]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
e1000: add dynamic generic MSI interrupt routine
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
107         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
109         /* required last entry */
110         {0,}
111 };
112
113 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
114
115 int e1000_up(struct e1000_adapter *adapter);
116 void e1000_down(struct e1000_adapter *adapter);
117 void e1000_reinit_locked(struct e1000_adapter *adapter);
118 void e1000_reset(struct e1000_adapter *adapter);
119 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
120 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
121 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
122 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
124 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
125                              struct e1000_tx_ring *txdr);
126 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
127                              struct e1000_rx_ring *rxdr);
128 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
129                              struct e1000_tx_ring *tx_ring);
130 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
131                              struct e1000_rx_ring *rx_ring);
132 void e1000_update_stats(struct e1000_adapter *adapter);
133
134 static int e1000_init_module(void);
135 static void e1000_exit_module(void);
136 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
137 static void __devexit e1000_remove(struct pci_dev *pdev);
138 static int e1000_alloc_queues(struct e1000_adapter *adapter);
139 static int e1000_sw_init(struct e1000_adapter *adapter);
140 static int e1000_open(struct net_device *netdev);
141 static int e1000_close(struct net_device *netdev);
142 static void e1000_configure_tx(struct e1000_adapter *adapter);
143 static void e1000_configure_rx(struct e1000_adapter *adapter);
144 static void e1000_setup_rctl(struct e1000_adapter *adapter);
145 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
146 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
148                                 struct e1000_tx_ring *tx_ring);
149 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
150                                 struct e1000_rx_ring *rx_ring);
151 static void e1000_set_multi(struct net_device *netdev);
152 static void e1000_update_phy_info(unsigned long data);
153 static void e1000_watchdog(unsigned long data);
154 static void e1000_82547_tx_fifo_stall(unsigned long data);
155 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
156 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
157 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
158 static int e1000_set_mac(struct net_device *netdev, void *p);
159 static irqreturn_t e1000_intr(int irq, void *data);
160 #ifdef CONFIG_PCI_MSI
161 static irqreturn_t e1000_intr_msi(int irq, void *data);
162 #endif
163 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
164                                     struct e1000_tx_ring *tx_ring);
165 #ifdef CONFIG_E1000_NAPI
166 static int e1000_clean(struct net_device *poll_dev, int *budget);
167 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
168                                     struct e1000_rx_ring *rx_ring,
169                                     int *work_done, int work_to_do);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring,
172                                        int *work_done, int work_to_do);
173 #else
174 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
175                                     struct e1000_rx_ring *rx_ring);
176 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
177                                        struct e1000_rx_ring *rx_ring);
178 #endif
179 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
180                                    struct e1000_rx_ring *rx_ring,
181                                    int cleaned_count);
182 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
183                                       struct e1000_rx_ring *rx_ring,
184                                       int cleaned_count);
185 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
186 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
187                            int cmd);
188 void e1000_set_ethtool_ops(struct net_device *netdev);
189 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
190 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_tx_timeout(struct net_device *dev);
192 static void e1000_reset_task(struct net_device *dev);
193 static void e1000_smartspeed(struct e1000_adapter *adapter);
194 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
195                                        struct sk_buff *skb);
196
197 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
198 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
199 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_restore_vlan(struct e1000_adapter *adapter);
201
202 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
203 #ifdef CONFIG_PM
204 static int e1000_resume(struct pci_dev *pdev);
205 #endif
206 static void e1000_shutdown(struct pci_dev *pdev);
207
208 #ifdef CONFIG_NET_POLL_CONTROLLER
209 /* for netdump / net console */
210 static void e1000_netpoll (struct net_device *netdev);
211 #endif
212
213 extern void e1000_check_options(struct e1000_adapter *adapter);
214
215 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
216                      pci_channel_state_t state);
217 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
218 static void e1000_io_resume(struct pci_dev *pdev);
219
220 static struct pci_error_handlers e1000_err_handler = {
221         .error_detected = e1000_io_error_detected,
222         .slot_reset = e1000_io_slot_reset,
223         .resume = e1000_io_resume,
224 };
225
226 static struct pci_driver e1000_driver = {
227         .name     = e1000_driver_name,
228         .id_table = e1000_pci_tbl,
229         .probe    = e1000_probe,
230         .remove   = __devexit_p(e1000_remove),
231 #ifdef CONFIG_PM
232         /* Power Managment Hooks */
233         .suspend  = e1000_suspend,
234         .resume   = e1000_resume,
235 #endif
236         .shutdown = e1000_shutdown,
237         .err_handler = &e1000_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
241 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
242 MODULE_LICENSE("GPL");
243 MODULE_VERSION(DRV_VERSION);
244
245 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
246 module_param(debug, int, 0);
247 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
248
249 /**
250  * e1000_init_module - Driver Registration Routine
251  *
252  * e1000_init_module is the first routine called when the driver is
253  * loaded. All it does is register with the PCI subsystem.
254  **/
255
256 static int __init
257 e1000_init_module(void)
258 {
259         int ret;
260         printk(KERN_INFO "%s - version %s\n",
261                e1000_driver_string, e1000_driver_version);
262
263         printk(KERN_INFO "%s\n", e1000_copyright);
264
265         ret = pci_register_driver(&e1000_driver);
266
267         return ret;
268 }
269
270 module_init(e1000_init_module);
271
272 /**
273  * e1000_exit_module - Driver Exit Cleanup Routine
274  *
275  * e1000_exit_module is called just before the driver is removed
276  * from memory.
277  **/
278
279 static void __exit
280 e1000_exit_module(void)
281 {
282         pci_unregister_driver(&e1000_driver);
283 }
284
285 module_exit(e1000_exit_module);
286
287 static int e1000_request_irq(struct e1000_adapter *adapter)
288 {
289         struct net_device *netdev = adapter->netdev;
290         int flags, err = 0;
291
292         flags = IRQF_SHARED;
293 #ifdef CONFIG_PCI_MSI
294         if (adapter->hw.mac_type >= e1000_82571) {
295                 adapter->have_msi = TRUE;
296                 if ((err = pci_enable_msi(adapter->pdev))) {
297                         DPRINTK(PROBE, ERR,
298                          "Unable to allocate MSI interrupt Error: %d\n", err);
299                         adapter->have_msi = FALSE;
300                 }
301         }
302         if (adapter->have_msi) {
303                 flags &= ~IRQF_SHARED;
304                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
305                                   netdev->name, netdev);
306                 if (err)
307                         DPRINTK(PROBE, ERR,
308                                "Unable to allocate interrupt Error: %d\n", err);
309         } else
310 #endif
311         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
312                                netdev->name, netdev)))
313                 DPRINTK(PROBE, ERR,
314                         "Unable to allocate interrupt Error: %d\n", err);
315
316         return err;
317 }
318
319 static void e1000_free_irq(struct e1000_adapter *adapter)
320 {
321         struct net_device *netdev = adapter->netdev;
322
323         free_irq(adapter->pdev->irq, netdev);
324
325 #ifdef CONFIG_PCI_MSI
326         if (adapter->have_msi)
327                 pci_disable_msi(adapter->pdev);
328 #endif
329 }
330
331 /**
332  * e1000_irq_disable - Mask off interrupt generation on the NIC
333  * @adapter: board private structure
334  **/
335
336 static void
337 e1000_irq_disable(struct e1000_adapter *adapter)
338 {
339         atomic_inc(&adapter->irq_sem);
340         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
341         E1000_WRITE_FLUSH(&adapter->hw);
342         synchronize_irq(adapter->pdev->irq);
343 }
344
345 /**
346  * e1000_irq_enable - Enable default interrupt generation settings
347  * @adapter: board private structure
348  **/
349
350 static void
351 e1000_irq_enable(struct e1000_adapter *adapter)
352 {
353         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
354                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
355                 E1000_WRITE_FLUSH(&adapter->hw);
356         }
357 }
358
359 static void
360 e1000_update_mng_vlan(struct e1000_adapter *adapter)
361 {
362         struct net_device *netdev = adapter->netdev;
363         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
364         uint16_t old_vid = adapter->mng_vlan_id;
365         if (adapter->vlgrp) {
366                 if (!adapter->vlgrp->vlan_devices[vid]) {
367                         if (adapter->hw.mng_cookie.status &
368                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
369                                 e1000_vlan_rx_add_vid(netdev, vid);
370                                 adapter->mng_vlan_id = vid;
371                         } else
372                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
373
374                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
375                                         (vid != old_vid) &&
376                                         !adapter->vlgrp->vlan_devices[old_vid])
377                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
378                 } else
379                         adapter->mng_vlan_id = vid;
380         }
381 }
382
383 /**
384  * e1000_release_hw_control - release control of the h/w to f/w
385  * @adapter: address of board private structure
386  *
387  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
388  * For ASF and Pass Through versions of f/w this means that the
389  * driver is no longer loaded. For AMT version (only with 82573) i
390  * of the f/w this means that the network i/f is closed.
391  *
392  **/
393
394 static void
395 e1000_release_hw_control(struct e1000_adapter *adapter)
396 {
397         uint32_t ctrl_ext;
398         uint32_t swsm;
399         uint32_t extcnf;
400
401         /* Let firmware taken over control of h/w */
402         switch (adapter->hw.mac_type) {
403         case e1000_82571:
404         case e1000_82572:
405         case e1000_80003es2lan:
406                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
407                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
408                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
409                 break;
410         case e1000_82573:
411                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
412                 E1000_WRITE_REG(&adapter->hw, SWSM,
413                                 swsm & ~E1000_SWSM_DRV_LOAD);
414         case e1000_ich8lan:
415                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
416                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
417                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
418                 break;
419         default:
420                 break;
421         }
422 }
423
424 /**
425  * e1000_get_hw_control - get control of the h/w from f/w
426  * @adapter: address of board private structure
427  *
428  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
429  * For ASF and Pass Through versions of f/w this means that
430  * the driver is loaded. For AMT version (only with 82573)
431  * of the f/w this means that the network i/f is open.
432  *
433  **/
434
435 static void
436 e1000_get_hw_control(struct e1000_adapter *adapter)
437 {
438         uint32_t ctrl_ext;
439         uint32_t swsm;
440         uint32_t extcnf;
441
442         /* Let firmware know the driver has taken over */
443         switch (adapter->hw.mac_type) {
444         case e1000_82571:
445         case e1000_82572:
446         case e1000_80003es2lan:
447                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
448                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
449                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
450                 break;
451         case e1000_82573:
452                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
453                 E1000_WRITE_REG(&adapter->hw, SWSM,
454                                 swsm | E1000_SWSM_DRV_LOAD);
455                 break;
456         case e1000_ich8lan:
457                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
458                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
459                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
460                 break;
461         default:
462                 break;
463         }
464 }
465
466 int
467 e1000_up(struct e1000_adapter *adapter)
468 {
469         struct net_device *netdev = adapter->netdev;
470         int i;
471
472         /* hardware has been reset, we need to reload some things */
473
474         e1000_set_multi(netdev);
475
476         e1000_restore_vlan(adapter);
477
478         e1000_configure_tx(adapter);
479         e1000_setup_rctl(adapter);
480         e1000_configure_rx(adapter);
481         /* call E1000_DESC_UNUSED which always leaves
482          * at least 1 descriptor unused to make sure
483          * next_to_use != next_to_clean */
484         for (i = 0; i < adapter->num_rx_queues; i++) {
485                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
486                 adapter->alloc_rx_buf(adapter, ring,
487                                       E1000_DESC_UNUSED(ring));
488         }
489
490         adapter->tx_queue_len = netdev->tx_queue_len;
491
492 #ifdef CONFIG_E1000_NAPI
493         netif_poll_enable(netdev);
494 #endif
495         e1000_irq_enable(adapter);
496
497         clear_bit(__E1000_DOWN, &adapter->flags);
498
499         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
500         return 0;
501 }
502
503 /**
504  * e1000_power_up_phy - restore link in case the phy was powered down
505  * @adapter: address of board private structure
506  *
507  * The phy may be powered down to save power and turn off link when the
508  * driver is unloaded and wake on lan is not enabled (among others)
509  * *** this routine MUST be followed by a call to e1000_reset ***
510  *
511  **/
512
513 void e1000_power_up_phy(struct e1000_adapter *adapter)
514 {
515         uint16_t mii_reg = 0;
516
517         /* Just clear the power down bit to wake the phy back up */
518         if (adapter->hw.media_type == e1000_media_type_copper) {
519                 /* according to the manual, the phy will retain its
520                  * settings across a power-down/up cycle */
521                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
522                 mii_reg &= ~MII_CR_POWER_DOWN;
523                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
524         }
525 }
526
527 static void e1000_power_down_phy(struct e1000_adapter *adapter)
528 {
529         /* Power down the PHY so no link is implied when interface is down *
530          * The PHY cannot be powered down if any of the following is TRUE *
531          * (a) WoL is enabled
532          * (b) AMT is active
533          * (c) SoL/IDER session is active */
534         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
535            adapter->hw.media_type == e1000_media_type_copper) {
536                 uint16_t mii_reg = 0;
537
538                 switch (adapter->hw.mac_type) {
539                 case e1000_82540:
540                 case e1000_82545:
541                 case e1000_82545_rev_3:
542                 case e1000_82546:
543                 case e1000_82546_rev_3:
544                 case e1000_82541:
545                 case e1000_82541_rev_2:
546                 case e1000_82547:
547                 case e1000_82547_rev_2:
548                         if (E1000_READ_REG(&adapter->hw, MANC) &
549                             E1000_MANC_SMBUS_EN)
550                                 goto out;
551                         break;
552                 case e1000_82571:
553                 case e1000_82572:
554                 case e1000_82573:
555                 case e1000_80003es2lan:
556                 case e1000_ich8lan:
557                         if (e1000_check_mng_mode(&adapter->hw) ||
558                             e1000_check_phy_reset_block(&adapter->hw))
559                                 goto out;
560                         break;
561                 default:
562                         goto out;
563                 }
564                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
565                 mii_reg |= MII_CR_POWER_DOWN;
566                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
567                 mdelay(1);
568         }
569 out:
570         return;
571 }
572
573 void
574 e1000_down(struct e1000_adapter *adapter)
575 {
576         struct net_device *netdev = adapter->netdev;
577
578         /* signal that we're down so the interrupt handler does not
579          * reschedule our watchdog timer */
580         set_bit(__E1000_DOWN, &adapter->flags);
581
582         e1000_irq_disable(adapter);
583
584         del_timer_sync(&adapter->tx_fifo_stall_timer);
585         del_timer_sync(&adapter->watchdog_timer);
586         del_timer_sync(&adapter->phy_info_timer);
587
588 #ifdef CONFIG_E1000_NAPI
589         netif_poll_disable(netdev);
590 #endif
591         netdev->tx_queue_len = adapter->tx_queue_len;
592         adapter->link_speed = 0;
593         adapter->link_duplex = 0;
594         netif_carrier_off(netdev);
595         netif_stop_queue(netdev);
596
597         e1000_reset(adapter);
598         e1000_clean_all_tx_rings(adapter);
599         e1000_clean_all_rx_rings(adapter);
600 }
601
602 void
603 e1000_reinit_locked(struct e1000_adapter *adapter)
604 {
605         WARN_ON(in_interrupt());
606         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
607                 msleep(1);
608         e1000_down(adapter);
609         e1000_up(adapter);
610         clear_bit(__E1000_RESETTING, &adapter->flags);
611 }
612
613 void
614 e1000_reset(struct e1000_adapter *adapter)
615 {
616         uint32_t pba, manc;
617         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
618
619         /* Repartition Pba for greater than 9k mtu
620          * To take effect CTRL.RST is required.
621          */
622
623         switch (adapter->hw.mac_type) {
624         case e1000_82547:
625         case e1000_82547_rev_2:
626                 pba = E1000_PBA_30K;
627                 break;
628         case e1000_82571:
629         case e1000_82572:
630         case e1000_80003es2lan:
631                 pba = E1000_PBA_38K;
632                 break;
633         case e1000_82573:
634                 pba = E1000_PBA_12K;
635                 break;
636         case e1000_ich8lan:
637                 pba = E1000_PBA_8K;
638                 break;
639         default:
640                 pba = E1000_PBA_48K;
641                 break;
642         }
643
644         if ((adapter->hw.mac_type != e1000_82573) &&
645            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
646                 pba -= 8; /* allocate more FIFO for Tx */
647
648
649         if (adapter->hw.mac_type == e1000_82547) {
650                 adapter->tx_fifo_head = 0;
651                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
652                 adapter->tx_fifo_size =
653                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
654                 atomic_set(&adapter->tx_fifo_stall, 0);
655         }
656
657         E1000_WRITE_REG(&adapter->hw, PBA, pba);
658
659         /* flow control settings */
660         /* Set the FC high water mark to 90% of the FIFO size.
661          * Required to clear last 3 LSB */
662         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
663         /* We can't use 90% on small FIFOs because the remainder
664          * would be less than 1 full frame.  In this case, we size
665          * it to allow at least a full frame above the high water
666          *  mark. */
667         if (pba < E1000_PBA_16K)
668                 fc_high_water_mark = (pba * 1024) - 1600;
669
670         adapter->hw.fc_high_water = fc_high_water_mark;
671         adapter->hw.fc_low_water = fc_high_water_mark - 8;
672         if (adapter->hw.mac_type == e1000_80003es2lan)
673                 adapter->hw.fc_pause_time = 0xFFFF;
674         else
675                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
676         adapter->hw.fc_send_xon = 1;
677         adapter->hw.fc = adapter->hw.original_fc;
678
679         /* Allow time for pending master requests to run */
680         e1000_reset_hw(&adapter->hw);
681         if (adapter->hw.mac_type >= e1000_82544)
682                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
683
684         if (e1000_init_hw(&adapter->hw))
685                 DPRINTK(PROBE, ERR, "Hardware Error\n");
686         e1000_update_mng_vlan(adapter);
687         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
688         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
689
690         e1000_reset_adaptive(&adapter->hw);
691         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
692
693         if (!adapter->smart_power_down &&
694             (adapter->hw.mac_type == e1000_82571 ||
695              adapter->hw.mac_type == e1000_82572)) {
696                 uint16_t phy_data = 0;
697                 /* speed up time to link by disabling smart power down, ignore
698                  * the return value of this function because there is nothing
699                  * different we would do if it failed */
700                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
701                                    &phy_data);
702                 phy_data &= ~IGP02E1000_PM_SPD;
703                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
704                                     phy_data);
705         }
706
707         if ((adapter->en_mng_pt) &&
708             (adapter->hw.mac_type >= e1000_82540) &&
709             (adapter->hw.mac_type < e1000_82571) &&
710             (adapter->hw.media_type == e1000_media_type_copper)) {
711                 manc = E1000_READ_REG(&adapter->hw, MANC);
712                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
713                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
714         }
715 }
716
717 /**
718  * e1000_probe - Device Initialization Routine
719  * @pdev: PCI device information struct
720  * @ent: entry in e1000_pci_tbl
721  *
722  * Returns 0 on success, negative on failure
723  *
724  * e1000_probe initializes an adapter identified by a pci_dev structure.
725  * The OS initialization, configuring of the adapter private structure,
726  * and a hardware reset occur.
