]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/igb/igb_ethtool.c
Merge branch 'next' into for-linus
[linux-2.6-omap-h63xx.git] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 struct igb_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int sizeof_stat;
43         int stat_offset;
44 };
45
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47                       offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49         { "rx_packets", IGB_STAT(stats.gprc) },
50         { "tx_packets", IGB_STAT(stats.gptc) },
51         { "rx_bytes", IGB_STAT(stats.gorc) },
52         { "tx_bytes", IGB_STAT(stats.gotc) },
53         { "rx_broadcast", IGB_STAT(stats.bprc) },
54         { "tx_broadcast", IGB_STAT(stats.bptc) },
55         { "rx_multicast", IGB_STAT(stats.mprc) },
56         { "tx_multicast", IGB_STAT(stats.mptc) },
57         { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58         { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59         { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60         { "multicast", IGB_STAT(stats.mprc) },
61         { "collisions", IGB_STAT(stats.colc) },
62         { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63         { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64         { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65         { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66         { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67         { "rx_missed_errors", IGB_STAT(stats.mpc) },
68         { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69         { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70         { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71         { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72         { "tx_window_errors", IGB_STAT(stats.latecol) },
73         { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74         { "tx_deferred_ok", IGB_STAT(stats.dc) },
75         { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76         { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77         { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78         { "tx_restart_queue", IGB_STAT(restart_queue) },
79         { "rx_long_length_errors", IGB_STAT(stats.roc) },
80         { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81         { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82         { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83         { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84         { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85         { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86         { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87         { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88         { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89         { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90         { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91         { "rx_header_split", IGB_STAT(rx_hdr_split) },
92         { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93         { "tx_smbus", IGB_STAT(stats.mgptc) },
94         { "rx_smbus", IGB_STAT(stats.mgprc) },
95         { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96 #ifdef CONFIG_IGB_LRO
97         { "lro_aggregated", IGB_STAT(lro_aggregated) },
98         { "lro_flushed", IGB_STAT(lro_flushed) },
99         { "lro_no_desc", IGB_STAT(lro_no_desc) },
100 #endif
101 };
102
103 #define IGB_QUEUE_STATS_LEN \
104         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues + \
105          ((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
106         (sizeof(struct igb_queue_stats) / sizeof(u64)))
107 #define IGB_GLOBAL_STATS_LEN    \
108         sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
109 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
111         "Register test  (offline)", "Eeprom test    (offline)",
112         "Interrupt test (offline)", "Loopback test  (offline)",
113         "Link test   (on/offline)"
114 };
115 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
116
117 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
118 {
119         struct igb_adapter *adapter = netdev_priv(netdev);
120         struct e1000_hw *hw = &adapter->hw;
121
122         if (hw->phy.media_type == e1000_media_type_copper) {
123
124                 ecmd->supported = (SUPPORTED_10baseT_Half |
125                                    SUPPORTED_10baseT_Full |
126                                    SUPPORTED_100baseT_Half |
127                                    SUPPORTED_100baseT_Full |
128                                    SUPPORTED_1000baseT_Full|
129                                    SUPPORTED_Autoneg |
130                                    SUPPORTED_TP);
131                 ecmd->advertising = ADVERTISED_TP;
132
133                 if (hw->mac.autoneg == 1) {
134                         ecmd->advertising |= ADVERTISED_Autoneg;
135                         /* the e1000 autoneg seems to match ethtool nicely */
136                         ecmd->advertising |= hw->phy.autoneg_advertised;
137                 }
138
139                 ecmd->port = PORT_TP;
140                 ecmd->phy_address = hw->phy.addr;
141         } else {
142                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
143                                      SUPPORTED_FIBRE |
144                                      SUPPORTED_Autoneg);
145
146                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
147                                      ADVERTISED_FIBRE |
148                                      ADVERTISED_Autoneg);
149
150                 ecmd->port = PORT_FIBRE;
151         }
152
153         ecmd->transceiver = XCVR_INTERNAL;
154
155         if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
156
157                 adapter->hw.mac.ops.get_speed_and_duplex(hw,
158                                         &adapter->link_speed,
159                                         &adapter->link_duplex);
160                 ecmd->speed = adapter->link_speed;
161
162                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
163                  *          and HALF_DUPLEX != DUPLEX_HALF */
164
165                 if (adapter->link_duplex == FULL_DUPLEX)
166                         ecmd->duplex = DUPLEX_FULL;
167                 else
168                         ecmd->duplex = DUPLEX_HALF;
169         } else {
170                 ecmd->speed = -1;
171                 ecmd->duplex = -1;
172         }
173
174         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
175                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176         return 0;
177 }
178
179 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
180 {
181         struct igb_adapter *adapter = netdev_priv(netdev);
182         struct e1000_hw *hw = &adapter->hw;
183
184         /* When SoL/IDER sessions are active, autoneg/speed/duplex
185          * cannot be changed */
186         if (igb_check_reset_block(hw)) {
187                 dev_err(&adapter->pdev->dev, "Cannot change link "
188                         "characteristics when SoL/IDER is active.\n");
189                 return -EINVAL;
190         }
191
192         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
193                 msleep(1);
194
195         if (ecmd->autoneg == AUTONEG_ENABLE) {
196                 hw->mac.autoneg = 1;
197                 if (hw->phy.media_type == e1000_media_type_fiber)
198                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
199                                                      ADVERTISED_FIBRE |
200                                                      ADVERTISED_Autoneg;
201                 else
202                         hw->phy.autoneg_advertised = ecmd->advertising |
203                                                      ADVERTISED_TP |
204                                                      ADVERTISED_Autoneg;
205                 ecmd->advertising = hw->phy.autoneg_advertised;
206         } else
207                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
208                         clear_bit(__IGB_RESETTING, &adapter->state);
209                         return -EINVAL;
210                 }
211
212         /* reset the link */
213
214         if (netif_running(adapter->netdev)) {
215                 igb_down(adapter);
216                 igb_up(adapter);
217         } else
218                 igb_reset(adapter);
219
220         clear_bit(__IGB_RESETTING, &adapter->state);
221         return 0;
222 }
223
224 static void igb_get_pauseparam(struct net_device *netdev,
225                                struct ethtool_pauseparam *pause)
226 {
227         struct igb_adapter *adapter = netdev_priv(netdev);
228         struct e1000_hw *hw = &adapter->hw;
229
230         pause->autoneg =
231                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
232
233         if (hw->fc.type == e1000_fc_rx_pause)
234                 pause->rx_pause = 1;
235         else if (hw->fc.type == e1000_fc_tx_pause)
236                 pause->tx_pause = 1;
237         else if (hw->fc.type == e1000_fc_full) {
238                 pause->rx_pause = 1;
239                 pause->tx_pause = 1;
240         }
241 }
242
243 static int igb_set_pauseparam(struct net_device *netdev,
244                               struct ethtool_pauseparam *pause)
245 {
246         struct igb_adapter *adapter = netdev_priv(netdev);
247         struct e1000_hw *hw = &adapter->hw;
248         int retval = 0;
249
250         adapter->fc_autoneg = pause->autoneg;
251
252         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
253                 msleep(1);
254
255         if (pause->rx_pause && pause->tx_pause)
256                 hw->fc.type = e1000_fc_full;
257         else if (pause->rx_pause && !pause->tx_pause)
258                 hw->fc.type = e1000_fc_rx_pause;
259         else if (!pause->rx_pause && pause->tx_pause)
260                 hw->fc.type = e1000_fc_tx_pause;
261         else if (!pause->rx_pause && !pause->tx_pause)
262                 hw->fc.type = e1000_fc_none;
263
264         hw->fc.original_type = hw->fc.type;
265
