]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/qlge/qlge_main.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6-omap-h63xx.git] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
80         /* required last entry */
81         {0,}
82 };
83
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86 /* This hardware semaphore causes exclusive access to
87  * resources shared between the NIC driver, MPI firmware,
88  * FCOE firmware and the FC driver.
89  */
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91 {
92         u32 sem_bits = 0;
93
94         switch (sem_mask) {
95         case SEM_XGMAC0_MASK:
96                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97                 break;
98         case SEM_XGMAC1_MASK:
99                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100                 break;
101         case SEM_ICB_MASK:
102                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103                 break;
104         case SEM_MAC_ADDR_MASK:
105                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106                 break;
107         case SEM_FLASH_MASK:
108                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109                 break;
110         case SEM_PROBE_MASK:
111                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112                 break;
113         case SEM_RT_IDX_MASK:
114                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115                 break;
116         case SEM_PROC_REG_MASK:
117                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118                 break;
119         default:
120                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121                 return -EINVAL;
122         }
123
124         ql_write32(qdev, SEM, sem_bits | sem_mask);
125         return !(ql_read32(qdev, SEM) & sem_bits);
126 }
127
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 {
130         unsigned int seconds = 3;
131         do {
132                 if (!ql_sem_trylock(qdev, sem_mask))
133                         return 0;
134                 ssleep(1);
135         } while (--seconds);
136         return -ETIMEDOUT;
137 }
138
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 {
141         ql_write32(qdev, SEM, sem_mask);
142         ql_read32(qdev, SEM);   /* flush */
143 }
144
145 /* This function waits for a specific bit to come ready
146  * in a given register.  It is used mostly by the initialize
147  * process, but is also used in kernel thread API such as
148  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149  */
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151 {
152         u32 temp;
153         int count = UDELAY_COUNT;
154
155         while (count) {
156                 temp = ql_read32(qdev, reg);
157
158                 /* check for errors */
159                 if (temp & err_bit) {
160                         QPRINTK(qdev, PROBE, ALERT,
161                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
162                                 reg, temp);
163                         return -EIO;
164                 } else if (temp & bit)
165                         return 0;
166                 udelay(UDELAY_DELAY);
167                 count--;
168         }
169         QPRINTK(qdev, PROBE, ALERT,
170                 "Timed out waiting for reg %x to come ready.\n", reg);
171         return -ETIMEDOUT;
172 }
173
174 /* The CFG register is used to download TX and RX control blocks
175  * to the chip. This function waits for an operation to complete.
176  */
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 {
179         int count = UDELAY_COUNT;
180         u32 temp;
181
182         while (count) {
183                 temp = ql_read32(qdev, CFG);
184                 if (temp & CFG_LE)
185                         return -EIO;
186                 if (!(temp & bit))
187                         return 0;
188                 udelay(UDELAY_DELAY);
189                 count--;
190         }
191         return -ETIMEDOUT;
192 }
193
194
195 /* Used to issue init control blocks to hw. Maps control block,
196  * sets address, triggers download, waits for completion.
197  */
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199                  u16 q_id)
200 {
201         u64 map;
202         int status = 0;
203         int direction;
204         u32 mask;
205         u32 value;
206
207         direction =
208             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209             PCI_DMA_FROMDEVICE;
210
211         map = pci_map_single(qdev->pdev, ptr, size, direction);
212         if (pci_dma_mapping_error(qdev->pdev, map)) {
213                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214                 return -ENOMEM;
215         }
216
217         status = ql_wait_cfg(qdev, bit);
218         if (status) {
219                 QPRINTK(qdev, IFUP, ERR,
220                         "Timed out waiting for CFG to come ready.\n");
221                 goto exit;
222         }
223
224         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225         if (status)
226                 goto exit;
227         ql_write32(qdev, ICB_L, (u32) map);
228         ql_write32(qdev, ICB_H, (u32) (map >> 32));
229         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
230
231         mask = CFG_Q_MASK | (bit << 16);
232         value = bit | (q_id << CFG_Q_SHIFT);
233         ql_write32(qdev, CFG, (mask | value));
234
235         /*
236          * Wait for the bit to clear after signaling hw.
237          */
238         status = ql_wait_cfg(qdev, bit);
239 exit:
240         pci_unmap_single(qdev->pdev, map, size, direction);
241         return status;
242 }
243
244 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246                         u32 *value)
247 {
248         u32 offset = 0;
249         int status;
250
251         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
252         if (status)
253                 return status;
254         switch (type) {
255         case MAC_ADDR_TYPE_MULTI_MAC:
256         case MAC_ADDR_TYPE_CAM_MAC:
257                 {
258                         status =
259                             ql_wait_reg_rdy(qdev,
260                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
261                         if (status)
262                                 goto exit;
263                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
264                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
265                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
266                         status =
267                             ql_wait_reg_rdy(qdev,
268                                 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
269                         if (status)
270                                 goto exit;
271                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
272                         status =
273                             ql_wait_reg_rdy(qdev,
274                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
275                         if (status)
276                                 goto exit;
277                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
279                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280                         status =
281                             ql_wait_reg_rdy(qdev,
282                                 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
283                         if (status)
284                                 goto exit;
285                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
287                                 status =
288                                     ql_wait_reg_rdy(qdev,
289                                         MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
290                                 if (status)
291                                         goto exit;
292                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                                 status =
296                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
297                                                     MAC_ADDR_MR, MAC_ADDR_E);
298                                 if (status)
299                                         goto exit;
300                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         }
302                         break;
303                 }
304         case MAC_ADDR_TYPE_VLAN:
305         case MAC_ADDR_TYPE_MULTI_FLTR:
306         default:
307                 QPRINTK(qdev, IFUP, CRIT,
308                         "Address type %d not yet supported.\n", type);
309                 status = -EPERM;
310         }
311 exit:
312         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
313         return status;
314 }
315
316 /* Set up a MAC, multicast or VLAN address for the
317  * inbound frame matching.
318  */
319 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
320                                u16 index)
321 {
322         u32 offset = 0;
323         int status = 0;
324
325         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
326         if (status)
327                 return status;
328         switch (type) {
329         case MAC_ADDR_TYPE_MULTI_MAC:
330         case MAC_ADDR_TYPE_CAM_MAC:
331                 {
332                         u32 cam_output;
333                         u32 upper = (addr[0] << 8) | addr[1];
334                         u32 lower =
335                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
336                             (addr[5]);
337
338                         QPRINTK(qdev, IFUP, INFO,
339                                 "Adding %s address %pM"
340                                 " at index %d in the CAM.\n",
341                                 ((type ==
342                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
343                                  "UNICAST"), addr, index);
344
345                         status =
346                             ql_wait_reg_rdy(qdev,
347                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
348                         if (status)
349                                 goto exit;
350                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
351                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
352                                    type);       /* type */
353                         ql_write32(qdev, MAC_ADDR_DATA, lower);
354                         status =
355                             ql_wait_reg_rdy(qdev,
356                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
357                         if (status)
358                                 goto exit;
359                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
360                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
361                                    type);       /* type */
362                         ql_write32(qdev, MAC_ADDR_DATA, upper);
363                         status =
364                             ql_wait_reg_rdy(qdev,
365                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
366                         if (status)
367                                 goto exit;
368                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
369                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
370                                    type);       /* type */
371                         /* This field should also include the queue id
372                            and possibly the function id.  Right now we hardcode
373                            the route field to NIC core.
374                          */
375                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
376                                 cam_output = (CAM_OUT_ROUTE_NIC |
377                                               (qdev->
378                                                func << CAM_OUT_FUNC_SHIFT) |
379                                               (qdev->
380                                                rss_ring_first_cq_id <<
381                                                CAM_OUT_CQ_ID_SHIFT));
382                                 if (qdev->vlgrp)
383                                         cam_output |= CAM_OUT_RV;
384                                 /* route to NIC core */
385                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
386                         }
387                         break;
388                 }
389         case MAC_ADDR_TYPE_VLAN:
390                 {
391                         u32 enable_bit = *((u32 *) &addr[0]);
392                         /* For VLAN, the addr actually holds a bit that
393                          * either enables or disables the vlan id we are
394                          * addressing. It's either MAC_ADDR_E on or off.
395                          * That's bit-27 we're talking about.
396                          */
397                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
398                                 (enable_bit ? "Adding" : "Removing"),
399                                 index, (enable_bit ? "to" : "from"));
400
401                         status =
402                             ql_wait_reg_rdy(qdev,
403                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
404                         if (status)
405                                 goto exit;
406                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
407                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
408                                    type |       /* type */
409                                    enable_bit); /* enable/disable */
410                         break;
411                 }
412         case MAC_ADDR_TYPE_MULTI_FLTR:
413         default:
414                 QPRINTK(qdev, IFUP, CRIT,
415                         "Address type %d not yet supported.\n", type);
416                 status = -EPERM;
417         }
418 exit:
419         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
420         return status;
421 }
422
423 /* Get a specific frame routing value from the CAM.
424  * Used for debug and reg dump.
425  */
426 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
427 {
428         int status = 0;
429
430         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
431         if (status)
432                 goto exit;
433
434         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
435         if (status)
436                 goto exit;
437
438         ql_write32(qdev, RT_IDX,
439                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
440         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
441         if (status)
442                 goto exit;
443         *value = ql_read32(qdev, RT_DATA);
444 exit:
445         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
446         return status;
447 }
448
449 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
450  * to route different frame types to various inbound queues.  We send broadcast/
451  * multicast/error frames to the default queue for slow handling,
452  * and CAM hit/RSS frames to the fast handling queues.
453  */
454 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
455                               int enable)
456 {
457         int status;
458         u32 value = 0;
459
460         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
461         if (status)
462                 return status;
463
464         QPRINTK(qdev, IFUP, DEBUG,
465                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
466                 (enable ? "Adding" : "Removing"),
467                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
468                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
469                 ((index ==
470                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
471                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
472                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
473                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
474                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
475                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
476                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
477                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
478                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
479                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
480                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
481                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
482                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
483                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
484                 (enable ? "to" : "from"));
485
486         switch (mask) {
487         case RT_IDX_CAM_HIT:
488                 {
489                         value = RT_IDX_DST_CAM_Q |      /* dest */
490                             RT_IDX_TYPE_NICQ |  /* type */
491                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
492                         break;
493                 }
494         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
495                 {
496                         value = RT_IDX_DST_DFLT_Q |     /* dest */
497                             RT_IDX_TYPE_NICQ |  /* type */
498                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
499                         break;
500                 }
501         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
502                 {
503                         value = RT_IDX_DST_DFLT_Q |     /* dest */
504                             RT_IDX_TYPE_NICQ |  /* type */
505                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
506                         break;
507                 }
508         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
509                 {
510                         value = RT_IDX_DST_DFLT_Q |     /* dest */
511                             RT_IDX_TYPE_NICQ |  /* type */
512                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
513                         break;
514                 }
515         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
516                 {
517                         value = RT_IDX_DST_CAM_Q |      /* dest */
518                             RT_IDX_TYPE_NICQ |  /* type */
519                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
520                         break;
521                 }
522         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
523                 {
524                         value = RT_IDX_DST_CAM_Q |      /* dest */
525                             RT_IDX_TYPE_NICQ |  /* type */
526                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
527                         break;
528                 }
529         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
530                 {
531                         value = RT_IDX_DST_RSS |        /* dest */
532                             RT_IDX_TYPE_NICQ |  /* type */
533                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
534                         break;
535                 }
536         case 0:         /* Clear the E-bit on an entry. */
537                 {
538                         value = RT_IDX_DST_DFLT_Q |     /* dest */
539                             RT_IDX_TYPE_NICQ |  /* type */
540                             (index << RT_IDX_IDX_SHIFT);/* index */
541                         break;
542                 }
543         default:
544                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
545                         mask);
546                 status = -EPERM;
547                 goto exit;
548         }
549
550         if (value) {
551                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
552                 if (status)
553                         goto exit;
554                 value |= (enable ? RT_IDX_E : 0);
555                 ql_write32(qdev, RT_IDX, value);
556                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
557         }
558 exit:
559         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
560         return status;
561 }
562
563 static void ql_enable_interrupts(struct ql_adapter *qdev)
564 {
565         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
566 }
567
568 static void ql_disable_interrupts(struct ql_adapter *qdev)
569 {
570         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
571 }
572
573 /* If we're running with multiple MSI-X vectors then we enable on the fly.
574  * Otherwise, we may have multiple outstanding workers and don't want to
575  * enable until the last one finishes. In this case, the irq_cnt gets
576  * incremented everytime we queue a worker and decremented everytime
577  * a worker finishes.  Once it hits zero we enable the interrupt.
578  */
579 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
580 {
581         u32 var = 0;
582         unsigned long hw_flags = 0;
583         struct intr_context *ctx = qdev->intr_context + intr;
584
585         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
586                 /* Always enable if we're MSIX multi interrupts and
587                  * it's not the default (zeroeth) interrupt.
