                 /* Hardware complements the payload checksum, so we undo it
3730                  * and then put the value in host order for further stack use.
3731                  */
3732                 csum = ntohl(csum ^ 0xFFFF);
3733                 skb->csum = csum;
3734                 skb->ip_summed = CHECKSUM_COMPLETE;
3735         }
3736         adapter->hw_csum_good++;
3737 }
3738
3739 /**
3740  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3741  * @adapter: board private structure
3742  **/
3743
3744 static boolean_t
3745 #ifdef CONFIG_E1000_NAPI
3746 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3747                    struct e1000_rx_ring *rx_ring,
3748                    int *work_done, int work_to_do)
3749 #else
3750 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3751                    struct e1000_rx_ring *rx_ring)
3752 #endif
3753 {
3754         struct net_device *netdev = adapter->netdev;
3755         struct pci_dev *pdev = adapter->pdev;
3756         struct e1000_rx_desc *rx_desc, *next_rxd;
3757         struct e1000_buffer *buffer_info, *next_buffer;
3758         unsigned long flags;
3759         uint32_t length;
3760         uint8_t last_byte;
3761         unsigned int i;
3762         int cleaned_count = 0;
3763         boolean_t cleaned = FALSE;
3764
3765         i = rx_ring->next_to_clean;
3766         rx_desc = E1000_RX_DESC(*rx_ring, i);
3767         buffer_info = &rx_ring->buffer_info[i];
3768
3769         while (rx_desc->status & E1000_RXD_STAT_DD) {
3770                 struct sk_buff *skb;
3771                 u8 status;
3772
3773 #ifdef CONFIG_E1000_NAPI
3774                 if (*work_done >= work_to_do)
3775                         break;
3776                 (*work_done)++;
3777 #endif
3778                 status = rx_desc->status;
3779                 skb = buffer_info->skb;
3780                 buffer_info->skb = NULL;
3781
3782                 prefetch(skb->data - NET_IP_ALIGN);
3783
3784                 if (++i == rx_ring->count) i = 0;
3785                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3786                 prefetch(next_rxd);
3787
3788                 next_buffer = &rx_ring->buffer_info[i];
3789
3790                 cleaned = TRUE;
3791                 cleaned_count++;
3792                 pci_unmap_single(pdev,
3793                                  buffer_info->dma,
3794                                  buffer_info->length,
3795                                  PCI_DMA_FROMDEVICE);
3796
3797                 length = le16_to_cpu(rx_desc->length);
3798
3799                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3800                         /* All receives must fit into a single buffer */
3801                         E1000_DBG("%s: Receive packet consumed multiple"
3802                                   " buffers\n", netdev->name);
3803                         /* recycle */
3804                         buffer_info->skb = skb;
3805                         goto next_desc;
3806                 }
3807
3808                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3809                         last_byte = *(skb->data + length - 1);
3810                         if (TBI_ACCEPT(&adapter->hw, status,
3811                                       rx_desc->errors, length, last_byte)) {
3812                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3813                                 e1000_tbi_adjust_stats(&adapter->hw,
3814                                                        &adapter->stats,
3815                                                        length, skb->data);
3816                                 spin_unlock_irqrestore(&adapter->stats_lock,
3817                                                        flags);
3818                                 length--;
3819                         } else {
3820                                 /* recycle */
3821                                 buffer_info->skb = skb;
3822                                 goto next_desc;
3823                         }
3824                 }
3825
3826                 /* adjust length to remove Ethernet CRC, this must be
3827                  * done after the TBI_ACCEPT workaround above */
3828                 length -= 4;
3829
3830                 /* code added for copybreak, this should improve
3831                  * performance for small packets with large amounts
3832                  * of reassembly being done in the stack */
3833 #define E1000_CB_LENGTH 256
3834                 if (length < E1000_CB_LENGTH) {
3835                         struct sk_buff *new_skb =
3836                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3837                         if (new_skb) {
3838                                 skb_reserve(new_skb, NET_IP_ALIGN);
3839                                 memcpy(new_skb->data - NET_IP_ALIGN,
3840                                        skb->data - NET_IP_ALIGN,
3841                                        length + NET_IP_ALIGN);
3842                                 /* save the skb in buffer_info as good */
3843                                 buffer_info->skb = skb;
3844                                 skb = new_skb;
3845                                 skb_put(skb, length);
3846                         }
3847                 } else
3848                         skb_put(skb, length);
3849
3850                 /* end copybreak code */
3851
3852                 /* Receive Checksum Offload */
3853                 e1000_rx_checksum(adapter,
3854                                   (uint32_t)(status) |
3855                                   ((uint32_t)(rx_desc->errors) << 24),
3856                                   le16_to_cpu(rx_desc->csum), skb);
3857
3858                 skb->protocol = eth_type_trans(skb, netdev);
3859 #ifdef CONFIG_E1000_NAPI
3860                 if (unlikely(adapter->vlgrp &&
3861                             (status & E1000_RXD_STAT_VP))) {
3862                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3863                                                  le16_to_cpu(rx_desc->special) &
3864                                                  E1000_RXD_SPC_VLAN_MASK);
3865                 } else {
3866                         netif_receive_skb(skb);
3867                 }
3868 #else /* CONFIG_E1000_NAPI */
3869                 if (unlikely(adapter->vlgrp &&