727  **/
728
729 static int __devinit
730 e1000_probe(struct pci_dev *pdev,
731             const struct pci_device_id *ent)
732 {
733         struct net_device *netdev;
734         struct e1000_adapter *adapter;
735         unsigned long mmio_start, mmio_len;
736         unsigned long flash_start, flash_len;
737
738         static int cards_found = 0;
739         static int global_quad_port_a = 0; /* global ksp3 port a indication */
740         int i, err, pci_using_dac;
741         uint16_t eeprom_data = 0;
742         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
743         if ((err = pci_enable_device(pdev)))
744                 return err;
745
746         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
747             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
748                 pci_using_dac = 1;
749         } else {
750                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
751                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
752                         E1000_ERR("No usable DMA configuration, aborting\n");
753                         goto err_dma;
754                 }
755                 pci_using_dac = 0;
756         }
757
758         if ((err = pci_request_regions(pdev, e1000_driver_name)))
759                 goto err_pci_reg;
760
761         pci_set_master(pdev);
762
763         err = -ENOMEM;
764         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
765         if (!netdev)
766                 goto err_alloc_etherdev;
767
768         SET_MODULE_OWNER(netdev);
769         SET_NETDEV_DEV(netdev, &pdev->dev);
770
771         pci_set_drvdata(pdev, netdev);
772         adapter = netdev_priv(netdev);
773         adapter->netdev = netdev;
774         adapter->pdev = pdev;
775         adapter->hw.back = adapter;
776         adapter->msg_enable = (1 << debug) - 1;
777
778         mmio_start = pci_resource_start(pdev, BAR_0);
779         mmio_len = pci_resource_len(pdev, BAR_0);
780
781         err = -EIO;
782         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
783         if (!adapter->hw.hw_addr)
784                 goto err_ioremap;
785
786         for (i = BAR_1; i <= BAR_5; i++) {
787                 if (pci_resource_len(pdev, i) == 0)
788                         continue;
789                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
790                         adapter->hw.io_base = pci_resource_start(pdev, i);
791                         break;
792                 }
793         }
794
795         netdev->open = &e1000_open;
796         netdev->stop = &e1000_close;
797         netdev->hard_start_xmit = &e1000_xmit_frame;
798         netdev->get_stats = &e1000_get_stats;
799         netdev->set_multicast_list = &e1000_set_multi;
800         netdev->set_mac_address = &e1000_set_mac;
801         netdev->change_mtu = &e1000_change_mtu;
802         netdev->do_ioctl = &e1000_ioctl;
803         e1000_set_ethtool_ops(netdev);
804         netdev->tx_timeout = &e1000_tx_timeout;
805         netdev->watchdog_timeo = 5 * HZ;
806 #ifdef CONFIG_E1000_NAPI
807         netdev->poll = &e1000_clean;
808         netdev->weight = 64;
809 #endif
810         netdev->vlan_rx_register = e1000_vlan_rx_register;
811         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
812         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
813 #ifdef CONFIG_NET_POLL_CONTROLLER
814         netdev->poll_controller = e1000_netpoll;
815 #endif
816         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
817
818         netdev->mem_start = mmio_start;
819         netdev->mem_end = mmio_start + mmio_len;
820         netdev->base_addr = adapter->hw.io_base;
821
822         adapter->bd_number = cards_found;
823
824         /* setup the private structure */
825
826         if ((err = e1000_sw_init(adapter)))
827                 goto err_sw_init;
828
829         err = -EIO;
830         /* Flash BAR mapping must happen after e1000_sw_init
831          * because it depends on mac_type */
832         if ((adapter->hw.mac_type == e1000_ich8lan) &&
833            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
834                 flash_start = pci_resource_start(pdev, 1);
835                 flash_len = pci_resource_len(pdev, 1);
836                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
837                 if (!adapter->hw.flash_address)
838                         goto err_flashmap;
839         }
840
841         if (e1000_check_phy_reset_block(&adapter->hw))
842                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
843
844         if (adapter->hw.mac_type >= e1000_82543) {
845                 netdev->features = NETIF_F_SG |
846                                    NETIF_F_HW_CSUM |
847                                    NETIF_F_HW_VLAN_TX |
848                                    NETIF_F_HW_VLAN_RX |
849                                    NETIF_F_HW_VLAN_FILTER;
850                 if (adapter->hw.mac_type == e1000_ich8lan)
851                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
852         }
853
854 #ifdef NETIF_F_TSO
855         if ((adapter->hw.mac_type >= e1000_82544) &&
856            (adapter->hw.mac_type != e1000_82547))
857                 netdev->features |= NETIF_F_TSO;
858
859 #ifdef NETIF_F_TSO6
860         if (adapter->hw.mac_type > e1000_82547_rev_2)
861                 netdev->features |= NETIF_F_TSO6;
862 #endif
863 #endif
864         if (pci_using_dac)
865                 netdev->features |= NETIF_F_HIGHDMA;
866
867         netdev->features |= NETIF_F_LLTX;
868
869         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
870
871         /* initialize eeprom parameters */
872
873         if (e1000_init_eeprom_params(&adapter->hw)) {
874                 E1000_ERR("EEPROM initialization failed\n");
875                 goto err_eeprom;
876         }
877
878         /* before reading the EEPROM, reset the controller to
879          * put the device in a known good starting state */
880
881         e1000_reset_hw(&adapter->hw);
882
883         /* make sure the EEPROM is good */
884
885         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
886                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
887                 goto err_eeprom;
888         }
889
890         /* copy the MAC address out of the EEPROM */
891
892         if (e1000_read_mac_addr(&adapter->hw))
893                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
894         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
895         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
896
897         if (!is_valid_ether_addr(netdev->perm_addr)) {
898                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
899                 goto err_eeprom;
900         }
901
902         e1000_get_bus_info(&adapter->hw);
903
904         init_timer(&adapter->tx_fifo_stall_timer);
905         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
906         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
907
908         init_timer(&adapter->watchdog_timer);
909         adapter->watchdog_timer.function = &e1000_watchdog;
910         adapter->watchdog_timer.data = (unsigned long) adapter;
911
912         init_timer(&adapter->phy_info_timer);
913         adapter->phy_info_timer.function = &e1000_update_phy_info;
914         adapter->phy_info_timer.data = (unsigned long) adapter;
915
916         INIT_WORK(&adapter->reset_task,
917                 (void (*)(void *))e1000_reset_task, netdev);
918
919         e1000_check_options(adapter);
920
921         /* Initial Wake on LAN setting
922          * If APM wake is enabled in the EEPROM,
923          * enable the ACPI Magic Packet filter
924          */
925
926         switch (adapter->hw.mac_type) {
927         case e1000_82542_rev2_0:
928         case e1000_82542_rev2_1:
929         case e1000_82543:
930                 break;
931         case e1000_82544:
932                 e1000_read_eeprom(&adapter->hw,
933                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
934                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
935                 break;
936         case e1000_ich8lan:
937                 e1000_read_eeprom(&adapter->hw,
938                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
939                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
940                 break;
941         case e1000_82546:
942         case e1000_82546_rev_3:
943         case e1000_82571:
944         case e1000_80003es2lan:
945                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
946                         e1000_read_eeprom(&adapter->hw,
947                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
948                         break;
949                 }
950                 /* Fall Through */
951         default:
952                 e1000_read_eeprom(&adapter->hw,
953                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
954                 break;
955         }
956         if (eeprom_data & eeprom_apme_mask)
957                 adapter->eeprom_wol |= E1000_WUFC_MAG;
958
959         /* now that we have the eeprom settings, apply the special cases
960          * where the eeprom may be wrong or the board simply won't support
961          * wake on lan on a particular port */
962         switch (pdev->device) {
963         case E1000_DEV_ID_82546GB_PCIE:
964                 adapter->eeprom_wol = 0;
965                 break;
966         case E1000_DEV_ID_82546EB_FIBER:
967         case E1000_DEV_ID_82546GB_FIBER:
968         case E1000_DEV_ID_82571EB_FIBER:
969                 /* Wake events only supported on port A for dual fiber
970                  * regardless of eeprom setting */
971                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
972                         adapter->eeprom_wol = 0;
973                 break;
974         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
975         case E1000_DEV_ID_82571EB_QUAD_COPPER:
976         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
977                 /* if quad port adapter, disable WoL on all but port A */
978                 if (global_quad_port_a != 0)
979                         adapter->eeprom_wol = 0;
980                 else
981                         adapter->quad_port_a = 1;
982                 /* Reset for multiple quad port adapters */
983                 if (++global_quad_port_a == 4)
984                         global_quad_port_a = 0;
985                 break;
986         }
987
988         /* initialize the wol settings based on the eeprom settings */
989         adapter->wol = adapter->eeprom_wol;
990
991         /* print bus type/speed/width info */
992         {
993         struct e1000_hw *hw = &adapter->hw;
994         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
995                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
996                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
997                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
998                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
999                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1000                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1001                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1002                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1003                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1004                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1005                  "32-bit"));
1006         }
1007
1008         for (i = 0; i < 6; i++)
1009                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1010
1011         /* reset the hardware with the new settings */
1012         e1000_reset(adapter);
1013
1014         /* If the controller is 82573 and f/w is AMT, do not set
1015          * DRV_LOAD until the interface is up.  For all other cases,
1016          * let the f/w know that the h/w is now under the control
1017          * of the driver. */
1018         if (adapter->hw.mac_type != e1000_82573 ||
1019             !e1000_check_mng_mode(&adapter->hw))
1020                 e1000_get_hw_control(adapter);
1021
1022         strcpy(netdev->name, "eth%d");
1023         if ((err = register_netdev(netdev)))
1024                 goto err_register;
1025
1026         /* tell the stack to leave us alone until e1000_open() is called */
1027         netif_carrier_off(netdev);
1028         netif_stop_queue(netdev);
1029
1030         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1031
1032         cards_found++;
1033         return 0;
1034
1035 err_register:
1036         e1000_release_hw_control(adapter);
1037 err_eeprom:
1038         if (!e1000_check_phy_reset_block(&adapter->hw))
1039                 e1000_phy_hw_reset(&adapter->hw);
1040
1041         if (adapter->hw.flash_address)
1042                 iounmap(adapter->hw.flash_address);
1043 err_flashmap:
1044 #ifdef CONFIG_E1000_NAPI
1045         for (i = 0; i < adapter->num_rx_queues; i++)
1046                 dev_put(&adapter->polling_netdev[i]);
1047 #endif
1048
1049         kfree(adapter->tx_ring);
1050         kfree(adapter->rx_ring);
1051 #ifdef CONFIG_E1000_NAPI
1052         kfree(adapter->polling_netdev);
1053 #endif
1054 err_sw_init:
1055         iounmap(adapter->hw.hw_addr);
1056 err_ioremap:
1057         free_netdev(netdev);
1058 err_alloc_etherdev:
1059         pci_release_regions(pdev);
1060 err_pci_reg:
1061 err_dma:
1062         pci_disable_device(pdev);
1063         return err;
1064 }
1065
1066 /**
1067  * e1000_remove - Device Removal Routine
1068  * @pdev: PCI device information struct
1069  *
1070  * e1000_remove is called by the PCI subsystem to alert the driver
1071  * that it should release a PCI device.  The could be caused by a
1072  * Hot-Plug event, or because the driver is going to be removed from
1073  * memory.
1074  **/
1075
1076 static void __devexit
1077 e1000_remove(struct pci_dev *pdev)
1078 {
1079         struct net_device *netdev = pci_get_drvdata(pdev);
1080         struct e1000_adapter *adapter = netdev_priv(netdev);
1081         uint32_t manc;
1082 #ifdef CONFIG_E1000_NAPI
1083         int i;
1084 #endif
1085
1086         flush_scheduled_work();
1087
1088         if (adapter->hw.mac_type >= e1000_82540 &&
1089             adapter->hw.mac_type < e1000_82571 &&
1090             adapter->hw.media_type == e1000_media_type_copper) {
1091                 manc = E1000_READ_REG(&adapter->hw, MANC);
1092                 if (manc & E1000_MANC_SMBUS_EN) {
1093                         manc |= E1000_MANC_ARP_EN;
1094                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1095                 }
1096         }
1097
1098         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1099          * would have already happened in close and is redundant. */
1100         e1000_release_hw_control(adapter);
1101
1102         unregister_netdev(netdev);
1103 #ifdef CONFIG_E1000_NAPI
1104         for (i = 0; i < adapter->num_rx_queues; i++)
1105                 dev_put(&adapter->polling_netdev[i]);
1106 #endif
1107
1108         if (!e1000_check_phy_reset_block(&adapter->hw))
1109                 e1000_phy_hw_reset(&adapter->hw);
1110
1111         kfree(adapter->tx_ring);
1112         kfree(adapter->rx_ring);
1113 #ifdef CONFIG_E1000_NAPI
1114         kfree(adapter->polling_netdev);
1115 #endif
1116
1117         iounmap(adapter->hw.hw_addr);
1118         if (adapter->hw.flash_address)
1119                 iounmap(adapter->hw.flash_address);
1120         pci_release_regions(pdev);
1121
1122         free_netdev(netdev);
1123
1124         pci_disable_device(pdev);
1125 }
1126
1127 /**
1128  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129  * @adapter: board private structure to initialize
1130  *
1131  * e1000_sw_init initializes the Adapter private data structure.
1132  * Fields are initialized based on PCI device information and
1133  * OS network device settings (MTU size).
1134  **/
1135
1136 static int __devinit
1137 e1000_sw_init(struct e1000_adapter *adapter)
1138 {
1139         struct e1000_hw *hw = &adapter->hw;
1140         struct net_device *netdev = adapter->netdev;
1141         struct pci_dev *pdev = adapter->pdev;
1142 #ifdef CONFIG_E1000_NAPI
1143         int i;
1144 #endif
1145
1146         /* PCI config space info */
1147
1148         hw->vendor_id = pdev->vendor;
1149         hw->device_id = pdev->device;
1150         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1151         hw->subsystem_id = pdev->subsystem_device;
1152
1153         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1154
1155         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1156
1157         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1158         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1159         hw->max_frame_size = netdev->mtu +
1160                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1161         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1162
1163         /* identify the MAC */
1164
1165         if (e1000_set_mac_type(hw)) {
1166                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1167                 return -EIO;
1168         }
1169
1170         switch (hw->mac_type) {
1171         default:
1172                 break;
1173         case e1000_82541:
1174         case e1000_82547:
1175         case e1000_82541_rev_2:
1176         case e1000_82547_rev_2:
1177                 hw->phy_init_script = 1;
1178                 break;
1179         }
1180
1181         e1000_set_media_type(hw);
1182
1183         hw->wait_autoneg_complete = FALSE;
1184         hw->tbi_compatibility_en = TRUE;
1185         hw->adaptive_ifs = TRUE;
1186
1187         /* Copper options */
1188
1189         if (hw->media_type == e1000_media_type_copper) {
1190                 hw->mdix = AUTO_ALL_MODES;
1191                 hw->disable_polarity_correction = FALSE;
1192                 hw->master_slave = E1000_MASTER_SLAVE;
1193         }
1194
1195         adapter->num_tx_queues = 1;
1196         adapter->num_rx_queues = 1;
1197
1198         if (e1000_alloc_queues(adapter)) {
1199                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1200                 return -ENOMEM;
1201         }
1202
1203 #ifdef CONFIG_E1000_NAPI
1204         for (i = 0; i < adapter->num_rx_queues; i++) {
1205                 adapter->polling_netdev[i].priv = adapter;
1206                 adapter->polling_netdev[i].poll = &e1000_clean;
1207                 adapter->polling_netdev[i].weight = 64;
1208                 dev_hold(&adapter->polling_netdev[i]);
1209                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1210         }
1211         spin_lock_init(&adapter->tx_queue_lock);
1212 #endif
1213
1214         atomic_set(&adapter->irq_sem, 1);
1215         spin_lock_init(&adapter->stats_lock);
1216
1217         set_bit(__E1000_DOWN, &adapter->flags);
1218
1219         return 0;
1220 }
1221
1222 /**
1223  * e1000_alloc_queues - Allocate memory for all rings
1224  * @adapter: board private structure to initialize
1225  *
1226  * We allocate one ring per queue at run-time since we don't know the
1227  * number of queues at compile-time.  The polling_netdev array is
1228  * intended for Multiqueue, but should work fine with a single queue.
1229  **/
1230
1231 static int __devinit
1232 e1000_alloc_queues(struct e1000_adapter *adapter)
1233 {
1234         int size;
1235
1236         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1237         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1238         if (!adapter->tx_ring)
1239                 return -ENOMEM;
1240         memset(adapter->tx_ring, 0, size);
1241
1242         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1243         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1244         if (!adapter->rx_ring) {
1245                 kfree(adapter->tx_ring);
1246                 return -ENOMEM;
1247         }
1248         memset(adapter->rx_ring, 0, size);
1249
1250 #ifdef CONFIG_E1000_NAPI
1251         size = sizeof(struct net_device) * adapter->num_rx_queues;
1252         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1253         if (!adapter->polling_netdev) {
1254                 kfree(adapter->tx_ring);
1255                 kfree(adapter->rx_ring);
1256                 return -ENOMEM;
1257         }
1258         memset(adapter->polling_netdev, 0, size);
1259 #endif
1260
1261         return E1000_SUCCESS;
1262 }
1263
1264 /**
1265  * e1000_open - Called when a network interface is made active
1266  * @netdev: network interface device structure
1267  *
1268  * Returns 0 on success, negative value on failure
1269  *
1270  * The open entry point is called when a network interface is made
1271  * active by the system (IFF_UP).  At this point all resources needed
1272  * for transmit and receive operations are allocated, the interrupt
1273  * handler is registered with the OS, the watchdog timer is started,
1274  * and the stack is notified that the interface is ready.
1275  **/
1276
1277 static int
1278 e1000_open(struct net_device *netdev)
1279 {
1280         struct e1000_adapter *adapter = netdev_priv(netdev);
1281         int err;
1282
1283         /* disallow open during test */
1284         if (test_bit(__E1000_TESTING, &adapter->flags))
1285                 return -EBUSY;
1286
1287         /* allocate transmit descriptors */
1288         if ((err = e1000_setup_all_tx_resources(adapter)))
1289                 goto err_setup_tx;
1290
1291         /* allocate receive descriptors */
1292         if ((err = e1000_setup_all_rx_resources(adapter)))
1293                 goto err_setup_rx;
1294
1295         err = e1000_request_irq(adapter);
1296         if (err)
1297                 goto err_req_irq;
1298
1299         e1000_power_up_phy(adapter);
1300
1301         if ((err = e1000_up(adapter)))
1302                 goto err_up;
1303         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1304         if ((adapter->hw.mng_cookie.status &
1305                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1306                 e1000_update_mng_vlan(adapter);
1307         }
1308
1309         /* If AMT is enabled, let the firmware know that the network
1310          * interface is now open */
1311         if (adapter->hw.mac_type == e1000_82573 &&
1312             e1000_check_mng_mode(&adapter->hw))
1313                 e1000_get_hw_control(adapter);
1314
1315         return E1000_SUCCESS;
1316
1317 err_up:
1318         e1000_power_down_phy(adapter);
1319         e1000_free_irq(adapter);
1320 err_req_irq:
1321         e1000_free_all_rx_resources(adapter);
1322 err_setup_rx:
1323         e1000_free_all_tx_resources(adapter);
1324 err_setup_tx:
1325         e1000_reset(adapter);
1326
1327         return err;
1328 }
1329
1330 /**
1331  * e1000_close - Disables a network interface
1332  * @netdev: network interface device structure
1333  *
1334  * Returns 0, this is not allowed to fail
1335  *
1336  * The close entry point is called when an interface is de-activated
1337  * by the OS.  The hardware is still under the drivers control, but
1338  * needs to be disabled.  A global MAC reset is issued to stop the
1339  * hardware, and all transmit and receive resources are freed.