588                  */
589                 ql_write32(qdev, INTR_EN,
590                            ctx->intr_en_mask);
591                 var = ql_read32(qdev, STS);
592                 return var;
593         }
594
595         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
596         if (atomic_dec_and_test(&ctx->irq_cnt)) {
597                 ql_write32(qdev, INTR_EN,
598                            ctx->intr_en_mask);
599                 var = ql_read32(qdev, STS);
600         }
601         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
602         return var;
603 }
604
605 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
606 {
607         u32 var = 0;
608         unsigned long hw_flags;
609         struct intr_context *ctx;
610
611         /* HW disables for us if we're MSIX multi interrupts and
612          * it's not the default (zeroeth) interrupt.
613          */
614         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
615                 return 0;
616
617         ctx = qdev->intr_context + intr;
618         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
619         if (!atomic_read(&ctx->irq_cnt)) {
620                 ql_write32(qdev, INTR_EN,
621                 ctx->intr_dis_mask);
622                 var = ql_read32(qdev, STS);
623         }
624         atomic_inc(&ctx->irq_cnt);
625         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
626         return var;
627 }
628
629 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
630 {
631         int i;
632         for (i = 0; i < qdev->intr_count; i++) {
633                 /* The enable call does a atomic_dec_and_test
634                  * and enables only if the result is zero.
635                  * So we precharge it here.
636                  */
637                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
638                         i == 0))
639                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
640                 ql_enable_completion_interrupt(qdev, i);
641         }
642
643 }
644
645 int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
646 {
647         int status = 0;
648         /* wait for reg to come ready */
649         status = ql_wait_reg_rdy(qdev,
650                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
651         if (status)
652                 goto exit;
653         /* set up for reg read */
654         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
655         /* wait for reg to come ready */
656         status = ql_wait_reg_rdy(qdev,
657                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
658         if (status)
659                 goto exit;
660         /* get the data */
661         *data = ql_read32(qdev, FLASH_DATA);
662 exit:
663         return status;
664 }
665
666 static int ql_get_flash_params(struct ql_adapter *qdev)
667 {
668         int i;
669         int status;
670         u32 *p = (u32 *)&qdev->flash;
671
672         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
673                 return -ETIMEDOUT;
674
675         for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
676                 status = ql_read_flash_word(qdev, i, p);
677                 if (status) {
678                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
679                         goto exit;
680                 }
681
682         }
683 exit:
684         ql_sem_unlock(qdev, SEM_FLASH_MASK);
685         return status;
686 }
687
688 /* xgmac register are located behind the xgmac_addr and xgmac_data
689  * register pair.  Each read/write requires us to wait for the ready
690  * bit before reading/writing the data.
691  */
692 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
693 {
694         int status;
695         /* wait for reg to come ready */
696         status = ql_wait_reg_rdy(qdev,
697                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
698         if (status)
699                 return status;
700         /* write the data to the data reg */
701         ql_write32(qdev, XGMAC_DATA, data);
702         /* trigger the write */
703         ql_write32(qdev, XGMAC_ADDR, reg);
704         return status;
705 }
706
707 /* xgmac register are located behind the xgmac_addr and xgmac_data
708  * register pair.  Each read/write requires us to wait for the ready
709  * bit before reading/writing the data.
710  */
711 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
712 {
713         int status = 0;
714         /* wait for reg to come ready */
715         status = ql_wait_reg_rdy(qdev,
716                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
717         if (status)
718                 goto exit;
719         /* set up for reg read */
720         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
721         /* wait for reg to come ready */
722         status = ql_wait_reg_rdy(qdev,
723                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
724         if (status)
725                 goto exit;
726         /* get the data */
727         *data = ql_read32(qdev, XGMAC_DATA);
728 exit:
729         return status;
730 }
731
732 /* This is used for reading the 64-bit statistics regs. */
733 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
734 {
735         int status = 0;
736         u32 hi = 0;
737         u32 lo = 0;
738
739         status = ql_read_xgmac_reg(qdev, reg, &lo);
740         if (status)
741                 goto exit;
742
743         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
744         if (status)
745                 goto exit;
746
747         *data = (u64) lo | ((u64) hi << 32);
748
749 exit:
750         return status;
751 }
752
753 /* Take the MAC Core out of reset.
754  * Enable statistics counting.
755  * Take the transmitter/receiver out of reset.
756  * This functionality may be done in the MPI firmware at a
757  * later date.
758  */
759 static int ql_port_initialize(struct ql_adapter *qdev)
760 {
761         int status = 0;
762         u32 data;
763
764         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
765                 /* Another function has the semaphore, so
766                  * wait for the port init bit to come ready.
767                  */
768                 QPRINTK(qdev, LINK, INFO,
769                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
770                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
771                 if (status) {
772                         QPRINTK(qdev, LINK, CRIT,
773                                 "Port initialize timed out.\n");
774                 }
775                 return status;
776         }
777
778         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
779         /* Set the core reset. */
780         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
781         if (status)
782                 goto end;
783         data |= GLOBAL_CFG_RESET;
784         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
785         if (status)
786                 goto end;
787
788         /* Clear the core reset and turn on jumbo for receiver. */
789         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
790         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
791         data |= GLOBAL_CFG_TX_STAT_EN;
792         data |= GLOBAL_CFG_RX_STAT_EN;
793         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794         if (status)
795                 goto end;
796
797         /* Enable transmitter, and clear it's reset. */
798         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
799         if (status)
800                 goto end;
801         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
802         data |= TX_CFG_EN;      /* Enable the transmitter. */
803         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
804         if (status)
805                 goto end;
806
807         /* Enable receiver and clear it's reset. */
808         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
809         if (status)
810                 goto end;
811         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
812         data |= RX_CFG_EN;      /* Enable the receiver. */
813         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
814         if (status)
815                 goto end;
816
817         /* Turn on jumbo. */
818         status =
819             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
820         if (status)
821                 goto end;
822         status =
823             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
824         if (status)
825                 goto end;
826
827         /* Signal to the world that the port is enabled.        */
828         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
829 end:
830         ql_sem_unlock(qdev, qdev->xg_sem_mask);
831         return status;
832 }
833
834 /* Get the next large buffer. */
835 struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
836 {
837         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
838         rx_ring->lbq_curr_idx++;
839         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
840                 rx_ring->lbq_curr_idx = 0;
841         rx_ring->lbq_free_cnt++;
842         return lbq_desc;
843 }
844
845 /* Get the next small buffer. */
846 struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
847 {
848         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
849         rx_ring->sbq_curr_idx++;
850         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
851                 rx_ring->sbq_curr_idx = 0;
852         rx_ring->sbq_free_cnt++;
853         return sbq_desc;
854 }
855
856 /* Update an rx ring index. */
857 static void ql_update_cq(struct rx_ring *rx_ring)
858 {
859         rx_ring->cnsmr_idx++;
860         rx_ring->curr_entry++;
861         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
862                 rx_ring->cnsmr_idx = 0;
863                 rx_ring->curr_entry = rx_ring->cq_base;
864         }
865 }
866
867 static void ql_write_cq_idx(struct rx_ring *rx_ring)
868 {
869         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
870 }
871
872 /* Process (refill) a large buffer queue. */
873 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
874 {
875         int clean_idx = rx_ring->lbq_clean_idx;
876         struct bq_desc *lbq_desc;
877         struct bq_element *bq;
878         u64 map;
879         int i;
880
881         while (rx_ring->lbq_free_cnt > 16) {
882                 for (i = 0; i < 16; i++) {
883                         QPRINTK(qdev, RX_STATUS, DEBUG,
884                                 "lbq: try cleaning clean_idx = %d.\n",
885                                 clean_idx);
886                         lbq_desc = &rx_ring->lbq[clean_idx];
887                         bq = lbq_desc->bq;
888                         if (lbq_desc->p.lbq_page == NULL) {
889                                 QPRINTK(qdev, RX_STATUS, DEBUG,
890                                         "lbq: getting new page for index %d.\n",
891                                         lbq_desc->index);
892                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
893                                 if (lbq_desc->p.lbq_page == NULL) {
894                                         QPRINTK(qdev, RX_STATUS, ERR,
895                                                 "Couldn't get a page.\n");
896                                         return;
897                                 }
898                                 map = pci_map_page(qdev->pdev,
899                                                    lbq_desc->p.lbq_page,
900                                                    0, PAGE_SIZE,
901                                                    PCI_DMA_FROMDEVICE);
902                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
903                                         QPRINTK(qdev, RX_STATUS, ERR,
904                                                 "PCI mapping failed.\n");
905                                         return;
906                                 }
907                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
908                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
909                                 bq->addr_lo =   /*lbq_desc->addr_lo = */
910                                     cpu_to_le32(map);
911                                 bq->addr_hi =   /*lbq_desc->addr_hi = */
912                                     cpu_to_le32(map >> 32);
913                         }
914                         clean_idx++;
915                         if (clean_idx == rx_ring->lbq_len)
916                                 clean_idx = 0;
917                 }
918
919                 rx_ring->lbq_clean_idx = clean_idx;
920                 rx_ring->lbq_prod_idx += 16;
921                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
922                         rx_ring->lbq_prod_idx = 0;
923                 QPRINTK(qdev, RX_STATUS, DEBUG,
924                         "lbq: updating prod idx = %d.\n",
925                         rx_ring->lbq_prod_idx);
926                 ql_write_db_reg(rx_ring->lbq_prod_idx,
927                                 rx_ring->lbq_prod_idx_db_reg);
928                 rx_ring->lbq_free_cnt -= 16;
929         }
930 }
931
932 /* Process (refill) a small buffer queue. */
933 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
934 {
935         int clean_idx = rx_ring->sbq_clean_idx;
936         struct bq_desc *sbq_desc;
937         struct bq_element *bq;
938         u64 map;
939         int i;
940
941         while (rx_ring->sbq_free_cnt > 16) {
942                 for (i = 0; i < 16; i++) {
943                         sbq_desc = &rx_ring->sbq[clean_idx];
944                         QPRINTK(qdev, RX_STATUS, DEBUG,
945                                 "sbq: try cleaning clean_idx = %d.\n",
946                                 clean_idx);
947                         bq = sbq_desc->bq;
948                         if (sbq_desc->p.skb == NULL) {
949                                 QPRINTK(qdev, RX_STATUS, DEBUG,
950                                         "sbq: getting new skb for index %d.\n",
951                                         sbq_desc->index);
952                                 sbq_desc->p.skb =
953                                     netdev_alloc_skb(qdev->ndev,
954                                                      rx_ring->sbq_buf_size);
955                                 if (sbq_desc->p.skb == NULL) {
956                                         QPRINTK(qdev, PROBE, ERR,
957                                                 "Couldn't get an skb.\n");
958                                         rx_ring->sbq_clean_idx = clean_idx;
959                                         return;
960                                 }
961                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
962                                 map = pci_map_single(qdev->pdev,
963                                                      sbq_desc->p.skb->data,
964                                                      rx_ring->sbq_buf_size /
965                                                      2, PCI_DMA_FROMDEVICE);
966                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
967                                 pci_unmap_len_set(sbq_desc, maplen,
968                                                   rx_ring->sbq_buf_size / 2);
969                                 bq->addr_lo = cpu_to_le32(map);
970                                 bq->addr_hi = cpu_to_le32(map >> 32);
971                         }
972
973                         clean_idx++;
974                         if (clean_idx == rx_ring->sbq_len)
975                                 clean_idx = 0;
976                 }
977                 rx_ring->sbq_clean_idx = clean_idx;
978                 rx_ring->sbq_prod_idx += 16;
979                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
980                         rx_ring->sbq_prod_idx = 0;
981                 QPRINTK(qdev, RX_STATUS, DEBUG,
982                         "sbq: updating prod idx = %d.\n",
983                         rx_ring->sbq_prod_idx);
984                 ql_write_db_reg(rx_ring->sbq_prod_idx,
985                                 rx_ring->sbq_prod_idx_db_reg);
986
987                 rx_ring->sbq_free_cnt -= 16;
988         }
989 }
990
991 static void ql_update_buffer_queues(struct ql_adapter *qdev,
992                                     struct rx_ring *rx_ring)
993 {
994         ql_update_sbq(qdev, rx_ring);
995         ql_update_lbq(qdev, rx_ring);
996 }
997
998 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
999  * fails at some stage, or from the interrupt when a tx completes.
1000  */
1001 static void ql_unmap_send(struct ql_adapter *qdev,
1002                           struct tx_ring_desc *tx_ring_desc, int mapped)
1003 {
1004         int i;
1005         for (i = 0; i < mapped; i++) {
1006                 if (i == 0 || (i == 7 && mapped > 7)) {
1007                         /*
1008                          * Unmap the skb->data area, or the
1009                          * external sglist (AKA the Outbound
1010                          * Address List (OAL)).