3870                             (status & E1000_RXD_STAT_VP))) {
3871                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3872                                         le16_to_cpu(rx_desc->special) &
3873                                         E1000_RXD_SPC_VLAN_MASK);
3874                 } else {
3875                         netif_rx(skb);
3876                 }
3877 #endif /* CONFIG_E1000_NAPI */
3878                 netdev->last_rx = jiffies;
3879
3880 next_desc:
3881                 rx_desc->status = 0;
3882
3883                 /* return some buffers to hardware, one at a time is too slow */
3884                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3885                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3886                         cleaned_count = 0;
3887                 }
3888
3889                 /* use prefetched values */
3890                 rx_desc = next_rxd;
3891                 buffer_info = next_buffer;
3892         }
3893         rx_ring->next_to_clean = i;
3894
3895         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3896         if (cleaned_count)
3897                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3898
3899         return cleaned;
3900 }
3901
3902 /**
3903  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3904  * @adapter: board private structure
3905  **/
3906
3907 static boolean_t
3908 #ifdef CONFIG_E1000_NAPI
3909 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3910                       struct e1000_rx_ring *rx_ring,
3911                       int *work_done, int work_to_do)
3912 #else
3913 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3914                       struct e1000_rx_ring *rx_ring)
3915 #endif
3916 {
3917         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3918         struct net_device *netdev = adapter->netdev;
3919         struct pci_dev *pdev = adapter->pdev;
3920         struct e1000_buffer *buffer_info, *next_buffer;
3921         struct e1000_ps_page *ps_page;
3922         struct e1000_ps_page_dma *ps_page_dma;
3923         struct sk_buff *skb;
3924         unsigned int i, j;
3925         uint32_t length, staterr;
3926         int cleaned_count = 0;
3927         boolean_t cleaned = FALSE;
3928
3929         i = rx_ring->next_to_clean;
3930         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3931         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3932         buffer_info = &rx_ring->buffer_info[i];
3933
3934         while (staterr & E1000_RXD_STAT_DD) {
3935                 ps_page = &rx_ring->ps_page[i];
3936                 ps_page_dma = &rx_ring->ps_page_dma[i];
3937 #ifdef CONFIG_E1000_NAPI
3938                 if (unlikely(*work_done >= work_to_do))
3939                         break;
3940                 (*work_done)++;
3941 #endif
3942                 skb = buffer_info->skb;
3943
3944                 /* in the packet split case this is header only */
3945                 prefetch(skb->data - NET_IP_ALIGN);
3946
3947                 if (++i == rx_ring->count) i = 0;
3948                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3949                 prefetch(next_rxd);
3950
3951                 next_buffer = &rx_ring->buffer_info[i];
3952
3953                 cleaned = TRUE;
3954                 cleaned_count++;
3955                 pci_unmap_single(pdev, buffer_info->dma,
3956                                  buffer_info->length,
3957                                  PCI_DMA_FROMDEVICE);
3958
3959                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3960                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3961                                   " the full packet\n", netdev->name);
3962                         dev_kfree_skb_irq(skb);
3963                         goto next_desc;
3964                 }
3965
3966                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3967                         dev_kfree_skb_irq(skb);
3968                         goto next_desc;
3969                 }
3970
3971                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3972
3973                 if (unlikely(!length)) {
3974                         E1000_DBG("%s: Last part of the packet spanning"
3975                                   " multiple descriptors\n", netdev->name);
3976                         dev_kfree_skb_irq(skb);
3977                         goto next_desc;
3978                 }
3979
3980                 /* Good Receive */
3981                 skb_put(skb, length);
3982
3983                 {
3984                 /* this looks ugly, but it seems compiler issues make it
3985                    more efficient than reusing j */
3986                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3987
3988                 /* page alloc/put takes too long and effects small packet
3989                  * throughput, so unsplit small packets and save the alloc/put*/
3990                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3991                         u8 *vaddr;
3992                         /* there is no documentation about how to call
3993                          * kmap_atomic, so we can't hold the mapping
3994                          * very long */
3995                         pci_dma_sync_single_for_cpu(pdev,
3996                                 ps_page_dma->ps_page_dma[0],
3997                                 PAGE_SIZE,
3998                                 PCI_DMA_FROMDEVICE);
3999                         vaddr = kmap_atomic(ps_page->ps_page[0],
4000                                             KM_SKB_DATA_SOFTIRQ);
4001                         memcpy(skb->tail, vaddr, l1);
4002                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4003                         pci_dma_sync_single_for_device(pdev,
4004                                 ps_page_dma->ps_page_dma[0],
4005                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4006                         /* remove the CRC */
4007                         l1 -= 4;
4008                         skb_put(skb, l1);
4009                         goto copydone;
4010                 } /* if */
4011                 }
4012
4013                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4014                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4015                                 break;
