2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
82 #include <linux/platform_device.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
98 #include "gianfar_mii.h"
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
108 #define RECEIVE(x) netif_rx(x)
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
120 static int gfar_set_mac_address(struct net_device *dev);
121 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
122 static irqreturn_t gfar_error(int irq, void *dev_id);
123 static irqreturn_t gfar_transmit(int irq, void *dev_id);
124 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
125 static void adjust_link(struct net_device *dev);
126 static void init_registers(struct net_device *dev);
127 static int init_phy(struct net_device *dev);
128 static int gfar_probe(struct platform_device *pdev);
129 static int gfar_remove(struct platform_device *pdev);
130 static void free_skb_resources(struct gfar_private *priv);
131 static void gfar_set_multi(struct net_device *dev);
132 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
133 #ifdef CONFIG_GFAR_NAPI
134 static int gfar_poll(struct net_device *dev, int *budget);
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device *dev);
139 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
140 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
141 static void gfar_vlan_rx_register(struct net_device *netdev,
142 struct vlan_group *grp);
143 void gfar_halt(struct net_device *dev);
144 void gfar_start(struct net_device *dev);
145 static void gfar_clear_exact_match(struct net_device *dev);
146 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
148 extern const struct ethtool_ops gfar_ethtool_ops;
150 MODULE_AUTHOR("Freescale Semiconductor, Inc");
151 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
152 MODULE_LICENSE("GPL");
154 /* Returns 1 if incoming frames use an FCB */
155 static inline int gfar_uses_fcb(struct gfar_private *priv)
157 return (priv->vlan_enable || priv->rx_csum_enable);
160 /* Set up the ethernet device structure, private data,
161 * and anything else we need before we start */
162 static int gfar_probe(struct platform_device *pdev)
165 struct net_device *dev = NULL;
166 struct gfar_private *priv = NULL;
167 struct gianfar_platform_data *einfo;
172 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
175 printk(KERN_ERR "gfar %d: Missing additional data!\n",
181 /* Create an ethernet device instance */
182 dev = alloc_etherdev(sizeof (*priv));
187 priv = netdev_priv(dev);
189 /* Set the info in the priv to the current info */
192 /* fill out IRQ fields */
193 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
194 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
195 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
196 priv->interruptError = platform_get_irq_byname(pdev, "error");
197 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
200 priv->interruptTransmit = platform_get_irq(pdev, 0);
201 if (priv->interruptTransmit < 0)
205 /* get a pointer to the register memory */
206 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
207 priv->regs = ioremap(r->start, sizeof (struct gfar));
209 if (NULL == priv->regs) {
214 spin_lock_init(&priv->txlock);
215 spin_lock_init(&priv->rxlock);
217 platform_set_drvdata(pdev, dev);
219 /* Stop the DMA engine now, in case it was running before */
220 /* (The firmware could have used it, and left it running). */
221 /* To do this, we write Graceful Receive Stop and Graceful */
222 /* Transmit Stop, and then wait until the corresponding bits */
223 /* in IEVENT indicate the stops have completed. */
224 tempval = gfar_read(&priv->regs->dmactrl);
225 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
226 gfar_write(&priv->regs->dmactrl, tempval);
228 tempval = gfar_read(&priv->regs->dmactrl);
229 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
230 gfar_write(&priv->regs->dmactrl, tempval);
232 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
235 /* Reset MAC layer */
236 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
238 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
239 gfar_write(&priv->regs->maccfg1, tempval);
241 /* Initialize MACCFG2. */
242 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
244 /* Initialize ECNTRL */
245 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
247 /* Copy the station address into the dev structure, */
248 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
250 /* Set the dev->base_addr to the gfar reg region */
251 dev->base_addr = (unsigned long) (priv->regs);
253 SET_MODULE_OWNER(dev);
254 SET_NETDEV_DEV(dev, &pdev->dev);
256 /* Fill in the dev structure */
257 dev->open = gfar_enet_open;
258 dev->hard_start_xmit = gfar_start_xmit;
259 dev->tx_timeout = gfar_timeout;
260 dev->watchdog_timeo = TX_TIMEOUT;
261 #ifdef CONFIG_GFAR_NAPI
262 dev->poll = gfar_poll;
263 dev->weight = GFAR_DEV_WEIGHT;
265 #ifdef CONFIG_NET_POLL_CONTROLLER
266 dev->poll_controller = gfar_netpoll;
268 dev->stop = gfar_close;
269 dev->get_stats = gfar_get_stats;
270 dev->change_mtu = gfar_change_mtu;
272 dev->set_multicast_list = gfar_set_multi;
274 dev->ethtool_ops = &gfar_ethtool_ops;
276 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
277 priv->rx_csum_enable = 1;
278 dev->features |= NETIF_F_IP_CSUM;
280 priv->rx_csum_enable = 0;
284 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
285 dev->vlan_rx_register = gfar_vlan_rx_register;
287 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
289 priv->vlan_enable = 1;
292 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
293 priv->extended_hash = 1;
294 priv->hash_width = 9;
296 priv->hash_regs[0] = &priv->regs->igaddr0;
297 priv->hash_regs[1] = &priv->regs->igaddr1;
298 priv->hash_regs[2] = &priv->regs->igaddr2;
299 priv->hash_regs[3] = &priv->regs->igaddr3;
300 priv->hash_regs[4] = &priv->regs->igaddr4;
301 priv->hash_regs[5] = &priv->regs->igaddr5;
302 priv->hash_regs[6] = &priv->regs->igaddr6;
303 priv->hash_regs[7] = &priv->regs->igaddr7;
304 priv->hash_regs[8] = &priv->regs->gaddr0;
305 priv->hash_regs[9] = &priv->regs->gaddr1;
306 priv->hash_regs[10] = &priv->regs->gaddr2;
307 priv->hash_regs[11] = &priv->regs->gaddr3;
308 priv->hash_regs[12] = &priv->regs->gaddr4;
309 priv->hash_regs[13] = &priv->regs->gaddr5;
310 priv->hash_regs[14] = &priv->regs->gaddr6;
311 priv->hash_regs[15] = &priv->regs->gaddr7;
314 priv->extended_hash = 0;
315 priv->hash_width = 8;
317 priv->hash_regs[0] = &priv->regs->gaddr0;
318 priv->hash_regs[1] = &priv->regs->gaddr1;
319 priv->hash_regs[2] = &priv->regs->gaddr2;
320 priv->hash_regs[3] = &priv->regs->gaddr3;
321 priv->hash_regs[4] = &priv->regs->gaddr4;