266         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
267                 if (netif_running(adapter->netdev)) {
268                         igb_down(adapter);
269                         igb_up(adapter);
270                 } else
271                         igb_reset(adapter);
272         } else
273                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
274                           igb_setup_link(hw) : igb_force_mac_fc(hw));
275
276         clear_bit(__IGB_RESETTING, &adapter->state);
277         return retval;
278 }
279
280 static u32 igb_get_rx_csum(struct net_device *netdev)
281 {
282         struct igb_adapter *adapter = netdev_priv(netdev);
283         return adapter->rx_csum;
284 }
285
286 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
287 {
288         struct igb_adapter *adapter = netdev_priv(netdev);
289         adapter->rx_csum = data;
290
291         return 0;
292 }
293
294 static u32 igb_get_tx_csum(struct net_device *netdev)
295 {
296         return (netdev->features & NETIF_F_HW_CSUM) != 0;
297 }
298
299 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
300 {
301         if (data)
302                 netdev->features |= NETIF_F_HW_CSUM;
303         else
304                 netdev->features &= ~NETIF_F_HW_CSUM;
305
306         return 0;
307 }
308
309 static int igb_set_tso(struct net_device *netdev, u32 data)
310 {
311         struct igb_adapter *adapter = netdev_priv(netdev);
312
313         if (data)
314                 netdev->features |= NETIF_F_TSO;
315         else
316                 netdev->features &= ~NETIF_F_TSO;
317
318         if (data)
319                 netdev->features |= NETIF_F_TSO6;
320         else
321                 netdev->features &= ~NETIF_F_TSO6;
322
323         dev_info(&adapter->pdev->dev, "TSO is %s\n",
324                  data ? "Enabled" : "Disabled");
325         return 0;
326 }
327
328 static u32 igb_get_msglevel(struct net_device *netdev)
329 {
330         struct igb_adapter *adapter = netdev_priv(netdev);
331         return adapter->msg_enable;
332 }
333
334 static void igb_set_msglevel(struct net_device *netdev, u32 data)
335 {
336         struct igb_adapter *adapter = netdev_priv(netdev);
337         adapter->msg_enable = data;
338 }
339
340 static int igb_get_regs_len(struct net_device *netdev)
341 {
342 #define IGB_REGS_LEN 551
343         return IGB_REGS_LEN * sizeof(u32);
344 }
345
346 static void igb_get_regs(struct net_device *netdev,
347                          struct ethtool_regs *regs, void *p)
348 {
349         struct igb_adapter *adapter = netdev_priv(netdev);
350         struct e1000_hw *hw = &adapter->hw;
351         u32 *regs_buff = p;
352         u8 i;
353
354         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
355
356         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
357
358         /* General Registers */
359         regs_buff[0] = rd32(E1000_CTRL);
360         regs_buff[1] = rd32(E1000_STATUS);
361         regs_buff[2] = rd32(E1000_CTRL_EXT);
362         regs_buff[3] = rd32(E1000_MDIC);
363         regs_buff[4] = rd32(E1000_SCTL);
364         regs_buff[5] = rd32(E1000_CONNSW);
365         regs_buff[6] = rd32(E1000_VET);
366         regs_buff[7] = rd32(E1000_LEDCTL);
367         regs_buff[8] = rd32(E1000_PBA);
368         regs_buff[9] = rd32(E1000_PBS);
369         regs_buff[10] = rd32(E1000_FRTIMER);
370         regs_buff[11] = rd32(E1000_TCPTIMER);
371
372         /* NVM Register */
373         regs_buff[12] = rd32(E1000_EECD);
374
375         /* Interrupt */
376         /* Reading EICS for EICR because they read the
377          * same but EICS does not clear on read */
378         regs_buff[13] = rd32(E1000_EICS);
379         regs_buff[14] = rd32(E1000_EICS);
380         regs_buff[15] = rd32(E1000_EIMS);
381         regs_buff[16] = rd32(E1000_EIMC);
382         regs_buff[17] = rd32(E1000_EIAC);
383         regs_buff[18] = rd32(E1000_EIAM);
384         /* Reading ICS for ICR because they read the
385          * same but ICS does not clear on read */
386         regs_buff[19] = rd32(E1000_ICS);
387         regs_buff[20] = rd32(E1000_ICS);
388         regs_buff[21] = rd32(E1000_IMS);
389         regs_buff[22] = rd32(E1000_IMC);
390         regs_buff[23] = rd32(E1000_IAC);
391         regs_buff[24] = rd32(E1000_IAM);
392         regs_buff[25] = rd32(E1000_IMIRVP);
393
394         /* Flow Control */
395         regs_buff[26] = rd32(E1000_FCAL);
396         regs_buff[27] = rd32(E1000_FCAH);
397         regs_buff[28] = rd32(E1000_FCTTV);
398         regs_buff[29] = rd32(E1000_FCRTL);
399         regs_buff[30] = rd32(E1000_FCRTH);
400         regs_buff[31] = rd32(E1000_FCRTV);
401
402         /* Receive */
403         regs_buff[32] = rd32(E1000_RCTL);
404         regs_buff[33] = rd32(E1000_RXCSUM);
405         regs_buff[34] = rd32(E1000_RLPML);
406         regs_buff[35] = rd32(E1000_RFCTL);
407         regs_buff[36] = rd32(E1000_MRQC);
408         regs_buff[37] = rd32(E1000_VMD_CTL);
409
410         /* Transmit */
411         regs_buff[38] = rd32(E1000_TCTL);
412         regs_buff[39] = rd32(E1000_TCTL_EXT);
413         regs_buff[40] = rd32(E1000_TIPG);
414         regs_buff[41] = rd32(E1000_DTXCTL);
415
416         /* Wake Up */
417         regs_buff[42] = rd32(E1000_WUC);
418         regs_buff[43] = rd32(E1000_WUFC);
419         regs_buff[44] = rd32(E1000_WUS);
420         regs_buff[45] = rd32(E1000_IPAV);
421         regs_buff[46] = rd32(E1000_WUPL);
422
423         /* MAC */
424         regs_buff[47] = rd32(E1000_PCS_CFG0);
425         regs_buff[48] = rd32(E1000_PCS_LCTL);
426         regs_buff[49] = rd32(E1000_PCS_LSTAT);
427         regs_buff[50] = rd32(E1000_PCS_ANADV);
428         regs_buff[51] = rd32(E1000_PCS_LPAB);
429         regs_buff[52] = rd32(E1000_PCS_NPTX);
430         regs_buff[53] = rd32(E1000_PCS_LPABNP);
431
432         /* Statistics */
433         regs_buff[54] = adapter->stats.crcerrs;
434         regs_buff[55] = adapter->stats.algnerrc;
435         regs_buff[56] = adapter->stats.symerrs;
436         regs_buff[57] = adapter->stats.rxerrc;
437         regs_buff[58] = adapter->stats.mpc;
438         regs_buff[59] = adapter->stats.scc;
439         regs_buff[60] = adapter->stats.ecol;
440         regs_buff[61] = adapter->stats.mcc;
441         regs_buff[62] = adapter->stats.latecol;
442         regs_buff[63] = adapter->stats.colc;
443         regs_buff[64] = adapter->stats.dc;
444         regs_buff[65] = adapter->stats.tncrs;
445         regs_buff[66] = adapter->stats.sec;
446         regs_buff[67] = adapter->stats.htdpmc;
447         regs_buff[68] = adapter->stats.rlec;
448         regs_buff[69] = adapter->stats.xonrxc;
449         regs_buff[70] = adapter->stats.xontxc;
450         regs_buff[71] = adapter->stats.xoffrxc;
451         regs_buff[72] = adapter->stats.xofftxc;
452         regs_buff[73] = adapter->stats.fcruc;
453         regs_buff[74] = adapter->stats.prc64;
454         regs_buff[75] = adapter->stats.prc127;
455         regs_buff[76] = adapter->stats.prc255;
456         regs_buff[77] = adapter->stats.prc511;
457         regs_buff[78] = adapter->stats.prc1023;
458         regs_buff[79] = adapter->stats.prc1522;
459         regs_buff[80] = adapter->stats.gprc;
460         regs_buff[81] = adapter->stats.bprc;
461         regs_buff[82] = adapter->stats.mprc;
462         regs_buff[83] = adapter->stats.gptc;
463         regs_buff[84] = adapter->stats.gorc;
464         regs_buff[86] = adapter->stats.gotc;
465         regs_buff[88] = adapter->stats.rnbc;
466         regs_buff[89] = adapter->stats.ruc;
467         regs_buff[90] = adapter->stats.rfc;
468         regs_buff[91] = adapter->stats.roc;
469         regs_buff[92] = adapter->stats.rjc;
470         regs_buff[93] = adapter->stats.mgprc;
471         regs_buff[94] = adapter->stats.mgpdc;
472         regs_buff[95] = adapter->stats.mgptc;
473         regs_buff[96] = adapter->stats.tor;
474         regs_buff[98] = adapter->stats.tot;
475         regs_buff[100] = adapter->stats.tpr;
476         regs_buff[101] = adapter->stats.tpt;
477         regs_buff[102] = adapter->stats.ptc64;
478         regs_buff[103] = adapter->stats.ptc127;
479         regs_buff[104] = adapter->stats.ptc255;
480         regs_buff[105] = adapter->stats.ptc511;
481         regs_buff[106] = adapter->stats.ptc1023;
482         regs_buff[107] = adapter->stats.ptc1522;
483         regs_buff[108] = adapter->stats.mptc;
484         regs_buff[109] = adapter->stats.bptc;
485         regs_buff[110] = adapter->stats.tsctc;
486         regs_buff[111] = adapter->stats.iac;
487         regs_buff[112] = adapter->stats.rpthc;
488         regs_buff[113] = adapter->stats.hgptc;
489         regs_buff[114] = adapter->stats.hgorc;
490         regs_buff[116] = adapter->stats.hgotc;
491         regs_buff[118] = adapter->stats.lenerrs;
492         regs_buff[119] = adapter->stats.scvpc;
493         regs_buff[120] = adapter->stats.hrmpc;
494
495         /* These should probably be added to e1000_regs.h instead */
496         #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
497         #define E1000_IP4AT_REG(_i)   (0x05840 + ((_i) * 8))
498         #define E1000_IP6AT_REG(_i)   (0x05880 + ((_i) * 4))
499         #define E1000_WUPM_REG(_i)    (0x05A00 + ((_i) * 4))
500         #define E1000_FFMT_REG(_i)    (0x09000 + ((_i) * 8))
501         #define E1000_FFVT_REG(_i)    (0x09800 + ((_i) * 8))
502         #define E1000_FFLT_REG(_i)    (0x05F00 + ((_i) * 8))
503
504         for (i = 0; i < 4; i++)
505                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
506         for (i = 0; i < 4; i++)
507                 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
508         for (i = 0; i < 4; i++)
509                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
510         for (i = 0; i < 4; i++)
511                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
512         for (i = 0; i < 4; i++)
513                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
514         for (i = 0; i < 4; i++)
515                 regs_buff[141 + i] = rd32(E1000_RDH(i));
516         for (i = 0; i < 4; i++)
517                 regs_buff[145 + i] = rd32(E1000_RDT(i));
518         for (i = 0; i < 4; i++)
519                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
520