4016                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4017                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4018                         ps_page_dma->ps_page_dma[j] = 0;
4019                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4020                                            length);
4021                         ps_page->ps_page[j] = NULL;
4022                         skb->len += length;
4023                         skb->data_len += length;
4024                         skb->truesize += length;
4025                 }
4026
4027                 /* strip the ethernet crc, problem is we're using pages now so
4028                  * this whole operation can get a little cpu intensive */
4029                 pskb_trim(skb, skb->len - 4);
4030
4031 copydone:
4032                 e1000_rx_checksum(adapter, staterr,
4033                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4034                 skb->protocol = eth_type_trans(skb, netdev);
4035
4036                 if (likely(rx_desc->wb.upper.header_status &
4037                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4038                         adapter->rx_hdr_split++;
4039 #ifdef CONFIG_E1000_NAPI
4040                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4041                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4042                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4043                                 E1000_RXD_SPC_VLAN_MASK);
4044                 } else {
4045                         netif_receive_skb(skb);
4046                 }
4047 #else /* CONFIG_E1000_NAPI */
4048                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4049                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4050                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4051                                 E1000_RXD_SPC_VLAN_MASK);
4052                 } else {
4053                         netif_rx(skb);
4054                 }
4055 #endif /* CONFIG_E1000_NAPI */
4056                 netdev->last_rx = jiffies;
4057
4058 next_desc:
4059                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4060                 buffer_info->skb = NULL;
4061
4062                 /* return some buffers to hardware, one at a time is too slow */
4063                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4064                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4065                         cleaned_count = 0;
4066                 }
4067
4068                 /* use prefetched values */
4069                 rx_desc = next_rxd;
4070                 buffer_info = next_buffer;
4071
4072                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4073         }
4074         rx_ring->next_to_clean = i;
4075
4076         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4077         if (cleaned_count)
4078                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4079
4080         return cleaned;
4081 }
4082
4083 /**
4084  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4085  * @adapter: address of board private structure
4086  **/
4087
4088 static void
4089 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4090                        struct e1000_rx_ring *rx_ring,
4091                        int cleaned_count)
4092 {
4093         struct net_device *netdev = adapter->netdev;
4094         struct pci_dev *pdev = adapter->pdev;
4095         struct e1000_rx_desc *rx_desc;
4096         struct e1000_buffer *buffer_info;
4097         struct sk_buff *skb;
4098         unsigned int i;
4099         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4100
4101         i = rx_ring->next_to_use;
4102         buffer_info = &rx_ring->buffer_info[i];
4103
4104         while (cleaned_count--) {
4105                 skb = buffer_info->skb;
4106                 if (skb) {
4107                         skb_trim(skb, 0);
4108                         goto map_skb;
4109                 }
4110
4111                 skb = netdev_alloc_skb(netdev, bufsz);
4112                 if (unlikely(!skb)) {
4113                         /* Better luck next round */
4114                         adapter->alloc_rx_buff_failed++;
4115                         break;
4116                 }
4117
4118                 /* Fix for errata 23, can't cross 64kB boundary */
4119                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4120                         struct sk_buff *oldskb = skb;
4121                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4122                                              "at %p\n", bufsz, skb->data);
4123                         /* Try again, without freeing the previous */
4124                         skb = netdev_alloc_skb(netdev, bufsz);
4125                         /* Failed allocation, critical failure */
4126                         if (!skb) {
4127                                 dev_kfree_skb(oldskb);
4128                                 break;
4129                         }
4130
4131                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4132                                 /* give up */
4133                                 dev_kfree_skb(skb);
4134                                 dev_kfree_skb(oldskb);
4135                                 break; /* while !buffer_info->skb */
4136                         }
4137
4138                         /* Use new allocation */
4139                         dev_kfree_skb(oldskb);
4140                 }
4141                 /* Make buffer alignment 2 beyond a 16 byte boundary
4142                  * this will result in a 16 byte aligned IP header after
4143                  * the 14 byte MAC header is removed
4144                  */
4145                 skb_reserve(skb, NET_IP_ALIGN);
4146
4147                 buffer_info->skb = skb;
4148                 buffer_info->length = adapter->rx_buffer_len;
4149 map_skb:
4150                 buffer_info->dma = pci_map_single(pdev,
4151                                                   skb->data,
4152                                                   adapter->rx_buffer_len,
4153                                                   PCI_DMA_FROMDEVICE);
4154
4155                 /* Fix for errata 23, can't cross 64kB boundary */