322 priv->hash_regs[5] = &priv->regs->gaddr5;
323 priv->hash_regs[6] = &priv->regs->gaddr6;
324 priv->hash_regs[7] = &priv->regs->gaddr7;
327 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
328 priv->padding = DEFAULT_PADDING;
332 if (dev->features & NETIF_F_IP_CSUM)
333 dev->hard_header_len += GMAC_FCB_LEN;
335 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
336 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
337 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
339 priv->txcoalescing = DEFAULT_TX_COALESCE;
340 priv->txcount = DEFAULT_TXCOUNT;
341 priv->txtime = DEFAULT_TXTIME;
342 priv->rxcoalescing = DEFAULT_RX_COALESCE;
343 priv->rxcount = DEFAULT_RXCOUNT;
344 priv->rxtime = DEFAULT_RXTIME;
346 /* Enable most messages by default */
347 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
349 err = register_netdev(dev);
352 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
357 /* Create all the sysfs files */
358 gfar_init_sysfs(dev);
360 /* Print out the device info */
361 printk(KERN_INFO DEVICE_NAME, dev->name);
362 for (idx = 0; idx < 6; idx++)
363 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
366 /* Even more device info helps when determining which kernel */
367 /* provided which set of benchmarks. */
368 #ifdef CONFIG_GFAR_NAPI
369 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
371 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
373 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
374 dev->name, priv->rx_ring_size, priv->tx_ring_size);
385 static int gfar_remove(struct platform_device *pdev)
387 struct net_device *dev = platform_get_drvdata(pdev);
388 struct gfar_private *priv = netdev_priv(dev);
390 platform_set_drvdata(pdev, NULL);
399 /* Reads the controller's registers to determine what interface
400 * connects it to the PHY.
402 static phy_interface_t gfar_get_interface(struct net_device *dev)
404 struct gfar_private *priv = netdev_priv(dev);
405 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
407 if (ecntrl & ECNTRL_SGMII_MODE)
408 return PHY_INTERFACE_MODE_SGMII;
410 if (ecntrl & ECNTRL_TBI_MODE) {
411 if (ecntrl & ECNTRL_REDUCED_MODE)
412 return PHY_INTERFACE_MODE_RTBI;
414 return PHY_INTERFACE_MODE_TBI;
417 if (ecntrl & ECNTRL_REDUCED_MODE) {
418 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
419 return PHY_INTERFACE_MODE_RMII;
421 return PHY_INTERFACE_MODE_RGMII;
424 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
425 return PHY_INTERFACE_MODE_GMII;
427 return PHY_INTERFACE_MODE_MII;
431 /* Initializes driver's PHY state, and attaches to the PHY.
432 * Returns 0 on success.
434 static int init_phy(struct net_device *dev)
436 struct gfar_private *priv = netdev_priv(dev);
437 uint gigabit_support =
438 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
439 SUPPORTED_1000baseT_Full : 0;
440 struct phy_device *phydev;
441 char phy_id[BUS_ID_SIZE];
442 phy_interface_t interface;
446 priv->oldduplex = -1;
448 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
450 interface = gfar_get_interface(dev);
452 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
454 if (IS_ERR(phydev)) {
455 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
456 return PTR_ERR(phydev);
459 /* Remove any features not supported by the controller */
460 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
461 phydev->advertising = phydev->supported;
463 priv->phydev = phydev;
468 static void init_registers(struct net_device *dev)
470 struct gfar_private *priv = netdev_priv(dev);
473 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
475 /* Initialize IMASK */
476 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
478 /* Init hash registers to zero */
479 gfar_write(&priv->regs->igaddr0, 0);
480 gfar_write(&priv->regs->igaddr1, 0);
481 gfar_write(&priv->regs->igaddr2, 0);
482 gfar_write(&priv->regs->igaddr3, 0);
483 gfar_write(&priv->regs->igaddr4, 0);
484 gfar_write(&priv->regs->igaddr5, 0);
485 gfar_write(&priv->regs->igaddr6, 0);
486 gfar_write(&priv->regs->igaddr7, 0);
488 gfar_write(&priv->regs->gaddr0, 0);
489 gfar_write(&priv->regs->gaddr1, 0);
490 gfar_write(&priv->regs->gaddr2, 0);
491 gfar_write(&priv->regs->gaddr3, 0);
492 gfar_write(&priv->regs->gaddr4, 0);
493 gfar_write(&priv->regs->gaddr5, 0);
494 gfar_write(&priv->regs->gaddr6, 0);
495 gfar_write(&priv->regs->gaddr7, 0);
497 /* Zero out the rmon mib registers if it has them */
498 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
499 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
501 /* Mask off the CAM interrupts */
502 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
503 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
506 /* Initialize the max receive buffer length */
507 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
509 /* Initialize the Minimum Frame Length Register */
510 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
512 /* Assign the TBI an address which won't conflict with the PHYs */
513 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
517 /* Halt the receive and transmit queues */
518 void gfar_halt(struct net_device *dev)
520 struct gfar_private *priv = netdev_priv(dev);
521 struct gfar __iomem *regs = priv->regs;
524 /* Mask all interrupts */
525 gfar_write(®s->imask, IMASK_INIT_CLEAR);
527 /* Clear all interrupts */
528 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
530 /* Stop the DMA, and wait for it to stop */
531 tempval = gfar_read(&priv->regs->dmactrl);
532 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
533 != (DMACTRL_GRS | DMACTRL_GTS)) {
534 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
535 gfar_write(&priv->regs->dmactrl, tempval);
537 while (!(gfar_read(&priv->regs->ievent) &
538 (IEVENT_GRSC | IEVENT_GTSC)))
542 /* Disable Rx and Tx */
543 tempval = gfar_read(®s->maccfg1);
544 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
545 gfar_write(®s->maccfg1, tempval);
548 void stop_gfar(struct net_device *dev)
550 struct gfar_private *priv = netdev_priv(dev);
551 struct gfar __iomem *regs = priv->regs;
554 phy_stop(priv->phydev);
557 spin_lock_irqsave(&priv->txlock, flags);
558 spin_lock(&priv->rxlock);
562 spin_unlock(&priv->rxlock);
563 spin_unlock_irqrestore(&priv->txlock, flags);
566 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
567 free_irq(priv->interruptError, dev);
568 free_irq(priv->interruptTransmit, dev);
569 free_irq(priv->interruptReceive, dev);
571 free_irq(priv->interruptTransmit, dev);
574 free_skb_resources(priv);
576 dma_free_coherent(NULL,
577 sizeof(struct txbd8)*priv->tx_ring_size
578 + sizeof(struct rxbd8)*priv->rx_ring_size,
580 gfar_read(®s->tbase0));
583 /* If there are any tx skbs or rx skbs still around, free them.