1340  **/
1341
1342 static int
1343 e1000_close(struct net_device *netdev)
1344 {
1345         struct e1000_adapter *adapter = netdev_priv(netdev);
1346
1347         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1348         e1000_down(adapter);
1349         e1000_power_down_phy(adapter);
1350         e1000_free_irq(adapter);
1351
1352         e1000_free_all_tx_resources(adapter);
1353         e1000_free_all_rx_resources(adapter);
1354
1355         /* kill manageability vlan ID if supported, but not if a vlan with
1356          * the same ID is registered on the host OS (let 8021q kill it) */
1357         if ((adapter->hw.mng_cookie.status &
1358                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1359              !(adapter->vlgrp &&
1360                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1361                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1362         }
1363
1364         /* If AMT is enabled, let the firmware know that the network
1365          * interface is now closed */
1366         if (adapter->hw.mac_type == e1000_82573 &&
1367             e1000_check_mng_mode(&adapter->hw))
1368                 e1000_release_hw_control(adapter);
1369
1370         return 0;
1371 }
1372
1373 /**
1374  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1375  * @adapter: address of board private structure
1376  * @start: address of beginning of memory
1377  * @len: length of memory
1378  **/
1379 static boolean_t
1380 e1000_check_64k_bound(struct e1000_adapter *adapter,
1381                       void *start, unsigned long len)
1382 {
1383         unsigned long begin = (unsigned long) start;
1384         unsigned long end = begin + len;
1385
1386         /* First rev 82545 and 82546 need to not allow any memory
1387          * write location to cross 64k boundary due to errata 23 */
1388         if (adapter->hw.mac_type == e1000_82545 ||
1389             adapter->hw.mac_type == e1000_82546) {
1390                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1391         }
1392
1393         return TRUE;
1394 }
1395
1396 /**
1397  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1398  * @adapter: board private structure
1399  * @txdr:    tx descriptor ring (for a specific queue) to setup
1400  *
1401  * Return 0 on success, negative on failure
1402  **/
1403
1404 static int
1405 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1406                          struct e1000_tx_ring *txdr)
1407 {
1408         struct pci_dev *pdev = adapter->pdev;
1409         int size;
1410
1411         size = sizeof(struct e1000_buffer) * txdr->count;
1412         txdr->buffer_info = vmalloc(size);
1413         if (!txdr->buffer_info) {
1414                 DPRINTK(PROBE, ERR,
1415                 "Unable to allocate memory for the transmit descriptor ring\n");
1416                 return -ENOMEM;
1417         }
1418         memset(txdr->buffer_info, 0, size);
1419
1420         /* round up to nearest 4K */
1421
1422         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1423         E1000_ROUNDUP(txdr->size, 4096);
1424
1425         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1426         if (!txdr->desc) {
1427 setup_tx_desc_die:
1428                 vfree(txdr->buffer_info);
1429                 DPRINTK(PROBE, ERR,
1430                 "Unable to allocate memory for the transmit descriptor ring\n");
1431                 return -ENOMEM;
1432         }
1433
1434         /* Fix for errata 23, can't cross 64kB boundary */
1435         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1436                 void *olddesc = txdr->desc;
1437                 dma_addr_t olddma = txdr->dma;
1438                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1439                                      "at %p\n", txdr->size, txdr->desc);
1440                 /* Try again, without freeing the previous */
1441                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1442                 /* Failed allocation, critical failure */
1443                 if (!txdr->desc) {
1444                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1445                         goto setup_tx_desc_die;
1446                 }
1447
1448                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1449                         /* give up */
1450                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1451                                             txdr->dma);
1452                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1453                         DPRINTK(PROBE, ERR,
1454                                 "Unable to allocate aligned memory "
1455                                 "for the transmit descriptor ring\n");
1456                         vfree(txdr->buffer_info);
1457                         return -ENOMEM;
1458                 } else {
1459                         /* Free old allocation, new allocation was successful */
1460                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1461                 }
1462         }
1463         memset(txdr->desc, 0, txdr->size);
1464
1465         txdr->next_to_use = 0;
1466         txdr->next_to_clean = 0;
1467         spin_lock_init(&txdr->tx_lock);
1468
1469         return 0;
1470 }
1471
1472 /**
1473  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1474  *                                (Descriptors) for all queues
1475  * @adapter: board private structure
1476  *
1477  * Return 0 on success, negative on failure
1478  **/
1479
1480 int
1481 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1482 {
1483         int i, err = 0;
1484
1485         for (i = 0; i < adapter->num_tx_queues; i++) {
1486                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1487                 if (err) {
1488                         DPRINTK(PROBE, ERR,
1489                                 "Allocation for Tx Queue %u failed\n", i);
1490                         for (i-- ; i >= 0; i--)
1491                                 e1000_free_tx_resources(adapter,
1492                                                         &adapter->tx_ring[i]);
1493                         break;
1494                 }
1495         }
1496
1497         return err;
1498 }
1499
1500 /**
1501  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1502  * @adapter: board private structure
1503  *
1504  * Configure the Tx unit of the MAC after a reset.
1505  **/
1506
1507 static void
1508 e1000_configure_tx(struct e1000_adapter *adapter)
1509 {
1510         uint64_t tdba;
1511         struct e1000_hw *hw = &adapter->hw;
1512         uint32_t tdlen, tctl, tipg, tarc;
1513         uint32_t ipgr1, ipgr2;
1514
1515         /* Setup the HW Tx Head and Tail descriptor pointers */
1516
1517         switch (adapter->num_tx_queues) {
1518         case 1:
1519         default:
1520                 tdba = adapter->tx_ring[0].dma;
1521                 tdlen = adapter->tx_ring[0].count *
1522                         sizeof(struct e1000_tx_desc);
1523                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1524                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1525                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1526                 E1000_WRITE_REG(hw, TDT, 0);
1527                 E1000_WRITE_REG(hw, TDH, 0);
1528                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1529                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1530                 break;
1531         }
1532
1533         /* Set the default values for the Tx Inter Packet Gap timer */
1534
1535         if (hw->media_type == e1000_media_type_fiber ||
1536             hw->media_type == e1000_media_type_internal_serdes)
1537                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1538         else
1539                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1540
1541         switch (hw->mac_type) {
1542         case e1000_82542_rev2_0:
1543         case e1000_82542_rev2_1:
1544                 tipg = DEFAULT_82542_TIPG_IPGT;
1545                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1546                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1547                 break;
1548         case e1000_80003es2lan:
1549                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1550                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1551                 break;
1552         default:
1553                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1554                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1555                 break;
1556         }
1557         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1558         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1559         E1000_WRITE_REG(hw, TIPG, tipg);
1560
1561         /* Set the Tx Interrupt Delay register */
1562
1563         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1564         if (hw->mac_type >= e1000_82540)
1565                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1566
1567         /* Program the Transmit Control Register */
1568
1569         tctl = E1000_READ_REG(hw, TCTL);
1570         tctl &= ~E1000_TCTL_CT;
1571         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1572                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1573
1574         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1575                 tarc = E1000_READ_REG(hw, TARC0);
1576                 /* set the speed mode bit, we'll clear it if we're not at
1577                  * gigabit link later */
1578                 tarc |= (1 << 21);
1579                 E1000_WRITE_REG(hw, TARC0, tarc);
1580         } else if (hw->mac_type == e1000_80003es2lan) {
1581                 tarc = E1000_READ_REG(hw, TARC0);
1582                 tarc |= 1;
1583                 E1000_WRITE_REG(hw, TARC0, tarc);
1584                 tarc = E1000_READ_REG(hw, TARC1);
1585                 tarc |= 1;
1586                 E1000_WRITE_REG(hw, TARC1, tarc);
1587         }
1588
1589         e1000_config_collision_dist(hw);
1590
1591         /* Setup Transmit Descriptor Settings for eop descriptor */
1592         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1593
1594         /* only set IDE if we are delaying interrupts using the timers */
1595         if (adapter->tx_int_delay)
1596                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1597
1598         if (hw->mac_type < e1000_82543)
1599                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1600         else
1601                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1602
1603         /* Cache if we're 82544 running in PCI-X because we'll
1604          * need this to apply a workaround later in the send path. */
1605         if (hw->mac_type == e1000_82544 &&
1606             hw->bus_type == e1000_bus_type_pcix)
1607                 adapter->pcix_82544 = 1;
1608
1609         E1000_WRITE_REG(hw, TCTL, tctl);
1610
1611 }
1612
1613 /**
1614  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1615  * @adapter: board private structure
1616  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1617  *
1618  * Returns 0 on success, negative on failure
1619  **/
1620
1621 static int
1622 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1623                          struct e1000_rx_ring *rxdr)
1624 {
1625         struct pci_dev *pdev = adapter->pdev;
1626         int size, desc_len;
1627
1628         size = sizeof(struct e1000_buffer) * rxdr->count;
1629         rxdr->buffer_info = vmalloc(size);
1630         if (!rxdr->buffer_info) {
1631                 DPRINTK(PROBE, ERR,
1632                 "Unable to allocate memory for the receive descriptor ring\n");
1633                 return -ENOMEM;
1634         }
1635         memset(rxdr->buffer_info, 0, size);
1636
1637         size = sizeof(struct e1000_ps_page) * rxdr->count;
1638         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1639         if (!rxdr->ps_page) {
1640                 vfree(rxdr->buffer_info);
1641                 DPRINTK(PROBE, ERR,
1642                 "Unable to allocate memory for the receive descriptor ring\n");
1643                 return -ENOMEM;
1644         }
1645         memset(rxdr->ps_page, 0, size);
1646
1647         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1648         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1649         if (!rxdr->ps_page_dma) {
1650                 vfree(rxdr->buffer_info);
1651                 kfree(rxdr->ps_page);
1652                 DPRINTK(PROBE, ERR,
1653                 "Unable to allocate memory for the receive descriptor ring\n");
1654                 return -ENOMEM;
1655         }
1656         memset(rxdr->ps_page_dma, 0, size);
1657
1658         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1659                 desc_len = sizeof(struct e1000_rx_desc);
1660         else
1661                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1662
1663         /* Round up to nearest 4K */
1664
1665         rxdr->size = rxdr->count * desc_len;
1666         E1000_ROUNDUP(rxdr->size, 4096);
1667
1668         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1669
1670         if (!rxdr->desc) {
1671                 DPRINTK(PROBE, ERR,
1672                 "Unable to allocate memory for the receive descriptor ring\n");
1673 setup_rx_desc_die:
1674                 vfree(rxdr->buffer_info);
1675                 kfree(rxdr->ps_page);
1676                 kfree(rxdr->ps_page_dma);
1677                 return -ENOMEM;
1678         }
1679
1680         /* Fix for errata 23, can't cross 64kB boundary */
1681         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1682                 void *olddesc = rxdr->desc;
1683                 dma_addr_t olddma = rxdr->dma;
1684                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1685                                      "at %p\n", rxdr->size, rxdr->desc);
1686                 /* Try again, without freeing the previous */
1687                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1688                 /* Failed allocation, critical failure */
1689                 if (!rxdr->desc) {
1690                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1691                         DPRINTK(PROBE, ERR,
1692                                 "Unable to allocate memory "
1693                                 "for the receive descriptor ring\n");
1694                         goto setup_rx_desc_die;
1695                 }
1696
1697                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1698                         /* give up */
1699                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1700                                             rxdr->dma);
1701                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1702                         DPRINTK(PROBE, ERR,
1703                                 "Unable to allocate aligned memory "
1704                                 "for the receive descriptor ring\n");
1705                         goto setup_rx_desc_die;
1706                 } else {
1707                         /* Free old allocation, new allocation was successful */
1708                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1709                 }
1710         }
1711         memset(rxdr->desc, 0, rxdr->size);
1712
1713         rxdr->next_to_clean = 0;
1714         rxdr->next_to_use = 0;
1715
1716         return 0;
1717 }
1718
1719 /**
1720  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1721  *                                (Descriptors) for all queues
1722  * @adapter: board private structure
1723  *
1724  * Return 0 on success, negative on failure
1725  **/
1726
1727 int
1728 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1729 {
1730         int i, err = 0;
1731
1732         for (i = 0; i < adapter->num_rx_queues; i++) {
1733                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1734                 if (err) {
1735                         DPRINTK(PROBE, ERR,
1736                                 "Allocation for Rx Queue %u failed\n", i);
1737                         for (i-- ; i >= 0; i--)
1738                                 e1000_free_rx_resources(adapter,
1739                                                         &adapter->rx_ring[i]);
1740                         break;
1741                 }
1742         }
1743
1744         return err;
1745 }
1746
1747 /**
1748  * e1000_setup_rctl - configure the receive control registers
1749  * @adapter: Board private structure
1750  **/
1751 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1752                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1753 static void
1754 e1000_setup_rctl(struct e1000_adapter *adapter)
1755 {
1756         uint32_t rctl, rfctl;
1757         uint32_t psrctl = 0;
1758 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1759         uint32_t pages = 0;
1760 #endif
1761
1762         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1763
1764         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1765
1766         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1767                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1768                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1769
1770         if (adapter->hw.tbi_compatibility_on == 1)
1771                 rctl |= E1000_RCTL_SBP;
1772         else
1773                 rctl &= ~E1000_RCTL_SBP;
1774
1775         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1776                 rctl &= ~E1000_RCTL_LPE;
1777         else
1778                 rctl |= E1000_RCTL_LPE;
1779
1780         /* Setup buffer sizes */
1781         rctl &= ~E1000_RCTL_SZ_4096;
1782         rctl |= E1000_RCTL_BSEX;
1783         switch (adapter->rx_buffer_len) {
1784                 case E1000_RXBUFFER_256:
1785                         rctl |= E1000_RCTL_SZ_256;
1786                         rctl &= ~E1000_RCTL_BSEX;
1787                         break;
1788                 case E1000_RXBUFFER_512:
1789                         rctl |= E1000_RCTL_SZ_512;
1790                         rctl &= ~E1000_RCTL_BSEX;
1791                         break;
1792                 case E1000_RXBUFFER_1024:
1793                         rctl |= E1000_RCTL_SZ_1024;
1794                         rctl &= ~E1000_RCTL_BSEX;
1795                         break;
1796                 case E1000_RXBUFFER_2048:
1797                 default:
1798                         rctl |= E1000_RCTL_SZ_2048;
1799                         rctl &= ~E1000_RCTL_BSEX;
1800                         break;
1801                 case E1000_RXBUFFER_4096:
1802                         rctl |= E1000_RCTL_SZ_4096;
1803                         break;
1804                 case E1000_RXBUFFER_8192:
1805                         rctl |= E1000_RCTL_SZ_8192;
1806                         break;
1807                 case E1000_RXBUFFER_16384:
1808                         rctl |= E1000_RCTL_SZ_16384;
1809                         break;
1810         }
1811
1812 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1813         /* 82571 and greater support packet-split where the protocol
1814          * header is placed in skb->data and the packet data is
1815          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1816          * In the case of a non-split, skb->data is linearly filled,
1817          * followed by the page buffers.  Therefore, skb->data is
1818          * sized to hold the largest protocol header.
1819          */
1820         /* allocations using alloc_page take too long for regular MTU
1821          * so only enable packet split for jumbo frames */
1822         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1823         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1824             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1825                 adapter->rx_ps_pages = pages;
1826         else
1827                 adapter->rx_ps_pages = 0;
1828 #endif
1829         if (adapter->rx_ps_pages) {
1830                 /* Configure extra packet-split registers */
1831                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1832                 rfctl |= E1000_RFCTL_EXTEN;
1833                 /* disable packet split support for IPv6 extension headers,
1834                  * because some malformed IPv6 headers can hang the RX */
1835                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1836                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1837
1838                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1839
1840                 rctl |= E1000_RCTL_DTYP_PS;
1841
1842                 psrctl |= adapter->rx_ps_bsize0 >>
1843                         E1000_PSRCTL_BSIZE0_SHIFT;
1844
1845                 switch (adapter->rx_ps_pages) {
1846                 case 3:
1847                         psrctl |= PAGE_SIZE <<
1848                                 E1000_PSRCTL_BSIZE3_SHIFT;
1849                 case 2:
1850                         psrctl |= PAGE_SIZE <<
1851                                 E1000_PSRCTL_BSIZE2_SHIFT;
1852                 case 1:
1853                         psrctl |= PAGE_SIZE >>
1854                                 E1000_PSRCTL_BSIZE1_SHIFT;
1855                         break;
1856                 }
1857
1858                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1859         }
1860
1861         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1862 }
1863
1864 /**
1865  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1866  * @adapter: board private structure
1867  *
1868  * Configure the Rx unit of the MAC after a reset.