521         for (i = 0; i < 10; i++)
522                 regs_buff[153 + i] = rd32(E1000_EITR(i));
523         for (i = 0; i < 8; i++)
524                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
525         for (i = 0; i < 8; i++)
526                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
527         for (i = 0; i < 16; i++)
528                 regs_buff[179 + i] = rd32(E1000_RAL(i));
529         for (i = 0; i < 16; i++)
530                 regs_buff[195 + i] = rd32(E1000_RAH(i));
531
532         for (i = 0; i < 4; i++)
533                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
534         for (i = 0; i < 4; i++)
535                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
536         for (i = 0; i < 4; i++)
537                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
538         for (i = 0; i < 4; i++)
539                 regs_buff[223 + i] = rd32(E1000_TDH(i));
540         for (i = 0; i < 4; i++)
541                 regs_buff[227 + i] = rd32(E1000_TDT(i));
542         for (i = 0; i < 4; i++)
543                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
544         for (i = 0; i < 4; i++)
545                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
546         for (i = 0; i < 4; i++)
547                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
548         for (i = 0; i < 4; i++)
549                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
550
551         for (i = 0; i < 4; i++)
552                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
553         for (i = 0; i < 4; i++)
554                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
555         for (i = 0; i < 32; i++)
556                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
557         for (i = 0; i < 128; i++)
558                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
559         for (i = 0; i < 128; i++)
560                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
561         for (i = 0; i < 4; i++)
562                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
563
564         regs_buff[547] = rd32(E1000_TDFH);
565         regs_buff[548] = rd32(E1000_TDFT);
566         regs_buff[549] = rd32(E1000_TDFHS);
567         regs_buff[550] = rd32(E1000_TDFPC);
568
569 }
570
571 static int igb_get_eeprom_len(struct net_device *netdev)
572 {
573         struct igb_adapter *adapter = netdev_priv(netdev);
574         return adapter->hw.nvm.word_size * 2;
575 }
576
577 static int igb_get_eeprom(struct net_device *netdev,
578                           struct ethtool_eeprom *eeprom, u8 *bytes)
579 {
580         struct igb_adapter *adapter = netdev_priv(netdev);
581         struct e1000_hw *hw = &adapter->hw;
582         u16 *eeprom_buff;
583         int first_word, last_word;
584         int ret_val = 0;
585         u16 i;
586
587         if (eeprom->len == 0)
588                 return -EINVAL;
589
590         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
591
592         first_word = eeprom->offset >> 1;
593         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
594
595         eeprom_buff = kmalloc(sizeof(u16) *
596                         (last_word - first_word + 1), GFP_KERNEL);
597         if (!eeprom_buff)
598                 return -ENOMEM;
599
600         if (hw->nvm.type == e1000_nvm_eeprom_spi)
601                 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
602                                             last_word - first_word + 1,
603                                             eeprom_buff);
604         else {
605                 for (i = 0; i < last_word - first_word + 1; i++) {
606                         ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
607                                                     &eeprom_buff[i]);
608                         if (ret_val)
609                                 break;
610                 }
611         }
612
613         /* Device's eeprom is always little-endian, word addressable */
614         for (i = 0; i < last_word - first_word + 1; i++)
615                 le16_to_cpus(&eeprom_buff[i]);
616
617         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
618                         eeprom->len);
619         kfree(eeprom_buff);
620
621         return ret_val;
622 }
623
624 static int igb_set_eeprom(struct net_device *netdev,
625                           struct ethtool_eeprom *eeprom, u8 *bytes)
626 {
627         struct igb_adapter *adapter = netdev_priv(netdev);
628         struct e1000_hw *hw = &adapter->hw;
629         u16 *eeprom_buff;
630         void *ptr;
631         int max_len, first_word, last_word, ret_val = 0;
632         u16 i;
633
634         if (eeprom->len == 0)
635                 return -EOPNOTSUPP;
636
637         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
638                 return -EFAULT;
639
640         max_len = hw->nvm.word_size * 2;
641
642         first_word = eeprom->offset >> 1;
643         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
644         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
645         if (!eeprom_buff)
646                 return -ENOMEM;
647
648         ptr = (void *)eeprom_buff;
649
650         if (eeprom->offset & 1) {
651                 /* need read/modify/write of first changed EEPROM word */
652                 /* only the second byte of the word is being modified */
653                 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
654                                             &eeprom_buff[0]);
655                 ptr++;
656         }
657         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
658                 /* need read/modify/write of last changed EEPROM word */
659                 /* only the first byte of the word is being modified */
660                 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
661                                    &eeprom_buff[last_word - first_word]);
662         }
663
664         /* Device's eeprom is always little-endian, word addressable */
665         for (i = 0; i < last_word - first_word + 1; i++)
666                 le16_to_cpus(&eeprom_buff[i]);
667
668         memcpy(ptr, bytes, eeprom->len);
669
670         for (i = 0; i < last_word - first_word + 1; i++)
671                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
672
673         ret_val = hw->nvm.ops.write_nvm(hw, first_word,
674                                      last_word - first_word + 1, eeprom_buff);
675
676         /* Update the checksum over the first part of the EEPROM if needed
677          * and flush shadow RAM for 82573 controllers */
678         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
679                 igb_update_nvm_checksum(hw);
680
681         kfree(eeprom_buff);
682         return ret_val;
683 }
684
685 static void igb_get_drvinfo(struct net_device *netdev,
686                             struct ethtool_drvinfo *drvinfo)
687 {
688         struct igb_adapter *adapter = netdev_priv(netdev);
689         char firmware_version[32];
690         u16 eeprom_data;
691
692         strncpy(drvinfo->driver,  igb_driver_name, 32);
693         strncpy(drvinfo->version, igb_driver_version, 32);
694
695         /* EEPROM image version # is reported as firmware version # for
696          * 82575 controllers */
697         adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
698         sprintf(firmware_version, "%d.%d-%d",
699                 (eeprom_data & 0xF000) >> 12,
700                 (eeprom_data & 0x0FF0) >> 4,
701                 eeprom_data & 0x000F);
702
703         strncpy(drvinfo->fw_version, firmware_version, 32);
704         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
705         drvinfo->n_stats = IGB_STATS_LEN;
706         drvinfo->testinfo_len = IGB_TEST_LEN;
707         drvinfo->regdump_len = igb_get_regs_len(netdev);
708         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
709 }
710
711 static void igb_get_ringparam(struct net_device *netdev,
712                               struct ethtool_ringparam *ring)
713 {
714         struct igb_adapter *adapter = netdev_priv(netdev);
715
716         ring->rx_max_pending = IGB_MAX_RXD;
717         ring->tx_max_pending = IGB_MAX_TXD;
718         ring->rx_mini_max_pending = 0;
719         ring->rx_jumbo_max_pending = 0;
720         ring->rx_pending = adapter->rx_ring_count;
721         ring->tx_pending = adapter->tx_ring_count;
722         ring->rx_mini_pending = 0;
723         ring->rx_jumbo_pending = 0;
724 }
725
726 static int igb_set_ringparam(struct net_device *netdev,
727                              struct ethtool_ringparam *ring)
728 {
729         struct igb_adapter *adapter = netdev_priv(netdev);
730         struct igb_ring *temp_ring;
731         int i, err;
732         u32 new_rx_count, new_tx_count;
733
734         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
735                 return -EINVAL;
736
737         new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
738         new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
739         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
740
741         new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
742         new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
743         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
744
745         if ((new_tx_count == adapter->tx_ring_count) &&
746             (new_rx_count == adapter->rx_ring_count)) {
747                 /* nothing to do */
748                 return 0;
749         }
750
751         if (adapter->num_tx_queues > adapter->num_rx_queues)
752                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
753         else
754                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
755         if (!temp_ring)
756                 return -ENOMEM;
757
758         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
759                 msleep(1);
760
761         if (netif_running(adapter->netdev))
762                 igb_down(adapter);
763
764         /*
765          * We can't just free everything and then setup again,
766          * because the ISRs in MSI-X mode get passed pointers
767          * to the tx and rx ring structs.