4156                 if (!e1000_check_64k_bound(adapter,
4157                                         (void *)(unsigned long)buffer_info->dma,
4158                                         adapter->rx_buffer_len)) {
4159                         DPRINTK(RX_ERR, ERR,
4160                                 "dma align check failed: %u bytes at %p\n",
4161                                 adapter->rx_buffer_len,
4162                                 (void *)(unsigned long)buffer_info->dma);
4163                         dev_kfree_skb(skb);
4164                         buffer_info->skb = NULL;
4165
4166                         pci_unmap_single(pdev, buffer_info->dma,
4167                                          adapter->rx_buffer_len,
4168                                          PCI_DMA_FROMDEVICE);
4169
4170                         break; /* while !buffer_info->skb */
4171                 }
4172                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4173                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4174
4175                 if (unlikely(++i == rx_ring->count))
4176                         i = 0;
4177                 buffer_info = &rx_ring->buffer_info[i];
4178         }
4179
4180         if (likely(rx_ring->next_to_use != i)) {
4181                 rx_ring->next_to_use = i;
4182                 if (unlikely(i-- == 0))
4183                         i = (rx_ring->count - 1);
4184
4185                 /* Force memory writes to complete before letting h/w
4186                  * know there are new descriptors to fetch.  (Only
4187                  * applicable for weak-ordered memory model archs,
4188                  * such as IA-64). */
4189                 wmb();
4190                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4191         }
4192 }
4193
4194 /**
4195  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4196  * @adapter: address of board private structure
4197  **/
4198
4199 static void
4200 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4201                           struct e1000_rx_ring *rx_ring,
4202                           int cleaned_count)
4203 {
4204         struct net_device *netdev = adapter->netdev;
4205         struct pci_dev *pdev = adapter->pdev;
4206         union e1000_rx_desc_packet_split *rx_desc;
4207         struct e1000_buffer *buffer_info;
4208         struct e1000_ps_page *ps_page;
4209         struct e1000_ps_page_dma *ps_page_dma;
4210         struct sk_buff *skb;
4211         unsigned int i, j;
4212
4213         i = rx_ring->next_to_use;
4214         buffer_info = &rx_ring->buffer_info[i];
4215         ps_page = &rx_ring->ps_page[i];
4216         ps_page_dma = &rx_ring->ps_page_dma[i];
4217
4218         while (cleaned_count--) {
4219                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4220
4221                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4222                         if (j < adapter->rx_ps_pages) {
4223                                 if (likely(!ps_page->ps_page[j])) {
4224                                         ps_page->ps_page[j] =
4225                                                 alloc_page(GFP_ATOMIC);
4226                                         if (unlikely(!ps_page->ps_page[j])) {
4227                                                 adapter->alloc_rx_buff_failed++;
4228                                                 goto no_buffers;
4229                                         }
4230                                         ps_page_dma->ps_page_dma[j] =
4231                                                 pci_map_page(pdev,
4232                                                             ps_page->ps_page[j],
4233                                                             0, PAGE_SIZE,
4234                                                             PCI_DMA_FROMDEVICE);
4235                                 }
4236                                 /* Refresh the desc even if buffer_addrs didn't
4237                                  * change because each write-back erases
4238                                  * this info.
4239                                  */
4240                                 rx_desc->read.buffer_addr[j+1] =
4241                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4242                         } else
4243                                 rx_desc->read.buffer_addr[j+1] = ~0;
4244                 }
4245
4246                 skb = netdev_alloc_skb(netdev,
4247                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4248
4249                 if (unlikely(!skb)) {
4250                         adapter->alloc_rx_buff_failed++;
4251                         break;
4252                 }
4253
4254                 /* Make buffer alignment 2 beyond a 16 byte boundary
4255                  * this will result in a 16 byte aligned IP header after
4256                  * the 14 byte MAC header is removed
4257                  */
4258                 skb_reserve(skb, NET_IP_ALIGN);
4259
4260                 buffer_info->skb = skb;
4261                 buffer_info->length = adapter->rx_ps_bsize0;
4262                 buffer_info->dma = pci_map_single(pdev, skb->data,
4263                                                   adapter->rx_ps_bsize0,
4264                                                   PCI_DMA_FROMDEVICE);
4265
4266                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4267
4268                 if (unlikely(++i == rx_ring->count)) i = 0;
4269                 buffer_info = &rx_ring->buffer_info[i];
4270                 ps_page = &rx_ring->ps_page[i];
4271                 ps_page_dma = &rx_ring->ps_page_dma[i];
4272         }
4273
4274 no_buffers:
4275         if (likely(rx_ring->next_to_use != i)) {
4276                 rx_ring->next_to_use = i;
4277                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4278
4279                 /* Force memory writes to complete before letting h/w
4280                  * know there are new descriptors to fetch.  (Only
4281                  * applicable for weak-ordered memory model archs,
4282                  * such as IA-64). */
4283                 wmb();
4284                 /* Hardware increments by 16 bytes, but packet split
4285                  * descriptors are 32 bytes...so we increment tail
4286                  * twice as much.