1869  **/
1870
1871 static void
1872 e1000_configure_rx(struct e1000_adapter *adapter)
1873 {
1874         uint64_t rdba;
1875         struct e1000_hw *hw = &adapter->hw;
1876         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1877
1878         if (adapter->rx_ps_pages) {
1879                 /* this is a 32 byte descriptor */
1880                 rdlen = adapter->rx_ring[0].count *
1881                         sizeof(union e1000_rx_desc_packet_split);
1882                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1883                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1884         } else {
1885                 rdlen = adapter->rx_ring[0].count *
1886                         sizeof(struct e1000_rx_desc);
1887                 adapter->clean_rx = e1000_clean_rx_irq;
1888                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1889         }
1890
1891         /* disable receives while setting up the descriptors */
1892         rctl = E1000_READ_REG(hw, RCTL);
1893         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1894
1895         /* set the Receive Delay Timer Register */
1896         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1897
1898         if (hw->mac_type >= e1000_82540) {
1899                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1900                 if (adapter->itr > 1)
1901                         E1000_WRITE_REG(hw, ITR,
1902                                 1000000000 / (adapter->itr * 256));
1903         }
1904
1905         if (hw->mac_type >= e1000_82571) {
1906                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1907                 /* Reset delay timers after every interrupt */
1908                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1909 #ifdef CONFIG_E1000_NAPI
1910                 /* Auto-Mask interrupts upon ICR read. */
1911                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1912 #endif
1913                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1914                 E1000_WRITE_REG(hw, IAM, ~0);
1915                 E1000_WRITE_FLUSH(hw);
1916         }
1917
1918         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1919          * the Base and Length of the Rx Descriptor Ring */
1920         switch (adapter->num_rx_queues) {
1921         case 1:
1922         default:
1923                 rdba = adapter->rx_ring[0].dma;
1924                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1925                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1926                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1927                 E1000_WRITE_REG(hw, RDT, 0);
1928                 E1000_WRITE_REG(hw, RDH, 0);
1929                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1930                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1931                 break;
1932         }
1933
1934         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1935         if (hw->mac_type >= e1000_82543) {
1936                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1937                 if (adapter->rx_csum == TRUE) {
1938                         rxcsum |= E1000_RXCSUM_TUOFL;
1939
1940                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1941                          * Must be used in conjunction with packet-split. */
1942                         if ((hw->mac_type >= e1000_82571) &&
1943                             (adapter->rx_ps_pages)) {
1944                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1945                         }
1946                 } else {
1947                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1948                         /* don't need to clear IPPCSE as it defaults to 0 */
1949                 }
1950                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1951         }
1952
1953         /* enable early receives on 82573, only takes effect if using > 2048
1954          * byte total frame size.  for example only for jumbo frames */
1955 #define E1000_ERT_2048 0x100
1956         if (hw->mac_type == e1000_82573)
1957                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
1958
1959         /* Enable Receives */
1960         E1000_WRITE_REG(hw, RCTL, rctl);
1961 }
1962
1963 /**
1964  * e1000_free_tx_resources - Free Tx Resources per Queue
1965  * @adapter: board private structure
1966  * @tx_ring: Tx descriptor ring for a specific queue
1967  *
1968  * Free all transmit software resources
1969  **/
1970
1971 static void
1972 e1000_free_tx_resources(struct e1000_adapter *adapter,
1973                         struct e1000_tx_ring *tx_ring)
1974 {
1975         struct pci_dev *pdev = adapter->pdev;
1976
1977         e1000_clean_tx_ring(adapter, tx_ring);
1978
1979         vfree(tx_ring->buffer_info);
1980         tx_ring->buffer_info = NULL;
1981
1982         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1983
1984         tx_ring->desc = NULL;
1985 }
1986
1987 /**
1988  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1989  * @adapter: board private structure
1990  *
1991  * Free all transmit software resources
1992  **/
1993
1994 void
1995 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1996 {
1997         int i;
1998
1999         for (i = 0; i < adapter->num_tx_queues; i++)
2000                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2001 }
2002
2003 static void
2004 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2005                         struct e1000_buffer *buffer_info)
2006 {
2007         if (buffer_info->dma) {
2008                 pci_unmap_page(adapter->pdev,
2009                                 buffer_info->dma,
2010                                 buffer_info->length,
2011                                 PCI_DMA_TODEVICE);
2012                 buffer_info->dma = 0;
2013         }
2014         if (buffer_info->skb) {
2015                 dev_kfree_skb_any(buffer_info->skb);
2016                 buffer_info->skb = NULL;
2017         }
2018         /* buffer_info must be completely set up in the transmit path */
2019 }
2020
2021 /**
2022  * e1000_clean_tx_ring - Free Tx Buffers
2023  * @adapter: board private structure
2024  * @tx_ring: ring to be cleaned
2025  **/
2026
2027 static void
2028 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2029                     struct e1000_tx_ring *tx_ring)
2030 {
2031         struct e1000_buffer *buffer_info;
2032         unsigned long size;
2033         unsigned int i;
2034
2035         /* Free all the Tx ring sk_buffs */
2036
2037         for (i = 0; i < tx_ring->count; i++) {
2038                 buffer_info = &tx_ring->buffer_info[i];
2039                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2040         }
2041
2042         size = sizeof(struct e1000_buffer) * tx_ring->count;
2043         memset(tx_ring->buffer_info, 0, size);
2044
2045         /* Zero out the descriptor ring */
2046
2047         memset(tx_ring->desc, 0, tx_ring->size);
2048
2049         tx_ring->next_to_use = 0;
2050         tx_ring->next_to_clean = 0;
2051         tx_ring->last_tx_tso = 0;
2052
2053         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2054         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2055 }
2056
2057 /**
2058  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2059  * @adapter: board private structure
2060  **/
2061
2062 static void
2063 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2064 {
2065         int i;
2066
2067         for (i = 0; i < adapter->num_tx_queues; i++)
2068                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2069 }
2070
2071 /**
2072  * e1000_free_rx_resources - Free Rx Resources
2073  * @adapter: board private structure
2074  * @rx_ring: ring to clean the resources from
2075  *
2076  * Free all receive software resources
2077  **/
2078
2079 static void
2080 e1000_free_rx_resources(struct e1000_adapter *adapter,
2081                         struct e1000_rx_ring *rx_ring)
2082 {
2083         struct pci_dev *pdev = adapter->pdev;
2084
2085         e1000_clean_rx_ring(adapter, rx_ring);
2086
2087         vfree(rx_ring->buffer_info);
2088         rx_ring->buffer_info = NULL;
2089         kfree(rx_ring->ps_page);
2090         rx_ring->ps_page = NULL;
2091         kfree(rx_ring->ps_page_dma);
2092         rx_ring->ps_page_dma = NULL;
2093
2094         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2095
2096         rx_ring->desc = NULL;
2097 }
2098
2099 /**
2100  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2101  * @adapter: board private structure
2102  *
2103  * Free all receive software resources
2104  **/
2105
2106 void
2107 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2108 {
2109         int i;
2110
2111         for (i = 0; i < adapter->num_rx_queues; i++)
2112                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2113 }
2114
2115 /**
2116  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2117  * @adapter: board private structure
2118  * @rx_ring: ring to free buffers from
2119  **/
2120
2121 static void
2122 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2123                     struct e1000_rx_ring *rx_ring)
2124 {
2125         struct e1000_buffer *buffer_info;
2126         struct e1000_ps_page *ps_page;
2127         struct e1000_ps_page_dma *ps_page_dma;
2128         struct pci_dev *pdev = adapter->pdev;
2129         unsigned long size;
2130         unsigned int i, j;
2131
2132         /* Free all the Rx ring sk_buffs */
2133         for (i = 0; i < rx_ring->count; i++) {
2134                 buffer_info = &rx_ring->buffer_info[i];
2135                 if (buffer_info->skb) {
2136                         pci_unmap_single(pdev,
2137                                          buffer_info->dma,
2138                                          buffer_info->length,
2139                                          PCI_DMA_FROMDEVICE);
2140
2141                         dev_kfree_skb(buffer_info->skb);
2142                         buffer_info->skb = NULL;
2143                 }
2144                 ps_page = &rx_ring->ps_page[i];
2145                 ps_page_dma = &rx_ring->ps_page_dma[i];
2146                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2147                         if (!ps_page->ps_page[j]) break;
2148                         pci_unmap_page(pdev,
2149                                        ps_page_dma->ps_page_dma[j],
2150                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2151                         ps_page_dma->ps_page_dma[j] = 0;
2152                         put_page(ps_page->ps_page[j]);
2153                         ps_page->ps_page[j] = NULL;
2154                 }
2155         }
2156
2157         size = sizeof(struct e1000_buffer) * rx_ring->count;
2158         memset(rx_ring->buffer_info, 0, size);
2159         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2160         memset(rx_ring->ps_page, 0, size);
2161         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2162         memset(rx_ring->ps_page_dma, 0, size);
2163
2164         /* Zero out the descriptor ring */
2165
2166         memset(rx_ring->desc, 0, rx_ring->size);
2167
2168         rx_ring->next_to_clean = 0;
2169         rx_ring->next_to_use = 0;
2170
2171         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2172         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2173 }
2174
2175 /**
2176  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2177  * @adapter: board private structure
2178  **/
2179
2180 static void
2181 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2182 {
2183         int i;
2184
2185         for (i = 0; i < adapter->num_rx_queues; i++)
2186                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2187 }
2188
2189 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2190  * and memory write and invalidate disabled for certain operations
2191  */
2192 static void
2193 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2194 {
2195         struct net_device *netdev = adapter->netdev;
2196         uint32_t rctl;
2197
2198         e1000_pci_clear_mwi(&adapter->hw);
2199
2200         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2201         rctl |= E1000_RCTL_RST;
2202         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2203         E1000_WRITE_FLUSH(&adapter->hw);
2204         mdelay(5);
2205
2206         if (netif_running(netdev))
2207                 e1000_clean_all_rx_rings(adapter);
2208 }
2209
2210 static void
2211 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2212 {
2213         struct net_device *netdev = adapter->netdev;
2214         uint32_t rctl;
2215
2216         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2217         rctl &= ~E1000_RCTL_RST;
2218         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2219         E1000_WRITE_FLUSH(&adapter->hw);
2220         mdelay(5);
2221
2222         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2223                 e1000_pci_set_mwi(&adapter->hw);
2224
2225         if (netif_running(netdev)) {
2226                 /* No need to loop, because 82542 supports only 1 queue */
2227                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2228                 e1000_configure_rx(adapter);
2229                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2230         }
2231 }
2232
2233 /**
2234  * e1000_set_mac - Change the Ethernet Address of the NIC
2235  * @netdev: network interface device structure
2236  * @p: pointer to an address structure
2237  *
2238  * Returns 0 on success, negative on failure
2239  **/
2240
2241 static int
2242 e1000_set_mac(struct net_device *netdev, void *p)
2243 {
2244         struct e1000_adapter *adapter = netdev_priv(netdev);
2245         struct sockaddr *addr = p;
2246
2247         if (!is_valid_ether_addr(addr->sa_data))
2248                 return -EADDRNOTAVAIL;
2249
2250         /* 82542 2.0 needs to be in reset to write receive address registers */
2251
2252         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2253                 e1000_enter_82542_rst(adapter);
2254
2255         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2256         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2257
2258         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2259
2260         /* With 82571 controllers, LAA may be overwritten (with the default)
2261          * due to controller reset from the other port. */
2262         if (adapter->hw.mac_type == e1000_82571) {
2263                 /* activate the work around */
2264                 adapter->hw.laa_is_present = 1;
2265
2266                 /* Hold a copy of the LAA in RAR[14] This is done so that
2267                  * between the time RAR[0] gets clobbered  and the time it
2268                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2269                  * of the RARs and no incoming packets directed to this port
2270                  * are dropped. Eventaully the LAA will be in RAR[0] and
2271                  * RAR[14] */
2272                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2273                                         E1000_RAR_ENTRIES - 1);
2274         }
2275
2276         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2277                 e1000_leave_82542_rst(adapter);
2278
2279         return 0;
2280 }
2281
2282 /**
2283  * e1000_set_multi - Multicast and Promiscuous mode set
2284  * @netdev: network interface device structure
2285  *
2286  * The set_multi entry point is called whenever the multicast address
2287  * list or the network interface flags are updated.  This routine is
2288  * responsible for configuring the hardware for proper multicast,
2289  * promiscuous mode, and all-multi behavior.
2290  **/
2291
2292 static void
2293 e1000_set_multi(struct net_device *netdev)
2294 {
2295         struct e1000_adapter *adapter = netdev_priv(netdev);
2296         struct e1000_hw *hw = &adapter->hw;
2297         struct dev_mc_list *mc_ptr;
2298         uint32_t rctl;
2299         uint32_t hash_value;
2300         int i, rar_entries = E1000_RAR_ENTRIES;
2301         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2302                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2303                                 E1000_NUM_MTA_REGISTERS;
2304
2305         if (adapter->hw.mac_type == e1000_ich8lan)
2306                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2307
2308         /* reserve RAR[14] for LAA over-write work-around */
2309         if (adapter->hw.mac_type == e1000_82571)
2310                 rar_entries--;
2311
2312         /* Check for Promiscuous and All Multicast modes */
2313
2314         rctl = E1000_READ_REG(hw, RCTL);
2315
2316         if (netdev->flags & IFF_PROMISC) {
2317                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2318         } else if (netdev->flags & IFF_ALLMULTI) {
2319                 rctl |= E1000_RCTL_MPE;
2320                 rctl &= ~E1000_RCTL_UPE;
2321         } else {
2322                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2323         }
2324
2325         E1000_WRITE_REG(hw, RCTL, rctl);
2326
2327         /* 82542 2.0 needs to be in reset to write receive address registers */
2328
2329         if (hw->mac_type == e1000_82542_rev2_0)
2330                 e1000_enter_82542_rst(adapter);
2331
2332         /* load the first 14 multicast address into the exact filters 1-14
2333          * RAR 0 is used for the station MAC adddress
2334          * if there are not 14 addresses, go ahead and clear the filters
2335          * -- with 82571 controllers only 0-13 entries are filled here
2336          */
2337         mc_ptr = netdev->mc_list;
2338
2339         for (i = 1; i < rar_entries; i++) {
2340                 if (mc_ptr) {
2341                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2342                         mc_ptr = mc_ptr->next;
2343                 } else {
2344                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2345                         E1000_WRITE_FLUSH(hw);
2346                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2347                         E1000_WRITE_FLUSH(hw);
2348                 }
2349         }
2350
2351         /* clear the old settings from the multicast hash table */
2352
2353         for (i = 0; i < mta_reg_count; i++) {
2354                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2355                 E1000_WRITE_FLUSH(hw);
2356         }
2357
2358         /* load any remaining addresses into the hash table */
2359
2360         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2361                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2362                 e1000_mta_set(hw, hash_value);
2363         }
2364
2365         if (hw->mac_type == e1000_82542_rev2_0)
2366                 e1000_leave_82542_rst(adapter);
2367 }
2368
2369 /* Need to wait a few seconds after link up to get diagnostic information from
2370  * the phy */
2371
2372 static void
2373 e1000_update_phy_info(unsigned long data)
2374 {
2375         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2376         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2377 }
2378
2379 /**
2380  * e1000_82547_tx_fifo_stall - Timer Call-back
2381  * @data: pointer to adapter cast into an unsigned long
2382  **/
2383
2384 static void
2385 e1000_82547_tx_fifo_stall(unsigned long data)
2386 {
2387         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2388         struct net_device *netdev = adapter->netdev;
2389         uint32_t tctl;
2390
2391         if (atomic_read(&adapter->tx_fifo_stall)) {
2392                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2393                     E1000_READ_REG(&adapter->hw, TDH)) &&
2394                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2395                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2396                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2397                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2398                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2399                         E1000_WRITE_REG(&adapter->hw, TCTL,
2400                                         tctl & ~E1000_TCTL_EN);
2401                         E1000_WRITE_REG(&adapter->hw, TDFT,
2402                                         adapter->tx_head_addr);
2403                         E1000_WRITE_REG(&adapter->hw, TDFH,
2404                                         adapter->tx_head_addr);
2405                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2406                                         adapter->tx_head_addr);
2407                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2408                                         adapter->tx_head_addr);
2409                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2410                         E1000_WRITE_FLUSH(&adapter->hw);
2411
2412                         adapter->tx_fifo_head = 0;
2413                         atomic_set(&adapter->tx_fifo_stall, 0);
2414                         netif_wake_queue(netdev);
2415                 } else {
2416                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2417                 }
2418         }
2419 }
2420
2421 /**
2422  * e1000_watchdog - Timer Call-back
2423  * @data: pointer to adapter cast into an unsigned long
2424  **/
2425 static void
2426 e1000_watchdog(unsigned long data)
2427 {
2428         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2429         struct net_device *netdev = adapter->netdev;
2430         struct e1000_tx_ring *txdr = adapter->tx_ring;
2431         uint32_t link, tctl;
2432         int32_t ret_val;
2433
2434         ret_val = e1000_check_for_link(&adapter->hw);
2435         if ((ret_val == E1000_ERR_PHY) &&
2436             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2437             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2438                 /* See e1000_kumeran_lock_loss_workaround() */
2439                 DPRINTK(LINK, INFO,
2440                         "Gigabit has been disabled, downgrading speed\n");
2441         }
2442
2443         if (adapter->hw.mac_type == e1000_82573) {
2444                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2445                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2446                         e1000_update_mng_vlan(adapter);
2447         }
2448
2449         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2450            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2451                 link = !adapter->hw.serdes_link_down;
2452         else
2453                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2454
2455         if (link) {
2456                 if (!netif_carrier_ok(netdev)) {
2457                         boolean_t txb2b = 1;
2458                         e1000_get_speed_and_duplex(&adapter->hw,
2459                                                    &adapter->link_speed,
2460                                                    &adapter->link_duplex);
2461
2462                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2463                                adapter->link_speed,
2464                                adapter->link_duplex == FULL_DUPLEX ?
2465                                "Full Duplex" : "Half Duplex");
2466
2467                         /* tweak tx_queue_len according to speed/duplex
2468                          * and adjust the timeout factor */
2469                         netdev->tx_queue_len = adapter->tx_queue_len;
2470                         adapter->tx_timeout_factor = 1;
2471                         switch (adapter->link_speed) {
2472                         case SPEED_10:
2473                                 txb2b = 0;
2474                                 netdev->tx_queue_len = 10;
2475                                 adapter->tx_timeout_factor = 8;
2476                                 break;
2477                         case SPEED_100:
2478                                 txb2b = 0;
2479                                 netdev->tx_queue_len = 100;
2480                                 /* maybe add some timeout factor ? */
2481                                 break;
2482                         }
2483
2484                         if ((adapter->hw.mac_type == e1000_82571 ||
2485                              adapter->hw.mac_type == e1000_82572) &&
2486                             txb2b == 0) {
2487                                 uint32_t tarc0;
2488                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2489                                 tarc0 &= ~(1 << 21);
2490                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2491                         }
2492
2493 #ifdef NETIF_F_TSO
2494                         /* disable TSO for pcie and 10/100 speeds, to avoid
2495                          * some hardware issues */
2496                         if (!adapter->tso_force &&
2497                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2498                                 switch (adapter->link_speed) {
2499                                 case SPEED_10:
2500                                 case SPEED_100:
2501                                         DPRINTK(PROBE,INFO,
2502                                         "10/100 speed: disabling TSO\n");
2503                                         netdev->features &= ~NETIF_F_TSO;
2504 #ifdef NETIF_F_TSO6
2505                                         netdev->features &= ~NETIF_F_TSO6;
2506 #endif
2507                                         break;
2508                                 case SPEED_1000:
2509                                         netdev->features |= NETIF_F_TSO;
2510 #ifdef NETIF_F_TSO6
2511                                         netdev->features |= NETIF_F_TSO6;
2512 #endif
2513                                         break;
2514                                 default:
2515                                         /* oops */
2516                                         break;
2517                                 }
2518                         }
2519 #endif
2520
2521                         /* enable transmits in the hardware, need to do this
2522                          * after setting TARC0 */
2523                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2524                         tctl |= E1000_TCTL_EN;
2525                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2526
2527                         netif_carrier_on(netdev);
2528                         netif_wake_queue(netdev);
2529                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2530                         adapter->smartspeed = 0;
2531                 }
2532         } else {
2533                 if (netif_carrier_ok(netdev)) {
2534                         adapter->link_speed = 0;
2535                         adapter->link_duplex = 0;
2536                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2537                         netif_carrier_off(netdev);
2538                         netif_stop_queue(netdev);
2539                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2540
2541                         /* 80003ES2LAN workaround--
2542                          * For packet buffer work-around on link down event;
2543                          * disable receives in the ISR and
2544                          * reset device here in the watchdog
2545                          */
2546                         if (adapter->hw.mac_type == e1000_80003es2lan)
2547                                 /* reset device */
2548                                 schedule_work(&adapter->reset_task);
2549                 }
2550
2551                 e1000_smartspeed(adapter);
2552         }
2553
2554         e1000_update_stats(adapter);
2555
2556         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2557         adapter->tpt_old = adapter->stats.tpt;
2558         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2559         adapter->colc_old = adapter->stats.colc;
2560
2561         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2562         adapter->gorcl_old = adapter->stats.gorcl;
2563         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2564         adapter->gotcl_old = adapter->stats.gotcl;
2565
2566         e1000_update_adaptive(&adapter->hw);
2567
2568         if (!netif_carrier_ok(netdev)) {
2569                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2570                         /* We've lost link, so the controller stops DMA,
2571                          * but we've got queued Tx work that's never going
2572                          * to get done, so reset controller to flush Tx.