768          */
769         if (new_tx_count != adapter->tx_ring_count) {
770                 memcpy(temp_ring, adapter->tx_ring,
771                        adapter->num_tx_queues * sizeof(struct igb_ring));
772
773                 for (i = 0; i < adapter->num_tx_queues; i++) {
774                         temp_ring[i].count = new_tx_count;
775                         err = igb_setup_tx_resources(adapter, &temp_ring[i]);
776                         if (err) {
777                                 while (i) {
778                                         i--;
779                                         igb_free_tx_resources(&temp_ring[i]);
780                                 }
781                                 goto err_setup;
782                         }
783                 }
784
785                 for (i = 0; i < adapter->num_tx_queues; i++)
786                         igb_free_tx_resources(&adapter->tx_ring[i]);
787
788                 memcpy(adapter->tx_ring, temp_ring,
789                        adapter->num_tx_queues * sizeof(struct igb_ring));
790
791                 adapter->tx_ring_count = new_tx_count;
792         }
793
794         if (new_rx_count != adapter->rx_ring->count) {
795                 memcpy(temp_ring, adapter->rx_ring,
796                        adapter->num_rx_queues * sizeof(struct igb_ring));
797
798                 for (i = 0; i < adapter->num_rx_queues; i++) {
799                         temp_ring[i].count = new_rx_count;
800                         err = igb_setup_rx_resources(adapter, &temp_ring[i]);
801                         if (err) {
802                                 while (i) {
803                                         i--;
804                                         igb_free_rx_resources(&temp_ring[i]);
805                                 }
806                                 goto err_setup;
807                         }
808
809                 }
810
811                 for (i = 0; i < adapter->num_rx_queues; i++)
812                         igb_free_rx_resources(&adapter->rx_ring[i]);
813
814                 memcpy(adapter->rx_ring, temp_ring,
815                        adapter->num_rx_queues * sizeof(struct igb_ring));
816
817                 adapter->rx_ring_count = new_rx_count;
818         }
819
820         err = 0;
821 err_setup:
822         if (netif_running(adapter->netdev))
823                 igb_up(adapter);
824
825         clear_bit(__IGB_RESETTING, &adapter->state);
826         vfree(temp_ring);
827         return err;
828 }
829
830 /* ethtool register test data */
831 struct igb_reg_test {
832         u16 reg;
833         u16 reg_offset;
834         u16 array_len;
835         u16 test_type;
836         u32 mask;
837         u32 write;
838 };
839
840 /* In the hardware, registers are laid out either singly, in arrays
841  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
842  * most tests take place on arrays or single registers (handled
843  * as a single-element array) and special-case the tables.
844  * Table tests are always pattern tests.
845  *
846  * We also make provision for some required setup steps by specifying
847  * registers to be written without any read-back testing.
848  */
849
850 #define PATTERN_TEST    1
851 #define SET_READ_TEST   2
852 #define WRITE_NO_TEST   3
853 #define TABLE32_TEST    4
854 #define TABLE64_TEST_LO 5
855 #define TABLE64_TEST_HI 6
856
857 /* 82576 reg test */
858 static struct igb_reg_test reg_test_82576[] = {
859         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
860         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
861         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
862         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
863         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
864         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
865         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
866         { E1000_RDBAL(4),  0x40,  8, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
867         { E1000_RDBAH(4),  0x40,  8, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
868         { E1000_RDLEN(4),  0x40,  8, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
869         /* Enable all four RX queues before testing. */
870         { E1000_RXDCTL(0), 0x100, 1,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
871         /* RDH is read-only for 82576, only test RDT. */
872         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
873         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
874         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
875         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
876         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
877         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
878         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
879         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
880         { E1000_TDBAL(4),  0x40, 8,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
881         { E1000_TDBAH(4),  0x40, 8,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
882         { E1000_TDLEN(4),  0x40, 8,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
883         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
884         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
885         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
886         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
887         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
888         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
889         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
890         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
891         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
892         { 0, 0, 0, 0 }
893 };
894
895 /* 82575 register test */
896 static struct igb_reg_test reg_test_82575[] = {
897         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
898         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
899         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
900         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
901         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
902         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
904         /* Enable all four RX queues before testing. */
905         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
906         /* RDH is read-only for 82575, only test RDT. */
907         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
908         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
909         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
910         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
911         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
912         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
913         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
914         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
915         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
916         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
917         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
918         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
919         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
920         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
921         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
922         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
923         { 0, 0, 0, 0 }
924 };
925
926 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
927                              int reg, u32 mask, u32 write)
928 {
929         u32 pat, val;
930         u32 _test[] =
931                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
932         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
933                 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
934                 val = readl(adapter->hw.hw_addr + reg);
935                 if (val != (_test[pat] & write & mask)) {
936                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
937                                 "failed: got 0x%08X expected 0x%08X\n",
938                                 reg, val, (_test[pat] & write & mask));
939                         *data = reg;
940                         return 1;
941                 }
942         }
943         return 0;
944 }
945
946 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
947                               int reg, u32 mask, u32 write)
948 {
949         u32 val;
950         writel((write & mask), (adapter->hw.hw_addr + reg));
951         val = readl(adapter->hw.hw_addr + reg);
952         if ((write & mask) != (val & mask)) {
953                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
954                         " got 0x%08X expected 0x%08X\n", reg,
955                         (val & mask), (write & mask));
956                 *data = reg;
957                 return 1;
958         }
959         return 0;
960 }
961
962 #define REG_PATTERN_TEST(reg, mask, write) \
963         do { \
964                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
965                         return 1; \
966         } while (0)
967
968 #define REG_SET_AND_CHECK(reg, mask, write) \
969         do { \
970                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
971                         return 1; \
972         } while (0)
973
974 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
975 {
976         struct e1000_hw *hw = &adapter->hw;
977         struct igb_reg_test *test;
978         u32 value, before, after;
979         u32 i, toggle;
980
981         toggle = 0x7FFFF3FF;
982
983         switch (adapter->hw.mac.type) {
984         case e1000_82576:
985                 test = reg_test_82576;
986                 break;
987         default:
988                 test = reg_test_82575;
989                 break;
990         }
991
992         /* Because the status register is such a special case,
993          * we handle it separately from the rest of the register
994          * tests.  Some bits are read-only, some toggle, and some
995          * are writable on newer MACs.
996          */
997         before = rd32(E1000_STATUS);
998         value = (rd32(E1000_STATUS) & toggle);
999         wr32(E1000_STATUS, toggle);
1000         after = rd32(E1000_STATUS) & toggle;
1001         if (value != after) {
1002                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1003                         "got: 0x%08X expected: 0x%08X\n", after, value);
1004                 *data = 1;
1005                 return 1;
1006         }
1007         /* restore previous status */
1008         wr32(E1000_STATUS, before);
1009
1010         /* Perform the remainder of the register test, looping through
1011          * the test table until we either fail or reach the null entry.