1011                          * If its the zeroeth element, then it's
1012                          * the skb->data area.  If it's the 7th
1013                          * element and there is more than 6 frags,
1014                          * then its an OAL.
1015                          */
1016                         if (i == 7) {
1017                                 QPRINTK(qdev, TX_DONE, DEBUG,
1018                                         "unmapping OAL area.\n");
1019                         }
1020                         pci_unmap_single(qdev->pdev,
1021                                          pci_unmap_addr(&tx_ring_desc->map[i],
1022                                                         mapaddr),
1023                                          pci_unmap_len(&tx_ring_desc->map[i],
1024                                                        maplen),
1025                                          PCI_DMA_TODEVICE);
1026                 } else {
1027                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1028                                 i);
1029                         pci_unmap_page(qdev->pdev,
1030                                        pci_unmap_addr(&tx_ring_desc->map[i],
1031                                                       mapaddr),
1032                                        pci_unmap_len(&tx_ring_desc->map[i],
1033                                                      maplen), PCI_DMA_TODEVICE);
1034                 }
1035         }
1036
1037 }
1038
1039 /* Map the buffers for this transmit.  This will return
1040  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1041  */
1042 static int ql_map_send(struct ql_adapter *qdev,
1043                        struct ob_mac_iocb_req *mac_iocb_ptr,
1044                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1045 {
1046         int len = skb_headlen(skb);
1047         dma_addr_t map;
1048         int frag_idx, err, map_idx = 0;
1049         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1050         int frag_cnt = skb_shinfo(skb)->nr_frags;
1051
1052         if (frag_cnt) {
1053                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1054         }
1055         /*
1056          * Map the skb buffer first.
1057          */
1058         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1059
1060         err = pci_dma_mapping_error(qdev->pdev, map);
1061         if (err) {
1062                 QPRINTK(qdev, TX_QUEUED, ERR,
1063                         "PCI mapping failed with error: %d\n", err);
1064
1065                 return NETDEV_TX_BUSY;
1066         }
1067
1068         tbd->len = cpu_to_le32(len);
1069         tbd->addr = cpu_to_le64(map);
1070         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1071         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1072         map_idx++;
1073
1074         /*
1075          * This loop fills the remainder of the 8 address descriptors
1076          * in the IOCB.  If there are more than 7 fragments, then the
1077          * eighth address desc will point to an external list (OAL).
1078          * When this happens, the remainder of the frags will be stored
1079          * in this list.
1080          */
1081         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1082                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1083                 tbd++;
1084                 if (frag_idx == 6 && frag_cnt > 7) {
1085                         /* Let's tack on an sglist.
1086                          * Our control block will now
1087                          * look like this:
1088                          * iocb->seg[0] = skb->data
1089                          * iocb->seg[1] = frag[0]
1090                          * iocb->seg[2] = frag[1]
1091                          * iocb->seg[3] = frag[2]
1092                          * iocb->seg[4] = frag[3]
1093                          * iocb->seg[5] = frag[4]
1094                          * iocb->seg[6] = frag[5]
1095                          * iocb->seg[7] = ptr to OAL (external sglist)
1096                          * oal->seg[0] = frag[6]
1097                          * oal->seg[1] = frag[7]
1098                          * oal->seg[2] = frag[8]
1099                          * oal->seg[3] = frag[9]
1100                          * oal->seg[4] = frag[10]
1101                          *      etc...
1102                          */
1103                         /* Tack on the OAL in the eighth segment of IOCB. */
1104                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1105                                              sizeof(struct oal),
1106                                              PCI_DMA_TODEVICE);
1107                         err = pci_dma_mapping_error(qdev->pdev, map);
1108                         if (err) {
1109                                 QPRINTK(qdev, TX_QUEUED, ERR,
1110                                         "PCI mapping outbound address list with error: %d\n",
1111                                         err);
1112                                 goto map_error;
1113                         }
1114
1115                         tbd->addr = cpu_to_le64(map);
1116                         /*
1117                          * The length is the number of fragments
1118                          * that remain to be mapped times the length
1119                          * of our sglist (OAL).
1120                          */
1121                         tbd->len =
1122                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1123                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1124                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1125                                            map);
1126                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1127                                           sizeof(struct oal));
1128                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1129                         map_idx++;
1130                 }
1131
1132                 map =
1133                     pci_map_page(qdev->pdev, frag->page,
1134                                  frag->page_offset, frag->size,
1135                                  PCI_DMA_TODEVICE);
1136
1137                 err = pci_dma_mapping_error(qdev->pdev, map);
1138                 if (err) {
1139                         QPRINTK(qdev, TX_QUEUED, ERR,
1140                                 "PCI mapping frags failed with error: %d.\n",
1141                                 err);
1142                         goto map_error;
1143                 }
1144
1145                 tbd->addr = cpu_to_le64(map);
1146                 tbd->len = cpu_to_le32(frag->size);
1147                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1148                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1149                                   frag->size);
1150
1151         }
1152         /* Save the number of segments we've mapped. */
1153         tx_ring_desc->map_cnt = map_idx;
1154         /* Terminate the last segment. */
1155         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1156         return NETDEV_TX_OK;
1157
1158 map_error:
1159         /*
1160          * If the first frag mapping failed, then i will be zero.
1161          * This causes the unmap of the skb->data area.  Otherwise
1162          * we pass in the number of frags that mapped successfully
1163          * so they can be umapped.
1164          */
1165         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1166         return NETDEV_TX_BUSY;
1167 }
1168
1169 void ql_realign_skb(struct sk_buff *skb, int len)
1170 {
1171         void *temp_addr = skb->data;
1172
1173         /* Undo the skb_reserve(skb,32) we did before
1174          * giving to hardware, and realign data on
1175          * a 2-byte boundary.
1176          */
1177         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1178         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1179         skb_copy_to_linear_data(skb, temp_addr,
1180                 (unsigned int)len);
1181 }
1182
1183 /*
1184  * This function builds an skb for the given inbound
1185  * completion.  It will be rewritten for readability in the near
1186  * future, but for not it works well.
1187  */
1188 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1189                                        struct rx_ring *rx_ring,
1190                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1191 {
1192         struct bq_desc *lbq_desc;
1193         struct bq_desc *sbq_desc;
1194         struct sk_buff *skb = NULL;
1195         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1196        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1197
1198         /*
1199          * Handle the header buffer if present.
1200          */
1201         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1202             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1203                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1204                 /*
1205                  * Headers fit nicely into a small buffer.
1206                  */
1207                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1208                 pci_unmap_single(qdev->pdev,
1209                                 pci_unmap_addr(sbq_desc, mapaddr),
1210                                 pci_unmap_len(sbq_desc, maplen),
1211                                 PCI_DMA_FROMDEVICE);
1212                 skb = sbq_desc->p.skb;
1213                 ql_realign_skb(skb, hdr_len);
1214                 skb_put(skb, hdr_len);
1215                 sbq_desc->p.skb = NULL;
1216         }
1217
1218         /*
1219          * Handle the data buffer(s).
1220          */
1221         if (unlikely(!length)) {        /* Is there data too? */
1222                 QPRINTK(qdev, RX_STATUS, DEBUG,
1223                         "No Data buffer in this packet.\n");
1224                 return skb;
1225         }
1226
1227         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1228                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1229                         QPRINTK(qdev, RX_STATUS, DEBUG,
1230                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1231                         /*
1232                          * Data is less than small buffer size so it's
1233                          * stuffed in a small buffer.
1234                          * For this case we append the data
1235                          * from the "data" small buffer to the "header" small
1236                          * buffer.
1237                          */
1238                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1239                         pci_dma_sync_single_for_cpu(qdev->pdev,
1240                                                     pci_unmap_addr
1241                                                     (sbq_desc, mapaddr),
1242                                                     pci_unmap_len
1243                                                     (sbq_desc, maplen),
1244                                                     PCI_DMA_FROMDEVICE);
1245                         memcpy(skb_put(skb, length),
1246                                sbq_desc->p.skb->data, length);
1247                         pci_dma_sync_single_for_device(qdev->pdev,
1248                                                        pci_unmap_addr
1249                                                        (sbq_desc,
1250                                                         mapaddr),
1251                                                        pci_unmap_len
1252                                                        (sbq_desc,
1253                                                         maplen),
1254                                                        PCI_DMA_FROMDEVICE);
1255                 } else {
1256                         QPRINTK(qdev, RX_STATUS, DEBUG,
1257                                 "%d bytes in a single small buffer.\n", length);
1258                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1259                         skb = sbq_desc->p.skb;
1260                         ql_realign_skb(skb, length);
1261                         skb_put(skb, length);
1262                         pci_unmap_single(qdev->pdev,
1263                                          pci_unmap_addr(sbq_desc,
1264                                                         mapaddr),
1265                                          pci_unmap_len(sbq_desc,
1266                                                        maplen),
1267                                          PCI_DMA_FROMDEVICE);
1268                         sbq_desc->p.skb = NULL;
1269                 }
1270         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1271                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1272                         QPRINTK(qdev, RX_STATUS, DEBUG,
1273                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1274                         /*
1275                          * The data is in a single large buffer.  We
1276                          * chain it to the header buffer's skb and let
1277                          * it rip.
1278                          */
1279                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1280                         pci_unmap_page(qdev->pdev,
1281                                        pci_unmap_addr(lbq_desc,
1282                                                       mapaddr),
1283                                        pci_unmap_len(lbq_desc, maplen),
1284                                        PCI_DMA_FROMDEVICE);
1285                         QPRINTK(qdev, RX_STATUS, DEBUG,
1286                                 "Chaining page to skb.\n");
1287                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1288                                            0, length);
1289                         skb->len += length;
1290                         skb->data_len += length;
1291                         skb->truesize += length;
1292                         lbq_desc->p.lbq_page = NULL;
1293                 } else {
1294                         /*
1295                          * The headers and data are in a single large buffer. We
1296                          * copy it to a new skb and let it go. This can happen with
1297                          * jumbo mtu on a non-TCP/UDP frame.
1298                          */
1299                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1300                         skb = netdev_alloc_skb(qdev->ndev, length);
1301                         if (skb == NULL) {
1302                                 QPRINTK(qdev, PROBE, DEBUG,
1303                                         "No skb available, drop the packet.\n");
1304                                 return NULL;
1305                         }
1306                         skb_reserve(skb, NET_IP_ALIGN);
1307                         QPRINTK(qdev, RX_STATUS, DEBUG,
1308                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1309                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1310                                            0, length);
1311                         skb->len += length;
1312                         skb->data_len += length;
1313                         skb->truesize += length;
1314                         length -= length;
1315                         lbq_desc->p.lbq_page = NULL;
1316                         __pskb_pull_tail(skb,
1317                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1318                                 VLAN_ETH_HLEN : ETH_HLEN);
1319                 }
1320         } else {
1321                 /*
1322                  * The data is in a chain of large buffers
1323                  * pointed to by a small buffer.  We loop
1324                  * thru and chain them to the our small header
1325                  * buffer's skb.
1326                  * frags:  There are 18 max frags and our small
1327                  *         buffer will hold 32 of them. The thing is,
1328                  *         we'll use 3 max for our 9000 byte jumbo
1329                  *         frames.  If the MTU goes up we could
1330                  *          eventually be in trouble.
1331                  */
1332                 int size, offset, i = 0;
1333                 struct bq_element *bq, bq_array[8];
1334                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1335                 pci_unmap_single(qdev->pdev,
1336                                  pci_unmap_addr(sbq_desc, mapaddr),
1337                                  pci_unmap_len(sbq_desc, maplen),
1338                                  PCI_DMA_FROMDEVICE);
1339                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1340                         /*
1341                          * This is an non TCP/UDP IP frame, so
1342                          * the headers aren't split into a small
1343                          * buffer.  We have to use the small buffer
1344                          * that contains our sg list as our skb to
1345                          * send upstairs. Copy the sg list here to
1346                          * a local buffer and use it to find the
1347                          * pages to chain.