584 * Then free tx_skbuff and rx_skbuff */
585 static void free_skb_resources(struct gfar_private *priv)
591 /* Go through all the buffer descriptors and free their data buffers */
592 txbdp = priv->tx_bd_base;
594 for (i = 0; i < priv->tx_ring_size; i++) {
596 if (priv->tx_skbuff[i]) {
597 dma_unmap_single(NULL, txbdp->bufPtr,
600 dev_kfree_skb_any(priv->tx_skbuff[i]);
601 priv->tx_skbuff[i] = NULL;
605 kfree(priv->tx_skbuff);
607 rxbdp = priv->rx_bd_base;
609 /* rx_skbuff is not guaranteed to be allocated, so only
610 * free it and its contents if it is allocated */
611 if(priv->rx_skbuff != NULL) {
612 for (i = 0; i < priv->rx_ring_size; i++) {
613 if (priv->rx_skbuff[i]) {
614 dma_unmap_single(NULL, rxbdp->bufPtr,
615 priv->rx_buffer_size,
618 dev_kfree_skb_any(priv->rx_skbuff[i]);
619 priv->rx_skbuff[i] = NULL;
629 kfree(priv->rx_skbuff);
633 void gfar_start(struct net_device *dev)
635 struct gfar_private *priv = netdev_priv(dev);
636 struct gfar __iomem *regs = priv->regs;
639 /* Enable Rx and Tx in MACCFG1 */
640 tempval = gfar_read(®s->maccfg1);
641 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
642 gfar_write(®s->maccfg1, tempval);
644 /* Initialize DMACTRL to have WWR and WOP */
645 tempval = gfar_read(&priv->regs->dmactrl);
646 tempval |= DMACTRL_INIT_SETTINGS;
647 gfar_write(&priv->regs->dmactrl, tempval);
649 /* Make sure we aren't stopped */
650 tempval = gfar_read(&priv->regs->dmactrl);
651 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
652 gfar_write(&priv->regs->dmactrl, tempval);
654 /* Clear THLT/RHLT, so that the DMA starts polling now */
655 gfar_write(®s->tstat, TSTAT_CLEAR_THALT);
656 gfar_write(®s->rstat, RSTAT_CLEAR_RHALT);
658 /* Unmask the interrupts we look for */
659 gfar_write(®s->imask, IMASK_DEFAULT);
662 /* Bring the controller up and running */
663 int startup_gfar(struct net_device *dev)
670 struct gfar_private *priv = netdev_priv(dev);
671 struct gfar __iomem *regs = priv->regs;
676 gfar_write(®s->imask, IMASK_INIT_CLEAR);
678 /* Allocate memory for the buffer descriptors */
679 vaddr = (unsigned long) dma_alloc_coherent(NULL,
680 sizeof (struct txbd8) * priv->tx_ring_size +
681 sizeof (struct rxbd8) * priv->rx_ring_size,
685 if (netif_msg_ifup(priv))
686 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
691 priv->tx_bd_base = (struct txbd8 *) vaddr;
693 /* enet DMA only understands physical addresses */
694 gfar_write(®s->tbase0, addr);
696 /* Start the rx descriptor ring where the tx ring leaves off */
697 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
698 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
699 priv->rx_bd_base = (struct rxbd8 *) vaddr;
700 gfar_write(®s->rbase0, addr);
702 /* Setup the skbuff rings */
704 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
705 priv->tx_ring_size, GFP_KERNEL);
707 if (NULL == priv->tx_skbuff) {
708 if (netif_msg_ifup(priv))
709 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
715 for (i = 0; i < priv->tx_ring_size; i++)
716 priv->tx_skbuff[i] = NULL;
719 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
720 priv->rx_ring_size, GFP_KERNEL);
722 if (NULL == priv->rx_skbuff) {
723 if (netif_msg_ifup(priv))
724 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
730 for (i = 0; i < priv->rx_ring_size; i++)
731 priv->rx_skbuff[i] = NULL;
733 /* Initialize some variables in our dev structure */
734 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
735 priv->cur_rx = priv->rx_bd_base;
736 priv->skb_curtx = priv->skb_dirtytx = 0;
739 /* Initialize Transmit Descriptor Ring */
740 txbdp = priv->tx_bd_base;
741 for (i = 0; i < priv->tx_ring_size; i++) {
748 /* Set the last descriptor in the ring to indicate wrap */
750 txbdp->status |= TXBD_WRAP;
752 rxbdp = priv->rx_bd_base;
753 for (i = 0; i < priv->rx_ring_size; i++) {
754 struct sk_buff *skb = NULL;
758 skb = gfar_new_skb(dev, rxbdp);
760 priv->rx_skbuff[i] = skb;
765 /* Set the last descriptor in the ring to wrap */
767 rxbdp->status |= RXBD_WRAP;
769 /* If the device has multiple interrupts, register for
770 * them. Otherwise, only register for the one */
771 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
772 /* Install our interrupt handlers for Error,
773 * Transmit, and Receive */
774 if (request_irq(priv->interruptError, gfar_error,
775 0, "enet_error", dev) < 0) {
776 if (netif_msg_intr(priv))
777 printk(KERN_ERR "%s: Can't get IRQ %d\n",
778 dev->name, priv->interruptError);
784 if (request_irq(priv->interruptTransmit, gfar_transmit,
785 0, "enet_tx", dev) < 0) {
786 if (netif_msg_intr(priv))
787 printk(KERN_ERR "%s: Can't get IRQ %d\n",
788 dev->name, priv->interruptTransmit);
795 if (request_irq(priv->interruptReceive, gfar_receive,
796 0, "enet_rx", dev) < 0) {
797 if (netif_msg_intr(priv))
798 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
799 dev->name, priv->interruptReceive);
805 if (request_irq(priv->interruptTransmit, gfar_interrupt,
806 0, "gfar_interrupt", dev) < 0) {
807 if (netif_msg_intr(priv))
808 printk(KERN_ERR "%s: Can't get IRQ %d\n",