1012          */
1013         while (test->reg) {
1014                 for (i = 0; i < test->array_len; i++) {
1015                         switch (test->test_type) {
1016                         case PATTERN_TEST:
1017                                 REG_PATTERN_TEST(test->reg + (i * test->reg_offset),
1018                                                 test->mask,
1019                                                 test->write);
1020                                 break;
1021                         case SET_READ_TEST:
1022                                 REG_SET_AND_CHECK(test->reg + (i * test->reg_offset),
1023                                                 test->mask,
1024                                                 test->write);
1025                                 break;
1026                         case WRITE_NO_TEST:
1027                                 writel(test->write,
1028                                     (adapter->hw.hw_addr + test->reg)
1029                                         + (i * test->reg_offset));
1030                                 break;
1031                         case TABLE32_TEST:
1032                                 REG_PATTERN_TEST(test->reg + (i * 4),
1033                                                 test->mask,
1034                                                 test->write);
1035                                 break;
1036                         case TABLE64_TEST_LO:
1037                                 REG_PATTERN_TEST(test->reg + (i * 8),
1038                                                 test->mask,
1039                                                 test->write);
1040                                 break;
1041                         case TABLE64_TEST_HI:
1042                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1043                                                 test->mask,
1044                                                 test->write);
1045                                 break;
1046                         }
1047                 }
1048                 test++;
1049         }
1050
1051         *data = 0;
1052         return 0;
1053 }
1054
1055 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1056 {
1057         u16 temp;
1058         u16 checksum = 0;
1059         u16 i;
1060
1061         *data = 0;
1062         /* Read and add up the contents of the EEPROM */
1063         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1064                 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1065                     < 0) {
1066                         *data = 1;
1067                         break;
1068                 }
1069                 checksum += temp;
1070         }
1071
1072         /* If Checksum is not Correct return error else test passed */
1073         if ((checksum != (u16) NVM_SUM) && !(*data))
1074                 *data = 2;
1075
1076         return *data;
1077 }
1078
1079 static irqreturn_t igb_test_intr(int irq, void *data)
1080 {
1081         struct net_device *netdev = (struct net_device *) data;
1082         struct igb_adapter *adapter = netdev_priv(netdev);
1083         struct e1000_hw *hw = &adapter->hw;
1084
1085         adapter->test_icr |= rd32(E1000_ICR);
1086
1087         return IRQ_HANDLED;
1088 }
1089
1090 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1091 {
1092         struct e1000_hw *hw = &adapter->hw;
1093         struct net_device *netdev = adapter->netdev;
1094         u32 mask, i = 0, shared_int = true;
1095         u32 irq = adapter->pdev->irq;
1096
1097         *data = 0;
1098
1099         /* Hook up test interrupt handler just for this test */
1100         if (adapter->msix_entries) {
1101                 /* NOTE: we don't test MSI-X interrupts here, yet */
1102                 return 0;
1103         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1104                 shared_int = false;
1105                 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1106                         *data = 1;
1107                         return -1;
1108                 }
1109         } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1110                                 netdev->name, netdev)) {
1111                 shared_int = false;
1112         } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1113                  netdev->name, netdev)) {
1114                 *data = 1;
1115                 return -1;
1116         }
1117         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1118                 (shared_int ? "shared" : "unshared"));
1119
1120         /* Disable all the interrupts */
1121         wr32(E1000_IMC, 0xFFFFFFFF);
1122         msleep(10);
1123
1124         /* Test each interrupt */
1125         for (; i < 10; i++) {
1126                 /* Interrupt to test */
1127                 mask = 1 << i;
1128
1129                 if (!shared_int) {
1130                         /* Disable the interrupt to be reported in
1131                          * the cause register and then force the same
1132                          * interrupt and see if one gets posted.  If
1133                          * an interrupt was posted to the bus, the
1134                          * test failed.
1135                          */
1136                         adapter->test_icr = 0;
1137                         wr32(E1000_IMC, ~mask & 0x00007FFF);
1138                         wr32(E1000_ICS, ~mask & 0x00007FFF);
1139                         msleep(10);
1140
1141                         if (adapter->test_icr & mask) {
1142                                 *data = 3;
1143                                 break;
1144                         }
1145                 }
1146
1147                 /* Enable the interrupt to be reported in
1148                  * the cause register and then force the same
1149                  * interrupt and see if one gets posted.  If
1150                  * an interrupt was not posted to the bus, the
1151                  * test failed.
1152                  */
1153                 adapter->test_icr = 0;
1154                 wr32(E1000_IMS, mask);
1155                 wr32(E1000_ICS, mask);
1156                 msleep(10);
1157
1158                 if (!(adapter->test_icr & mask)) {
1159                         *data = 4;
1160                         break;
1161                 }
1162
1163                 if (!shared_int) {
1164                         /* Disable the other interrupts to be reported in
1165                          * the cause register and then force the other
1166                          * interrupts and see if any get posted.  If
1167                          * an interrupt was posted to the bus, the
1168                          * test failed.
1169                          */
1170                         adapter->test_icr = 0;
1171                         wr32(E1000_IMC, ~mask & 0x00007FFF);
1172                         wr32(E1000_ICS, ~mask & 0x00007FFF);
1173                         msleep(10);
1174
1175                         if (adapter->test_icr) {
1176                                 *data = 5;
1177                                 break;
1178                         }
1179                 }
1180         }
1181
1182         /* Disable all the interrupts */
1183         wr32(E1000_IMC, 0xFFFFFFFF);
1184         msleep(10);
1185
1186         /* Unhook test interrupt handler */
1187         free_irq(irq, netdev);
1188
1189         return *data;
1190 }
1191
1192 static void igb_free_desc_rings(struct igb_adapter *adapter)
1193 {
1194         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1195         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1196         struct pci_dev *pdev = adapter->pdev;
1197         int i;
1198
1199         if (tx_ring->desc && tx_ring->buffer_info) {
1200                 for (i = 0; i < tx_ring->count; i++) {
1201                         struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1202                         if (buf->dma)
1203                                 pci_unmap_single(pdev, buf->dma, buf->length,
1204                                                  PCI_DMA_TODEVICE);
1205                         if (buf->skb)
1206                                 dev_kfree_skb(buf->skb);
1207                 }
1208         }
1209
1210         if (rx_ring->desc && rx_ring->buffer_info) {
1211                 for (i = 0; i < rx_ring->count; i++) {
1212                         struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1213                         if (buf->dma)
1214                                 pci_unmap_single(pdev, buf->dma,
1215                                                  IGB_RXBUFFER_2048,
1216                                                  PCI_DMA_FROMDEVICE);
1217                         if (buf->skb)
1218                                 dev_kfree_skb(buf->skb);
1219                 }
1220         }
1221
1222         if (tx_ring->desc) {
1223                 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1224                                     tx_ring->dma);
1225                 tx_ring->desc = NULL;
1226         }
1227         if (rx_ring->desc) {
1228                 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1229                                     rx_ring->dma);
1230                 rx_ring->desc = NULL;
1231         }
1232
1233         kfree(tx_ring->buffer_info);
1234         tx_ring->buffer_info = NULL;
1235         kfree(rx_ring->buffer_info);
1236         rx_ring->buffer_info = NULL;
1237
1238         return;
1239 }
1240
1241 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1242 {
1243         struct e1000_hw *hw = &adapter->hw;
1244         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1245         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1246         struct pci_dev *pdev = adapter->pdev;
1247         u32 rctl;
1248         int i, ret_val;
1249
1250         /* Setup Tx descriptor ring and Tx buffers */
1251
1252         if (!tx_ring->count)
1253                 tx_ring->count = IGB_DEFAULT_TXD;
1254
1255         tx_ring->buffer_info = kcalloc(tx_ring->count,
1256                                        sizeof(struct igb_buffer),
1257                                        GFP_KERNEL);
1258         if (!tx_ring->buffer_info) {
1259                 ret_val = 1;
1260                 goto err_nomem;
1261         }
1262
1263         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1264         tx_ring->size = ALIGN(tx_ring->size, 4096);