4287                  */
4288                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4289         }
4290 }
4291
4292 /**
4293  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4294  * @adapter:
4295  **/
4296
4297 static void
4298 e1000_smartspeed(struct e1000_adapter *adapter)
4299 {
4300         uint16_t phy_status;
4301         uint16_t phy_ctrl;
4302
4303         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4304            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4305                 return;
4306
4307         if (adapter->smartspeed == 0) {
4308                 /* If Master/Slave config fault is asserted twice,
4309                  * we assume back-to-back */
4310                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4311                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4312                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4313                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4314                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4315                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4316                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4317                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4318                                             phy_ctrl);
4319                         adapter->smartspeed++;
4320                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4321                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4322                                                &phy_ctrl)) {
4323                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4324                                              MII_CR_RESTART_AUTO_NEG);
4325                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4326                                                     phy_ctrl);
4327                         }
4328                 }
4329                 return;
4330         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4331                 /* If still no link, perhaps using 2/3 pair cable */
4332                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4333                 phy_ctrl |= CR_1000T_MS_ENABLE;
4334                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4335                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4336                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4337                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4338                                      MII_CR_RESTART_AUTO_NEG);
4339                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4340                 }
4341         }
4342         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4343         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4344                 adapter->smartspeed = 0;
4345 }
4346
4347 /**
4348  * e1000_ioctl -
4349  * @netdev:
4350  * @ifreq:
4351  * @cmd:
4352  **/
4353
4354 static int
4355 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4356 {
4357         switch (cmd) {
4358         case SIOCGMIIPHY:
4359         case SIOCGMIIREG:
4360         case SIOCSMIIREG:
4361                 return e1000_mii_ioctl(netdev, ifr, cmd);
4362         default:
4363                 return -EOPNOTSUPP;
4364         }
4365 }
4366
4367 /**
4368  * e1000_mii_ioctl -
4369  * @netdev:
4370  * @ifreq:
4371  * @cmd:
4372  **/
4373
4374 static int
4375 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4376 {
4377         struct e1000_adapter *adapter = netdev_priv(netdev);
4378         struct mii_ioctl_data *data = if_mii(ifr);
4379         int retval;
4380         uint16_t mii_reg;
4381         uint16_t spddplx;
4382         unsigned long flags;
4383
4384         if (adapter->hw.media_type != e1000_media_type_copper)
4385                 return -EOPNOTSUPP;
4386
4387         switch (cmd) {
4388         case SIOCGMIIPHY:
4389                 data->phy_id = adapter->hw.phy_addr;
4390                 break;
4391         case SIOCGMIIREG:
4392                 if (!capable(CAP_NET_ADMIN))
4393                         return -EPERM;
4394                 spin_lock_irqsave(&adapter->stats_lock, flags);
4395                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4396                                    &data->val_out)) {
4397                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4398                         return -EIO;
4399                 }
4400                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4401                 break;
4402         case SIOCSMIIREG:
4403                 if (!capable(CAP_NET_ADMIN))
4404                         return -EPERM;
4405                 if (data->reg_num & ~(0x1F))
4406                         return -EFAULT;
4407                 mii_reg = data->val_in;
4408                 spin_lock_irqsave(&adapter->stats_lock, flags);
4409                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4410                                         mii_reg)) {
4411                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4412                         return -EIO;
4413                 }
4414                 if (adapter->hw.media_type == e1000_media_type_copper) {
4415                         switch (data->reg_num) {
4416                         case PHY_CTRL:
4417                                 if (mii_reg & MII_CR_POWER_DOWN)
4418                                         break;
4419                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4420                                         adapter->hw.autoneg = 1;
4421                                         adapter->hw.autoneg_advertised = 0x2F;
4422                                 } else {
4423                                         if (mii_reg & 0x40)
4424                                                 spddplx = SPEED_1000;
4425                                         else if (mii_reg & 0x2000)
4426                                                 spddplx = SPEED_100;
4427                                         else
4428                                                 spddplx = SPEED_10;
4429                                         spddplx += (mii_reg & 0x100)
4430                                                    ? DUPLEX_FULL :
4431                                                    DUPLEX_HALF;
4432                                         retval = e1000_set_spd_dplx(adapter,
4433                                                                     spddplx);
4434                                         if (retval) {
4435                                                 spin_unlock_irqrestore(
4436                                                         &adapter->stats_lock,
4437                                                         flags);
4438                                                 return retval;
4439                                         }
4440                                 }
4441                                 if (netif_running(adapter->netdev))
4442                                         e1000_reinit_locked(adapter);
4443                                 else
4444                                         e1000_reset(adapter);
4445                                 break;
4446                         case M88E1000_PHY_SPEC_CTRL:
4447                         case M88E1000_EXT_PHY_SPEC_CTRL:
4448                                 if (e1000_phy_reset(&adapter->hw)) {
4449                                         spin_unlock_irqrestore(
4450                                                 &adapter->stats_lock, flags);
4451                                         return -EIO;
4452                                 }
4453                                 break;
4454                         }
4455                 } else {
4456                         switch (data->reg_num) {
4457                         case PHY_CTRL:
4458                                 if (mii_reg & MII_CR_POWER_DOWN)
4459                                         break;