809 dev->name, priv->interruptError);
816 phy_start(priv->phydev);
818 /* Configure the coalescing support */
819 if (priv->txcoalescing)
820 gfar_write(®s->txic,
821 mk_ic_value(priv->txcount, priv->txtime));
823 gfar_write(®s->txic, 0);
825 if (priv->rxcoalescing)
826 gfar_write(®s->rxic,
827 mk_ic_value(priv->rxcount, priv->rxtime));
829 gfar_write(®s->rxic, 0);
831 if (priv->rx_csum_enable)
832 rctrl |= RCTRL_CHECKSUMMING;
834 if (priv->extended_hash) {
835 rctrl |= RCTRL_EXTHASH;
837 gfar_clear_exact_match(dev);
841 if (priv->vlan_enable)
845 rctrl &= ~RCTRL_PAL_MASK;
846 rctrl |= RCTRL_PADDING(priv->padding);
849 /* Init rctrl based on our settings */
850 gfar_write(&priv->regs->rctrl, rctrl);
852 if (dev->features & NETIF_F_IP_CSUM)
853 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
855 /* Set the extraction length and index */
856 attrs = ATTRELI_EL(priv->rx_stash_size) |
857 ATTRELI_EI(priv->rx_stash_index);
859 gfar_write(&priv->regs->attreli, attrs);
861 /* Start with defaults, and add stashing or locking
862 * depending on the approprate variables */
863 attrs = ATTR_INIT_SETTINGS;
865 if (priv->bd_stash_en)
866 attrs |= ATTR_BDSTASH;
868 if (priv->rx_stash_size != 0)
869 attrs |= ATTR_BUFSTASH;
871 gfar_write(&priv->regs->attr, attrs);
873 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
874 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
875 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
877 /* Start the controller */
883 free_irq(priv->interruptTransmit, dev);
885 free_irq(priv->interruptError, dev);
888 free_skb_resources(priv);
890 dma_free_coherent(NULL,
891 sizeof(struct txbd8)*priv->tx_ring_size
892 + sizeof(struct rxbd8)*priv->rx_ring_size,
894 gfar_read(®s->tbase0));
899 /* Called when something needs to use the ethernet device */
900 /* Returns 0 for success. */
901 static int gfar_enet_open(struct net_device *dev)
905 /* Initialize a bunch of registers */
908 gfar_set_mac_address(dev);
915 err = startup_gfar(dev);
917 netif_start_queue(dev);
922 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
924 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
926 memset(fcb, 0, GMAC_FCB_LEN);
931 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
935 /* If we're here, it's a IP packet with a TCP or UDP
936 * payload. We set it to checksum, using a pseudo-header
939 flags = TXFCB_DEFAULT;
941 /* Tell the controller what the protocol is */
942 /* And provide the already calculated phcs */
943 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
945 fcb->phcs = udp_hdr(skb)->check;
947 fcb->phcs = udp_hdr(skb)->check;
949 /* l3os is the distance between the start of the
950 * frame (skb->data) and the start of the IP hdr.
951 * l4os is the distance between the start of the
952 * l3 hdr and the l4 hdr */
953 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
954 fcb->l4os = skb_network_header_len(skb);
959 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
961 fcb->flags |= TXFCB_VLN;
962 fcb->vlctl = vlan_tx_tag_get(skb);
965 /* This is called by the kernel when a frame is ready for transmission. */
966 /* It is pointed to by the dev->hard_start_xmit function pointer */
967 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
969 struct gfar_private *priv = netdev_priv(dev);
970 struct txfcb *fcb = NULL;
975 /* Update transmit stats */
976 priv->stats.tx_bytes += skb->len;
979 spin_lock_irqsave(&priv->txlock, flags);
981 /* Point at the first free tx descriptor */
982 txbdp = priv->cur_tx;
984 /* Clear all but the WRAP status flags */
985 status = txbdp->status & TXBD_WRAP;
987 /* Set up checksumming */
988 if (likely((dev->features & NETIF_F_IP_CSUM)
989 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
990 fcb = gfar_add_fcb(skb, txbdp);
992 gfar_tx_checksum(skb, fcb);
995 if (priv->vlan_enable &&
996 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
997 if (unlikely(NULL == fcb)) {
998 fcb = gfar_add_fcb(skb, txbdp);
1002 gfar_tx_vlan(skb, fcb);
1005 /* Set buffer length and pointer */
1006 txbdp->length = skb->len;
1007 txbdp->bufPtr = dma_map_single(NULL, skb->data,
1008 skb->len, DMA_TO_DEVICE);
1010 /* Save the skb pointer so we can free it later */
1011 priv->tx_skbuff[priv->skb_curtx] = skb;
1013 /* Update the current skb pointer (wrapping if this was the last) */
1015 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1017 /* Flag the BD as interrupt-causing */
1018 status |= TXBD_INTERRUPT;
1020 /* Flag the BD as ready to go, last in frame, and */
1021 /* in need of CRC */
1022 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1024 dev->trans_start = jiffies;
1026 /* The powerpc-specific eieio() is used, as wmb() has too strong
1027 * semantics (it requires synchronization between cacheable and
1028 * uncacheable mappings, which eieio doesn't provide and which we
1029 * don't need), thus requiring a more expensive sync instruction. At
1030 * some point, the set of architecture-independent barrier functions
1031 * should be expanded to include weaker barriers.