1348                          */
1349                         QPRINTK(qdev, RX_STATUS, DEBUG,
1350                                 "%d bytes of headers & data in chain of large.\n", length);
1351                         skb = sbq_desc->p.skb;
1352                         bq = &bq_array[0];
1353                         memcpy(bq, skb->data, sizeof(bq_array));
1354                         sbq_desc->p.skb = NULL;
1355                         skb_reserve(skb, NET_IP_ALIGN);
1356                 } else {
1357                         QPRINTK(qdev, RX_STATUS, DEBUG,
1358                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1359                         bq = (struct bq_element *)sbq_desc->p.skb->data;
1360                 }
1361                 while (length > 0) {
1362                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1363                         if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
1364                                 QPRINTK(qdev, RX_STATUS, ERR,
1365                                         "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
1366                                         lbq_desc->bq->addr_lo, bq->addr_lo);
1367                                 return NULL;
1368                         }
1369                         pci_unmap_page(qdev->pdev,
1370                                        pci_unmap_addr(lbq_desc,
1371                                                       mapaddr),
1372                                        pci_unmap_len(lbq_desc,
1373                                                      maplen),
1374                                        PCI_DMA_FROMDEVICE);
1375                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1376                         offset = 0;
1377
1378                         QPRINTK(qdev, RX_STATUS, DEBUG,
1379                                 "Adding page %d to skb for %d bytes.\n",
1380                                 i, size);
1381                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1382                                            offset, size);
1383                         skb->len += size;
1384                         skb->data_len += size;
1385                         skb->truesize += size;
1386                         length -= size;
1387                         lbq_desc->p.lbq_page = NULL;
1388                         bq++;
1389                         i++;
1390                 }
1391                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1392                                 VLAN_ETH_HLEN : ETH_HLEN);
1393         }
1394         return skb;
1395 }
1396
1397 /* Process an inbound completion from an rx ring. */
1398 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1399                                    struct rx_ring *rx_ring,
1400                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1401 {
1402         struct net_device *ndev = qdev->ndev;
1403         struct sk_buff *skb = NULL;
1404
1405         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1406
1407         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1408         if (unlikely(!skb)) {
1409                 QPRINTK(qdev, RX_STATUS, DEBUG,
1410                         "No skb available, drop packet.\n");
1411                 return;
1412         }
1413
1414         prefetch(skb->data);
1415         skb->dev = ndev;
1416         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1417                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1418                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1419                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1420                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1421                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1422                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1423                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1424         }
1425         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1426                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1427         }
1428         if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1429                 QPRINTK(qdev, RX_STATUS, ERR,
1430                         "Bad checksum for this %s packet.\n",
1431                         ((ib_mac_rsp->
1432                           flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1433                 skb->ip_summed = CHECKSUM_NONE;
1434         } else if (qdev->rx_csum &&
1435                    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1436                     ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1437                      !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1438                 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1439                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1440         }
1441         qdev->stats.rx_packets++;
1442         qdev->stats.rx_bytes += skb->len;
1443         skb->protocol = eth_type_trans(skb, ndev);
1444         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1445                 QPRINTK(qdev, RX_STATUS, DEBUG,
1446                         "Passing a VLAN packet upstream.\n");
1447                 vlan_hwaccel_rx(skb, qdev->vlgrp,
1448                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1449         } else {
1450                 QPRINTK(qdev, RX_STATUS, DEBUG,
1451                         "Passing a normal packet upstream.\n");
1452                 netif_rx(skb);
1453         }
1454         ndev->last_rx = jiffies;
1455 }
1456
1457 /* Process an outbound completion from an rx ring. */
1458 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1459                                    struct ob_mac_iocb_rsp *mac_rsp)
1460 {
1461         struct tx_ring *tx_ring;
1462         struct tx_ring_desc *tx_ring_desc;
1463
1464         QL_DUMP_OB_MAC_RSP(mac_rsp);
1465         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1466         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1467         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1468         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1469         qdev->stats.tx_packets++;
1470         dev_kfree_skb(tx_ring_desc->skb);
1471         tx_ring_desc->skb = NULL;
1472
1473         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1474                                         OB_MAC_IOCB_RSP_S |
1475                                         OB_MAC_IOCB_RSP_L |
1476                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1477                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1478                         QPRINTK(qdev, TX_DONE, WARNING,
1479                                 "Total descriptor length did not match transfer length.\n");
1480                 }
1481                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1482                         QPRINTK(qdev, TX_DONE, WARNING,
1483                                 "Frame too short to be legal, not sent.\n");
1484                 }
1485                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1486                         QPRINTK(qdev, TX_DONE, WARNING,
1487                                 "Frame too long, but sent anyway.\n");
1488                 }
1489                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1490                         QPRINTK(qdev, TX_DONE, WARNING,
1491                                 "PCI backplane error. Frame not sent.\n");
1492                 }
1493         }
1494         atomic_inc(&tx_ring->tx_count);
1495 }
1496
1497 /* Fire up a handler to reset the MPI processor. */
1498 void ql_queue_fw_error(struct ql_adapter *qdev)
1499 {
1500         netif_stop_queue(qdev->ndev);
1501         netif_carrier_off(qdev->ndev);
1502         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1503 }
1504
1505 void ql_queue_asic_error(struct ql_adapter *qdev)
1506 {
1507         netif_stop_queue(qdev->ndev);
1508         netif_carrier_off(qdev->ndev);
1509         ql_disable_interrupts(qdev);
1510         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1511 }
1512
1513 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1514                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1515 {
1516         switch (ib_ae_rsp->event) {
1517         case MGMT_ERR_EVENT:
1518                 QPRINTK(qdev, RX_ERR, ERR,
1519                         "Management Processor Fatal Error.\n");
1520                 ql_queue_fw_error(qdev);
1521                 return;
1522
1523         case CAM_LOOKUP_ERR_EVENT:
1524                 QPRINTK(qdev, LINK, ERR,
1525                         "Multiple CAM hits lookup occurred.\n");
1526                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1527                 ql_queue_asic_error(qdev);
1528                 return;
1529
1530         case SOFT_ECC_ERROR_EVENT:
1531                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1532                 ql_queue_asic_error(qdev);
1533                 break;
1534
1535         case PCI_ERR_ANON_BUF_RD:
1536                 QPRINTK(qdev, RX_ERR, ERR,
1537                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1538                         ib_ae_rsp->q_id);
1539                 ql_queue_asic_error(qdev);
1540                 break;
1541
1542         default:
1543                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1544                         ib_ae_rsp->event);
1545                 ql_queue_asic_error(qdev);
1546                 break;
1547         }
1548 }
1549
1550 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1551 {
1552         struct ql_adapter *qdev = rx_ring->qdev;
1553         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1554         struct ob_mac_iocb_rsp *net_rsp = NULL;
1555         int count = 0;
1556
1557         /* While there are entries in the completion queue. */
1558         while (prod != rx_ring->cnsmr_idx) {
1559
1560                 QPRINTK(qdev, RX_STATUS, DEBUG,
1561                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1562                         prod, rx_ring->cnsmr_idx);
1563
1564                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1565                 rmb();
1566                 switch (net_rsp->opcode) {
1567
1568                 case OPCODE_OB_MAC_TSO_IOCB:
1569                 case OPCODE_OB_MAC_IOCB:
1570                         ql_process_mac_tx_intr(qdev, net_rsp);
1571                         break;
1572                 default:
1573                         QPRINTK(qdev, RX_STATUS, DEBUG,
1574                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1575                                 net_rsp->opcode);
1576                 }
1577                 count++;
1578                 ql_update_cq(rx_ring);
1579                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1580         }
1581         ql_write_cq_idx(rx_ring);
1582         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1583                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1584                 if (atomic_read(&tx_ring->queue_stopped) &&
1585                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1586                         /*
1587                          * The queue got stopped because the tx_ring was full.
1588                          * Wake it up, because it's now at least 25% empty.
1589                          */
1590                         netif_wake_queue(qdev->ndev);
1591         }
1592
1593         return count;
1594 }
1595
1596 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1597 {
1598         struct ql_adapter *qdev = rx_ring->qdev;
1599         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1600         struct ql_net_rsp_iocb *net_rsp;
1601         int count = 0;
1602
1603         /* While there are entries in the completion queue. */
1604         while (prod != rx_ring->cnsmr_idx) {
1605
1606                 QPRINTK(qdev, RX_STATUS, DEBUG,
1607                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1608                         prod, rx_ring->cnsmr_idx);
1609
1610                 net_rsp = rx_ring->curr_entry;
1611                 rmb();
1612                 switch (net_rsp->opcode) {
1613                 case OPCODE_IB_MAC_IOCB:
1614                         ql_process_mac_rx_intr(qdev, rx_ring,
1615                                                (struct ib_mac_iocb_rsp *)
1616                                                net_rsp);
1617                         break;
1618
1619                 case OPCODE_IB_AE_IOCB:
1620                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1621                                                 net_rsp);
1622                         break;
1623                 default:
1624                         {
1625                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1626                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1627                                         net_rsp->opcode);
1628                         }
1629                 }
1630                 count++;
1631                 ql_update_cq(rx_ring);
1632                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1633                 if (count == budget)
1634                         break;
1635         }
1636         ql_update_buffer_queues(qdev, rx_ring);
1637         ql_write_cq_idx(rx_ring);
1638         return count;
1639 }
1640
1641 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1642 {
1643         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1644         struct ql_adapter *qdev = rx_ring->qdev;
1645         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1646
1647         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1648                 rx_ring->cq_id);
1649
1650         if (work_done < budget) {
1651                 __netif_rx_complete(qdev->ndev, napi);
1652                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1653         }
1654         return work_done;
1655 }
1656
1657 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1658 {
1659         struct ql_adapter *qdev = netdev_priv(ndev);
1660
1661         qdev->vlgrp = grp;
1662         if (grp) {
1663                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1664                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1665                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1666         } else {
1667                 QPRINTK(qdev, IFUP, DEBUG,
1668                         "Turning off VLAN in NIC_RCV_CFG.\n");
1669                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1670         }
1671 }
1672
1673 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1674 {
1675         struct ql_adapter *qdev = netdev_priv(ndev);
1676         u32 enable_bit = MAC_ADDR_E;
1677
1678         spin_lock(&qdev->hw_lock);
1679         if (ql_set_mac_addr_reg
1680             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1681                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1682         }
1683         spin_unlock(&qdev->hw_lock);
1684 }
1685
1686 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1687 {
1688         struct ql_adapter *qdev = netdev_priv(ndev);
1689         u32 enable_bit = 0;
1690
1691         spin_lock(&qdev->hw_lock);
1692         if (ql_set_mac_addr_reg
1693             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1694                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1695         }
1696         spin_unlock(&qdev->hw_lock);
1697
1698 }
1699
1700 /* Worker thread to process a given rx_ring that is dedicated
1701  * to outbound completions.
1702  */
1703 static void ql_tx_clean(struct work_struct *work)
1704 {
1705         struct rx_ring *rx_ring =
1706             container_of(work, struct rx_ring, rx_work.work);
1707         ql_clean_outbound_rx_ring(rx_ring);
1708         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1709
1710 }
1711
1712 /* Worker thread to process a given rx_ring that is dedicated
1713  * to inbound completions.
1714  */
1715 static void ql_rx_clean(struct work_struct *work)
1716 {
1717         struct rx_ring *rx_ring =
1718             container_of(work, struct rx_ring, rx_work.work);
1719         ql_clean_inbound_rx_ring(rx_ring, 64);
1720         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1721 }
1722
1723 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1724 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1725 {
1726         struct rx_ring *rx_ring = dev_id;
1727         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1728                               &rx_ring->rx_work, 0);
1729         return IRQ_HANDLED;
1730 }
1731
1732 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1733 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1734 {
1735         struct rx_ring *rx_ring = dev_id;
1736         struct ql_adapter *qdev = rx_ring->qdev;
1737         netif_rx_schedule(qdev->ndev, &rx_ring->napi);
1738         return IRQ_HANDLED;
1739 }
1740
1741 /* This handles a fatal error, MPI activity, and the default
1742  * rx_ring in an MSI-X multiple vector environment.
1743  * In MSI/Legacy environment it also process the rest of
1744  * the rx_rings.
1745  */
1746 static irqreturn_t qlge_isr(int irq, void *dev_id)
1747 {
1748         struct rx_ring *rx_ring = dev_id;
1749         struct ql_adapter *qdev = rx_ring->qdev;
1750         struct intr_context *intr_context = &qdev->intr_context[0];
1751         u32 var;
1752         int i;
1753         int work_done = 0;
1754
1755         spin_lock(&qdev->hw_lock);
1756         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1757                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1758                 spin_unlock(&qdev->hw_lock);
1759                 return IRQ_NONE;
1760         }
1761         spin_unlock(&qdev->hw_lock);
1762
1763         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1764
1765         /*
1766          * Check for fatal error.
1767          */
1768         if (var & STS_FE) {
1769                 ql_queue_asic_error(qdev);
1770                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1771                 var = ql_read32(qdev, ERR_STS);
1772                 QPRINTK(qdev, INTR, ERR,
1773                         "Resetting chip. Error Status Register = 0x%x\n", var);
1774                 return IRQ_HANDLED;
1775         }
1776
1777         /*
1778          * Check MPI processor activity.
1779          */
1780         if (var & STS_PI) {
1781                 /*
1782                  * We've got an async event or mailbox completion.
1783                  * Handle it and clear the source of the interrupt.
1784                  */
1785                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1786                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1787                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1788                                       &qdev->mpi_work, 0);
1789                 work_done++;
1790         }
1791
1792         /*
1793          * Check the default queue and wake handler if active.