4460                                 if (netif_running(adapter->netdev))
4461                                         e1000_reinit_locked(adapter);
4462                                 else
4463                                         e1000_reset(adapter);
4464                                 break;
4465                         }
4466                 }
4467                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4468                 break;
4469         default:
4470                 return -EOPNOTSUPP;
4471         }
4472         return E1000_SUCCESS;
4473 }
4474
4475 void
4476 e1000_pci_set_mwi(struct e1000_hw *hw)
4477 {
4478         struct e1000_adapter *adapter = hw->back;
4479         int ret_val = pci_set_mwi(adapter->pdev);
4480
4481         if (ret_val)
4482                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4483 }
4484
4485 void
4486 e1000_pci_clear_mwi(struct e1000_hw *hw)
4487 {
4488         struct e1000_adapter *adapter = hw->back;
4489
4490         pci_clear_mwi(adapter->pdev);
4491 }
4492
4493 void
4494 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4495 {
4496         struct e1000_adapter *adapter = hw->back;
4497
4498         pci_read_config_word(adapter->pdev, reg, value);
4499 }
4500
4501 void
4502 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4503 {
4504         struct e1000_adapter *adapter = hw->back;
4505
4506         pci_write_config_word(adapter->pdev, reg, *value);
4507 }
4508
4509 int32_t
4510 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4511 {
4512     struct e1000_adapter *adapter = hw->back;
4513     uint16_t cap_offset;
4514
4515     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4516     if (!cap_offset)
4517         return -E1000_ERR_CONFIG;
4518
4519     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4520
4521     return E1000_SUCCESS;
4522 }
4523
4524 void
4525 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4526 {
4527         outl(value, port);
4528 }
4529
4530 static void
4531 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4532 {
4533         struct e1000_adapter *adapter = netdev_priv(netdev);
4534         uint32_t ctrl, rctl;
4535
4536         e1000_irq_disable(adapter);
4537         adapter->vlgrp = grp;
4538
4539         if (grp) {
4540                 /* enable VLAN tag insert/strip */
4541                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4542                 ctrl |= E1000_CTRL_VME;
4543                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4544
4545                 if (adapter->hw.mac_type != e1000_ich8lan) {
4546                         /* enable VLAN receive filtering */
4547                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4548                         rctl |= E1000_RCTL_VFE;
4549                         rctl &= ~E1000_RCTL_CFIEN;
4550                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4551                         e1000_update_mng_vlan(adapter);
4552                 }
4553         } else {
4554                 /* disable VLAN tag insert/strip */
4555                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4556                 ctrl &= ~E1000_CTRL_VME;
4557                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4558
4559                 if (adapter->hw.mac_type != e1000_ich8lan) {
4560                         /* disable VLAN filtering */
4561                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4562                         rctl &= ~E1000_RCTL_VFE;
4563                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4564                         if (adapter->mng_vlan_id !=
4565                             (uint16_t)E1000_MNG_VLAN_NONE) {
4566                                 e1000_vlan_rx_kill_vid(netdev,
4567                                                        adapter->mng_vlan_id);
4568                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4569                         }
4570                 }
4571         }
4572
4573         e1000_irq_enable(adapter);
4574 }
4575
4576 static void
4577 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4578 {
4579         struct e1000_adapter *adapter = netdev_priv(netdev);
4580         uint32_t vfta, index;
4581
4582         if ((adapter->hw.mng_cookie.status &
4583              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4584             (vid == adapter->mng_vlan_id))
4585                 return;
4586         /* add VID to filter table */
4587         index = (vid >> 5) & 0x7F;
4588         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4589         vfta |= (1 << (vid & 0x1F));
4590         e1000_write_vfta(&adapter->hw, index, vfta);
4591 }
4592
4593 static void
4594 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4595 {
4596         struct e1000_adapter *adapter = netdev_priv(netdev);
4597         uint32_t vfta, index;
4598
4599         e1000_irq_disable(adapter);
4600
4601         if (adapter->vlgrp)
4602                 adapter->vlgrp->vlan_devices[vid] = NULL;
4603
4604         e1000_irq_enable(adapter);
4605
4606         if ((adapter->hw.mng_cookie.status &
4607              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4608             (vid == adapter->mng_vlan_id)) {
4609                 /* release control to f/w */
4610                 e1000_release_hw_control(adapter);
4611                 return;
4612         }
4613
4614         /* remove VID from filter table */
4615         index = (vid >> 5) & 0x7F;
4616         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4617         vfta &= ~(1 << (vid & 0x1F));
4618         e1000_write_vfta(&adapter->hw, index, vfta);
4619 }
4620
4621 static void
4622 e1000_restore_vlan(struct e1000_adapter *adapter)
4623 {
4624         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4625
4626         if (adapter->vlgrp) {
4627                 uint16_t vid;
4628                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4629                         if (!adapter->vlgrp->vlan_devices[vid])
4630                                 continue;
4631                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4632                 }
4633         }
4634 }
4635
4636 int
4637 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4638 {
4639         adapter->hw.autoneg = 0;
4640
4641         /* Fiber NICs only allow 1000 gbps Full duplex */
4642         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4643                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4644                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4645                 return -EINVAL;
4646         }
4647
4648         switch (spddplx) {
4649         case SPEED_10 + DUPLEX_HALF:
4650                 adapter->hw.forced_speed_duplex = e1000_10_half;
4651                 break;
4652         case SPEED_10 + DUPLEX_FULL:
4653                 adapter->hw.forced_speed_duplex = e1000_10_full;
4654                 break;
4655         case SPEED_100 + DUPLEX_HALF:
4656                 adapter->hw.forced_speed_duplex = e1000_100_half;
4657                 break;
4658         case SPEED_100 + DUPLEX_FULL:
4659                 adapter->hw.forced_speed_duplex = e1000_100_full;
4660                 break;
4661         case SPEED_1000 + DUPLEX_FULL:
4662                 adapter->hw.autoneg = 1;
4663                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4664                 break;
4665         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4666         default:
4667                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4668                 return -EINVAL;
4669         }
4670         return 0;
4671 }
4672
4673 #ifdef CONFIG_PM
4674 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4675  * bus we're on (PCI(X) vs. PCI-E)
4676  */
4677 #define PCIE_CONFIG_SPACE_LEN 256
4678 #define PCI_CONFIG_SPACE_LEN 64
4679 static int
4680 e1000_pci_save_state(struct e1000_adapter *adapter)
4681 {
4682         struct pci_dev *dev = adapter->pdev;
4683         int size;
4684         int i;
4685