1035 txbdp->status = status;
1037 /* If this was the last BD in the ring, the next one */
1038 /* is at the beginning of the ring */
1039 if (txbdp->status & TXBD_WRAP)
1040 txbdp = priv->tx_bd_base;
1044 /* If the next BD still needs to be cleaned up, then the bds
1045 are full. We need to tell the kernel to stop sending us stuff. */
1046 if (txbdp == priv->dirty_tx) {
1047 netif_stop_queue(dev);
1049 priv->stats.tx_fifo_errors++;
1052 /* Update the current txbd to the next one */
1053 priv->cur_tx = txbdp;
1055 /* Tell the DMA to go go go */
1056 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1059 spin_unlock_irqrestore(&priv->txlock, flags);
1064 /* Stops the kernel queue, and halts the controller */
1065 static int gfar_close(struct net_device *dev)
1067 struct gfar_private *priv = netdev_priv(dev);
1070 /* Disconnect from the PHY */
1071 phy_disconnect(priv->phydev);
1072 priv->phydev = NULL;
1074 netif_stop_queue(dev);
1079 /* returns a net_device_stats structure pointer */
1080 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1082 struct gfar_private *priv = netdev_priv(dev);
1084 return &(priv->stats);
1087 /* Changes the mac address if the controller is not running. */
1088 int gfar_set_mac_address(struct net_device *dev)
1090 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1096 /* Enables and disables VLAN insertion/extraction */
1097 static void gfar_vlan_rx_register(struct net_device *dev,
1098 struct vlan_group *grp)
1100 struct gfar_private *priv = netdev_priv(dev);
1101 unsigned long flags;
1104 spin_lock_irqsave(&priv->rxlock, flags);
1109 /* Enable VLAN tag insertion */
1110 tempval = gfar_read(&priv->regs->tctrl);
1111 tempval |= TCTRL_VLINS;
1113 gfar_write(&priv->regs->tctrl, tempval);
1115 /* Enable VLAN tag extraction */
1116 tempval = gfar_read(&priv->regs->rctrl);
1117 tempval |= RCTRL_VLEX;
1118 gfar_write(&priv->regs->rctrl, tempval);
1120 /* Disable VLAN tag insertion */
1121 tempval = gfar_read(&priv->regs->tctrl);
1122 tempval &= ~TCTRL_VLINS;
1123 gfar_write(&priv->regs->tctrl, tempval);
1125 /* Disable VLAN tag extraction */
1126 tempval = gfar_read(&priv->regs->rctrl);
1127 tempval &= ~RCTRL_VLEX;
1128 gfar_write(&priv->regs->rctrl, tempval);
1131 spin_unlock_irqrestore(&priv->rxlock, flags);
1134 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1136 int tempsize, tempval;
1137 struct gfar_private *priv = netdev_priv(dev);
1138 int oldsize = priv->rx_buffer_size;
1139 int frame_size = new_mtu + ETH_HLEN;
1141 if (priv->vlan_enable)
1142 frame_size += VLAN_ETH_HLEN;
1144 if (gfar_uses_fcb(priv))
1145 frame_size += GMAC_FCB_LEN;
1147 frame_size += priv->padding;
1149 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1150 if (netif_msg_drv(priv))
1151 printk(KERN_ERR "%s: Invalid MTU setting\n",
1157 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1158 INCREMENTAL_BUFFER_SIZE;
1160 /* Only stop and start the controller if it isn't already
1161 * stopped, and we changed something */
1162 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1165 priv->rx_buffer_size = tempsize;
1169 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1170 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1172 /* If the mtu is larger than the max size for standard
1173 * ethernet frames (ie, a jumbo frame), then set maccfg2
1174 * to allow huge frames, and to check the length */
1175 tempval = gfar_read(&priv->regs->maccfg2);
1177 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1178 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1180 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1182 gfar_write(&priv->regs->maccfg2, tempval);
1184 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1190 /* gfar_timeout gets called when a packet has not been
1191 * transmitted after a set amount of time.
1192 * For now, assume that clearing out all the structures, and
1193 * starting over will fix the problem. */
1194 static void gfar_timeout(struct net_device *dev)
1196 struct gfar_private *priv = netdev_priv(dev);
1198 priv->stats.tx_errors++;
1200 if (dev->flags & IFF_UP) {
1205 netif_schedule(dev);
1208 /* Interrupt Handler for Transmit complete */
1209 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1211 struct net_device *dev = (struct net_device *) dev_id;
1212 struct gfar_private *priv = netdev_priv(dev);
1216 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1219 spin_lock(&priv->txlock);
1220 bdp = priv->dirty_tx;
1221 while ((bdp->status & TXBD_READY) == 0) {
1222 /* If dirty_tx and cur_tx are the same, then either the */
1223 /* ring is empty or full now (it could only be full in the beginning, */
1224 /* obviously). If it is empty, we are done. */
1225 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1228 priv->stats.tx_packets++;
1230 /* Deferred means some collisions occurred during transmit, */
1231 /* but we eventually sent the packet. */
1232 if (bdp->status & TXBD_DEF)
1233 priv->stats.collisions++;
1235 /* Free the sk buffer associated with this TxBD */
1236 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1237 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1239 (priv->skb_dirtytx +
1240 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1242 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1243 if (bdp->status & TXBD_WRAP)
1244 bdp = priv->tx_bd_base;
1248 /* Move dirty_tx to be the next bd */
1249 priv->dirty_tx = bdp;
1251 /* We freed a buffer, so now we can restart transmission */
1252 if (netif_queue_stopped(dev))
1253 netif_wake_queue(dev);
1254 } /* while ((bdp->status & TXBD_READY) == 0) */
1256 /* If we are coalescing the interrupts, reset the timer */
1257 /* Otherwise, clear it */
1258 if (priv->txcoalescing)
1259 gfar_write(&priv->regs->txic,
1260 mk_ic_value(priv->txcount, priv->txtime));
1262 gfar_write(&priv->regs->txic, 0);
1264 spin_unlock(&priv->txlock);
1269 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1271 unsigned int alignamount;
1272 struct gfar_private *priv = netdev_priv(dev);
1273 struct sk_buff *skb = NULL;
1274 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1276 /* We have to allocate the skb, so keep trying till we succeed */
1277 while ((!skb) && timeout--)
1278 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1283 alignamount = RXBUF_ALIGNMENT -
1284 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1286 /* We need the data buffer to be aligned properly. We will reserve
1287 * as many bytes as needed to align the data properly