1794          */
1795         rx_ring = &qdev->rx_ring[0];
1796         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1797                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1798                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1799                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1800                                       &rx_ring->rx_work, 0);
1801                 work_done++;
1802         }
1803
1804         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1805                 /*
1806                  * Start the DPC for each active queue.
1807                  */
1808                 for (i = 1; i < qdev->rx_ring_count; i++) {
1809                         rx_ring = &qdev->rx_ring[i];
1810                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1811                             rx_ring->cnsmr_idx) {
1812                                 QPRINTK(qdev, INTR, INFO,
1813                                         "Waking handler for rx_ring[%d].\n", i);
1814                                 ql_disable_completion_interrupt(qdev,
1815                                                                 intr_context->
1816                                                                 intr);
1817                                 if (i < qdev->rss_ring_first_cq_id)
1818                                         queue_delayed_work_on(rx_ring->cpu,
1819                                                               qdev->q_workqueue,
1820                                                               &rx_ring->rx_work,
1821                                                               0);
1822                                 else
1823                                         netif_rx_schedule(qdev->ndev,
1824                                                           &rx_ring->napi);
1825                                 work_done++;
1826                         }
1827                 }
1828         }
1829         ql_enable_completion_interrupt(qdev, intr_context->intr);
1830         return work_done ? IRQ_HANDLED : IRQ_NONE;
1831 }
1832
1833 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1834 {
1835
1836         if (skb_is_gso(skb)) {
1837                 int err;
1838                 if (skb_header_cloned(skb)) {
1839                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1840                         if (err)
1841                                 return err;
1842                 }
1843
1844                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1845                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1846                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1847                 mac_iocb_ptr->total_hdrs_len =
1848                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1849                 mac_iocb_ptr->net_trans_offset =
1850                     cpu_to_le16(skb_network_offset(skb) |
1851                                 skb_transport_offset(skb)
1852                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1853                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1854                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1855                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1856                         struct iphdr *iph = ip_hdr(skb);
1857                         iph->check = 0;
1858                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1859                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1860                                                                  iph->daddr, 0,
1861                                                                  IPPROTO_TCP,
1862                                                                  0);
1863                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1864                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1865                         tcp_hdr(skb)->check =
1866                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1867                                              &ipv6_hdr(skb)->daddr,
1868                                              0, IPPROTO_TCP, 0);
1869                 }
1870                 return 1;
1871         }
1872         return 0;
1873 }
1874
1875 static void ql_hw_csum_setup(struct sk_buff *skb,
1876                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1877 {
1878         int len;
1879         struct iphdr *iph = ip_hdr(skb);
1880         u16 *check;
1881         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1882         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1883         mac_iocb_ptr->net_trans_offset =
1884                 cpu_to_le16(skb_network_offset(skb) |
1885                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1886
1887         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1888         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1889         if (likely(iph->protocol == IPPROTO_TCP)) {
1890                 check = &(tcp_hdr(skb)->check);
1891                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1892                 mac_iocb_ptr->total_hdrs_len =
1893                     cpu_to_le16(skb_transport_offset(skb) +
1894                                 (tcp_hdr(skb)->doff << 2));
1895         } else {
1896                 check = &(udp_hdr(skb)->check);
1897                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1898                 mac_iocb_ptr->total_hdrs_len =
1899                     cpu_to_le16(skb_transport_offset(skb) +
1900                                 sizeof(struct udphdr));
1901         }
1902         *check = ~csum_tcpudp_magic(iph->saddr,
1903                                     iph->daddr, len, iph->protocol, 0);
1904 }
1905
1906 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1907 {
1908         struct tx_ring_desc *tx_ring_desc;
1909         struct ob_mac_iocb_req *mac_iocb_ptr;
1910         struct ql_adapter *qdev = netdev_priv(ndev);
1911         int tso;
1912         struct tx_ring *tx_ring;
1913         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1914
1915         tx_ring = &qdev->tx_ring[tx_ring_idx];
1916
1917         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1918                 QPRINTK(qdev, TX_QUEUED, INFO,
1919                         "%s: shutting down tx queue %d du to lack of resources.\n",
1920                         __func__, tx_ring_idx);
1921                 netif_stop_queue(ndev);
1922                 atomic_inc(&tx_ring->queue_stopped);
1923                 return NETDEV_TX_BUSY;
1924         }
1925         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1926         mac_iocb_ptr = tx_ring_desc->queue_entry;
1927         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1928         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1929                 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1930                 return NETDEV_TX_BUSY;
1931         }
1932
1933         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1934         mac_iocb_ptr->tid = tx_ring_desc->index;
1935         /* We use the upper 32-bits to store the tx queue for this IO.
1936          * When we get the completion we can use it to establish the context.
1937          */
1938         mac_iocb_ptr->txq_idx = tx_ring_idx;
1939         tx_ring_desc->skb = skb;
1940
1941         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1942
1943         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1944                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1945                         vlan_tx_tag_get(skb));
1946                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1947                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1948         }
1949         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1950         if (tso < 0) {
1951                 dev_kfree_skb_any(skb);
1952                 return NETDEV_TX_OK;
1953         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1954                 ql_hw_csum_setup(skb,
1955                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1956         }
1957         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1958         tx_ring->prod_idx++;
1959         if (tx_ring->prod_idx == tx_ring->wq_len)
1960                 tx_ring->prod_idx = 0;
1961         wmb();
1962
1963         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1964         ndev->trans_start = jiffies;
1965         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1966                 tx_ring->prod_idx, skb->len);
1967
1968         atomic_dec(&tx_ring->tx_count);
1969         return NETDEV_TX_OK;
1970 }
1971
1972 static void ql_free_shadow_space(struct ql_adapter *qdev)
1973 {
1974         if (qdev->rx_ring_shadow_reg_area) {
1975                 pci_free_consistent(qdev->pdev,
1976                                     PAGE_SIZE,
1977                                     qdev->rx_ring_shadow_reg_area,
1978                                     qdev->rx_ring_shadow_reg_dma);
1979                 qdev->rx_ring_shadow_reg_area = NULL;
1980         }
1981         if (qdev->tx_ring_shadow_reg_area) {
1982                 pci_free_consistent(qdev->pdev,
1983                                     PAGE_SIZE,
1984                                     qdev->tx_ring_shadow_reg_area,
1985                                     qdev->tx_ring_shadow_reg_dma);
1986                 qdev->tx_ring_shadow_reg_area = NULL;
1987         }
1988 }
1989
1990 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1991 {
1992         qdev->rx_ring_shadow_reg_area =
1993             pci_alloc_consistent(qdev->pdev,
1994                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1995         if (qdev->rx_ring_shadow_reg_area == NULL) {
1996                 QPRINTK(qdev, IFUP, ERR,
1997                         "Allocation of RX shadow space failed.\n");
1998                 return -ENOMEM;
1999         }
2000         qdev->tx_ring_shadow_reg_area =
2001             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2002                                  &qdev->tx_ring_shadow_reg_dma);
2003         if (qdev->tx_ring_shadow_reg_area == NULL) {
2004                 QPRINTK(qdev, IFUP, ERR,
2005                         "Allocation of TX shadow space failed.\n");
2006                 goto err_wqp_sh_area;
2007         }
2008         return 0;
2009
2010 err_wqp_sh_area:
2011         pci_free_consistent(qdev->pdev,
2012                             PAGE_SIZE,
2013                             qdev->rx_ring_shadow_reg_area,
2014                             qdev->rx_ring_shadow_reg_dma);
2015         return -ENOMEM;
2016 }
2017
2018 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2019 {
2020         struct tx_ring_desc *tx_ring_desc;
2021         int i;
2022         struct ob_mac_iocb_req *mac_iocb_ptr;
2023
2024         mac_iocb_ptr = tx_ring->wq_base;
2025         tx_ring_desc = tx_ring->q;
2026         for (i = 0; i < tx_ring->wq_len; i++) {
2027                 tx_ring_desc->index = i;
2028                 tx_ring_desc->skb = NULL;
2029                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2030                 mac_iocb_ptr++;
2031                 tx_ring_desc++;
2032         }
2033         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2034         atomic_set(&tx_ring->queue_stopped, 0);
2035 }
2036
2037 static void ql_free_tx_resources(struct ql_adapter *qdev,
2038                                  struct tx_ring *tx_ring)
2039 {
2040         if (tx_ring->wq_base) {
2041                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2042                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2043                 tx_ring->wq_base = NULL;
2044         }
2045         kfree(tx_ring->q);
2046         tx_ring->q = NULL;
2047 }
2048
2049 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2050                                  struct tx_ring *tx_ring)
2051 {
2052         tx_ring->wq_base =
2053             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2054                                  &tx_ring->wq_base_dma);
2055
2056         if ((tx_ring->wq_base == NULL)
2057             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2058                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2059                 return -ENOMEM;
2060         }
2061         tx_ring->q =
2062             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2063         if (tx_ring->q == NULL)
2064                 goto err;
2065
2066         return 0;
2067 err:
2068         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2069                             tx_ring->wq_base, tx_ring->wq_base_dma);
2070         return -ENOMEM;
2071 }
2072
2073 void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2074 {
2075         int i;
2076         struct bq_desc *lbq_desc;
2077
2078         for (i = 0; i < rx_ring->lbq_len; i++) {
2079                 lbq_desc = &rx_ring->lbq[i];
2080                 if (lbq_desc->p.lbq_page) {
2081                         pci_unmap_page(qdev->pdev,
2082                                        pci_unmap_addr(lbq_desc, mapaddr),
2083                                        pci_unmap_len(lbq_desc, maplen),
2084                                        PCI_DMA_FROMDEVICE);
2085
2086                         put_page(lbq_desc->p.lbq_page);
2087                         lbq_desc->p.lbq_page = NULL;
2088                 }
2089                 lbq_desc->bq->addr_lo = 0;
2090                 lbq_desc->bq->addr_hi = 0;
2091         }
2092 }
2093
2094 /*
2095  * Allocate and map a page for each element of the lbq.
2096  */
2097 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2098                                 struct rx_ring *rx_ring)
2099 {
2100         int i;
2101         struct bq_desc *lbq_desc;
2102         u64 map;
2103         struct bq_element *bq = rx_ring->lbq_base;
2104
2105         for (i = 0; i < rx_ring->lbq_len; i++) {
2106                 lbq_desc = &rx_ring->lbq[i];
2107                 memset(lbq_desc, 0, sizeof(lbq_desc));
2108                 lbq_desc->bq = bq;
2109                 lbq_desc->index = i;
2110                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2111                 if (unlikely(!lbq_desc->p.lbq_page)) {
2112                         QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2113                         goto mem_error;
2114                 } else {
2115                         map = pci_map_page(qdev->pdev,
2116                                            lbq_desc->p.lbq_page,
2117                                            0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2118                         if (pci_dma_mapping_error(qdev->pdev, map)) {
2119                                 QPRINTK(qdev, IFUP, ERR,
2120                                         "PCI mapping failed.\n");
2121                                 goto mem_error;
2122                         }
2123                         pci_unmap_addr_set(lbq_desc, mapaddr, map);
2124                         pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2125                         bq->addr_lo = cpu_to_le32(map);
2126                         bq->addr_hi = cpu_to_le32(map >> 32);
2127                 }
2128                 bq++;
2129         }
2130         return 0;
2131 mem_error:
2132         ql_free_lbq_buffers(qdev, rx_ring);
2133         return -ENOMEM;
2134 }
2135
2136 void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2137 {
2138         int i;
2139         struct bq_desc *sbq_desc;
2140
2141         for (i = 0; i < rx_ring->sbq_len; i++) {
2142                 sbq_desc = &rx_ring->sbq[i];
2143                 if (sbq_desc == NULL) {
2144                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2145                         return;
2146                 }
2147                 if (sbq_desc->p.skb) {
2148                         pci_unmap_single(qdev->pdev,
2149                                          pci_unmap_addr(sbq_desc, mapaddr),
2150                                          pci_unmap_len(sbq_desc, maplen),
2151                                          PCI_DMA_FROMDEVICE);
2152                         dev_kfree_skb(sbq_desc->p.skb);
2153                         sbq_desc->p.skb = NULL;
2154                 }
2155                 if (sbq_desc->bq == NULL) {
2156                         QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
2157                                 i);
2158                         return;
2159                 }
2160                 sbq_desc->bq->addr_lo = 0;
2161                 sbq_desc->bq->addr_hi = 0;
2162         }
2163 }
2164
2165 /* Allocate and map an skb for each element of the sbq. */
2166 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2167                                 struct rx_ring *rx_ring)
2168 {
2169         int i;
2170         struct bq_desc *sbq_desc;
2171         struct sk_buff *skb;
2172         u64 map;
2173         struct bq_element *bq = rx_ring->sbq_base;
2174
2175         for (i = 0; i < rx_ring->sbq_len; i++) {
2176                 sbq_desc = &rx_ring->sbq[i];
2177                 memset(sbq_desc, 0, sizeof(sbq_desc));
2178                 sbq_desc->index = i;
2179                 sbq_desc->bq = bq;
2180                 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2181                 if (unlikely(!skb)) {
2182                         /* Better luck next round */
2183                         QPRINTK(qdev, IFUP, ERR,
2184                                 "small buff alloc failed for %d bytes at index %d.\n",
2185                                 rx_ring->sbq_buf_size, i);
2186                         goto mem_err;
2187                 }
2188                 skb_reserve(skb, QLGE_SB_PAD);
2189                 sbq_desc->p.skb = skb;
2190                 /*
2191                  * Map only half the buffer. Because the
2192                  * other half may get some data copied to it
2193                  * when the completion arrives.