2573                          * (Do the reset outside of interrupt context). */
2574                         adapter->tx_timeout_count++;
2575                         schedule_work(&adapter->reset_task);
2576                 }
2577         }
2578
2579         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2580         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2581                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2582                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2583                  * else is between 2000-8000. */
2584                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2585                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2586                         adapter->gotcl - adapter->gorcl :
2587                         adapter->gorcl - adapter->gotcl) / 10000;
2588                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2589                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2590         }
2591
2592         /* Cause software interrupt to ensure rx ring is cleaned */
2593         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2594
2595         /* Force detection of hung controller every watchdog period */
2596         adapter->detect_tx_hung = TRUE;
2597
2598         /* With 82571 controllers, LAA may be overwritten due to controller
2599          * reset from the other port. Set the appropriate LAA in RAR[0] */
2600         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2601                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2602
2603         /* Reset the timer */
2604         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2605 }
2606
2607 #define E1000_TX_FLAGS_CSUM             0x00000001
2608 #define E1000_TX_FLAGS_VLAN             0x00000002
2609 #define E1000_TX_FLAGS_TSO              0x00000004
2610 #define E1000_TX_FLAGS_IPV4             0x00000008
2611 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2612 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2613
2614 static int
2615 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2616           struct sk_buff *skb)
2617 {
2618 #ifdef NETIF_F_TSO
2619         struct e1000_context_desc *context_desc;
2620         struct e1000_buffer *buffer_info;
2621         unsigned int i;
2622         uint32_t cmd_length = 0;
2623         uint16_t ipcse = 0, tucse, mss;
2624         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2625         int err;
2626
2627         if (skb_is_gso(skb)) {
2628                 if (skb_header_cloned(skb)) {
2629                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2630                         if (err)
2631                                 return err;
2632                 }
2633
2634                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2635                 mss = skb_shinfo(skb)->gso_size;
2636                 if (skb->protocol == htons(ETH_P_IP)) {
2637                         skb->nh.iph->tot_len = 0;
2638                         skb->nh.iph->check = 0;
2639                         skb->h.th->check =
2640                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2641                                                    skb->nh.iph->daddr,
2642                                                    0,
2643                                                    IPPROTO_TCP,
2644                                                    0);
2645                         cmd_length = E1000_TXD_CMD_IP;
2646                         ipcse = skb->h.raw - skb->data - 1;
2647 #ifdef NETIF_F_TSO6
2648                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2649                         skb->nh.ipv6h->payload_len = 0;
2650                         skb->h.th->check =
2651                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2652                                                  &skb->nh.ipv6h->daddr,
2653                                                  0,
2654                                                  IPPROTO_TCP,
2655                                                  0);
2656                         ipcse = 0;
2657 #endif
2658                 }
2659                 ipcss = skb->nh.raw - skb->data;
2660                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2661                 tucss = skb->h.raw - skb->data;
2662                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2663                 tucse = 0;
2664
2665                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2666                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2667
2668                 i = tx_ring->next_to_use;
2669                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2670                 buffer_info = &tx_ring->buffer_info[i];
2671
2672                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2673                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2674                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2675                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2676                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2677                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2678                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2679                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2680                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2681
2682                 buffer_info->time_stamp = jiffies;
2683                 buffer_info->next_to_watch = i;
2684
2685                 if (++i == tx_ring->count) i = 0;
2686                 tx_ring->next_to_use = i;
2687
2688                 return TRUE;
2689         }
2690 #endif
2691
2692         return FALSE;
2693 }
2694
2695 static boolean_t
2696 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2697               struct sk_buff *skb)
2698 {
2699         struct e1000_context_desc *context_desc;
2700         struct e1000_buffer *buffer_info;
2701         unsigned int i;
2702         uint8_t css;
2703
2704         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2705                 css = skb->h.raw - skb->data;
2706
2707                 i = tx_ring->next_to_use;
2708                 buffer_info = &tx_ring->buffer_info[i];
2709                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2710
2711                 context_desc->upper_setup.tcp_fields.tucss = css;
2712                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2713                 context_desc->upper_setup.tcp_fields.tucse = 0;
2714                 context_desc->tcp_seg_setup.data = 0;
2715                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2716
2717                 buffer_info->time_stamp = jiffies;
2718                 buffer_info->next_to_watch = i;
2719
2720                 if (unlikely(++i == tx_ring->count)) i = 0;
2721                 tx_ring->next_to_use = i;
2722
2723                 return TRUE;
2724         }
2725
2726         return FALSE;
2727 }
2728
2729 #define E1000_MAX_TXD_PWR       12
2730 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2731
2732 static int
2733 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2734              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2735              unsigned int nr_frags, unsigned int mss)
2736 {
2737         struct e1000_buffer *buffer_info;
2738         unsigned int len = skb->len;
2739         unsigned int offset = 0, size, count = 0, i;
2740         unsigned int f;
2741         len -= skb->data_len;
2742
2743         i = tx_ring->next_to_use;
2744
2745         while (len) {
2746                 buffer_info = &tx_ring->buffer_info[i];
2747                 size = min(len, max_per_txd);
2748 #ifdef NETIF_F_TSO
2749                 /* Workaround for Controller erratum --
2750                  * descriptor for non-tso packet in a linear SKB that follows a
2751                  * tso gets written back prematurely before the data is fully
2752                  * DMA'd to the controller */
2753                 if (!skb->data_len && tx_ring->last_tx_tso &&
2754                     !skb_is_gso(skb)) {
2755                         tx_ring->last_tx_tso = 0;
2756                         size -= 4;
2757                 }
2758
2759                 /* Workaround for premature desc write-backs
2760                  * in TSO mode.  Append 4-byte sentinel desc */
2761                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2762                         size -= 4;
2763 #endif
2764                 /* work-around for errata 10 and it applies
2765                  * to all controllers in PCI-X mode
2766                  * The fix is to make sure that the first descriptor of a
2767                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2768                  */
2769                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2770                                 (size > 2015) && count == 0))
2771                         size = 2015;
2772
2773                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2774                  * terminating buffers within evenly-aligned dwords. */
2775                 if (unlikely(adapter->pcix_82544 &&
2776                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2777                    size > 4))
2778                         size -= 4;
2779
2780                 buffer_info->length = size;
2781                 buffer_info->dma =
2782                         pci_map_single(adapter->pdev,
2783                                 skb->data + offset,
2784                                 size,
2785                                 PCI_DMA_TODEVICE);
2786                 buffer_info->time_stamp = jiffies;
2787                 buffer_info->next_to_watch = i;
2788
2789                 len -= size;
2790                 offset += size;
2791                 count++;
2792                 if (unlikely(++i == tx_ring->count)) i = 0;
2793         }
2794
2795         for (f = 0; f < nr_frags; f++) {
2796                 struct skb_frag_struct *frag;
2797
2798                 frag = &skb_shinfo(skb)->frags[f];
2799                 len = frag->size;
2800                 offset = frag->page_offset;
2801
2802                 while (len) {
2803                         buffer_info = &tx_ring->buffer_info[i];
2804                         size = min(len, max_per_txd);
2805 #ifdef NETIF_F_TSO
2806                         /* Workaround for premature desc write-backs
2807                          * in TSO mode.  Append 4-byte sentinel desc */
2808                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2809                                 size -= 4;
2810 #endif
2811                         /* Workaround for potential 82544 hang in PCI-X.
2812                          * Avoid terminating buffers within evenly-aligned
2813                          * dwords. */
2814                         if (unlikely(adapter->pcix_82544 &&
2815                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2816                            size > 4))
2817                                 size -= 4;
2818
2819                         buffer_info->length = size;
2820                         buffer_info->dma =
2821                                 pci_map_page(adapter->pdev,
2822                                         frag->page,
2823                                         offset,
2824                                         size,
2825                                         PCI_DMA_TODEVICE);
2826                         buffer_info->time_stamp = jiffies;
2827                         buffer_info->next_to_watch = i;
2828
2829                         len -= size;
2830                         offset += size;
2831                         count++;
2832                         if (unlikely(++i == tx_ring->count)) i = 0;
2833                 }
2834         }
2835
2836         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2837         tx_ring->buffer_info[i].skb = skb;
2838         tx_ring->buffer_info[first].next_to_watch = i;
2839
2840         return count;
2841 }
2842
2843 static void
2844 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2845                int tx_flags, int count)
2846 {
2847         struct e1000_tx_desc *tx_desc = NULL;
2848         struct e1000_buffer *buffer_info;
2849         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2850         unsigned int i;
2851
2852         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2853                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2854                              E1000_TXD_CMD_TSE;
2855                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2856
2857                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2858                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2859         }
2860
2861         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2862                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2863                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2864         }
2865
2866         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2867                 txd_lower |= E1000_TXD_CMD_VLE;
2868                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2869         }
2870
2871         i = tx_ring->next_to_use;
2872
2873         while (count--) {
2874                 buffer_info = &tx_ring->buffer_info[i];
2875                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2876                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2877                 tx_desc->lower.data =
2878                         cpu_to_le32(txd_lower | buffer_info->length);
2879                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2880                 if (unlikely(++i == tx_ring->count)) i = 0;
2881         }
2882
2883         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2884
2885         /* Force memory writes to complete before letting h/w
2886          * know there are new descriptors to fetch.  (Only
2887          * applicable for weak-ordered memory model archs,
2888          * such as IA-64). */
2889         wmb();
2890
2891         tx_ring->next_to_use = i;
2892         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2893         /* we need this if more than one processor can write to our tail
2894          * at a time, it syncronizes IO on IA64/Altix systems */
2895         mmiowb();
2896 }
2897
2898 /**
2899  * 82547 workaround to avoid controller hang in half-duplex environment.
2900  * The workaround is to avoid queuing a large packet that would span
2901  * the internal Tx FIFO ring boundary by notifying the stack to resend
2902  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2903  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2904  * to the beginning of the Tx FIFO.
2905  **/
2906
2907 #define E1000_FIFO_HDR                  0x10
2908 #define E1000_82547_PAD_LEN             0x3E0
2909
2910 static int
2911 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2912 {
2913         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2914         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2915
2916         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2917
2918         if (adapter->link_duplex != HALF_DUPLEX)
2919                 goto no_fifo_stall_required;
2920
2921         if (atomic_read(&adapter->tx_fifo_stall))
2922                 return 1;
2923
2924         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2925                 atomic_set(&adapter->tx_fifo_stall, 1);
2926                 return 1;
2927         }
2928
2929 no_fifo_stall_required:
2930         adapter->tx_fifo_head += skb_fifo_len;
2931         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2932                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2933         return 0;
2934 }
2935
2936 #define MINIMUM_DHCP_PACKET_SIZE 282
2937 static int
2938 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2939 {
2940         struct e1000_hw *hw =  &adapter->hw;
2941         uint16_t length, offset;
2942         if (vlan_tx_tag_present(skb)) {
2943                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2944                         ( adapter->hw.mng_cookie.status &
2945                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2946                         return 0;
2947         }
2948         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2949                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2950                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2951                         const struct iphdr *ip =
2952                                 (struct iphdr *)((uint8_t *)skb->data+14);
2953                         if (IPPROTO_UDP == ip->protocol) {
2954                                 struct udphdr *udp =
2955                                         (struct udphdr *)((uint8_t *)ip +
2956                                                 (ip->ihl << 2));
2957                                 if (ntohs(udp->dest) == 67) {
2958                                         offset = (uint8_t *)udp + 8 - skb->data;
2959                                         length = skb->len - offset;
2960
2961                                         return e1000_mng_write_dhcp_info(hw,
2962                                                         (uint8_t *)udp + 8,
2963                                                         length);
2964                                 }
2965                         }
2966                 }
2967         }
2968         return 0;
2969 }
2970
2971 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2972 {
2973         struct e1000_adapter *adapter = netdev_priv(netdev);
2974         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2975
2976         netif_stop_queue(netdev);
2977         /* Herbert's original patch had:
2978          *  smp_mb__after_netif_stop_queue();
2979          * but since that doesn't exist yet, just open code it. */
2980         smp_mb();
2981
2982         /* We need to check again in a case another CPU has just
2983          * made room available. */
2984         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2985                 return -EBUSY;
2986
2987         /* A reprieve! */
2988         netif_start_queue(netdev);
2989         ++adapter->restart_queue;
2990         return 0;
2991 }
2992
2993 static int e1000_maybe_stop_tx(struct net_device *netdev,
2994                                struct e1000_tx_ring *tx_ring, int size)
2995 {
2996         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2997                 return 0;
2998         return __e1000_maybe_stop_tx(netdev, size);
2999 }
3000
3001 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3002 static int
3003 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3004 {
3005         struct e1000_adapter *adapter = netdev_priv(netdev);
3006         struct e1000_tx_ring *tx_ring;
3007         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3008         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3009         unsigned int tx_flags = 0;
3010         unsigned int len = skb->len;
3011         unsigned long flags;
3012         unsigned int nr_frags = 0;
3013         unsigned int mss = 0;
3014         int count = 0;
3015         int tso;
3016         unsigned int f;
3017         len -= skb->data_len;
3018
3019         /* This goes back to the question of how to logically map a tx queue
3020          * to a flow.  Right now, performance is impacted slightly negatively
3021          * if using multiple tx queues.  If the stack breaks away from a
3022          * single qdisc implementation, we can look at this again. */
3023         tx_ring = adapter->tx_ring;
3024
3025         if (unlikely(skb->len <= 0)) {
3026                 dev_kfree_skb_any(skb);
3027                 return NETDEV_TX_OK;
3028         }
3029
3030         /* 82571 and newer doesn't need the workaround that limited descriptor
3031          * length to 4kB */
3032         if (adapter->hw.mac_type >= e1000_82571)
3033                 max_per_txd = 8192;
3034
3035 #ifdef NETIF_F_TSO
3036         mss = skb_shinfo(skb)->gso_size;
3037         /* The controller does a simple calculation to
3038          * make sure there is enough room in the FIFO before
3039          * initiating the DMA for each buffer.  The calc is:
3040          * 4 = ceil(buffer len/mss).  To make sure we don't
3041          * overrun the FIFO, adjust the max buffer len if mss
3042          * drops. */
3043         if (mss) {
3044                 uint8_t hdr_len;
3045                 max_per_txd = min(mss << 2, max_per_txd);
3046                 max_txd_pwr = fls(max_per_txd) - 1;
3047
3048                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3049                 * points to just header, pull a few bytes of payload from
3050                 * frags into skb->data */
3051                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3052                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3053                         switch (adapter->hw.mac_type) {
3054                                 unsigned int pull_size;
3055                         case e1000_82571:
3056                         case e1000_82572:
3057                         case e1000_82573:
3058                         case e1000_ich8lan:
3059                                 pull_size = min((unsigned int)4, skb->data_len);
3060                                 if (!__pskb_pull_tail(skb, pull_size)) {
3061                                         DPRINTK(DRV, ERR,
3062                                                 "__pskb_pull_tail failed.\n");
3063                                         dev_kfree_skb_any(skb);
3064                                         return NETDEV_TX_OK;
3065                                 }
3066                                 len = skb->len - skb->data_len;
3067                                 break;
3068                         default:
3069                                 /* do nothing */
3070                                 break;
3071                         }
3072                 }
3073         }
3074
3075         /* reserve a descriptor for the offload context */
3076         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3077                 count++;
3078         count++;
3079 #else
3080         if (skb->ip_summed == CHECKSUM_PARTIAL)
3081                 count++;
3082 #endif
3083
3084 #ifdef NETIF_F_TSO
3085         /* Controller Erratum workaround */
3086         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3087                 count++;
3088 #endif
3089
3090         count += TXD_USE_COUNT(len, max_txd_pwr);
3091
3092         if (adapter->pcix_82544)
3093                 count++;
3094
3095         /* work-around for errata 10 and it applies to all controllers
3096          * in PCI-X mode, so add one more descriptor to the count
3097          */
3098         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3099                         (len > 2015)))
3100                 count++;
3101
3102         nr_frags = skb_shinfo(skb)->nr_frags;
3103         for (f = 0; f < nr_frags; f++)
3104                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3105                                        max_txd_pwr);
3106         if (adapter->pcix_82544)
3107                 count += nr_frags;
3108
3109
3110         if (adapter->hw.tx_pkt_filtering &&
3111             (adapter->hw.mac_type == e1000_82573))
3112                 e1000_transfer_dhcp_info(adapter, skb);
3113
3114         local_irq_save(flags);
3115         if (!spin_trylock(&tx_ring->tx_lock)) {
3116                 /* Collision - tell upper layer to requeue */
3117                 local_irq_restore(flags);
3118                 return NETDEV_TX_LOCKED;
3119         }
3120
3121         /* need: count + 2 desc gap to keep tail from touching
3122          * head, otherwise try next time */
3123         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3124                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3125                 return NETDEV_TX_BUSY;
3126         }
3127
3128         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3129                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3130                         netif_stop_queue(netdev);
3131                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3132                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3133                         return NETDEV_TX_BUSY;
3134                 }
3135         }
3136
3137         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3138                 tx_flags |= E1000_TX_FLAGS_VLAN;
3139                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3140         }
3141
3142         first = tx_ring->next_to_use;
3143
3144         tso = e1000_tso(adapter, tx_ring, skb);
3145         if (tso < 0) {
3146                 dev_kfree_skb_any(skb);
3147                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3148                 return NETDEV_TX_OK;
3149         }
3150
3151         if (likely(tso)) {
3152                 tx_ring->last_tx_tso = 1;
3153                 tx_flags |= E1000_TX_FLAGS_TSO;
3154         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3155                 tx_flags |= E1000_TX_FLAGS_CSUM;
3156
3157         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3158          * 82571 hardware supports TSO capabilities for IPv6 as well...
3159          * no longer assume, we must. */
3160         if (likely(skb->protocol == htons(ETH_P_IP)))
3161                 tx_flags |= E1000_TX_FLAGS_IPV4;
3162
3163         e1000_tx_queue(adapter, tx_ring, tx_flags,
3164                        e1000_tx_map(adapter, tx_ring, skb, first,
3165                                     max_per_txd, nr_frags, mss));
3166
3167         netdev->trans_start = jiffies;
3168
3169         /* Make sure there is space in the ring for the next send. */
3170         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3171
3172         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3173         return NETDEV_TX_OK;
3174 }
3175
3176 /**
3177  * e1000_tx_timeout - Respond to a Tx Hang
3178  * @netdev: network interface device structure
3179  **/
3180
3181 static void
3182 e1000_tx_timeout(struct net_device *netdev)
3183 {
3184         struct e1000_adapter *adapter = netdev_priv(netdev);
3185
3186         /* Do the reset outside of interrupt context */
3187         adapter->tx_timeout_count++;
3188         schedule_work(&adapter->reset_task);
3189 }
3190
3191 static void
3192 e1000_reset_task(struct net_device *netdev)
3193 {
3194         struct e1000_adapter *adapter = netdev_priv(netdev);
3195
3196         e1000_reinit_locked(adapter);
3197 }
3198
3199 /**
3200  * e1000_get_stats - Get System Network Statistics
3201  * @netdev: network interface device structure
3202  *
3203  * Returns the address of the device statistics structure.
3204  * The statistics are actually updated from the timer callback.