1289 skb_reserve(skb, alignamount);
1291 bdp->bufPtr = dma_map_single(NULL, skb->data,
1292 priv->rx_buffer_size, DMA_FROM_DEVICE);
1296 /* Mark the buffer empty */
1298 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1303 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1305 struct net_device_stats *stats = &priv->stats;
1306 struct gfar_extra_stats *estats = &priv->extra_stats;
1308 /* If the packet was truncated, none of the other errors
1310 if (status & RXBD_TRUNCATED) {
1311 stats->rx_length_errors++;
1317 /* Count the errors, if there were any */
1318 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1319 stats->rx_length_errors++;
1321 if (status & RXBD_LARGE)
1326 if (status & RXBD_NONOCTET) {
1327 stats->rx_frame_errors++;
1328 estats->rx_nonoctet++;
1330 if (status & RXBD_CRCERR) {
1331 estats->rx_crcerr++;
1332 stats->rx_crc_errors++;
1334 if (status & RXBD_OVERRUN) {
1335 estats->rx_overrun++;
1336 stats->rx_crc_errors++;
1340 irqreturn_t gfar_receive(int irq, void *dev_id)
1342 struct net_device *dev = (struct net_device *) dev_id;
1343 struct gfar_private *priv = netdev_priv(dev);
1344 #ifdef CONFIG_GFAR_NAPI
1347 unsigned long flags;
1350 /* Clear IEVENT, so rx interrupt isn't called again
1351 * because of this interrupt */
1352 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1355 #ifdef CONFIG_GFAR_NAPI
1356 if (netif_rx_schedule_prep(dev)) {
1357 tempval = gfar_read(&priv->regs->imask);
1358 tempval &= IMASK_RX_DISABLED;
1359 gfar_write(&priv->regs->imask, tempval);
1361 __netif_rx_schedule(dev);
1363 if (netif_msg_rx_err(priv))
1364 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1365 dev->name, gfar_read(&priv->regs->ievent),
1366 gfar_read(&priv->regs->imask));
1370 spin_lock_irqsave(&priv->rxlock, flags);
1371 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1373 /* If we are coalescing interrupts, update the timer */
1374 /* Otherwise, clear it */
1375 if (priv->rxcoalescing)
1376 gfar_write(&priv->regs->rxic,
1377 mk_ic_value(priv->rxcount, priv->rxtime));
1379 gfar_write(&priv->regs->rxic, 0);
1381 spin_unlock_irqrestore(&priv->rxlock, flags);
1387 static inline int gfar_rx_vlan(struct sk_buff *skb,
1388 struct vlan_group *vlgrp, unsigned short vlctl)
1390 #ifdef CONFIG_GFAR_NAPI
1391 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1393 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1397 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1399 /* If valid headers were found, and valid sums
1400 * were verified, then we tell the kernel that no
1401 * checksumming is necessary. Otherwise, it is */
1402 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1403 skb->ip_summed = CHECKSUM_UNNECESSARY;
1405 skb->ip_summed = CHECKSUM_NONE;
1409 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1411 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1413 /* Remove the FCB from the skb */
1414 skb_pull(skb, GMAC_FCB_LEN);
1419 /* gfar_process_frame() -- handle one incoming packet if skb
1421 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1424 struct gfar_private *priv = netdev_priv(dev);
1425 struct rxfcb *fcb = NULL;
1428 if (netif_msg_rx_err(priv))
1429 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1430 priv->stats.rx_dropped++;
1431 priv->extra_stats.rx_skbmissing++;
1435 /* Prep the skb for the packet */
1436 skb_put(skb, length);
1438 /* Grab the FCB if there is one */
1439 if (gfar_uses_fcb(priv))
1440 fcb = gfar_get_fcb(skb);
1442 /* Remove the padded bytes, if there are any */
1444 skb_pull(skb, priv->padding);
1446 if (priv->rx_csum_enable)
1447 gfar_rx_checksum(skb, fcb);
1449 /* Tell the skb what kind of packet this is */
1450 skb->protocol = eth_type_trans(skb, dev);
1452 /* Send the packet up the stack */
1453 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1454 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1458 if (NET_RX_DROP == ret)
1459 priv->extra_stats.kernel_dropped++;
1465 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1466 * until the budget/quota has been reached. Returns the number
1469 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1472 struct sk_buff *skb;
1475 struct gfar_private *priv = netdev_priv(dev);
1477 /* Get the first full descriptor */
1480 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1482 skb = priv->rx_skbuff[priv->skb_currx];
1485 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1486 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1487 /* Increment the number of packets */
1488 priv->stats.rx_packets++;
1491 /* Remove the FCS from the packet length */
1492 pkt_len = bdp->length - 4;
1494 gfar_process_frame(dev, skb, pkt_len);
1496 priv->stats.rx_bytes += pkt_len;
1498 count_errors(bdp->status, priv);
1501 dev_kfree_skb_any(skb);
1503 priv->rx_skbuff[priv->skb_currx] = NULL;
1506 dev->last_rx = jiffies;
1508 /* Clear the status flags for this buffer */
1509 bdp->status &= ~RXBD_STATS;
1511 /* Add another skb for the future */
1512 skb = gfar_new_skb(dev, bdp);
1513 priv->rx_skbuff[priv->skb_currx] = skb;
1515 /* Update to the next pointer */
1516 if (bdp->status & RXBD_WRAP)
1517 bdp = priv->rx_bd_base;
1521 /* update to point at the next skb */
1524 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1528 /* Update the current rxbd pointer to be the next one */
1534 #ifdef CONFIG_GFAR_NAPI
1535 static int gfar_poll(struct net_device *dev, int *budget)
1538 struct gfar_private *priv = netdev_priv(dev);
1539 int rx_work_limit = *budget;
1541 if (rx_work_limit > dev->quota)
1542 rx_work_limit = dev->quota;
1544 howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1546 dev->quota -= howmany;
1547 rx_work_limit -= howmany;
1550 if (rx_work_limit > 0) {
1551 netif_rx_complete(dev);
1553 /* Clear the halt bit in RSTAT */
1554 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1556 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1558 /* If we are coalescing interrupts, update the timer */
1559 /* Otherwise, clear it */
1560 if (priv->rxcoalescing)
1561 gfar_write(&priv->regs->rxic,
1562 mk_ic_value(priv->rxcount, priv->rxtime));
1564 gfar_write(&priv->regs->rxic, 0);
1567 /* Return 1 if there's more work to do */
1568 return (rx_work_limit > 0) ? 0 : 1;
1572 #ifdef CONFIG_NET_POLL_CONTROLLER
1574 * Polling 'interrupt' - used by things like netconsole to send skbs
1575 * without having to re-enable interrupts. It's not called while
1576 * the interrupt routine is executing.