4686         if (adapter->hw.mac_type >= e1000_82571)
4687                 size = PCIE_CONFIG_SPACE_LEN;
4688         else
4689                 size = PCI_CONFIG_SPACE_LEN;
4690
4691         WARN_ON(adapter->config_space != NULL);
4692
4693         adapter->config_space = kmalloc(size, GFP_KERNEL);
4694         if (!adapter->config_space) {
4695                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4696                 return -ENOMEM;
4697         }
4698         for (i = 0; i < (size / 4); i++)
4699                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4700         return 0;
4701 }
4702
4703 static void
4704 e1000_pci_restore_state(struct e1000_adapter *adapter)
4705 {
4706         struct pci_dev *dev = adapter->pdev;
4707         int size;
4708         int i;
4709
4710         if (adapter->config_space == NULL)
4711                 return;
4712
4713         if (adapter->hw.mac_type >= e1000_82571)
4714                 size = PCIE_CONFIG_SPACE_LEN;
4715         else
4716                 size = PCI_CONFIG_SPACE_LEN;
4717         for (i = 0; i < (size / 4); i++)
4718                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4719         kfree(adapter->config_space);
4720         adapter->config_space = NULL;
4721         return;
4722 }
4723 #endif /* CONFIG_PM */
4724
4725 static int
4726 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4727 {
4728         struct net_device *netdev = pci_get_drvdata(pdev);
4729         struct e1000_adapter *adapter = netdev_priv(netdev);
4730         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4731         uint32_t wufc = adapter->wol;
4732 #ifdef CONFIG_PM
4733         int retval = 0;
4734 #endif
4735
4736         netif_device_detach(netdev);
4737
4738         if (netif_running(netdev)) {
4739                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4740                 e1000_down(adapter);
4741         }
4742
4743 #ifdef CONFIG_PM
4744         /* Implement our own version of pci_save_state(pdev) because pci-
4745          * express adapters have 256-byte config spaces. */
4746         retval = e1000_pci_save_state(adapter);
4747         if (retval)
4748                 return retval;
4749 #endif
4750
4751         status = E1000_READ_REG(&adapter->hw, STATUS);
4752         if (status & E1000_STATUS_LU)
4753                 wufc &= ~E1000_WUFC_LNKC;
4754
4755         if (wufc) {
4756                 e1000_setup_rctl(adapter);
4757                 e1000_set_multi(netdev);
4758
4759                 /* turn on all-multi mode if wake on multicast is enabled */
4760                 if (wufc & E1000_WUFC_MC) {
4761                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4762                         rctl |= E1000_RCTL_MPE;
4763                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4764                 }
4765
4766                 if (adapter->hw.mac_type >= e1000_82540) {
4767                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4768                         /* advertise wake from D3Cold */
4769                         #define E1000_CTRL_ADVD3WUC 0x00100000
4770                         /* phy power management enable */
4771                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4772                         ctrl |= E1000_CTRL_ADVD3WUC |
4773                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4774                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4775                 }
4776
4777                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4778                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4779                         /* keep the laser running in D3 */
4780                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4781                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4782                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4783                 }
4784
4785                 /* Allow time for pending master requests to run */
4786                 e1000_disable_pciex_master(&adapter->hw);
4787
4788                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4789                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4790                 pci_enable_wake(pdev, PCI_D3hot, 1);
4791                 pci_enable_wake(pdev, PCI_D3cold, 1);
4792         } else {
4793                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4794                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4795                 pci_enable_wake(pdev, PCI_D3hot, 0);
4796                 pci_enable_wake(pdev, PCI_D3cold, 0);
4797         }
4798
4799         if (adapter->hw.mac_type >= e1000_82540 &&
4800             adapter->hw.mac_type < e1000_82571 &&
4801             adapter->hw.media_type == e1000_media_type_copper) {
4802                 manc = E1000_READ_REG(&adapter->hw, MANC);
4803                 if (manc & E1000_MANC_SMBUS_EN) {
4804                         manc |= E1000_MANC_ARP_EN;
4805                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4806                         pci_enable_wake(pdev, PCI_D3hot, 1);
4807                         pci_enable_wake(pdev, PCI_D3cold, 1);
4808                 }
4809         }
4810
4811         if (adapter->hw.phy_type == e1000_phy_igp_3)
4812                 e1000_phy_powerdown_workaround(&adapter->hw);
4813
4814         if (netif_running(netdev))
4815                 e1000_free_irq(adapter);
4816
4817         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4818          * would have already happened in close and is redundant. */
4819         e1000_release_hw_control(adapter);
4820
4821         pci_disable_device(pdev);
4822
4823         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4824
4825         return 0;
4826 }
4827
4828 #ifdef CONFIG_PM
4829 static int
4830 e1000_resume(struct pci_dev *pdev)
4831 {
4832         struct net_device *netdev = pci_get_drvdata(pdev);
4833         struct e1000_adapter *adapter = netdev_priv(netdev);
4834         uint32_t manc, err;
4835
4836         pci_set_power_state(pdev, PCI_D0);
4837         e1000_pci_restore_state(adapter);
4838         if ((err = pci_enable_device(pdev))) {
4839                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4840                 return err;
4841         }
4842         pci_set_master(pdev);
4843
4844         pci_enable_wake(pdev, PCI_D3hot, 0);
4845         pci_enable_wake(pdev, PCI_D3cold, 0);
4846
4847         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
4848                 return err;
4849
4850         e1000_power_up_phy(adapter);
4851         e1000_reset(adapter);
4852         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4853
4854         if (netif_running(netdev))
4855                 e1000_up(adapter);
4856
4857         netif_device_attach(netdev);
4858
4859         if (adapter->hw.mac_type >= e1000_82540 &&
4860             adapter->hw.mac_type < e1000_82571 &&
4861             adapter->hw.media_type == e1000_media_type_copper) {
4862                 manc = E1000_READ_REG(&adapter->hw, MANC);
4863                 manc &= ~(E1000_MANC_ARP_EN);
4864                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4865         }
4866
4867         /* If the controller is 82573 and f/w is AMT, do not set
4868          * DRV_LOAD until the interface is up.  For all other cases,
4869          * let the f/w know that the h/w is now under the control
4870          * of the driver. */
4871         if (adapter->hw.mac_type != e1000_82573 ||
4872             !e1000_check_mng_mode(&adapter->hw))
4873                 e1000_get_hw_control(adapter);
4874
4875         return 0;
4876 }
4877 #endif
4878
4879 static void e1000_shutdown(struct pci_dev *pdev)
4880 {
4881         e1000_suspend(pdev, PMSG_SUSPEND);
4882 }
4883
4884 #ifdef CONFIG_NET_POLL_CONTROLLER
4885 /*
4886  * Polling 'interrupt' - used by things like netconsole to send skbs
4887  * without having to re-enable interrupts. It's not called while
4888  * the interrupt routine is executing.