3205  **/
3206
3207 static struct net_device_stats *
3208 e1000_get_stats(struct net_device *netdev)
3209 {
3210         struct e1000_adapter *adapter = netdev_priv(netdev);
3211
3212         /* only return the current stats */
3213         return &adapter->net_stats;
3214 }
3215
3216 /**
3217  * e1000_change_mtu - Change the Maximum Transfer Unit
3218  * @netdev: network interface device structure
3219  * @new_mtu: new value for maximum frame size
3220  *
3221  * Returns 0 on success, negative on failure
3222  **/
3223
3224 static int
3225 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3226 {
3227         struct e1000_adapter *adapter = netdev_priv(netdev);
3228         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3229         uint16_t eeprom_data = 0;
3230
3231         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3232             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3233                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3234                 return -EINVAL;
3235         }
3236
3237         /* Adapter-specific max frame size limits. */
3238         switch (adapter->hw.mac_type) {
3239         case e1000_undefined ... e1000_82542_rev2_1:
3240         case e1000_ich8lan:
3241                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3242                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3243                         return -EINVAL;
3244                 }
3245                 break;
3246         case e1000_82573:
3247                 /* Jumbo Frames not supported if:
3248                  * - this is not an 82573L device
3249                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3250                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3251                                   &eeprom_data);
3252                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3253                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3254                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3255                                 DPRINTK(PROBE, ERR,
3256                                         "Jumbo Frames not supported.\n");
3257                                 return -EINVAL;
3258                         }
3259                         break;
3260                 }
3261                 /* ERT will be enabled later to enable wire speed receives */
3262
3263                 /* fall through to get support */
3264         case e1000_82571:
3265         case e1000_82572:
3266         case e1000_80003es2lan:
3267 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3268                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3269                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3270                         return -EINVAL;
3271                 }
3272                 break;
3273         default:
3274                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3275                 break;
3276         }
3277
3278         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3279          * means we reserve 2 more, this pushes us to allocate from the next
3280          * larger slab size
3281          * i.e. RXBUFFER_2048 --> size-4096 slab */
3282
3283         if (max_frame <= E1000_RXBUFFER_256)
3284                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3285         else if (max_frame <= E1000_RXBUFFER_512)
3286                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3287         else if (max_frame <= E1000_RXBUFFER_1024)
3288                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3289         else if (max_frame <= E1000_RXBUFFER_2048)
3290                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3291         else if (max_frame <= E1000_RXBUFFER_4096)
3292                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3293         else if (max_frame <= E1000_RXBUFFER_8192)
3294                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3295         else if (max_frame <= E1000_RXBUFFER_16384)
3296                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3297
3298         /* adjust allocation if LPE protects us, and we aren't using SBP */
3299         if (!adapter->hw.tbi_compatibility_on &&
3300             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3301              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3302                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3303
3304         netdev->mtu = new_mtu;
3305
3306         if (netif_running(netdev))
3307                 e1000_reinit_locked(adapter);
3308
3309         adapter->hw.max_frame_size = max_frame;
3310
3311         return 0;
3312 }
3313
3314 /**
3315  * e1000_update_stats - Update the board statistics counters
3316  * @adapter: board private structure
3317  **/
3318
3319 void
3320 e1000_update_stats(struct e1000_adapter *adapter)
3321 {
3322         struct e1000_hw *hw = &adapter->hw;
3323         struct pci_dev *pdev = adapter->pdev;
3324         unsigned long flags;
3325         uint16_t phy_tmp;
3326
3327 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3328
3329         /*
3330          * Prevent stats update while adapter is being reset, or if the pci
3331          * connection is down.
3332          */
3333         if (adapter->link_speed == 0)
3334                 return;
3335         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3336                 return;
3337
3338         spin_lock_irqsave(&adapter->stats_lock, flags);
3339
3340         /* these counters are modified from e1000_adjust_tbi_stats,
3341          * called from the interrupt context, so they must only
3342          * be written while holding adapter->stats_lock
3343          */
3344
3345         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3346         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3347         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3348         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3349         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3350         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3351         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3352
3353         if (adapter->hw.mac_type != e1000_ich8lan) {
3354                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3355                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3356                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3357                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3358                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3359                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3360         }
3361
3362         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3363         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3364         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3365         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3366         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3367         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3368         adapter->stats.dc += E1000_READ_REG(hw, DC);
3369         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3370         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3371         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3372         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3373         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3374         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3375         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3376         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3377         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3378         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3379         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3380         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3381         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3382         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3383         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3384         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3385         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3386         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3387         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3388
3389         if (adapter->hw.mac_type != e1000_ich8lan) {
3390                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3391                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3392                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3393                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3394                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3395                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3396         }
3397
3398         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3399         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3400
3401         /* used for adaptive IFS */
3402
3403         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3404         adapter->stats.tpt += hw->tx_packet_delta;
3405         hw->collision_delta = E1000_READ_REG(hw, COLC);
3406         adapter->stats.colc += hw->collision_delta;
3407
3408         if (hw->mac_type >= e1000_82543) {
3409                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3410                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3411                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3412                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3413                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3414                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3415         }
3416         if (hw->mac_type > e1000_82547_rev_2) {
3417                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3418                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3419
3420                 if (adapter->hw.mac_type != e1000_ich8lan) {
3421                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3422                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3423                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3424                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3425                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3426                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3427                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3428                 }
3429         }
3430
3431         /* Fill out the OS statistics structure */
3432         adapter->net_stats.rx_packets = adapter->stats.gprc;
3433         adapter->net_stats.tx_packets = adapter->stats.gptc;
3434         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3435         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3436         adapter->net_stats.multicast = adapter->stats.mprc;
3437         adapter->net_stats.collisions = adapter->stats.colc;
3438
3439         /* Rx Errors */
3440
3441         /* RLEC on some newer hardware can be incorrect so build
3442         * our own version based on RUC and ROC */
3443         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3444                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3445                 adapter->stats.ruc + adapter->stats.roc +
3446                 adapter->stats.cexterr;
3447         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3448         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3449         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3450         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3451         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3452
3453         /* Tx Errors */
3454         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3455         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3456         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3457         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3458         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3459
3460         /* Tx Dropped needs to be maintained elsewhere */
3461
3462         /* Phy Stats */
3463         if (hw->media_type == e1000_media_type_copper) {
3464                 if ((adapter->link_speed == SPEED_1000) &&
3465                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3466                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3467                         adapter->phy_stats.idle_errors += phy_tmp;
3468                 }
3469
3470                 if ((hw->mac_type <= e1000_82546) &&
3471                    (hw->phy_type == e1000_phy_m88) &&
3472                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3473                         adapter->phy_stats.receive_errors += phy_tmp;
3474         }
3475
3476         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3477 }
3478 #ifdef CONFIG_PCI_MSI
3479
3480 /**
3481  * e1000_intr_msi - Interrupt Handler
3482  * @irq: interrupt number
3483  * @data: pointer to a network interface device structure
3484  **/
3485
3486 static
3487 irqreturn_t e1000_intr_msi(int irq, void *data)
3488 {
3489         struct net_device *netdev = data;
3490         struct e1000_adapter *adapter = netdev_priv(netdev);
3491         struct e1000_hw *hw = &adapter->hw;
3492 #ifndef CONFIG_E1000_NAPI
3493         int i;
3494 #endif
3495
3496         /* this code avoids the read of ICR but has to get 1000 interrupts
3497          * at every link change event before it will notice the change */
3498         if (++adapter->detect_link >= 1000) {
3499                 uint32_t icr = E1000_READ_REG(hw, ICR);
3500 #ifdef CONFIG_E1000_NAPI
3501                 /* read ICR disables interrupts using IAM, so keep up with our
3502                  * enable/disable accounting */
3503                 atomic_inc(&adapter->irq_sem);
3504 #endif
3505                 adapter->detect_link = 0;
3506                 if ((icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) &&
3507                     (icr & E1000_ICR_INT_ASSERTED)) {
3508                         hw->get_link_status = 1;
3509                         /* 80003ES2LAN workaround--
3510                         * For packet buffer work-around on link down event;
3511                         * disable receives here in the ISR and
3512                         * reset adapter in watchdog
3513                         */
3514                         if (netif_carrier_ok(netdev) &&
3515                             (adapter->hw.mac_type == e1000_80003es2lan)) {
3516                                 /* disable receives */
3517                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3518                                 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3519                         }
3520                         /* guard against interrupt when we're going down */
3521                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3522                                 mod_timer(&adapter->watchdog_timer,
3523                                           jiffies + 1);
3524                 }
3525         } else {
3526                 E1000_WRITE_REG(hw, ICR, (0xffffffff & ~(E1000_ICR_RXSEQ |
3527                                                          E1000_ICR_LSC)));
3528                 /* bummer we have to flush here, but things break otherwise as
3529                  * some event appears to be lost or delayed and throughput
3530                  * drops.  In almost all tests this flush is un-necessary */
3531                 E1000_WRITE_FLUSH(hw);
3532 #ifdef CONFIG_E1000_NAPI
3533                 /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are
3534                  * masked.  No need for the IMC write, but it does mean we
3535                  * should account for it ASAP. */
3536                 atomic_inc(&adapter->irq_sem);
3537 #endif
3538         }
3539
3540 #ifdef CONFIG_E1000_NAPI
3541         if (likely(netif_rx_schedule_prep(netdev)))
3542                 __netif_rx_schedule(netdev);
3543         else
3544                 e1000_irq_enable(adapter);
3545 #else
3546         for (i = 0; i < E1000_MAX_INTR; i++)
3547                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3548                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3549                         break;
3550 #endif
3551
3552         return IRQ_HANDLED;
3553 }
3554 #endif
3555
3556 /**
3557  * e1000_intr - Interrupt Handler
3558  * @irq: interrupt number
3559  * @data: pointer to a network interface device structure
3560  **/
3561
3562 static irqreturn_t
3563 e1000_intr(int irq, void *data)
3564 {
3565         struct net_device *netdev = data;
3566         struct e1000_adapter *adapter = netdev_priv(netdev);
3567         struct e1000_hw *hw = &adapter->hw;
3568         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3569 #ifndef CONFIG_E1000_NAPI
3570         int i;
3571 #else
3572         /* Interrupt Auto-Mask...upon reading ICR,
3573          * interrupts are masked.  No need for the
3574          * IMC write, but it does mean we should
3575          * account for it ASAP. */
3576         if (likely(hw->mac_type >= e1000_82571))
3577                 atomic_inc(&adapter->irq_sem);
3578 #endif
3579
3580         if (unlikely(!icr)) {
3581 #ifdef CONFIG_E1000_NAPI
3582                 if (hw->mac_type >= e1000_82571)
3583                         e1000_irq_enable(adapter);
3584 #endif
3585                 return IRQ_NONE;  /* Not our interrupt */
3586         }
3587
3588         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3589                 hw->get_link_status = 1;
3590                 /* 80003ES2LAN workaround--
3591                  * For packet buffer work-around on link down event;
3592                  * disable receives here in the ISR and
3593                  * reset adapter in watchdog
3594                  */
3595                 if (netif_carrier_ok(netdev) &&
3596                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3597                         /* disable receives */
3598                         rctl = E1000_READ_REG(hw, RCTL);
3599                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3600                 }
3601                 /* guard against interrupt when we're going down */
3602                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3603                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3604         }
3605
3606 #ifdef CONFIG_E1000_NAPI
3607         if (unlikely(hw->mac_type < e1000_82571)) {
3608                 atomic_inc(&adapter->irq_sem);
3609                 E1000_WRITE_REG(hw, IMC, ~0);
3610                 E1000_WRITE_FLUSH(hw);
3611         }
3612         if (likely(netif_rx_schedule_prep(netdev)))
3613                 __netif_rx_schedule(netdev);
3614         else
3615                 /* this really should not happen! if it does it is basically a
3616                  * bug, but not a hard error, so enable ints and continue */
3617                 e1000_irq_enable(adapter);
3618 #else
3619         /* Writing IMC and IMS is needed for 82547.
3620          * Due to Hub Link bus being occupied, an interrupt
3621          * de-assertion message is not able to be sent.
3622          * When an interrupt assertion message is generated later,
3623          * two messages are re-ordered and sent out.
3624          * That causes APIC to think 82547 is in de-assertion
3625          * state, while 82547 is in assertion state, resulting
3626          * in dead lock. Writing IMC forces 82547 into
3627          * de-assertion state.
3628          */
3629         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3630                 atomic_inc(&adapter->irq_sem);
3631                 E1000_WRITE_REG(hw, IMC, ~0);
3632         }
3633
3634         for (i = 0; i < E1000_MAX_INTR; i++)
3635                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3636                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3637                         break;
3638
3639         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3640                 e1000_irq_enable(adapter);
3641
3642 #endif
3643         return IRQ_HANDLED;
3644 }
3645
3646 #ifdef CONFIG_E1000_NAPI
3647 /**
3648  * e1000_clean - NAPI Rx polling callback
3649  * @adapter: board private structure
3650  **/
3651
3652 static int
3653 e1000_clean(struct net_device *poll_dev, int *budget)
3654 {
3655         struct e1000_adapter *adapter;
3656         int work_to_do = min(*budget, poll_dev->quota);
3657         int tx_cleaned = 0, work_done = 0;
3658
3659         /* Must NOT use netdev_priv macro here. */
3660         adapter = poll_dev->priv;
3661
3662         /* Keep link state information with original netdev */
3663         if (!netif_carrier_ok(poll_dev))
3664                 goto quit_polling;
3665
3666         /* e1000_clean is called per-cpu.  This lock protects
3667          * tx_ring[0] from being cleaned by multiple cpus
3668          * simultaneously.  A failure obtaining the lock means
3669          * tx_ring[0] is currently being cleaned anyway. */
3670         if (spin_trylock(&adapter->tx_queue_lock)) {
3671                 tx_cleaned = e1000_clean_tx_irq(adapter,
3672                                                 &adapter->tx_ring[0]);
3673                 spin_unlock(&adapter->tx_queue_lock);
3674         }
3675
3676         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3677                           &work_done, work_to_do);
3678
3679         *budget -= work_done;
3680         poll_dev->quota -= work_done;
3681
3682         /* If no Tx and not enough Rx work done, exit the polling mode */
3683         if ((!tx_cleaned && (work_done == 0)) ||
3684            !netif_running(poll_dev)) {
3685 quit_polling:
3686                 netif_rx_complete(poll_dev);
3687                 e1000_irq_enable(adapter);
3688                 return 0;
3689         }
3690
3691         return 1;
3692 }
3693
3694 #endif
3695 /**
3696  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3697  * @adapter: board private structure
3698  **/
3699
3700 static boolean_t
3701 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3702                    struct e1000_tx_ring *tx_ring)
3703 {
3704         struct net_device *netdev = adapter->netdev;
3705         struct e1000_tx_desc *tx_desc, *eop_desc;
3706         struct e1000_buffer *buffer_info;
3707         unsigned int i, eop;
3708 #ifdef CONFIG_E1000_NAPI
3709         unsigned int count = 0;
3710 #endif
3711         boolean_t cleaned = FALSE;
3712
3713         i = tx_ring->next_to_clean;
3714         eop = tx_ring->buffer_info[i].next_to_watch;
3715         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3716
3717         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3718                 for (cleaned = FALSE; !cleaned; ) {
3719                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3720                         buffer_info = &tx_ring->buffer_info[i];
3721                         cleaned = (i == eop);
3722
3723                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3724                         tx_desc->upper.data = 0;
3725
3726                         if (unlikely(++i == tx_ring->count)) i = 0;
3727                 }
3728
3729                 eop = tx_ring->buffer_info[i].next_to_watch;
3730                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3731 #ifdef CONFIG_E1000_NAPI
3732 #define E1000_TX_WEIGHT 64
3733                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3734                 if (count++ == E1000_TX_WEIGHT) break;
3735 #endif
3736         }
3737
3738         tx_ring->next_to_clean = i;
3739
3740 #define TX_WAKE_THRESHOLD 32
3741         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3742                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3743                 /* Make sure that anybody stopping the queue after this
3744                  * sees the new next_to_clean.
3745                  */
3746                 smp_mb();
3747                 if (netif_queue_stopped(netdev)) {
3748                         netif_wake_queue(netdev);
3749                         ++adapter->restart_queue;
3750                 }
3751         }
3752
3753         if (adapter->detect_tx_hung) {
3754                 /* Detect a transmit hang in hardware, this serializes the
3755                  * check with the clearing of time_stamp and movement of i */
3756                 adapter->detect_tx_hung = FALSE;
3757                 if (tx_ring->buffer_info[eop].dma &&
3758                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3759                                (adapter->tx_timeout_factor * HZ))
3760                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3761                          E1000_STATUS_TXOFF)) {
3762
3763                         /* detected Tx unit hang */
3764                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3765                                         "  Tx Queue             <%lu>\n"
3766                                         "  TDH                  <%x>\n"
3767                                         "  TDT                  <%x>\n"
3768                                         "  next_to_use          <%x>\n"
3769                                         "  next_to_clean        <%x>\n"
3770                                         "buffer_info[next_to_clean]\n"
3771                                         "  time_stamp           <%lx>\n"
3772                                         "  next_to_watch        <%x>\n"
3773                                         "  jiffies              <%lx>\n"
3774                                         "  next_to_watch.status <%x>\n",
3775                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3776                                         sizeof(struct e1000_tx_ring)),
3777                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3778                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3779                                 tx_ring->next_to_use,
3780                                 tx_ring->next_to_clean,
3781                                 tx_ring->buffer_info[eop].time_stamp,
3782                                 eop,
3783                                 jiffies,
3784                                 eop_desc->upper.fields.status);
3785                         netif_stop_queue(netdev);
3786                 }
3787         }
3788         return cleaned;
3789 }
3790
3791 /**
3792  * e1000_rx_checksum - Receive Checksum Offload for 82543
3793  * @adapter:     board private structure
3794  * @status_err:  receive descriptor status and error fields
3795  * @csum:        receive descriptor csum field
3796  * @sk_buff:     socket buffer with received data
3797  **/
3798
3799 static void
3800 e1000_rx_checksum(struct e1000_adapter *adapter,
3801                   uint32_t status_err, uint32_t csum,
3802                   struct sk_buff *skb)
3803 {
3804         uint16_t status = (uint16_t)status_err;
3805         uint8_t errors = (uint8_t)(status_err >> 24);
3806         skb->ip_summed = CHECKSUM_NONE;
3807
3808         /* 82543 or newer only */
3809         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3810         /* Ignore Checksum bit is set */
3811         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3812         /* TCP/UDP checksum error bit is set */
3813         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3814                 /* let the stack verify checksum errors */
3815                 adapter->hw_csum_err++;
3816                 return;
3817         }
3818         /* TCP/UDP Checksum has not been calculated */
3819         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3820                 if (!(status & E1000_RXD_STAT_TCPCS))
3821                         return;
3822         } else {
3823                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3824                         return;
3825         }
3826         /* It must be a TCP or UDP packet with a valid checksum */
3827         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3828                 /* TCP checksum is good */
3829                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3830         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3831                 /* IP fragment with UDP payload */
3832                 /* Hardware complements the payload checksum, so we undo it
3833                  * and then put the value in host order for further stack use.