1265         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1266                                              &tx_ring->dma);
1267         if (!tx_ring->desc) {
1268                 ret_val = 2;
1269                 goto err_nomem;
1270         }
1271         tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1272
1273         wr32(E1000_TDBAL(0),
1274                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1275         wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1276         wr32(E1000_TDLEN(0),
1277                         tx_ring->count * sizeof(struct e1000_tx_desc));
1278         wr32(E1000_TDH(0), 0);
1279         wr32(E1000_TDT(0), 0);
1280         wr32(E1000_TCTL,
1281                         E1000_TCTL_PSP | E1000_TCTL_EN |
1282                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1283                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1284
1285         for (i = 0; i < tx_ring->count; i++) {
1286                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1287                 struct sk_buff *skb;
1288                 unsigned int size = 1024;
1289
1290                 skb = alloc_skb(size, GFP_KERNEL);
1291                 if (!skb) {
1292                         ret_val = 3;
1293                         goto err_nomem;
1294                 }
1295                 skb_put(skb, size);
1296                 tx_ring->buffer_info[i].skb = skb;
1297                 tx_ring->buffer_info[i].length = skb->len;
1298                 tx_ring->buffer_info[i].dma =
1299                         pci_map_single(pdev, skb->data, skb->len,
1300                                        PCI_DMA_TODEVICE);
1301                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1302                 tx_desc->lower.data = cpu_to_le32(skb->len);
1303                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1304                                                    E1000_TXD_CMD_IFCS |
1305                                                    E1000_TXD_CMD_RS);
1306                 tx_desc->upper.data = 0;
1307         }
1308
1309         /* Setup Rx descriptor ring and Rx buffers */
1310
1311         if (!rx_ring->count)
1312                 rx_ring->count = IGB_DEFAULT_RXD;
1313
1314         rx_ring->buffer_info = kcalloc(rx_ring->count,
1315                                        sizeof(struct igb_buffer),
1316                                        GFP_KERNEL);
1317         if (!rx_ring->buffer_info) {
1318                 ret_val = 4;
1319                 goto err_nomem;
1320         }
1321
1322         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1323         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1324                                              &rx_ring->dma);
1325         if (!rx_ring->desc) {
1326                 ret_val = 5;
1327                 goto err_nomem;
1328         }
1329         rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1330
1331         rctl = rd32(E1000_RCTL);
1332         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1333         wr32(E1000_RDBAL(0),
1334                         ((u64) rx_ring->dma & 0xFFFFFFFF));
1335         wr32(E1000_RDBAH(0),
1336                         ((u64) rx_ring->dma >> 32));
1337         wr32(E1000_RDLEN(0), rx_ring->size);
1338         wr32(E1000_RDH(0), 0);
1339         wr32(E1000_RDT(0), 0);
1340         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1341         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1342                 E1000_RCTL_RDMTS_HALF |
1343                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1344         wr32(E1000_RCTL, rctl);
1345         wr32(E1000_SRRCTL(0), 0);
1346
1347         for (i = 0; i < rx_ring->count; i++) {
1348                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1349                 struct sk_buff *skb;
1350
1351                 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1352                                 GFP_KERNEL);
1353                 if (!skb) {
1354                         ret_val = 6;
1355                         goto err_nomem;
1356                 }
1357                 skb_reserve(skb, NET_IP_ALIGN);
1358                 rx_ring->buffer_info[i].skb = skb;
1359                 rx_ring->buffer_info[i].dma =
1360                         pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1361                                        PCI_DMA_FROMDEVICE);
1362                 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1363                 memset(skb->data, 0x00, skb->len);
1364         }
1365
1366         return 0;
1367
1368 err_nomem:
1369         igb_free_desc_rings(adapter);
1370         return ret_val;
1371 }
1372
1373 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1374 {
1375         struct e1000_hw *hw = &adapter->hw;
1376
1377         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1378         igb_write_phy_reg(hw, 29, 0x001F);
1379         igb_write_phy_reg(hw, 30, 0x8FFC);
1380         igb_write_phy_reg(hw, 29, 0x001A);
1381         igb_write_phy_reg(hw, 30, 0x8FF0);
1382 }
1383
1384 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1385 {
1386         struct e1000_hw *hw = &adapter->hw;
1387         u32 ctrl_reg = 0;
1388         u32 stat_reg = 0;
1389
1390         hw->mac.autoneg = false;
1391
1392         if (hw->phy.type == e1000_phy_m88) {
1393                 /* Auto-MDI/MDIX Off */
1394                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1395                 /* reset to update Auto-MDI/MDIX */
1396                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1397                 /* autoneg off */
1398                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1399         }
1400
1401         ctrl_reg = rd32(E1000_CTRL);
1402
1403         /* force 1000, set loopback */
1404         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1405
1406         /* Now set up the MAC to the same speed/duplex as the PHY. */
1407         ctrl_reg = rd32(E1000_CTRL);
1408         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1409         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1410                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1411                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1412                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1413
1414         if (hw->phy.media_type == e1000_media_type_copper &&
1415             hw->phy.type == e1000_phy_m88)
1416                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1417         else {
1418                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1419                  * detected. */
1420                 stat_reg = rd32(E1000_STATUS);
1421                 if ((stat_reg & E1000_STATUS_FD) == 0)
1422                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1423         }
1424
1425         wr32(E1000_CTRL, ctrl_reg);
1426
1427         /* Disable the receiver on the PHY so when a cable is plugged in, the
1428          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1429          */
1430         if (hw->phy.type == e1000_phy_m88)
1431                 igb_phy_disable_receiver(adapter);
1432
1433         udelay(500);
1434
1435         return 0;
1436 }
1437
1438 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1439 {
1440         return igb_integrated_phy_loopback(adapter);
1441 }
1442
1443 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1444 {
1445         struct e1000_hw *hw = &adapter->hw;
1446         u32 reg;
1447
1448         if (hw->phy.media_type == e1000_media_type_fiber ||
1449             hw->phy.media_type == e1000_media_type_internal_serdes) {
1450                 reg = rd32(E1000_RCTL);
1451                 reg |= E1000_RCTL_LBM_TCVR;
1452                 wr32(E1000_RCTL, reg);
1453
1454                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1455
1456                 reg = rd32(E1000_CTRL);
1457                 reg &= ~(E1000_CTRL_RFCE |
1458                          E1000_CTRL_TFCE |
1459                          E1000_CTRL_LRST);
1460                 reg |= E1000_CTRL_SLU |
1461                        E1000_CTRL_FD; 
1462                 wr32(E1000_CTRL, reg);
1463
1464                 /* Unset switch control to serdes energy detect */
1465                 reg = rd32(E1000_CONNSW);
1466                 reg &= ~E1000_CONNSW_ENRGSRC;
1467                 wr32(E1000_CONNSW, reg);
1468
1469                 /* Set PCS register for forced speed */
1470                 reg = rd32(E1000_PCS_LCTL);
1471                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1472                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1473                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1474                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1475                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1476                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1477                 wr32(E1000_PCS_LCTL, reg);
1478
1479                 return 0;
1480         } else if (hw->phy.media_type == e1000_media_type_copper) {
1481                 return igb_set_phy_loopback(adapter);
1482         }
1483
1484         return 7;
1485 }
1486
1487 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1488 {
1489         struct e1000_hw *hw = &adapter->hw;
1490         u32 rctl;
1491         u16 phy_reg;
1492
1493         rctl = rd32(E1000_RCTL);
1494         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1495         wr32(E1000_RCTL, rctl);
1496
1497         hw->mac.autoneg = true;
1498         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1499         if (phy_reg & MII_CR_LOOPBACK) {
1500                 phy_reg &= ~MII_CR_LOOPBACK;
1501                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1502                 igb_phy_sw_reset(hw);
1503         }
1504 }
1505
1506 static void igb_create_lbtest_frame(struct sk_buff *skb,
1507                                     unsigned int frame_size)
1508 {
1509         memset(skb->data, 0xFF, frame_size);
1510         frame_size &= ~1;
1511         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1512         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1513         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1514 }
1515
1516 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1517 {
1518         frame_size &= ~1;
1519         if (*(skb->data + 3) == 0xFF)