1578 static void gfar_netpoll(struct net_device *dev)
1580 struct gfar_private *priv = netdev_priv(dev);
1582 /* If the device has multiple interrupts, run tx/rx */
1583 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1584 disable_irq(priv->interruptTransmit);
1585 disable_irq(priv->interruptReceive);
1586 disable_irq(priv->interruptError);
1587 gfar_interrupt(priv->interruptTransmit, dev);
1588 enable_irq(priv->interruptError);
1589 enable_irq(priv->interruptReceive);
1590 enable_irq(priv->interruptTransmit);
1592 disable_irq(priv->interruptTransmit);
1593 gfar_interrupt(priv->interruptTransmit, dev);
1594 enable_irq(priv->interruptTransmit);
1599 /* The interrupt handler for devices with one interrupt */
1600 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1602 struct net_device *dev = dev_id;
1603 struct gfar_private *priv = netdev_priv(dev);
1605 /* Save ievent for future reference */
1606 u32 events = gfar_read(&priv->regs->ievent);
1608 /* Check for reception */
1609 if (events & IEVENT_RX_MASK)
1610 gfar_receive(irq, dev_id);
1612 /* Check for transmit completion */
1613 if (events & IEVENT_TX_MASK)
1614 gfar_transmit(irq, dev_id);
1616 /* Check for errors */
1617 if (events & IEVENT_ERR_MASK)
1618 gfar_error(irq, dev_id);
1623 /* Called every time the controller might need to be made
1624 * aware of new link state. The PHY code conveys this
1625 * information through variables in the phydev structure, and this
1626 * function converts those variables into the appropriate
1627 * register values, and can bring down the device if needed.
1629 static void adjust_link(struct net_device *dev)
1631 struct gfar_private *priv = netdev_priv(dev);
1632 struct gfar __iomem *regs = priv->regs;
1633 unsigned long flags;
1634 struct phy_device *phydev = priv->phydev;
1637 spin_lock_irqsave(&priv->txlock, flags);
1639 u32 tempval = gfar_read(®s->maccfg2);
1640 u32 ecntrl = gfar_read(®s->ecntrl);
1642 /* Now we make sure that we can be in full duplex mode.
1643 * If not, we operate in half-duplex mode. */
1644 if (phydev->duplex != priv->oldduplex) {
1646 if (!(phydev->duplex))
1647 tempval &= ~(MACCFG2_FULL_DUPLEX);
1649 tempval |= MACCFG2_FULL_DUPLEX;
1651 priv->oldduplex = phydev->duplex;
1654 if (phydev->speed != priv->oldspeed) {
1656 switch (phydev->speed) {
1659 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1664 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1666 /* Reduced mode distinguishes
1667 * between 10 and 100 */
1668 if (phydev->speed == SPEED_100)
1669 ecntrl |= ECNTRL_R100;
1671 ecntrl &= ~(ECNTRL_R100);
1674 if (netif_msg_link(priv))
1676 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1677 dev->name, phydev->speed);
1681 priv->oldspeed = phydev->speed;
1684 gfar_write(®s->maccfg2, tempval);
1685 gfar_write(®s->ecntrl, ecntrl);
1687 if (!priv->oldlink) {
1690 netif_schedule(dev);
1692 } else if (priv->oldlink) {
1696 priv->oldduplex = -1;
1699 if (new_state && netif_msg_link(priv))
1700 phy_print_status(phydev);
1702 spin_unlock_irqrestore(&priv->txlock, flags);
1705 /* Update the hash table based on the current list of multicast
1706 * addresses we subscribe to. Also, change the promiscuity of
1707 * the device based on the flags (this function is called
1708 * whenever dev->flags is changed */
1709 static void gfar_set_multi(struct net_device *dev)
1711 struct dev_mc_list *mc_ptr;
1712 struct gfar_private *priv = netdev_priv(dev);
1713 struct gfar __iomem *regs = priv->regs;
1716 if(dev->flags & IFF_PROMISC) {
1717 /* Set RCTRL to PROM */
1718 tempval = gfar_read(®s->rctrl);
1719 tempval |= RCTRL_PROM;
1720 gfar_write(®s->rctrl, tempval);
1722 /* Set RCTRL to not PROM */
1723 tempval = gfar_read(®s->rctrl);
1724 tempval &= ~(RCTRL_PROM);
1725 gfar_write(®s->rctrl, tempval);
1728 if(dev->flags & IFF_ALLMULTI) {
1729 /* Set the hash to rx all multicast frames */
1730 gfar_write(®s->igaddr0, 0xffffffff);
1731 gfar_write(®s->igaddr1, 0xffffffff);
1732 gfar_write(®s->igaddr2, 0xffffffff);
1733 gfar_write(®s->igaddr3, 0xffffffff);
1734 gfar_write(®s->igaddr4, 0xffffffff);
1735 gfar_write(®s->igaddr5, 0xffffffff);
1736 gfar_write(®s->igaddr6, 0xffffffff);
1737 gfar_write(®s->igaddr7, 0xffffffff);
1738 gfar_write(®s->gaddr0, 0xffffffff);
1739 gfar_write(®s->gaddr1, 0xffffffff);
1740 gfar_write(®s->gaddr2, 0xffffffff);
1741 gfar_write(®s->gaddr3, 0xffffffff);
1742 gfar_write(®s->gaddr4, 0xffffffff);
1743 gfar_write(®s->gaddr5, 0xffffffff);
1744 gfar_write(®s->gaddr6, 0xffffffff);
1745 gfar_write(®s->gaddr7, 0xffffffff);
1750 /* zero out the hash */
1751 gfar_write(®s->igaddr0, 0x0);
1752 gfar_write(®s->igaddr1, 0x0);
1753 gfar_write(®s->igaddr2, 0x0);
1754 gfar_write(®s->igaddr3, 0x0);
1755 gfar_write(®s->igaddr4, 0x0);
1756 gfar_write(®s->igaddr5, 0x0);
1757 gfar_write(®s->igaddr6, 0x0);
1758 gfar_write(®s->igaddr7, 0x0);
1759 gfar_write(®s->gaddr0, 0x0);
1760 gfar_write(®s->gaddr1, 0x0);
1761 gfar_write(®s->gaddr2, 0x0);
1762 gfar_write(®s->gaddr3, 0x0);
1763 gfar_write(®s->gaddr4, 0x0);
1764 gfar_write(®s->gaddr5, 0x0);
1765 gfar_write(®s->gaddr6, 0x0);
1766 gfar_write(®s->gaddr7, 0x0);
1768 /* If we have extended hash tables, we need to