3834                  */
3835                 csum = ntohl(csum ^ 0xFFFF);
3836                 skb->csum = csum;
3837                 skb->ip_summed = CHECKSUM_COMPLETE;
3838         }
3839         adapter->hw_csum_good++;
3840 }
3841
3842 /**
3843  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3844  * @adapter: board private structure
3845  **/
3846
3847 static boolean_t
3848 #ifdef CONFIG_E1000_NAPI
3849 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3850                    struct e1000_rx_ring *rx_ring,
3851                    int *work_done, int work_to_do)
3852 #else
3853 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3854                    struct e1000_rx_ring *rx_ring)
3855 #endif
3856 {
3857         struct net_device *netdev = adapter->netdev;
3858         struct pci_dev *pdev = adapter->pdev;
3859         struct e1000_rx_desc *rx_desc, *next_rxd;
3860         struct e1000_buffer *buffer_info, *next_buffer;
3861         unsigned long flags;
3862         uint32_t length;
3863         uint8_t last_byte;
3864         unsigned int i;
3865         int cleaned_count = 0;
3866         boolean_t cleaned = FALSE;
3867
3868         i = rx_ring->next_to_clean;
3869         rx_desc = E1000_RX_DESC(*rx_ring, i);
3870         buffer_info = &rx_ring->buffer_info[i];
3871
3872         while (rx_desc->status & E1000_RXD_STAT_DD) {
3873                 struct sk_buff *skb;
3874                 u8 status;
3875
3876 #ifdef CONFIG_E1000_NAPI
3877                 if (*work_done >= work_to_do)
3878                         break;
3879                 (*work_done)++;
3880 #endif
3881                 status = rx_desc->status;
3882                 skb = buffer_info->skb;
3883                 buffer_info->skb = NULL;
3884
3885                 prefetch(skb->data - NET_IP_ALIGN);
3886
3887                 if (++i == rx_ring->count) i = 0;
3888                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3889                 prefetch(next_rxd);
3890
3891                 next_buffer = &rx_ring->buffer_info[i];
3892
3893                 cleaned = TRUE;
3894                 cleaned_count++;
3895                 pci_unmap_single(pdev,
3896                                  buffer_info->dma,
3897                                  buffer_info->length,
3898                                  PCI_DMA_FROMDEVICE);
3899
3900                 length = le16_to_cpu(rx_desc->length);
3901
3902                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3903                         /* All receives must fit into a single buffer */
3904                         E1000_DBG("%s: Receive packet consumed multiple"
3905                                   " buffers\n", netdev->name);
3906                         /* recycle */
3907                         buffer_info->skb = skb;
3908                         goto next_desc;
3909                 }
3910
3911                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3912                         last_byte = *(skb->data + length - 1);
3913                         if (TBI_ACCEPT(&adapter->hw, status,
3914                                       rx_desc->errors, length, last_byte)) {
3915                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3916                                 e1000_tbi_adjust_stats(&adapter->hw,
3917                                                        &adapter->stats,
3918                                                        length, skb->data);
3919                                 spin_unlock_irqrestore(&adapter->stats_lock,
3920                                                        flags);
3921                                 length--;
3922                         } else {
3923                                 /* recycle */
3924                                 buffer_info->skb = skb;
3925                                 goto next_desc;
3926                         }
3927                 }
3928
3929                 /* adjust length to remove Ethernet CRC, this must be
3930                  * done after the TBI_ACCEPT workaround above */
3931                 length -= 4;
3932
3933                 /* code added for copybreak, this should improve
3934                  * performance for small packets with large amounts
3935                  * of reassembly being done in the stack */
3936 #define E1000_CB_LENGTH 256
3937                 if (length < E1000_CB_LENGTH) {
3938                         struct sk_buff *new_skb =
3939                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3940                         if (new_skb) {
3941                                 skb_reserve(new_skb, NET_IP_ALIGN);
3942                                 memcpy(new_skb->data - NET_IP_ALIGN,
3943                                        skb->data - NET_IP_ALIGN,
3944                                        length + NET_IP_ALIGN);
3945                                 /* save the skb in buffer_info as good */
3946                                 buffer_info->skb = skb;
3947                                 skb = new_skb;
3948                         }
3949                         /* else just continue with the old one */
3950                 }
3951                 /* end copybreak code */
3952                 skb_put(skb, length);
3953
3954                 /* Receive Checksum Offload */
3955                 e1000_rx_checksum(adapter,
3956                                   (uint32_t)(status) |
3957                                   ((uint32_t)(rx_desc->errors) << 24),
3958                                   le16_to_cpu(rx_desc->csum), skb);
3959
3960                 skb->protocol = eth_type_trans(skb, netdev);
3961 #ifdef CONFIG_E1000_NAPI
3962                 if (unlikely(adapter->vlgrp &&
3963                             (status & E1000_RXD_STAT_VP))) {
3964                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3965                                                  le16_to_cpu(rx_desc->special) &
3966                                                  E1000_RXD_SPC_VLAN_MASK);
3967                 } else {
3968                         netif_receive_skb(skb);
3969                 }
3970 #else /* CONFIG_E1000_NAPI */
3971                 if (unlikely(adapter->vlgrp &&
3972                             (status & E1000_RXD_STAT_VP))) {
3973                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3974                                         le16_to_cpu(rx_desc->special) &
3975                                         E1000_RXD_SPC_VLAN_MASK);
3976                 } else {
3977                         netif_rx(skb);
3978                 }
3979 #endif /* CONFIG_E1000_NAPI */
3980                 netdev->last_rx = jiffies;
3981
3982 next_desc:
3983                 rx_desc->status = 0;
3984
3985                 /* return some buffers to hardware, one at a time is too slow */
3986                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3987                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3988                         cleaned_count = 0;
3989                 }
3990
3991                 /* use prefetched values */
3992                 rx_desc = next_rxd;
3993                 buffer_info = next_buffer;
3994         }
3995         rx_ring->next_to_clean = i;
3996
3997         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3998         if (cleaned_count)
3999                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4000
4001         return cleaned;
4002 }
4003
4004 /**
4005  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4006  * @adapter: board private structure
4007  **/
4008
4009 static boolean_t
4010 #ifdef CONFIG_E1000_NAPI
4011 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4012                       struct e1000_rx_ring *rx_ring,
4013                       int *work_done, int work_to_do)
4014 #else
4015 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4016                       struct e1000_rx_ring *rx_ring)
4017 #endif
4018 {
4019         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4020         struct net_device *netdev = adapter->netdev;
4021         struct pci_dev *pdev = adapter->pdev;
4022         struct e1000_buffer *buffer_info, *next_buffer;
4023         struct e1000_ps_page *ps_page;
4024         struct e1000_ps_page_dma *ps_page_dma;
4025         struct sk_buff *skb;
4026         unsigned int i, j;
4027         uint32_t length, staterr;
4028         int cleaned_count = 0;
4029         boolean_t cleaned = FALSE;
4030
4031         i = rx_ring->next_to_clean;
4032         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4033         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4034         buffer_info = &rx_ring->buffer_info[i];
4035
4036         while (staterr & E1000_RXD_STAT_DD) {
4037                 ps_page = &rx_ring->ps_page[i];
4038                 ps_page_dma = &rx_ring->ps_page_dma[i];
4039 #ifdef CONFIG_E1000_NAPI
4040                 if (unlikely(*work_done >= work_to_do))
4041                         break;
4042                 (*work_done)++;
4043 #endif
4044                 skb = buffer_info->skb;
4045
4046                 /* in the packet split case this is header only */
4047                 prefetch(skb->data - NET_IP_ALIGN);
4048
4049                 if (++i == rx_ring->count) i = 0;
4050                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4051                 prefetch(next_rxd);
4052
4053                 next_buffer = &rx_ring->buffer_info[i];
4054
4055                 cleaned = TRUE;
4056                 cleaned_count++;
4057                 pci_unmap_single(pdev, buffer_info->dma,
4058                                  buffer_info->length,
4059                                  PCI_DMA_FROMDEVICE);
4060
4061                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4062                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4063                                   " the full packet\n", netdev->name);
4064                         dev_kfree_skb_irq(skb);
4065                         goto next_desc;
4066                 }
4067
4068                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4069                         dev_kfree_skb_irq(skb);
4070                         goto next_desc;
4071                 }
4072
4073                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4074
4075                 if (unlikely(!length)) {
4076                         E1000_DBG("%s: Last part of the packet spanning"
4077                                   " multiple descriptors\n", netdev->name);
4078                         dev_kfree_skb_irq(skb);
4079                         goto next_desc;
4080                 }
4081
4082                 /* Good Receive */
4083                 skb_put(skb, length);
4084
4085                 {
4086                 /* this looks ugly, but it seems compiler issues make it
4087                    more efficient than reusing j */
4088                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4089
4090                 /* page alloc/put takes too long and effects small packet
4091                  * throughput, so unsplit small packets and save the alloc/put*/
4092                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
4093                         u8 *vaddr;
4094                         /* there is no documentation about how to call
4095                          * kmap_atomic, so we can't hold the mapping
4096                          * very long */
4097                         pci_dma_sync_single_for_cpu(pdev,
4098                                 ps_page_dma->ps_page_dma[0],
4099                                 PAGE_SIZE,
4100                                 PCI_DMA_FROMDEVICE);
4101                         vaddr = kmap_atomic(ps_page->ps_page[0],
4102                                             KM_SKB_DATA_SOFTIRQ);
4103                         memcpy(skb->tail, vaddr, l1);
4104                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4105                         pci_dma_sync_single_for_device(pdev,
4106                                 ps_page_dma->ps_page_dma[0],
4107                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4108                         /* remove the CRC */
4109                         l1 -= 4;
4110                         skb_put(skb, l1);
4111                         goto copydone;
4112                 } /* if */
4113                 }
4114
4115                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4116                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4117                                 break;
4118                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4119                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4120                         ps_page_dma->ps_page_dma[j] = 0;
4121                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4122                                            length);
4123                         ps_page->ps_page[j] = NULL;
4124                         skb->len += length;
4125                         skb->data_len += length;
4126                         skb->truesize += length;
4127                 }
4128
4129                 /* strip the ethernet crc, problem is we're using pages now so
4130                  * this whole operation can get a little cpu intensive */
4131                 pskb_trim(skb, skb->len - 4);
4132
4133 copydone:
4134                 e1000_rx_checksum(adapter, staterr,
4135                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4136                 skb->protocol = eth_type_trans(skb, netdev);
4137
4138                 if (likely(rx_desc->wb.upper.header_status &
4139                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4140                         adapter->rx_hdr_split++;
4141 #ifdef CONFIG_E1000_NAPI
4142                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4143                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4144                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4145                                 E1000_RXD_SPC_VLAN_MASK);
4146                 } else {
4147                         netif_receive_skb(skb);
4148                 }
4149 #else /* CONFIG_E1000_NAPI */
4150                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4151                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4152                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4153                                 E1000_RXD_SPC_VLAN_MASK);
4154                 } else {
4155                         netif_rx(skb);
4156                 }
4157 #endif /* CONFIG_E1000_NAPI */
4158                 netdev->last_rx = jiffies;
4159
4160 next_desc:
4161                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4162                 buffer_info->skb = NULL;
4163
4164                 /* return some buffers to hardware, one at a time is too slow */
4165                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4166                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4167                         cleaned_count = 0;
4168                 }
4169
4170                 /* use prefetched values */
4171                 rx_desc = next_rxd;
4172                 buffer_info = next_buffer;
4173
4174                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4175         }
4176         rx_ring->next_to_clean = i;
4177
4178         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4179         if (cleaned_count)
4180                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4181
4182         return cleaned;
4183 }
4184
4185 /**
4186  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4187  * @adapter: address of board private structure
4188  **/
4189
4190 static void
4191 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4192                        struct e1000_rx_ring *rx_ring,
4193                        int cleaned_count)
4194 {
4195         struct net_device *netdev = adapter->netdev;
4196         struct pci_dev *pdev = adapter->pdev;
4197         struct e1000_rx_desc *rx_desc;
4198         struct e1000_buffer *buffer_info;
4199         struct sk_buff *skb;
4200         unsigned int i;
4201         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4202
4203         i = rx_ring->next_to_use;
4204         buffer_info = &rx_ring->buffer_info[i];
4205
4206         while (cleaned_count--) {
4207                 skb = buffer_info->skb;
4208                 if (skb) {
4209                         skb_trim(skb, 0);
4210                         goto map_skb;
4211                 }
4212
4213                 skb = netdev_alloc_skb(netdev, bufsz);
4214                 if (unlikely(!skb)) {
4215                         /* Better luck next round */
4216                         adapter->alloc_rx_buff_failed++;
4217                         break;
4218                 }
4219
4220                 /* Fix for errata 23, can't cross 64kB boundary */
4221                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4222                         struct sk_buff *oldskb = skb;
4223                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4224                                              "at %p\n", bufsz, skb->data);
4225                         /* Try again, without freeing the previous */
4226                         skb = netdev_alloc_skb(netdev, bufsz);
4227                         /* Failed allocation, critical failure */
4228                         if (!skb) {
4229                                 dev_kfree_skb(oldskb);
4230                                 break;
4231                         }
4232
4233                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4234                                 /* give up */
4235                                 dev_kfree_skb(skb);
4236                                 dev_kfree_skb(oldskb);
4237                                 break; /* while !buffer_info->skb */
4238                         }
4239
4240                         /* Use new allocation */
4241                         dev_kfree_skb(oldskb);
4242                 }
4243                 /* Make buffer alignment 2 beyond a 16 byte boundary
4244                  * this will result in a 16 byte aligned IP header after
4245                  * the 14 byte MAC header is removed
4246                  */
4247                 skb_reserve(skb, NET_IP_ALIGN);
4248
4249                 buffer_info->skb = skb;
4250                 buffer_info->length = adapter->rx_buffer_len;
4251 map_skb:
4252                 buffer_info->dma = pci_map_single(pdev,
4253                                                   skb->data,
4254                                                   adapter->rx_buffer_len,
4255                                                   PCI_DMA_FROMDEVICE);
4256
4257                 /* Fix for errata 23, can't cross 64kB boundary */
4258                 if (!e1000_check_64k_bound(adapter,
4259                                         (void *)(unsigned long)buffer_info->dma,
4260                                         adapter->rx_buffer_len)) {
4261                         DPRINTK(RX_ERR, ERR,
4262                                 "dma align check failed: %u bytes at %p\n",
4263                                 adapter->rx_buffer_len,
4264                                 (void *)(unsigned long)buffer_info->dma);
4265                         dev_kfree_skb(skb);
4266                         buffer_info->skb = NULL;
4267
4268                         pci_unmap_single(pdev, buffer_info->dma,
4269                                          adapter->rx_buffer_len,
4270                                          PCI_DMA_FROMDEVICE);
4271
4272                         break; /* while !buffer_info->skb */
4273                 }
4274                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4275                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4276
4277                 if (unlikely(++i == rx_ring->count))
4278                         i = 0;
4279                 buffer_info = &rx_ring->buffer_info[i];
4280         }
4281
4282         if (likely(rx_ring->next_to_use != i)) {
4283                 rx_ring->next_to_use = i;
4284                 if (unlikely(i-- == 0))
4285                         i = (rx_ring->count - 1);
4286
4287                 /* Force memory writes to complete before letting h/w
4288                  * know there are new descriptors to fetch.  (Only
4289                  * applicable for weak-ordered memory model archs,
4290                  * such as IA-64). */
4291                 wmb();
4292                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4293         }
4294 }
4295
4296 /**
4297  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4298  * @adapter: address of board private structure
4299  **/
4300
4301 static void
4302 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4303                           struct e1000_rx_ring *rx_ring,
4304                           int cleaned_count)
4305 {
4306         struct net_device *netdev = adapter->netdev;
4307         struct pci_dev *pdev = adapter->pdev;
4308         union e1000_rx_desc_packet_split *rx_desc;
4309         struct e1000_buffer *buffer_info;
4310         struct e1000_ps_page *ps_page;
4311         struct e1000_ps_page_dma *ps_page_dma;
4312         struct sk_buff *skb;
4313         unsigned int i, j;
4314
4315         i = rx_ring->next_to_use;
4316         buffer_info = &rx_ring->buffer_info[i];
4317         ps_page = &rx_ring->ps_page[i];
4318         ps_page_dma = &rx_ring->ps_page_dma[i];
4319
4320         while (cleaned_count--) {
4321                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4322
4323                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4324                         if (j < adapter->rx_ps_pages) {
4325                                 if (likely(!ps_page->ps_page[j])) {
4326                                         ps_page->ps_page[j] =
4327                                                 alloc_page(GFP_ATOMIC);
4328                                         if (unlikely(!ps_page->ps_page[j])) {
4329                                                 adapter->alloc_rx_buff_failed++;
4330                                                 goto no_buffers;
4331                                         }
4332                                         ps_page_dma->ps_page_dma[j] =
4333                                                 pci_map_page(pdev,
4334                                                             ps_page->ps_page[j],
4335                                                             0, PAGE_SIZE,
4336                                                             PCI_DMA_FROMDEVICE);
4337                                 }
4338                                 /* Refresh the desc even if buffer_addrs didn't
4339                                  * change because each write-back erases
4340                                  * this info.
4341                                  */
4342                                 rx_desc->read.buffer_addr[j+1] =
4343                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4344                         } else
4345                                 rx_desc->read.buffer_addr[j+1] = ~0;
4346                 }
4347
4348                 skb = netdev_alloc_skb(netdev,
4349                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4350
4351                 if (unlikely(!skb)) {
4352                         adapter->alloc_rx_buff_failed++;
4353                         break;
4354                 }
4355
4356                 /* Make buffer alignment 2 beyond a 16 byte boundary
4357                  * this will result in a 16 byte aligned IP header after
4358                  * the 14 byte MAC header is removed
4359                  */
4360                 skb_reserve(skb, NET_IP_ALIGN);
4361
4362                 buffer_info->skb = skb;
4363                 buffer_info->length = adapter->rx_ps_bsize0;
4364                 buffer_info->dma = pci_map_single(pdev, skb->data,
4365                                                   adapter->rx_ps_bsize0,
4366                                                   PCI_DMA_FROMDEVICE);
4367
4368                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4369
4370                 if (unlikely(++i == rx_ring->count)) i = 0;
4371                 buffer_info = &rx_ring->buffer_info[i];
4372                 ps_page = &rx_ring->ps_page[i];
4373                 ps_page_dma = &rx_ring->ps_page_dma[i];
4374         }
4375
4376 no_buffers:
4377         if (likely(rx_ring->next_to_use != i)) {
4378                 rx_ring->next_to_use = i;
4379                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4380
4381                 /* Force memory writes to complete before letting h/w
4382                  * know there are new descriptors to fetch.  (Only
4383                  * applicable for weak-ordered memory model archs,
4384                  * such as IA-64). */
4385                 wmb();
4386                 /* Hardware increments by 16 bytes, but packet split
4387                  * descriptors are 32 bytes...so we increment tail
4388                  * twice as much.