2194                  */
2195                 map = pci_map_single(qdev->pdev,
2196                                      skb->data,
2197                                      rx_ring->sbq_buf_size / 2,
2198                                      PCI_DMA_FROMDEVICE);
2199                 if (pci_dma_mapping_error(qdev->pdev, map)) {
2200                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2201                         goto mem_err;
2202                 }
2203                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2204                 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2205                 bq->addr_lo =   /*sbq_desc->addr_lo = */
2206                     cpu_to_le32(map);
2207                 bq->addr_hi =   /*sbq_desc->addr_hi = */
2208                     cpu_to_le32(map >> 32);
2209                 bq++;
2210         }
2211         return 0;
2212 mem_err:
2213         ql_free_sbq_buffers(qdev, rx_ring);
2214         return -ENOMEM;
2215 }
2216
2217 static void ql_free_rx_resources(struct ql_adapter *qdev,
2218                                  struct rx_ring *rx_ring)
2219 {
2220         if (rx_ring->sbq_len)
2221                 ql_free_sbq_buffers(qdev, rx_ring);
2222         if (rx_ring->lbq_len)
2223                 ql_free_lbq_buffers(qdev, rx_ring);
2224
2225         /* Free the small buffer queue. */
2226         if (rx_ring->sbq_base) {
2227                 pci_free_consistent(qdev->pdev,
2228                                     rx_ring->sbq_size,
2229                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2230                 rx_ring->sbq_base = NULL;
2231         }
2232
2233         /* Free the small buffer queue control blocks. */
2234         kfree(rx_ring->sbq);
2235         rx_ring->sbq = NULL;
2236
2237         /* Free the large buffer queue. */
2238         if (rx_ring->lbq_base) {
2239                 pci_free_consistent(qdev->pdev,
2240                                     rx_ring->lbq_size,
2241                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2242                 rx_ring->lbq_base = NULL;
2243         }
2244
2245         /* Free the large buffer queue control blocks. */
2246         kfree(rx_ring->lbq);
2247         rx_ring->lbq = NULL;
2248
2249         /* Free the rx queue. */
2250         if (rx_ring->cq_base) {
2251                 pci_free_consistent(qdev->pdev,
2252                                     rx_ring->cq_size,
2253                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2254                 rx_ring->cq_base = NULL;
2255         }
2256 }
2257
2258 /* Allocate queues and buffers for this completions queue based
2259  * on the values in the parameter structure. */
2260 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2261                                  struct rx_ring *rx_ring)
2262 {
2263
2264         /*
2265          * Allocate the completion queue for this rx_ring.
2266          */
2267         rx_ring->cq_base =
2268             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2269                                  &rx_ring->cq_base_dma);
2270
2271         if (rx_ring->cq_base == NULL) {
2272                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2273                 return -ENOMEM;
2274         }
2275
2276         if (rx_ring->sbq_len) {
2277                 /*
2278                  * Allocate small buffer queue.
2279                  */
2280                 rx_ring->sbq_base =
2281                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2282                                          &rx_ring->sbq_base_dma);
2283
2284                 if (rx_ring->sbq_base == NULL) {
2285                         QPRINTK(qdev, IFUP, ERR,
2286                                 "Small buffer queue allocation failed.\n");
2287                         goto err_mem;
2288                 }
2289
2290                 /*
2291                  * Allocate small buffer queue control blocks.
2292                  */
2293                 rx_ring->sbq =
2294                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2295                             GFP_KERNEL);
2296                 if (rx_ring->sbq == NULL) {
2297                         QPRINTK(qdev, IFUP, ERR,
2298                                 "Small buffer queue control block allocation failed.\n");
2299                         goto err_mem;
2300                 }
2301
2302                 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2303                         QPRINTK(qdev, IFUP, ERR,
2304                                 "Small buffer allocation failed.\n");
2305                         goto err_mem;
2306                 }
2307         }
2308
2309         if (rx_ring->lbq_len) {
2310                 /*
2311                  * Allocate large buffer queue.
2312                  */
2313                 rx_ring->lbq_base =
2314                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2315                                          &rx_ring->lbq_base_dma);
2316
2317                 if (rx_ring->lbq_base == NULL) {
2318                         QPRINTK(qdev, IFUP, ERR,
2319                                 "Large buffer queue allocation failed.\n");
2320                         goto err_mem;
2321                 }
2322                 /*
2323                  * Allocate large buffer queue control blocks.
2324                  */
2325                 rx_ring->lbq =
2326                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2327                             GFP_KERNEL);
2328                 if (rx_ring->lbq == NULL) {
2329                         QPRINTK(qdev, IFUP, ERR,
2330                                 "Large buffer queue control block allocation failed.\n");
2331                         goto err_mem;
2332                 }
2333
2334                 /*
2335                  * Allocate the buffers.
2336                  */
2337                 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2338                         QPRINTK(qdev, IFUP, ERR,
2339                                 "Large buffer allocation failed.\n");
2340                         goto err_mem;
2341                 }
2342         }
2343
2344         return 0;
2345
2346 err_mem:
2347         ql_free_rx_resources(qdev, rx_ring);
2348         return -ENOMEM;
2349 }
2350
2351 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2352 {
2353         struct tx_ring *tx_ring;
2354         struct tx_ring_desc *tx_ring_desc;
2355         int i, j;
2356
2357         /*
2358          * Loop through all queues and free
2359          * any resources.
2360          */
2361         for (j = 0; j < qdev->tx_ring_count; j++) {
2362                 tx_ring = &qdev->tx_ring[j];
2363                 for (i = 0; i < tx_ring->wq_len; i++) {
2364                         tx_ring_desc = &tx_ring->q[i];
2365                         if (tx_ring_desc && tx_ring_desc->skb) {
2366                                 QPRINTK(qdev, IFDOWN, ERR,
2367                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2368                                         tx_ring_desc->skb, j,
2369                                         tx_ring_desc->index);
2370                                 ql_unmap_send(qdev, tx_ring_desc,
2371                                               tx_ring_desc->map_cnt);
2372                                 dev_kfree_skb(tx_ring_desc->skb);
2373                                 tx_ring_desc->skb = NULL;
2374                         }
2375                 }
2376         }
2377 }
2378
2379 static void ql_free_ring_cb(struct ql_adapter *qdev)
2380 {
2381         kfree(qdev->ring_mem);
2382 }
2383
2384 static int ql_alloc_ring_cb(struct ql_adapter *qdev)
2385 {
2386         /* Allocate space for tx/rx ring control blocks. */
2387         qdev->ring_mem_size =
2388             (qdev->tx_ring_count * sizeof(struct tx_ring)) +
2389             (qdev->rx_ring_count * sizeof(struct rx_ring));
2390         qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
2391         if (qdev->ring_mem == NULL) {
2392                 return -ENOMEM;
2393         } else {
2394                 qdev->rx_ring = qdev->ring_mem;
2395                 qdev->tx_ring = qdev->ring_mem +
2396                     (qdev->rx_ring_count * sizeof(struct rx_ring));
2397         }
2398         return 0;
2399 }
2400
2401 static void ql_free_mem_resources(struct ql_adapter *qdev)
2402 {
2403         int i;
2404
2405         for (i = 0; i < qdev->tx_ring_count; i++)
2406                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2407         for (i = 0; i < qdev->rx_ring_count; i++)
2408                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2409         ql_free_shadow_space(qdev);
2410 }
2411
2412 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2413 {
2414         int i;
2415
2416         /* Allocate space for our shadow registers and such. */
2417         if (ql_alloc_shadow_space(qdev))
2418                 return -ENOMEM;
2419
2420         for (i = 0; i < qdev->rx_ring_count; i++) {
2421                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2422                         QPRINTK(qdev, IFUP, ERR,
2423                                 "RX resource allocation failed.\n");
2424                         goto err_mem;
2425                 }
2426         }
2427         /* Allocate tx queue resources */
2428         for (i = 0; i < qdev->tx_ring_count; i++) {
2429                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2430                         QPRINTK(qdev, IFUP, ERR,
2431                                 "TX resource allocation failed.\n");
2432                         goto err_mem;
2433                 }
2434         }
2435         return 0;
2436
2437 err_mem:
2438         ql_free_mem_resources(qdev);
2439         return -ENOMEM;
2440 }
2441
2442 /* Set up the rx ring control block and pass it to the chip.
2443  * The control block is defined as
2444  * "Completion Queue Initialization Control Block", or cqicb.
2445  */
2446 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2447 {
2448         struct cqicb *cqicb = &rx_ring->cqicb;
2449         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2450             (rx_ring->cq_id * sizeof(u64) * 4);
2451         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2452             (rx_ring->cq_id * sizeof(u64) * 4);
2453         void __iomem *doorbell_area =
2454             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2455         int err = 0;
2456         u16 bq_len;
2457
2458         /* Set up the shadow registers for this ring. */
2459         rx_ring->prod_idx_sh_reg = shadow_reg;
2460         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2461         shadow_reg += sizeof(u64);
2462         shadow_reg_dma += sizeof(u64);
2463         rx_ring->lbq_base_indirect = shadow_reg;
2464         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2465         shadow_reg += sizeof(u64);
2466         shadow_reg_dma += sizeof(u64);
2467         rx_ring->sbq_base_indirect = shadow_reg;
2468         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2469
2470         /* PCI doorbell mem area + 0x00 for consumer index register */
2471         rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
2472         rx_ring->cnsmr_idx = 0;
2473         rx_ring->curr_entry = rx_ring->cq_base;
2474
2475         /* PCI doorbell mem area + 0x04 for valid register */
2476         rx_ring->valid_db_reg = doorbell_area + 0x04;
2477
2478         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2479         rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
2480
2481         /* PCI doorbell mem area + 0x1c */
2482         rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
2483
2484         memset((void *)cqicb, 0, sizeof(struct cqicb));
2485         cqicb->msix_vect = rx_ring->irq;
2486
2487         cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
2488
2489         cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
2490         cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
2491
2492         cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
2493         cqicb->prod_idx_addr_hi =
2494             cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
2495
2496         /*
2497          * Set up the control block load flags.
2498          */
2499         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2500             FLAGS_LV |          /* Load MSI-X vector */
2501             FLAGS_LI;           /* Load irq delay values */
2502         if (rx_ring->lbq_len) {
2503                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2504                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2505                 cqicb->lbq_addr_lo =
2506                     cpu_to_le32(rx_ring->lbq_base_indirect_dma);
2507                 cqicb->lbq_addr_hi =
2508                     cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
2509                 cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
2510                 bq_len = (u16) rx_ring->lbq_len;
2511                 cqicb->lbq_len = cpu_to_le16(bq_len);
2512                 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2513                 rx_ring->lbq_curr_idx = 0;
2514                 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2515                 rx_ring->lbq_free_cnt = 16;
2516         }
2517         if (rx_ring->sbq_len) {
2518                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2519                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2520                 cqicb->sbq_addr_lo =
2521                     cpu_to_le32(rx_ring->sbq_base_indirect_dma);
2522                 cqicb->sbq_addr_hi =
2523                     cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
2524                 cqicb->sbq_buf_size =
2525                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2526                 bq_len = (u16) rx_ring->sbq_len;
2527                 cqicb->sbq_len = cpu_to_le16(bq_len);
2528                 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2529                 rx_ring->sbq_curr_idx = 0;
2530                 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2531                 rx_ring->sbq_free_cnt = 16;
2532         }
2533         switch (rx_ring->type) {
2534         case TX_Q:
2535                 /* If there's only one interrupt, then we use
2536                  * worker threads to process the outbound
2537                  * completion handling rx_rings. We do this so
2538                  * they can be run on multiple CPUs. There is
2539                  * room to play with this more where we would only
2540                  * run in a worker if there are more than x number
2541                  * of outbound completions on the queue and more
2542                  * than one queue active.  Some threshold that
2543                  * would indicate a benefit in spite of the cost
2544                  * of a context switch.
2545                  * If there's more than one interrupt, then the
2546                  * outbound completions are processed in the ISR.