1769 * clear the exact match registers to prepare for
1771 if (priv->extended_hash) {
1772 em_num = GFAR_EM_NUM + 1;
1773 gfar_clear_exact_match(dev);
1780 if(dev->mc_count == 0)
1783 /* Parse the list, and set the appropriate bits */
1784 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1786 gfar_set_mac_for_addr(dev, idx,
1790 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1798 /* Clears each of the exact match registers to zero, so they
1799 * don't interfere with normal reception */
1800 static void gfar_clear_exact_match(struct net_device *dev)
1803 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1805 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1806 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1809 /* Set the appropriate hash bit for the given addr */
1810 /* The algorithm works like so:
1811 * 1) Take the Destination Address (ie the multicast address), and
1812 * do a CRC on it (little endian), and reverse the bits of the
1814 * 2) Use the 8 most significant bits as a hash into a 256-entry
1815 * table. The table is controlled through 8 32-bit registers:
1816 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1817 * gaddr7. This means that the 3 most significant bits in the
1818 * hash index which gaddr register to use, and the 5 other bits
1819 * indicate which bit (assuming an IBM numbering scheme, which
1820 * for PowerPC (tm) is usually the case) in the register holds
1822 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1825 struct gfar_private *priv = netdev_priv(dev);
1826 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1827 int width = priv->hash_width;
1828 u8 whichbit = (result >> (32 - width)) & 0x1f;
1829 u8 whichreg = result >> (32 - width + 5);
1830 u32 value = (1 << (31-whichbit));
1832 tempval = gfar_read(priv->hash_regs[whichreg]);
1834 gfar_write(priv->hash_regs[whichreg], tempval);
1840 /* There are multiple MAC Address register pairs on some controllers
1841 * This function sets the numth pair to a given address
1843 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1845 struct gfar_private *priv = netdev_priv(dev);
1847 char tmpbuf[MAC_ADDR_LEN];
1849 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1853 /* Now copy it into the mac registers backwards, cuz */
1854 /* little endian is silly */
1855 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1856 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1858 gfar_write(macptr, *((u32 *) (tmpbuf)));
1860 tempval = *((u32 *) (tmpbuf + 4));
1862 gfar_write(macptr+1, tempval);
1865 /* GFAR error interrupt handler */
1866 static irqreturn_t gfar_error(int irq, void *dev_id)
1868 struct net_device *dev = dev_id;
1869 struct gfar_private *priv = netdev_priv(dev);
1871 /* Save ievent for future reference */
1872 u32 events = gfar_read(&priv->regs->ievent);
1875 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1878 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1879 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1880 dev->name, events, gfar_read(&priv->regs->imask));
1882 /* Update the error counters */
1883 if (events & IEVENT_TXE) {
1884 priv->stats.tx_errors++;
1886 if (events & IEVENT_LC)
1887 priv->stats.tx_window_errors++;
1888 if (events & IEVENT_CRL)
1889 priv->stats.tx_aborted_errors++;
1890 if (events & IEVENT_XFUN) {
1891 if (netif_msg_tx_err(priv))
1892 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1893 "packet dropped.\n", dev->name);
1894 priv->stats.tx_dropped++;
1895 priv->extra_stats.tx_underrun++;
1897 /* Reactivate the Tx Queues */
1898 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1900 if (netif_msg_tx_err(priv))
1901 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1903 if (events & IEVENT_BSY) {
1904 priv->stats.rx_errors++;
1905 priv->extra_stats.rx_bsy++;
1907 gfar_receive(irq, dev_id);
1909 #ifndef CONFIG_GFAR_NAPI
1910 /* Clear the halt bit in RSTAT */
1911 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1914 if (netif_msg_rx_err(priv))
1915 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
1916 dev->name, gfar_read(&priv->regs->rstat));
1918 if (events & IEVENT_BABR) {
1919 priv->stats.rx_errors++;
1920 priv->extra_stats.rx_babr++;
1922 if (netif_msg_rx_err(priv))
1923 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
1925 if (events & IEVENT_EBERR) {
1926 priv->extra_stats.eberr++;
1927 if (netif_msg_rx_err(priv))
1928 printk(KERN_DEBUG "%s: bus error\n", dev->name);
1930 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1931 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1933 if (events & IEVENT_BABT) {
1934 priv->extra_stats.tx_babt++;
1935 if (netif_msg_tx_err(priv))
1936 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
1941 /* Structure for a device driver */
1942 static struct platform_driver gfar_driver = {
1943 .probe = gfar_probe,
1944 .remove = gfar_remove,
1946 .name = "fsl-gianfar",
1950 static int __init gfar_init(void)
1952 int err = gfar_mdio_init();
1957 err = platform_driver_register(&gfar_driver);
1965 static void __exit gfar_exit(void)
1967 platform_driver_unregister(&gfar_driver);
1971 module_init(gfar_init);
1972 module_exit(gfar_exit);