4389                  */
4390                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4391         }
4392 }
4393
4394 /**
4395  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4396  * @adapter:
4397  **/
4398
4399 static void
4400 e1000_smartspeed(struct e1000_adapter *adapter)
4401 {
4402         uint16_t phy_status;
4403         uint16_t phy_ctrl;
4404
4405         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4406            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4407                 return;
4408
4409         if (adapter->smartspeed == 0) {
4410                 /* If Master/Slave config fault is asserted twice,
4411                  * we assume back-to-back */
4412                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4413                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4414                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4415                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4416                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4417                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4418                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4419                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4420                                             phy_ctrl);
4421                         adapter->smartspeed++;
4422                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4423                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4424                                                &phy_ctrl)) {
4425                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4426                                              MII_CR_RESTART_AUTO_NEG);
4427                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4428                                                     phy_ctrl);
4429                         }
4430                 }
4431                 return;
4432         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4433                 /* If still no link, perhaps using 2/3 pair cable */
4434                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4435                 phy_ctrl |= CR_1000T_MS_ENABLE;
4436                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4437                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4438                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4439                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4440                                      MII_CR_RESTART_AUTO_NEG);
4441                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4442                 }
4443         }
4444         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4445         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4446                 adapter->smartspeed = 0;
4447 }
4448
4449 /**
4450  * e1000_ioctl -
4451  * @netdev:
4452  * @ifreq:
4453  * @cmd:
4454  **/
4455
4456 static int
4457 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4458 {
4459         switch (cmd) {
4460         case SIOCGMIIPHY:
4461         case SIOCGMIIREG:
4462         case SIOCSMIIREG:
4463                 return e1000_mii_ioctl(netdev, ifr, cmd);
4464         default:
4465                 return -EOPNOTSUPP;
4466         }
4467 }
4468
4469 /**
4470  * e1000_mii_ioctl -
4471  * @netdev:
4472  * @ifreq:
4473  * @cmd:
4474  **/
4475
4476 static int
4477 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4478 {
4479         struct e1000_adapter *adapter = netdev_priv(netdev);
4480         struct mii_ioctl_data *data = if_mii(ifr);
4481         int retval;
4482         uint16_t mii_reg;
4483         uint16_t spddplx;
4484         unsigned long flags;
4485
4486         if (adapter->hw.media_type != e1000_media_type_copper)
4487                 return -EOPNOTSUPP;
4488
4489         switch (cmd) {
4490         case SIOCGMIIPHY:
4491                 data->phy_id = adapter->hw.phy_addr;
4492                 break;
4493         case SIOCGMIIREG:
4494                 if (!capable(CAP_NET_ADMIN))
4495                         return -EPERM;
4496                 spin_lock_irqsave(&adapter->stats_lock, flags);
4497                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4498                                    &data->val_out)) {
4499                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4500                         return -EIO;
4501                 }
4502                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4503                 break;
4504         case SIOCSMIIREG:
4505                 if (!capable(CAP_NET_ADMIN))
4506                         return -EPERM;
4507                 if (data->reg_num & ~(0x1F))
4508                         return -EFAULT;
4509                 mii_reg = data->val_in;
4510                 spin_lock_irqsave(&adapter->stats_lock, flags);
4511                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4512                                         mii_reg)) {
4513                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4514                         return -EIO;
4515                 }
4516                 if (adapter->hw.media_type == e1000_media_type_copper) {
4517                         switch (data->reg_num) {
4518                         case PHY_CTRL:
4519                                 if (mii_reg & MII_CR_POWER_DOWN)
4520                                         break;
4521                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4522                                         adapter->hw.autoneg = 1;
4523                                         adapter->hw.autoneg_advertised = 0x2F;
4524                                 } else {
4525                                         if (mii_reg & 0x40)
4526                                                 spddplx = SPEED_1000;
4527                                         else if (mii_reg & 0x2000)
4528                                                 spddplx = SPEED_100;
4529                                         else
4530                                                 spddplx = SPEED_10;
4531                                         spddplx += (mii_reg & 0x100)
4532                                                    ? DUPLEX_FULL :
4533                                                    DUPLEX_HALF;
4534                                         retval = e1000_set_spd_dplx(adapter,
4535                                                                     spddplx);
4536                                         if (retval) {
4537                                                 spin_unlock_irqrestore(
4538                                                         &adapter->stats_lock,
4539                                                         flags);
4540                                                 return retval;
4541                                         }
4542                                 }
4543                                 if (netif_running(adapter->netdev))
4544                                         e1000_reinit_locked(adapter);
4545                                 else
4546                                         e1000_reset(adapter);
4547                                 break;
4548                         case M88E1000_PHY_SPEC_CTRL:
4549                         case M88E1000_EXT_PHY_SPEC_CTRL:
4550                                 if (e1000_phy_reset(&adapter->hw)) {
4551                                         spin_unlock_irqrestore(
4552                                                 &adapter->stats_lock, flags);
4553                                         return -EIO;
4554                                 }
4555                                 break;
4556                         }
4557                 } else {
4558                         switch (data->reg_num) {
4559                         case PHY_CTRL:
4560                                 if (mii_reg & MII_CR_POWER_DOWN)
4561                                         break;
4562                                 if (netif_running(adapter->netdev))
4563                                         e1000_reinit_locked(adapter);
4564                                 else
4565                                         e1000_reset(adapter);
4566                                 break;
4567                         }
4568                 }
4569                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4570                 break;
4571         default:
4572                 return -EOPNOTSUPP;
4573         }
4574         return E1000_SUCCESS;
4575 }
4576
4577 void
4578 e1000_pci_set_mwi(struct e1000_hw *hw)
4579 {
4580         struct e1000_adapter *adapter = hw->back;
4581         int ret_val = pci_set_mwi(adapter->pdev);
4582
4583         if (ret_val)
4584                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4585 }
4586
4587 void
4588 e1000_pci_clear_mwi(struct e1000_hw *hw)
4589 {
4590         struct e1000_adapter *adapter = hw->back;
4591
4592         pci_clear_mwi(adapter->pdev);
4593 }
4594
4595 void
4596 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4597 {
4598         struct e1000_adapter *adapter = hw->back;
4599
4600         pci_read_config_word(adapter->pdev, reg, value);
4601 }
4602
4603 void
4604 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4605 {
4606         struct e1000_adapter *adapter = hw->back;
4607
4608         pci_write_config_word(adapter->pdev, reg, *value);
4609 }
4610
4611 int32_t
4612 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4613 {
4614     struct e1000_adapter *adapter = hw->back;
4615     uint16_t cap_offset;
4616
4617     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4618     if (!cap_offset)
4619         return -E1000_ERR_CONFIG;
4620
4621     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4622
4623     return E1000_SUCCESS;
4624 }
4625
4626 void
4627 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4628 {
4629         outl(value, port);
4630 }
4631
4632 static void
4633 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4634 {
4635         struct e1000_adapter *adapter = netdev_priv(netdev);
4636         uint32_t ctrl, rctl;
4637
4638         e1000_irq_disable(adapter);
4639         adapter->vlgrp = grp;
4640
4641         if (grp) {
4642                 /* enable VLAN tag insert/strip */
4643                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4644                 ctrl |= E1000_CTRL_VME;
4645                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4646
4647                 if (adapter->hw.mac_type != e1000_ich8lan) {
4648                         /* enable VLAN receive filtering */
4649                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4650                         rctl |= E1000_RCTL_VFE;
4651                         rctl &= ~E1000_RCTL_CFIEN;
4652                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4653                         e1000_update_mng_vlan(adapter);
4654                 }
4655         } else {
4656                 /* disable VLAN tag insert/strip */
4657                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4658                 ctrl &= ~E1000_CTRL_VME;
4659                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4660
4661                 if (adapter->hw.mac_type != e1000_ich8lan) {
4662                         /* disable VLAN filtering */
4663                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4664                         rctl &= ~E1000_RCTL_VFE;
4665                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4666                         if (adapter->mng_vlan_id !=
4667                             (uint16_t)E1000_MNG_VLAN_NONE) {
4668                                 e1000_vlan_rx_kill_vid(netdev,
4669                                                        adapter->mng_vlan_id);
4670                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4671                         }
4672                 }
4673         }
4674
4675         e1000_irq_enable(adapter);
4676 }
4677
4678 static void
4679 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4680 {
4681         struct e1000_adapter *adapter = netdev_priv(netdev);
4682         uint32_t vfta, index;
4683
4684         if ((adapter->hw.mng_cookie.status &
4685              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4686             (vid == adapter->mng_vlan_id))
4687                 return;
4688         /* add VID to filter table */
4689         index = (vid >> 5) & 0x7F;
4690         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4691         vfta |= (1 << (vid & 0x1F));
4692         e1000_write_vfta(&adapter->hw, index, vfta);
4693 }
4694
4695 static void
4696 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4697 {
4698         struct e1000_adapter *adapter = netdev_priv(netdev);
4699         uint32_t vfta, index;
4700
4701         e1000_irq_disable(adapter);
4702
4703         if (adapter->vlgrp)
4704                 adapter->vlgrp->vlan_devices[vid] = NULL;
4705
4706         e1000_irq_enable(adapter);
4707
4708         if ((adapter->hw.mng_cookie.status &
4709              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4710             (vid == adapter->mng_vlan_id)) {
4711                 /* release control to f/w */
4712                 e1000_release_hw_control(adapter);
4713                 return;
4714         }
4715
4716         /* remove VID from filter table */
4717         index = (vid >> 5) & 0x7F;
4718         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4719         vfta &= ~(1 << (vid & 0x1F));
4720         e1000_write_vfta(&adapter->hw, index, vfta);
4721 }
4722
4723 static void
4724 e1000_restore_vlan(struct e1000_adapter *adapter)
4725 {
4726         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4727
4728         if (adapter->vlgrp) {
4729                 uint16_t vid;
4730                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4731                         if (!adapter->vlgrp->vlan_devices[vid])
4732                                 continue;
4733                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4734                 }
4735         }
4736 }
4737
4738 int
4739 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4740 {
4741         adapter->hw.autoneg = 0;
4742
4743         /* Fiber NICs only allow 1000 gbps Full duplex */
4744         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4745                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4746                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4747                 return -EINVAL;
4748         }
4749
4750         switch (spddplx) {
4751         case SPEED_10 + DUPLEX_HALF:
4752                 adapter->hw.forced_speed_duplex = e1000_10_half;
4753                 break;
4754         case SPEED_10 + DUPLEX_FULL:
4755                 adapter->hw.forced_speed_duplex = e1000_10_full;
4756                 break;
4757         case SPEED_100 + DUPLEX_HALF:
4758                 adapter->hw.forced_speed_duplex = e1000_100_half;
4759                 break;
4760         case SPEED_100 + DUPLEX_FULL:
4761                 adapter->hw.forced_speed_duplex = e1000_100_full;
4762                 break;
4763         case SPEED_1000 + DUPLEX_FULL:
4764                 adapter->hw.autoneg = 1;
4765                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4766                 break;
4767         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4768         default:
4769                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4770                 return -EINVAL;
4771         }
4772         return 0;
4773 }
4774
4775 #ifdef CONFIG_PM
4776 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4777  * bus we're on (PCI(X) vs. PCI-E)
4778  */
4779 #define PCIE_CONFIG_SPACE_LEN 256
4780 #define PCI_CONFIG_SPACE_LEN 64
4781 static int
4782 e1000_pci_save_state(struct e1000_adapter *adapter)
4783 {
4784         struct pci_dev *dev = adapter->pdev;
4785         int size;
4786         int i;
4787
4788         if (adapter->hw.mac_type >= e1000_82571)
4789                 size = PCIE_CONFIG_SPACE_LEN;
4790         else
4791                 size = PCI_CONFIG_SPACE_LEN;
4792
4793         WARN_ON(adapter->config_space != NULL);
4794
4795         adapter->config_space = kmalloc(size, GFP_KERNEL);
4796         if (!adapter->config_space) {
4797                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4798                 return -ENOMEM;
4799         }
4800         for (i = 0; i < (size / 4); i++)
4801                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4802         return 0;
4803 }
4804
4805 static void
4806 e1000_pci_restore_state(struct e1000_adapter *adapter)
4807 {
4808         struct pci_dev *dev = adapter->pdev;
4809         int size;
4810         int i;
4811
4812         if (adapter->config_space == NULL)
4813                 return;
4814
4815         if (adapter->hw.mac_type >= e1000_82571)
4816                 size = PCIE_CONFIG_SPACE_LEN;
4817         else
4818                 size = PCI_CONFIG_SPACE_LEN;
4819         for (i = 0; i < (size / 4); i++)
4820                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4821         kfree(adapter->config_space);
4822         adapter->config_space = NULL;
4823         return;
4824 }
4825 #endif /* CONFIG_PM */
4826
4827 static int
4828 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4829 {
4830         struct net_device *netdev = pci_get_drvdata(pdev);
4831         struct e1000_adapter *adapter = netdev_priv(netdev);
4832         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4833         uint32_t wufc = adapter->wol;
4834 #ifdef CONFIG_PM
4835         int retval = 0;
4836 #endif
4837
4838         netif_device_detach(netdev);
4839
4840         if (netif_running(netdev)) {
4841                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4842                 e1000_down(adapter);
4843         }
4844
4845 #ifdef CONFIG_PM
4846         /* Implement our own version of pci_save_state(pdev) because pci-
4847          * express adapters have 256-byte config spaces. */
4848         retval = e1000_pci_save_state(adapter);
4849         if (retval)
4850                 return retval;
4851 #endif
4852
4853         status = E1000_READ_REG(&adapter->hw, STATUS);
4854         if (status & E1000_STATUS_LU)
4855                 wufc &= ~E1000_WUFC_LNKC;
4856
4857         if (wufc) {
4858                 e1000_setup_rctl(adapter);
4859                 e1000_set_multi(netdev);
4860
4861                 /* turn on all-multi mode if wake on multicast is enabled */
4862                 if (wufc & E1000_WUFC_MC) {
4863                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4864                         rctl |= E1000_RCTL_MPE;
4865                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4866                 }
4867
4868                 if (adapter->hw.mac_type >= e1000_82540) {
4869                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4870                         /* advertise wake from D3Cold */
4871                         #define E1000_CTRL_ADVD3WUC 0x00100000
4872                         /* phy power management enable */
4873                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4874                         ctrl |= E1000_CTRL_ADVD3WUC |
4875                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4876                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4877                 }
4878
4879                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4880                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4881                         /* keep the laser running in D3 */
4882                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4883                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4884                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4885                 }
4886
4887                 /* Allow time for pending master requests to run */
4888                 e1000_disable_pciex_master(&adapter->hw);
4889
4890                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4891                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4892                 pci_enable_wake(pdev, PCI_D3hot, 1);
4893                 pci_enable_wake(pdev, PCI_D3cold, 1);
4894         } else {
4895                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4896                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4897                 pci_enable_wake(pdev, PCI_D3hot, 0);
4898                 pci_enable_wake(pdev, PCI_D3cold, 0);
4899         }
4900
4901         if (adapter->hw.mac_type >= e1000_82540 &&
4902             adapter->hw.mac_type < e1000_82571 &&
4903             adapter->hw.media_type == e1000_media_type_copper) {
4904                 manc = E1000_READ_REG(&adapter->hw, MANC);
4905                 if (manc & E1000_MANC_SMBUS_EN) {
4906                         manc |= E1000_MANC_ARP_EN;
4907                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4908                         pci_enable_wake(pdev, PCI_D3hot, 1);
4909                         pci_enable_wake(pdev, PCI_D3cold, 1);
4910                 }
4911         }
4912
4913         if (adapter->hw.phy_type == e1000_phy_igp_3)
4914                 e1000_phy_powerdown_workaround(&adapter->hw);
4915
4916         if (netif_running(netdev))
4917                 e1000_free_irq(adapter);
4918
4919         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4920          * would have already happened in close and is redundant. */
4921         e1000_release_hw_control(adapter);
4922
4923         pci_disable_device(pdev);
4924
4925         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4926
4927         return 0;
4928 }
4929
4930 #ifdef CONFIG_PM
4931 static int
4932 e1000_resume(struct pci_dev *pdev)
4933 {
4934         struct net_device *netdev = pci_get_drvdata(pdev);
4935         struct e1000_adapter *adapter = netdev_priv(netdev);
4936         uint32_t manc, err;
4937
4938         pci_set_power_state(pdev, PCI_D0);
4939         e1000_pci_restore_state(adapter);
4940         if ((err = pci_enable_device(pdev))) {
4941                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4942                 return err;
4943         }
4944         pci_set_master(pdev);
4945
4946         pci_enable_wake(pdev, PCI_D3hot, 0);
4947         pci_enable_wake(pdev, PCI_D3cold, 0);
4948
4949         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
4950                 return err;
4951
4952         e1000_power_up_phy(adapter);
4953         e1000_reset(adapter);
4954         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4955
4956         if (netif_running(netdev))
4957                 e1000_up(adapter);
4958
4959         netif_device_attach(netdev);
4960
4961         if (adapter->hw.mac_type >= e1000_82540 &&
4962             adapter->hw.mac_type < e1000_82571 &&
4963             adapter->hw.media_type == e1000_media_type_copper) {
4964                 manc = E1000_READ_REG(&adapter->hw, MANC);
4965                 manc &= ~(E1000_MANC_ARP_EN);
4966                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4967         }
4968
4969         /* If the controller is 82573 and f/w is AMT, do not set
4970          * DRV_LOAD until the interface is up.  For all other cases,
4971          * let the f/w know that the h/w is now under the control
4972          * of the driver. */
4973         if (adapter->hw.mac_type != e1000_82573 ||
4974             !e1000_check_mng_mode(&adapter->hw))
4975                 e1000_get_hw_control(adapter);
4976
4977         return 0;
4978 }
4979 #endif
4980
4981 static void e1000_shutdown(struct pci_dev *pdev)
4982 {
4983         e1000_suspend(pdev, PMSG_SUSPEND);
4984 }
4985
4986 #ifdef CONFIG_NET_POLL_CONTROLLER
4987 /*
4988  * Polling 'interrupt' - used by things like netconsole to send skbs
4989  * without having to re-enable interrupts. It's not called while
4990  * the interrupt routine is executing.
4991  */
4992 static void
4993 e1000_netpoll(struct net_device *netdev)
4994 {
4995         struct e1000_adapter *adapter = netdev_priv(netdev);
4996
4997         disable_irq(adapter->pdev->irq);
4998         e1000_intr(adapter->pdev->irq, netdev);
4999         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5000 #ifndef CONFIG_E1000_NAPI
5001         adapter->clean_rx(adapter, adapter->rx_ring);
5002 #endif
5003         enable_irq(adapter->pdev->irq);
5004 }
5005 #endif
5006
5007 /**
5008  * e1000_io_error_detected - called when PCI error is detected
5009  * @pdev: Pointer to PCI device
5010  * @state: The current pci conneection state
5011  *
5012  * This function is called after a PCI bus error affecting
5013  * this device has been detected.
5014  */
5015 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5016 {
5017         struct net_device *netdev = pci_get_drvdata(pdev);
5018         struct e1000_adapter *adapter = netdev->priv;
5019
5020         netif_device_detach(netdev);
5021
5022         if (netif_running(netdev))
5023                 e1000_down(adapter);
5024         pci_disable_device(pdev);
5025
5026         /* Request a slot slot reset. */
5027         return PCI_ERS_RESULT_NEED_RESET;
5028 }
5029
5030 /**
5031  * e1000_io_slot_reset - called after the pci bus has been reset.
5032  * @pdev: Pointer to PCI device
5033  *
5034  * Restart the card from scratch, as if from a cold-boot. Implementation
5035  * resembles the first-half of the e1000_resume routine.
5036  */
5037 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5038 {
5039         struct net_device *netdev = pci_get_drvdata(pdev);
5040         struct e1000_adapter *adapter = netdev->priv;
5041
5042         if (pci_enable_device(pdev)) {
5043                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5044                 return PCI_ERS_RESULT_DISCONNECT;
5045         }
5046         pci_set_master(pdev);
5047
5048         pci_enable_wake(pdev, PCI_D3hot, 0);
5049         pci_enable_wake(pdev, PCI_D3cold, 0);
5050
5051         e1000_reset(adapter);
5052         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5053
5054         return PCI_ERS_RESULT_RECOVERED;
5055 }
5056
5057 /**
5058  * e1000_io_resume - called when traffic can start flowing again.
5059  * @pdev: Pointer to PCI device
5060  *
5061  * This callback is called when the error recovery driver tells us that
5062  * its OK to resume normal operation. Implementation resembles the
5063  * second-half of the e1000_resume routine.
5064  */
5065 static void e1000_io_resume(struct pci_dev *pdev)
5066 {
5067         struct net_device *netdev = pci_get_drvdata(pdev);
5068         struct e1000_adapter *adapter = netdev->priv;
5069         uint32_t manc, swsm;
5070
5071         if (netif_running(netdev)) {
5072                 if (e1000_up(adapter)) {
5073                         printk("e1000: can't bring device back up after reset\n");
5074                         return;
5075                 }
5076         }
5077
5078         netif_device_attach(netdev);
5079
5080         if (adapter->hw.mac_type >= e1000_82540 &&
5081             adapter->hw.mac_type < e1000_82571 &&
5082             adapter->hw.media_type == e1000_media_type_copper) {
5083                 manc = E1000_READ_REG(&adapter->hw, MANC);
5084                 manc &= ~(E1000_MANC_ARP_EN);
5085                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
5086         }
5087
5088         switch (adapter->hw.mac_type) {
5089         case e1000_82573:
5090                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
5091                 E1000_WRITE_REG(&adapter->hw, SWSM,
5092                                 swsm | E1000_SWSM_DRV_LOAD);
5093                 break;
5094         default:
5095                 break;
5096         }
5097
5098         if (netif_running(netdev))
5099                 mod_timer(&adapter->watchdog_timer, jiffies);
5100 }
5101
5102 /* e1000_main.c */