2547                  */
2548                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2549                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2550                 else {
2551                         /* With all debug warnings on we see a WARN_ON message
2552                          * when we free the skb in the interrupt context.
2553                          */
2554                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2555                 }
2556                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2557                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2558                 break;
2559         case DEFAULT_Q:
2560                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2561                 cqicb->irq_delay = 0;
2562                 cqicb->pkt_delay = 0;
2563                 break;
2564         case RX_Q:
2565                 /* Inbound completion handling rx_rings run in
2566                  * separate NAPI contexts.
2567                  */
2568                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2569                                64);
2570                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2571                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2572                 break;
2573         default:
2574                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2575                         rx_ring->type);
2576         }
2577         QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2578         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2579                            CFG_LCQ, rx_ring->cq_id);
2580         if (err) {
2581                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2582                 return err;
2583         }
2584         QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2585         /*
2586          * Advance the producer index for the buffer queues.
2587          */
2588         wmb();
2589         if (rx_ring->lbq_len)
2590                 ql_write_db_reg(rx_ring->lbq_prod_idx,
2591                                 rx_ring->lbq_prod_idx_db_reg);
2592         if (rx_ring->sbq_len)
2593                 ql_write_db_reg(rx_ring->sbq_prod_idx,
2594                                 rx_ring->sbq_prod_idx_db_reg);
2595         return err;
2596 }
2597
2598 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2599 {
2600         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2601         void __iomem *doorbell_area =
2602             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2603         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2604             (tx_ring->wq_id * sizeof(u64));
2605         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2606             (tx_ring->wq_id * sizeof(u64));
2607         int err = 0;
2608
2609         /*
2610          * Assign doorbell registers for this tx_ring.
2611          */
2612         /* TX PCI doorbell mem area for tx producer index */
2613         tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
2614         tx_ring->prod_idx = 0;
2615         /* TX PCI doorbell mem area + 0x04 */
2616         tx_ring->valid_db_reg = doorbell_area + 0x04;
2617
2618         /*
2619          * Assign shadow registers for this tx_ring.
2620          */
2621         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2622         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2623
2624         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2625         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2626                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2627         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2628         wqicb->rid = 0;
2629         wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
2630         wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
2631
2632         wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
2633         wqicb->cnsmr_idx_addr_hi =
2634             cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
2635
2636         ql_init_tx_ring(qdev, tx_ring);
2637
2638         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2639                            (u16) tx_ring->wq_id);
2640         if (err) {
2641                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2642                 return err;
2643         }
2644         QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2645         return err;
2646 }
2647
2648 static void ql_disable_msix(struct ql_adapter *qdev)
2649 {
2650         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2651                 pci_disable_msix(qdev->pdev);
2652                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2653                 kfree(qdev->msi_x_entry);
2654                 qdev->msi_x_entry = NULL;
2655         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2656                 pci_disable_msi(qdev->pdev);
2657                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2658         }
2659 }
2660
2661 static void ql_enable_msix(struct ql_adapter *qdev)
2662 {
2663         int i;
2664
2665         qdev->intr_count = 1;
2666         /* Get the MSIX vectors. */
2667         if (irq_type == MSIX_IRQ) {
2668                 /* Try to alloc space for the msix struct,
2669                  * if it fails then go to MSI/legacy.
2670                  */
2671                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2672                                             sizeof(struct msix_entry),
2673                                             GFP_KERNEL);
2674                 if (!qdev->msi_x_entry) {
2675                         irq_type = MSI_IRQ;
2676                         goto msi;
2677                 }
2678
2679                 for (i = 0; i < qdev->rx_ring_count; i++)
2680                         qdev->msi_x_entry[i].entry = i;
2681
2682                 if (!pci_enable_msix
2683                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2684                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2685                         qdev->intr_count = qdev->rx_ring_count;
2686                         QPRINTK(qdev, IFUP, INFO,
2687                                 "MSI-X Enabled, got %d vectors.\n",
2688                                 qdev->intr_count);
2689                         return;
2690                 } else {
2691                         kfree(qdev->msi_x_entry);
2692                         qdev->msi_x_entry = NULL;
2693                         QPRINTK(qdev, IFUP, WARNING,
2694                                 "MSI-X Enable failed, trying MSI.\n");
2695                         irq_type = MSI_IRQ;
2696                 }
2697         }
2698 msi:
2699         if (irq_type == MSI_IRQ) {
2700                 if (!pci_enable_msi(qdev->pdev)) {
2701                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2702                         QPRINTK(qdev, IFUP, INFO,
2703                                 "Running with MSI interrupts.\n");
2704                         return;
2705                 }
2706         }
2707         irq_type = LEG_IRQ;
2708         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2709 }
2710
2711 /*
2712  * Here we build the intr_context structures based on
2713  * our rx_ring count and intr vector count.
2714  * The intr_context structure is used to hook each vector
2715  * to possibly different handlers.
2716  */
2717 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2718 {
2719         int i = 0;
2720         struct intr_context *intr_context = &qdev->intr_context[0];
2721
2722         ql_enable_msix(qdev);
2723
2724         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2725                 /* Each rx_ring has it's
2726                  * own intr_context since we have separate
2727                  * vectors for each queue.
2728                  * This only true when MSI-X is enabled.
2729                  */
2730                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2731                         qdev->rx_ring[i].irq = i;
2732                         intr_context->intr = i;
2733                         intr_context->qdev = qdev;
2734                         /*
2735                          * We set up each vectors enable/disable/read bits so
2736                          * there's no bit/mask calculations in the critical path.
2737                          */
2738                         intr_context->intr_en_mask =
2739                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2740                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2741                             | i;
2742                         intr_context->intr_dis_mask =
2743                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2744                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2745                             INTR_EN_IHD | i;
2746                         intr_context->intr_read_mask =
2747                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2748                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2749                             i;
2750
2751                         if (i == 0) {
2752                                 /*
2753                                  * Default queue handles bcast/mcast plus
2754                                  * async events.  Needs buffers.
2755                                  */
2756                                 intr_context->handler = qlge_isr;
2757                                 sprintf(intr_context->name, "%s-default-queue",
2758                                         qdev->ndev->name);
2759                         } else if (i < qdev->rss_ring_first_cq_id) {
2760                                 /*
2761                                  * Outbound queue is for outbound completions only.
2762                                  */
2763                                 intr_context->handler = qlge_msix_tx_isr;
2764                                 sprintf(intr_context->name, "%s-txq-%d",
2765                                         qdev->ndev->name, i);
2766                         } else {
2767                                 /*
2768                                  * Inbound queues handle unicast frames only.
2769                                  */
2770                                 intr_context->handler = qlge_msix_rx_isr;
2771                                 sprintf(intr_context->name, "%s-rxq-%d",
2772                                         qdev->ndev->name, i);
2773                         }
2774                 }
2775         } else {
2776                 /*
2777                  * All rx_rings use the same intr_context since
2778                  * there is only one vector.
2779                  */
2780                 intr_context->intr = 0;
2781                 intr_context->qdev = qdev;
2782                 /*
2783                  * We set up each vectors enable/disable/read bits so
2784                  * there's no bit/mask calculations in the critical path.
2785                  */
2786                 intr_context->intr_en_mask =
2787                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2788                 intr_context->intr_dis_mask =
2789                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2790                     INTR_EN_TYPE_DISABLE;
2791                 intr_context->intr_read_mask =
2792                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2793                 /*
2794                  * Single interrupt means one handler for all rings.
2795                  */
2796                 intr_context->handler = qlge_isr;
2797                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2798                 for (i = 0; i < qdev->rx_ring_count; i++)
2799                         qdev->rx_ring[i].irq = 0;
2800         }
2801 }
2802
2803 static void ql_free_irq(struct ql_adapter *qdev)
2804 {
2805         int i;
2806         struct intr_context *intr_context = &qdev->intr_context[0];
2807
2808         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2809                 if (intr_context->hooked) {
2810                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2811                                 free_irq(qdev->msi_x_entry[i].vector,
2812                                          &qdev->rx_ring[i]);
2813                                 QPRINTK(qdev, IFDOWN, ERR,
2814                                         "freeing msix interrupt %d.\n", i);
2815                         } else {
2816                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2817                                 QPRINTK(qdev, IFDOWN, ERR,
2818                                         "freeing msi interrupt %d.\n", i);
2819                         }
2820                 }
2821         }
2822         ql_disable_msix(qdev);
2823 }
2824
2825 static int ql_request_irq(struct ql_adapter *qdev)
2826 {
2827         int i;
2828         int status = 0;
2829         struct pci_dev *pdev = qdev->pdev;
2830         struct intr_context *intr_context = &qdev->intr_context[0];
2831
2832         ql_resolve_queues_to_irqs(qdev);
2833
2834         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2835                 atomic_set(&intr_context->irq_cnt, 0);
2836                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2837                         status = request_irq(qdev->msi_x_entry[i].vector,
2838                                              intr_context->handler,
2839                                              0,
2840                                              intr_context->name,
2841                                              &qdev->rx_ring[i]);
2842                         if (status) {
2843                                 QPRINTK(qdev, IFUP, ERR,
2844                                         "Failed request for MSIX interrupt %d.\n",
2845                                         i);
2846                                 goto err_irq;
2847                         } else {
2848                                 QPRINTK(qdev, IFUP, INFO,
2849                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2850                                         i,
2851                                         qdev->rx_ring[i].type ==
2852                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2853                                         qdev->rx_ring[i].type ==
2854                                         TX_Q ? "TX_Q" : "",
2855                                         qdev->rx_ring[i].type ==
2856                                         RX_Q ? "RX_Q" : "", intr_context->name);
2857                         }
2858                 } else {
2859                         QPRINTK(qdev, IFUP, DEBUG,
2860                                 "trying msi or legacy interrupts.\n");
2861                         QPRINTK(qdev, IFUP, DEBUG,
2862                                 "%s: irq = %d.\n", __func__, pdev->irq);
2863                         QPRINTK(qdev, IFUP, DEBUG,
2864                                 "%s: context->name = %s.\n", __func__,
2865                                intr_context->name);
2866                         QPRINTK(qdev, IFUP, DEBUG,
2867                                 "%s: dev_id = 0x%p.\n", __func__,
2868                                &qdev->rx_ring[0]);
2869                         status =
2870                             request_irq(pdev->irq, qlge_isr,
2871                                         test_bit(QL_MSI_ENABLED,
2872                                                  &qdev->
2873                                                  flags) ? 0 : IRQF_SHARED,
2874                                         intr_context->name, &qdev->rx_ring[0]);
2875                         if (status)
2876                                 goto err_irq;
2877
2878                         QPRINTK(qdev, IFUP, ERR,
2879                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2880                                 i,
2881                                 qdev->rx_ring[0].type ==
2882                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2883                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2884                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2885                                 intr_context->name);
2886                 }
2887                 intr_context->hooked = 1;
2888         }
2889         return status;
2890 err_irq:
2891         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2892         ql_free_irq(qdev);
2893         return status;
2894 }
2895
2896 static int ql_start_rss(struct ql_adapter *qdev)
2897 {
2898         struct ricb *ricb = &qdev->ricb;
2899         int status = 0;
2900         int i;
2901         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2902
2903         memset((void *)ricb, 0, sizeof(ricb));
2904
2905         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2906         ricb->flags =
2907             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2908              RSS_RT6);
2909         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2910
2911         /*
2912          * Fill out the Indirection Table.
2913          */
2914         for (i = 0; i < 32; i++)
2915                 hash_id[i] = i & 1;
2916
2917         /*
2918          * Random values for the IPv6 and IPv4 Hash Keys.
2919          */
2920         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2921         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2922
2923         QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2924
2925         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2926         if (status) {
2927                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2928                 return status;
2929         }
2930         QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2931         return status;
2932 }
2933
2934 /* Initialize the frame-to-queue routing. */
2935 static int ql_route_initialize(struct ql_adapter *qdev)
2936 {
2937         int status = 0;
2938         int i;
2939
2940         /* Clear all the entries in the routing table. */
2941         for (i = 0; i < 16; i++) {
2942                 status = ql_set_routing_reg(qdev, i, 0, 0);
2943                 if (status) {
2944                         QPRINTK(qdev, IFUP, ERR,
2945                                 "Failed to init routing register for CAM packets.\n");
2946                         return status;
2947                 }
2948         }
2949
2950         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2951         if (status) {
2952                 QPRINTK(qdev, IFUP, ERR,
2953                         "Failed to init routing register for error packets.\n");
2954                 return status;
2955         }
2956         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2957         if (status) {
2958                 QPRINTK(qdev, IFUP, ERR,
2959                         "Failed to init routing register for broadcast packets.\n");
2960                 return status;
2961         }
2962         /* If we have more than one inbound queue, then turn on RSS in the
2963          * routing block.