1520                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1521                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1522                         return 0;
1523         return 13;
1524 }
1525
1526 static int igb_run_loopback_test(struct igb_adapter *adapter)
1527 {
1528         struct e1000_hw *hw = &adapter->hw;
1529         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1530         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1531         struct pci_dev *pdev = adapter->pdev;
1532         int i, j, k, l, lc, good_cnt;
1533         int ret_val = 0;
1534         unsigned long time;
1535
1536         wr32(E1000_RDT(0), rx_ring->count - 1);
1537
1538         /* Calculate the loop count based on the largest descriptor ring
1539          * The idea is to wrap the largest ring a number of times using 64
1540          * send/receive pairs during each loop
1541          */
1542
1543         if (rx_ring->count <= tx_ring->count)
1544                 lc = ((tx_ring->count / 64) * 2) + 1;
1545         else
1546                 lc = ((rx_ring->count / 64) * 2) + 1;
1547
1548         k = l = 0;
1549         for (j = 0; j <= lc; j++) { /* loop count loop */
1550                 for (i = 0; i < 64; i++) { /* send the packets */
1551                         igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1552                                                 1024);
1553                         pci_dma_sync_single_for_device(pdev,
1554                                 tx_ring->buffer_info[k].dma,
1555                                 tx_ring->buffer_info[k].length,
1556                                 PCI_DMA_TODEVICE);
1557                         k++;
1558                         if (k == tx_ring->count)
1559                                 k = 0;
1560                 }
1561                 wr32(E1000_TDT(0), k);
1562                 msleep(200);
1563                 time = jiffies; /* set the start time for the receive */
1564                 good_cnt = 0;
1565                 do { /* receive the sent packets */
1566                         pci_dma_sync_single_for_cpu(pdev,
1567                                         rx_ring->buffer_info[l].dma,
1568                                         IGB_RXBUFFER_2048,
1569                                         PCI_DMA_FROMDEVICE);
1570
1571                         ret_val = igb_check_lbtest_frame(
1572                                              rx_ring->buffer_info[l].skb, 1024);
1573                         if (!ret_val)
1574                                 good_cnt++;
1575                         l++;
1576                         if (l == rx_ring->count)
1577                                 l = 0;
1578                         /* time + 20 msecs (200 msecs on 2.4) is more than
1579                          * enough time to complete the receives, if it's
1580                          * exceeded, break and error off
1581                          */
1582                 } while (good_cnt < 64 && jiffies < (time + 20));
1583                 if (good_cnt != 64) {
1584                         ret_val = 13; /* ret_val is the same as mis-compare */
1585                         break;
1586                 }
1587                 if (jiffies >= (time + 20)) {
1588                         ret_val = 14; /* error code for time out error */
1589                         break;
1590                 }
1591         } /* end loop count loop */
1592         return ret_val;
1593 }
1594
1595 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1596 {
1597         /* PHY loopback cannot be performed if SoL/IDER
1598          * sessions are active */
1599         if (igb_check_reset_block(&adapter->hw)) {
1600                 dev_err(&adapter->pdev->dev,
1601                         "Cannot do PHY loopback test "
1602                         "when SoL/IDER is active.\n");
1603                 *data = 0;
1604                 goto out;
1605         }
1606         *data = igb_setup_desc_rings(adapter);
1607         if (*data)
1608                 goto out;
1609         *data = igb_setup_loopback_test(adapter);
1610         if (*data)
1611                 goto err_loopback;
1612         *data = igb_run_loopback_test(adapter);
1613         igb_loopback_cleanup(adapter);
1614
1615 err_loopback:
1616         igb_free_desc_rings(adapter);
1617 out:
1618         return *data;
1619 }
1620
1621 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1622 {
1623         struct e1000_hw *hw = &adapter->hw;
1624         *data = 0;
1625         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1626                 int i = 0;
1627                 hw->mac.serdes_has_link = false;
1628
1629                 /* On some blade server designs, link establishment
1630                  * could take as long as 2-3 minutes */
1631                 do {
1632                         hw->mac.ops.check_for_link(&adapter->hw);
1633                         if (hw->mac.serdes_has_link)
1634                                 return *data;
1635                         msleep(20);
1636                 } while (i++ < 3750);
1637
1638                 *data = 1;
1639         } else {
1640                 hw->mac.ops.check_for_link(&adapter->hw);
1641                 if (hw->mac.autoneg)
1642                         msleep(4000);
1643
1644                 if (!(rd32(E1000_STATUS) &
1645                       E1000_STATUS_LU))
1646                         *data = 1;
1647         }
1648         return *data;
1649 }
1650
1651 static void igb_diag_test(struct net_device *netdev,
1652                           struct ethtool_test *eth_test, u64 *data)
1653 {
1654         struct igb_adapter *adapter = netdev_priv(netdev);
1655         u16 autoneg_advertised;
1656         u8 forced_speed_duplex, autoneg;
1657         bool if_running = netif_running(netdev);
1658
1659         set_bit(__IGB_TESTING, &adapter->state);
1660         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1661                 /* Offline tests */
1662
1663                 /* save speed, duplex, autoneg settings */
1664                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1665                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1666                 autoneg = adapter->hw.mac.autoneg;
1667
1668                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1669
1670                 /* Link test performed before hardware reset so autoneg doesn't
1671                  * interfere with test result */
1672                 if (igb_link_test(adapter, &data[4]))
1673                         eth_test->flags |= ETH_TEST_FL_FAILED;
1674
1675                 if (if_running)
1676                         /* indicate we're in test mode */
1677                         dev_close(netdev);
1678                 else
1679                         igb_reset(adapter);
1680
1681                 if (igb_reg_test(adapter, &data[0]))
1682                         eth_test->flags |= ETH_TEST_FL_FAILED;
1683
1684                 igb_reset(adapter);
1685                 if (igb_eeprom_test(adapter, &data[1]))
1686                         eth_test->flags |= ETH_TEST_FL_FAILED;
1687
1688                 igb_reset(adapter);
1689                 if (igb_intr_test(adapter, &data[2]))
1690                         eth_test->flags |= ETH_TEST_FL_FAILED;
1691
1692                 igb_reset(adapter);
1693                 if (igb_loopback_test(adapter, &data[3]))
1694                         eth_test->flags |= ETH_TEST_FL_FAILED;
1695
1696                 /* restore speed, duplex, autoneg settings */
1697                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1698                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1699                 adapter->hw.mac.autoneg = autoneg;
1700
1701                 /* force this routine to wait until autoneg complete/timeout */
1702                 adapter->hw.phy.autoneg_wait_to_complete = true;
1703                 igb_reset(adapter);
1704                 adapter->hw.phy.autoneg_wait_to_complete = false;
1705
1706                 clear_bit(__IGB_TESTING, &adapter->state);
1707                 if (if_running)
1708                         dev_open(netdev);
1709         } else {
1710                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1711                 /* Online tests */
1712                 if (igb_link_test(adapter, &data[4]))
1713                         eth_test->flags |= ETH_TEST_FL_FAILED;
1714
1715                 /* Online tests aren't run; pass by default */
1716                 data[0] = 0;
1717                 data[1] = 0;
1718                 data[2] = 0;
1719                 data[3] = 0;
1720
1721                 clear_bit(__IGB_TESTING, &adapter->state);
1722         }
1723         msleep_interruptible(4 * 1000);
1724 }
1725
1726 static int igb_wol_exclusion(struct igb_adapter *adapter,
1727                              struct ethtool_wolinfo *wol)
1728 {
1729         struct e1000_hw *hw = &adapter->hw;
1730         int retval = 1; /* fail by default */
1731
1732         switch (hw->device_id) {
1733         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1734                 /* WoL not supported */
1735                 wol->supported = 0;
1736                 break;
1737         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1738         case E1000_DEV_ID_82576_FIBER:
1739         case E1000_DEV_ID_82576_SERDES:
1740                 /* Wake events not supported on port B */
1741                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1742                         wol->supported = 0;
1743                         break;
1744                 }
1745                 /* return success for non excluded adapter ports */
1746                 retval = 0;
1747                 break;
1748         default:
1749                 /* dual port cards only support WoL on port A from now on
1750                  * unless it was enabled in the eeprom for port B
1751                  * so exclude FUNC_1 ports from having WoL enabled */
1752                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1753                     !adapter->eeprom_wol) {
1754                         wol->supported = 0;
1755                         break;
1756                 }
1757
1758                 retval = 0;
1759         }
1760
1761         return retval;
1762 }
1763
1764 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1765 {
1766         struct igb_adapter *adapter = netdev_priv(netdev);
1767