4889  */
4890 static void
4891 e1000_netpoll(struct net_device *netdev)
4892 {
4893         struct e1000_adapter *adapter = netdev_priv(netdev);
4894
4895         disable_irq(adapter->pdev->irq);
4896         e1000_intr(adapter->pdev->irq, netdev);
4897         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4898 #ifndef CONFIG_E1000_NAPI
4899         adapter->clean_rx(adapter, adapter->rx_ring);
4900 #endif
4901         enable_irq(adapter->pdev->irq);
4902 }
4903 #endif
4904
4905 /**
4906  * e1000_io_error_detected - called when PCI error is detected
4907  * @pdev: Pointer to PCI device
4908  * @state: The current pci conneection state
4909  *
4910  * This function is called after a PCI bus error affecting
4911  * this device has been detected.
4912  */
4913 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4914 {
4915         struct net_device *netdev = pci_get_drvdata(pdev);
4916         struct e1000_adapter *adapter = netdev->priv;
4917
4918         netif_device_detach(netdev);
4919
4920         if (netif_running(netdev))
4921                 e1000_down(adapter);
4922         pci_disable_device(pdev);
4923
4924         /* Request a slot slot reset. */
4925         return PCI_ERS_RESULT_NEED_RESET;
4926 }
4927
4928 /**
4929  * e1000_io_slot_reset - called after the pci bus has been reset.
4930  * @pdev: Pointer to PCI device
4931  *
4932  * Restart the card from scratch, as if from a cold-boot. Implementation
4933  * resembles the first-half of the e1000_resume routine.
4934  */
4935 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4936 {
4937         struct net_device *netdev = pci_get_drvdata(pdev);
4938         struct e1000_adapter *adapter = netdev->priv;
4939
4940         if (pci_enable_device(pdev)) {
4941                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4942                 return PCI_ERS_RESULT_DISCONNECT;
4943         }
4944         pci_set_master(pdev);
4945
4946         pci_enable_wake(pdev, PCI_D3hot, 0);
4947         pci_enable_wake(pdev, PCI_D3cold, 0);
4948
4949         e1000_reset(adapter);
4950         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4951
4952         return PCI_ERS_RESULT_RECOVERED;
4953 }
4954
4955 /**
4956  * e1000_io_resume - called when traffic can start flowing again.
4957  * @pdev: Pointer to PCI device
4958  *
4959  * This callback is called when the error recovery driver tells us that
4960  * its OK to resume normal operation. Implementation resembles the
4961  * second-half of the e1000_resume routine.
4962  */
4963 static void e1000_io_resume(struct pci_dev *pdev)
4964 {
4965         struct net_device *netdev = pci_get_drvdata(pdev);
4966         struct e1000_adapter *adapter = netdev->priv;
4967         uint32_t manc, swsm;
4968
4969         if (netif_running(netdev)) {
4970                 if (e1000_up(adapter)) {
4971                         printk("e1000: can't bring device back up after reset\n");
4972                         return;
4973                 }
4974         }
4975
4976         netif_device_attach(netdev);
4977
4978         if (adapter->hw.mac_type >= e1000_82540 &&
4979             adapter->hw.mac_type < e1000_82571 &&
4980             adapter->hw.media_type == e1000_media_type_copper) {
4981                 manc = E1000_READ_REG(&adapter->hw, MANC);
4982                 manc &= ~(E1000_MANC_ARP_EN);
4983                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4984         }
4985
4986         switch (adapter->hw.mac_type) {
4987         case e1000_82573:
4988                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4989                 E1000_WRITE_REG(&adapter->hw, SWSM,
4990                                 swsm | E1000_SWSM_DRV_LOAD);
4991                 break;
4992         default:
4993                 break;
4994         }
4995
4996         if (netif_running(netdev))
4997                 mod_timer(&adapter->watchdog_timer, jiffies);
4998 }
4999
5000 /* e1000_main.c */