1768         wol->supported = WAKE_UCAST | WAKE_MCAST |
1769                          WAKE_BCAST | WAKE_MAGIC;
1770         wol->wolopts = 0;
1771
1772         /* this function will set ->supported = 0 and return 1 if wol is not
1773          * supported by this hardware */
1774         if (igb_wol_exclusion(adapter, wol) ||
1775             !device_can_wakeup(&adapter->pdev->dev))
1776                 return;
1777
1778         /* apply any specific unsupported masks here */
1779         switch (adapter->hw.device_id) {
1780         default:
1781                 break;
1782         }
1783
1784         if (adapter->wol & E1000_WUFC_EX)
1785                 wol->wolopts |= WAKE_UCAST;
1786         if (adapter->wol & E1000_WUFC_MC)
1787                 wol->wolopts |= WAKE_MCAST;
1788         if (adapter->wol & E1000_WUFC_BC)
1789                 wol->wolopts |= WAKE_BCAST;
1790         if (adapter->wol & E1000_WUFC_MAG)
1791                 wol->wolopts |= WAKE_MAGIC;
1792
1793         return;
1794 }
1795
1796 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1797 {
1798         struct igb_adapter *adapter = netdev_priv(netdev);
1799         struct e1000_hw *hw = &adapter->hw;
1800
1801         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1802                 return -EOPNOTSUPP;
1803
1804         if (igb_wol_exclusion(adapter, wol) ||
1805             !device_can_wakeup(&adapter->pdev->dev))
1806                 return wol->wolopts ? -EOPNOTSUPP : 0;
1807
1808         switch (hw->device_id) {
1809         default:
1810                 break;
1811         }
1812
1813         /* these settings will always override what we currently have */
1814         adapter->wol = 0;
1815
1816         if (wol->wolopts & WAKE_UCAST)
1817                 adapter->wol |= E1000_WUFC_EX;
1818         if (wol->wolopts & WAKE_MCAST)
1819                 adapter->wol |= E1000_WUFC_MC;
1820         if (wol->wolopts & WAKE_BCAST)
1821                 adapter->wol |= E1000_WUFC_BC;
1822         if (wol->wolopts & WAKE_MAGIC)
1823                 adapter->wol |= E1000_WUFC_MAG;
1824
1825         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1826
1827         return 0;
1828 }
1829
1830 /* toggle LED 4 times per second = 2 "blinks" per second */
1831 #define IGB_ID_INTERVAL         (HZ/4)
1832
1833 /* bit defines for adapter->led_status */
1834 #define IGB_LED_ON              0
1835
1836 static int igb_phys_id(struct net_device *netdev, u32 data)
1837 {
1838         struct igb_adapter *adapter = netdev_priv(netdev);
1839         struct e1000_hw *hw = &adapter->hw;
1840
1841         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1842                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1843
1844         igb_blink_led(hw);
1845         msleep_interruptible(data * 1000);
1846
1847         igb_led_off(hw);
1848         clear_bit(IGB_LED_ON, &adapter->led_status);
1849         igb_cleanup_led(hw);
1850
1851         return 0;
1852 }
1853
1854 static int igb_set_coalesce(struct net_device *netdev,
1855                             struct ethtool_coalesce *ec)
1856 {
1857         struct igb_adapter *adapter = netdev_priv(netdev);
1858         struct e1000_hw *hw = &adapter->hw;
1859         int i;
1860
1861         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1862             ((ec->rx_coalesce_usecs > 3) &&
1863              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1864             (ec->rx_coalesce_usecs == 2))
1865                 return -EINVAL;
1866
1867         /* convert to rate of irq's per second */
1868         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1869                 adapter->itr_setting = ec->rx_coalesce_usecs;
1870                 adapter->itr = IGB_START_ITR;
1871         } else {
1872                 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1873                 adapter->itr = adapter->itr_setting;
1874         }
1875
1876         for (i = 0; i < adapter->num_rx_queues; i++)
1877                 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1878
1879         return 0;
1880 }
1881
1882 static int igb_get_coalesce(struct net_device *netdev,
1883                             struct ethtool_coalesce *ec)
1884 {
1885         struct igb_adapter *adapter = netdev_priv(netdev);
1886
1887         if (adapter->itr_setting <= 3)
1888                 ec->rx_coalesce_usecs = adapter->itr_setting;
1889         else
1890                 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1891
1892         return 0;
1893 }
1894
1895
1896 static int igb_nway_reset(struct net_device *netdev)
1897 {
1898         struct igb_adapter *adapter = netdev_priv(netdev);
1899         if (netif_running(netdev))
1900                 igb_reinit_locked(adapter);
1901         return 0;
1902 }
1903
1904 static int igb_get_sset_count(struct net_device *netdev, int sset)
1905 {
1906         switch (sset) {
1907         case ETH_SS_STATS:
1908                 return IGB_STATS_LEN;
1909         case ETH_SS_TEST:
1910                 return IGB_TEST_LEN;
1911         default:
1912                 return -ENOTSUPP;
1913         }
1914 }
1915
1916 static void igb_get_ethtool_stats(struct net_device *netdev,
1917                                   struct ethtool_stats *stats, u64 *data)
1918 {
1919         struct igb_adapter *adapter = netdev_priv(netdev);
1920         u64 *queue_stat;
1921         int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1922         int j;
1923         int i;
1924 #ifdef CONFIG_IGB_LRO
1925         int aggregated = 0, flushed = 0, no_desc = 0;
1926
1927         for (i = 0; i < adapter->num_rx_queues; i++) {
1928                 aggregated += adapter->rx_ring[i].lro_mgr.stats.aggregated;
1929                 flushed += adapter->rx_ring[i].lro_mgr.stats.flushed;
1930                 no_desc += adapter->rx_ring[i].lro_mgr.stats.no_desc;
1931         }
1932         adapter->lro_aggregated = aggregated;
1933         adapter->lro_flushed = flushed;
1934         adapter->lro_no_desc = no_desc;
1935 #endif
1936
1937         igb_update_stats(adapter);
1938         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1939                 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1940                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1941                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1942         }
1943         for (j = 0; j < adapter->num_tx_queues; j++) {
1944                 int k;
1945                 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1946                 for (k = 0; k < stat_count; k++)
1947                         data[i + k] = queue_stat[k];
1948                 i += k;
1949         }
1950         for (j = 0; j < adapter->num_rx_queues; j++) {
1951                 int k;
1952                 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1953                 for (k = 0; k < stat_count; k++)
1954                         data[i + k] = queue_stat[k];
1955                 i += k;
1956         }
1957 }
1958
1959 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1960 {
1961         struct igb_adapter *adapter = netdev_priv(netdev);
1962         u8 *p = data;
1963         int i;
1964
1965         switch (stringset) {
1966         case ETH_SS_TEST:
1967                 memcpy(data, *igb_gstrings_test,
1968                         IGB_TEST_LEN*ETH_GSTRING_LEN);
1969                 break;
1970         case ETH_SS_STATS:
1971                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1972                         memcpy(p, igb_gstrings_stats[i].stat_string,
1973                                ETH_GSTRING_LEN);
1974                         p += ETH_GSTRING_LEN;
1975                 }
1976                 for (i = 0; i < adapter->num_tx_queues; i++) {
1977                         sprintf(p, "tx_queue_%u_packets", i);
1978                         p += ETH_GSTRING_LEN;
1979                         sprintf(p, "tx_queue_%u_bytes", i);
1980                         p += ETH_GSTRING_LEN;
1981                 }
1982                 for (i = 0; i < adapter->num_rx_queues; i++) {
1983                         sprintf(p, "rx_queue_%u_packets", i);
1984                         p += ETH_GSTRING_LEN;
1985                         sprintf(p, "rx_queue_%u_bytes", i);
1986                         p += ETH_GSTRING_LEN;
1987                 }
1988 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1989                 break;
1990         }
1991 }
1992
1993 static struct ethtool_ops igb_ethtool_ops = {
1994         .get_settings           = igb_get_settings,
1995         .set_settings           = igb_set_settings,
1996         .get_drvinfo            = igb_get_drvinfo,
1997         .get_regs_len           = igb_get_regs_len,
1998         .get_regs               = igb_get_regs,
1999         .get_wol                = igb_get_wol,
2000         .set_wol                = igb_set_wol,
2001         .get_msglevel           = igb_get_msglevel,
2002         .set_msglevel           = igb_set_msglevel,
2003         .nway_reset             = igb_nway_reset,
2004         .get_link               = ethtool_op_get_link,
2005         .get_eeprom_len         = igb_get_eeprom_len,
2006         .get_eeprom             = igb_get_eeprom,
2007         .set_eeprom             = igb_set_eeprom,
2008         .get_ringparam          = igb_get_ringparam,
2009         .set_ringparam          = igb_set_ringparam,
2010         .get_pauseparam         = igb_get_pauseparam,
2011         .set_pauseparam         = igb_set_pauseparam,
2012         .get_rx_csum            = igb_get_rx_csum,
2013         .set_rx_csum            = igb_set_rx_csum,
2014         .get_tx_csum            = igb_get_tx_csum,
2015         .set_tx_csum            = igb_set_tx_csum,
2016         .get_sg                 = ethtool_op_get_sg,
2017         .set_sg                 = ethtool_op_set_sg,
2018         .get_tso                = ethtool_op_get_tso,
2019         .set_tso                = igb_set_tso,
2020         .self_test              = igb_diag_test,
2021         .get_strings            = igb_get_strings,
2022         .phys_id                = igb_phys_id,
2023         .get_sset_count         = igb_get_sset_count,
2024         .get_ethtool_stats      = igb_get_ethtool_stats,
2025         .get_coalesce           = igb_get_coalesce,
2026         .set_coalesce           = igb_set_coalesce,
2027 };
2028
2029 void igb_set_ethtool_ops(struct net_device *netdev)
2030 {
2031         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2032 }