2964          */
2965         if (qdev->rss_ring_count > 1) {
2966                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2967                                         RT_IDX_RSS_MATCH, 1);
2968                 if (status) {
2969                         QPRINTK(qdev, IFUP, ERR,
2970                                 "Failed to init routing register for MATCH RSS packets.\n");
2971                         return status;
2972                 }
2973         }
2974
2975         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2976                                     RT_IDX_CAM_HIT, 1);
2977         if (status) {
2978                 QPRINTK(qdev, IFUP, ERR,
2979                         "Failed to init routing register for CAM packets.\n");
2980                 return status;
2981         }
2982         return status;
2983 }
2984
2985 static int ql_adapter_initialize(struct ql_adapter *qdev)
2986 {
2987         u32 value, mask;
2988         int i;
2989         int status = 0;
2990
2991         /*
2992          * Set up the System register to halt on errors.
2993          */
2994         value = SYS_EFE | SYS_FAE;
2995         mask = value << 16;
2996         ql_write32(qdev, SYS, mask | value);
2997
2998         /* Set the default queue. */
2999         value = NIC_RCV_CFG_DFQ;
3000         mask = NIC_RCV_CFG_DFQ_MASK;
3001         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3002
3003         /* Set the MPI interrupt to enabled. */
3004         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3005
3006         /* Enable the function, set pagesize, enable error checking. */
3007         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3008             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3009
3010         /* Set/clear header splitting. */
3011         mask = FSC_VM_PAGESIZE_MASK |
3012             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3013         ql_write32(qdev, FSC, mask | value);
3014
3015         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3016                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3017
3018         /* Start up the rx queues. */
3019         for (i = 0; i < qdev->rx_ring_count; i++) {
3020                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3021                 if (status) {
3022                         QPRINTK(qdev, IFUP, ERR,
3023                                 "Failed to start rx ring[%d].\n", i);
3024                         return status;
3025                 }
3026         }
3027
3028         /* If there is more than one inbound completion queue
3029          * then download a RICB to configure RSS.
3030          */
3031         if (qdev->rss_ring_count > 1) {
3032                 status = ql_start_rss(qdev);
3033                 if (status) {
3034                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3035                         return status;
3036                 }
3037         }
3038
3039         /* Start up the tx queues. */
3040         for (i = 0; i < qdev->tx_ring_count; i++) {
3041                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3042                 if (status) {
3043                         QPRINTK(qdev, IFUP, ERR,
3044                                 "Failed to start tx ring[%d].\n", i);
3045                         return status;
3046                 }
3047         }
3048
3049         status = ql_port_initialize(qdev);
3050         if (status) {
3051                 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3052                 return status;
3053         }
3054
3055         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3056                                      MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3057         if (status) {
3058                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3059                 return status;
3060         }
3061
3062         status = ql_route_initialize(qdev);
3063         if (status) {
3064                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3065                 return status;
3066         }
3067
3068         /* Start NAPI for the RSS queues. */
3069         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3070                 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3071                         i);
3072                 napi_enable(&qdev->rx_ring[i].napi);
3073         }
3074
3075         return status;
3076 }
3077
3078 /* Issue soft reset to chip. */
3079 static int ql_adapter_reset(struct ql_adapter *qdev)
3080 {
3081         u32 value;
3082         int max_wait_time;
3083         int status = 0;
3084         int resetCnt = 0;
3085
3086 #define MAX_RESET_CNT   1
3087 issueReset:
3088         resetCnt++;
3089         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3090         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3091         /* Wait for reset to complete. */
3092         max_wait_time = 3;
3093         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3094                 max_wait_time);
3095         do {
3096                 value = ql_read32(qdev, RST_FO);
3097                 if ((value & RST_FO_FR) == 0)
3098                         break;
3099
3100                 ssleep(1);
3101         } while ((--max_wait_time));
3102         if (value & RST_FO_FR) {
3103                 QPRINTK(qdev, IFDOWN, ERR,
3104                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3105                 if (resetCnt < MAX_RESET_CNT)
3106                         goto issueReset;
3107         }
3108         if (max_wait_time == 0) {
3109                 status = -ETIMEDOUT;
3110                 QPRINTK(qdev, IFDOWN, ERR,
3111                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3112         }
3113
3114         return status;
3115 }
3116
3117 static void ql_display_dev_info(struct net_device *ndev)
3118 {
3119         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3120
3121         QPRINTK(qdev, PROBE, INFO,
3122                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3123                 "XG Roll = %d, XG Rev = %d.\n",
3124                 qdev->func,
3125                 qdev->chip_rev_id & 0x0000000f,
3126                 qdev->chip_rev_id >> 4 & 0x0000000f,
3127                 qdev->chip_rev_id >> 8 & 0x0000000f,
3128                 qdev->chip_rev_id >> 12 & 0x0000000f);
3129         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3130 }
3131
3132 static int ql_adapter_down(struct ql_adapter *qdev)
3133 {
3134         struct net_device *ndev = qdev->ndev;
3135         int i, status = 0;
3136         struct rx_ring *rx_ring;
3137
3138         netif_stop_queue(ndev);
3139         netif_carrier_off(ndev);
3140
3141         cancel_delayed_work_sync(&qdev->asic_reset_work);
3142         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3143         cancel_delayed_work_sync(&qdev->mpi_work);
3144
3145         /* The default queue at index 0 is always processed in
3146          * a workqueue.
3147          */
3148         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3149
3150         /* The rest of the rx_rings are processed in
3151          * a workqueue only if it's a single interrupt
3152          * environment (MSI/Legacy).
3153          */
3154         for (i = 1; i > qdev->rx_ring_count; i++) {
3155                 rx_ring = &qdev->rx_ring[i];
3156                 /* Only the RSS rings use NAPI on multi irq
3157                  * environment.  Outbound completion processing
3158                  * is done in interrupt context.
3159                  */
3160                 if (i >= qdev->rss_ring_first_cq_id) {
3161                         napi_disable(&rx_ring->napi);
3162                 } else {
3163                         cancel_delayed_work_sync(&rx_ring->rx_work);
3164                 }
3165         }
3166
3167         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3168
3169         ql_disable_interrupts(qdev);
3170
3171         ql_tx_ring_clean(qdev);
3172
3173         spin_lock(&qdev->hw_lock);
3174         status = ql_adapter_reset(qdev);
3175         if (status)
3176                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3177                         qdev->func);
3178         spin_unlock(&qdev->hw_lock);
3179         return status;
3180 }
3181
3182 static int ql_adapter_up(struct ql_adapter *qdev)
3183 {
3184         int err = 0;
3185
3186         spin_lock(&qdev->hw_lock);
3187         err = ql_adapter_initialize(qdev);
3188         if (err) {
3189                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3190                 spin_unlock(&qdev->hw_lock);
3191                 goto err_init;
3192         }
3193         spin_unlock(&qdev->hw_lock);
3194         set_bit(QL_ADAPTER_UP, &qdev->flags);
3195         ql_enable_interrupts(qdev);
3196         ql_enable_all_completion_interrupts(qdev);
3197         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3198                 netif_carrier_on(qdev->ndev);
3199                 netif_start_queue(qdev->ndev);
3200         }
3201
3202         return 0;
3203 err_init:
3204         ql_adapter_reset(qdev);
3205         return err;
3206 }
3207
3208 static int ql_cycle_adapter(struct ql_adapter *qdev)
3209 {
3210         int status;
3211
3212         status = ql_adapter_down(qdev);
3213         if (status)
3214                 goto error;
3215
3216         status = ql_adapter_up(qdev);
3217         if (status)
3218                 goto error;
3219
3220         return status;
3221 error:
3222         QPRINTK(qdev, IFUP, ALERT,
3223                 "Driver up/down cycle failed, closing device\n");
3224         rtnl_lock();
3225         dev_close(qdev->ndev);
3226         rtnl_unlock();
3227         return status;
3228 }
3229
3230 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3231 {
3232         ql_free_mem_resources(qdev);
3233         ql_free_irq(qdev);
3234 }
3235
3236 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3237 {
3238         int status = 0;
3239
3240         if (ql_alloc_mem_resources(qdev)) {
3241                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3242                 return -ENOMEM;
3243         }
3244         status = ql_request_irq(qdev);
3245         if (status)
3246                 goto err_irq;
3247         return status;
3248 err_irq:
3249         ql_free_mem_resources(qdev);
3250         return status;
3251 }
3252
3253 static int qlge_close(struct net_device *ndev)
3254 {
3255         struct ql_adapter *qdev = netdev_priv(ndev);
3256
3257         /*
3258          * Wait for device to recover from a reset.
3259          * (Rarely happens, but possible.)
3260          */
3261         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3262                 msleep(1);
3263         ql_adapter_down(qdev);
3264         ql_release_adapter_resources(qdev);
3265         ql_free_ring_cb(qdev);
3266         return 0;
3267 }
3268
3269 static int ql_configure_rings(struct ql_adapter *qdev)
3270 {
3271         int i;
3272         struct rx_ring *rx_ring;
3273         struct tx_ring *tx_ring;
3274         int cpu_cnt = num_online_cpus();
3275
3276         /*
3277          * For each processor present we allocate one
3278          * rx_ring for outbound completions, and one
3279          * rx_ring for inbound completions.  Plus there is
3280          * always the one default queue.  For the CPU
3281          * counts we end up with the following rx_rings:
3282          * rx_ring count =
3283          *  one default queue +
3284          *  (CPU count * outbound completion rx_ring) +
3285          *  (CPU count * inbound (RSS) completion rx_ring)
3286          * To keep it simple we limit the total number of
3287          * queues to < 32, so we truncate CPU to 8.
3288          * This limitation can be removed when requested.
3289          */
3290
3291         if (cpu_cnt > 8)
3292                 cpu_cnt = 8;
3293
3294         /*
3295          * rx_ring[0] is always the default queue.
3296          */
3297         /* Allocate outbound completion ring for each CPU. */
3298         qdev->tx_ring_count = cpu_cnt;
3299         /* Allocate inbound completion (RSS) ring for each CPU. */
3300         qdev->rss_ring_count = cpu_cnt;
3301         /* cq_id for the first inbound ring handler. */
3302         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3303         /*
3304          * qdev->rx_ring_count:
3305          * Total number of rx_rings.  This includes the one
3306          * default queue, a number of outbound completion
3307          * handler rx_rings, and the number of inbound
3308          * completion handler rx_rings.
3309          */
3310         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3311
3312         if (ql_alloc_ring_cb(qdev))
3313                 return -ENOMEM;
3314
3315         for (i = 0; i < qdev->tx_ring_count; i++) {
3316                 tx_ring = &qdev->tx_ring[i];
3317                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3318                 tx_ring->qdev = qdev;
3319                 tx_ring->wq_id = i;
3320                 tx_ring->wq_len = qdev->tx_ring_size;
3321                 tx_ring->wq_size =
3322                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3323
3324                 /*
3325                  * The completion queue ID for the tx rings start
3326                  * immediately after the default Q ID, which is zero.
3327                  */
3328                 tx_ring->cq_id = i + 1;
3329         }
3330
3331         for (i = 0; i < qdev->rx_ring_count; i++) {
3332                 rx_ring = &qdev->rx_ring[i];
3333                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3334                 rx_ring->qdev = qdev;
3335                 rx_ring->cq_id = i;
3336                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3337                 if (i == 0) {   /* Default queue at index 0. */
3338                         /*
3339                          * Default queue handles bcast/mcast plus
3340                          * async events.  Needs buffers.
3341                          */
3342                         rx_ring->cq_len = qdev->rx_ring_size;
3343                         rx_ring->cq_size =
3344                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3345                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3346                         rx_ring->lbq_size =
3347                             rx_ring->lbq_len * sizeof(struct bq_element);
3348                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3349                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3350                         rx_ring->sbq_size =
3351                             rx_ring->sbq_len * sizeof(struct bq_element);
3352                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3353                         rx_ring->type = DEFAULT_Q;
3354                 } else if (i < qdev->rss_ring_first_cq_id) {
3355                         /*
3356                          * Outbound queue handles outbound completions only.
3357                          */
3358                         /* outbound cq is same size as tx_ring it services. */
3359                         rx_ring->cq_len = qdev->tx_ring_size;
3360                         rx_ring->cq_size =
3361                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3362                         rx_ring->lbq_len = 0;
3363                         rx_ring->lbq_size = 0;
3364                         rx_ring->lbq_buf_size = 0;
3365                         rx_ring->sbq_len = 0;
3366                         rx_ring->sbq_size = 0;
3367                         rx_ring->sbq_buf_size = 0;
3368                         rx_ring->type = TX_Q;
3369                 } else {        /* Inbound completions (RSS) queues */
3370                         /*
3371                          * Inbound queues handle unicast frames only.
3372                          */
3373                         rx_ring->cq_len = qdev->rx_ring_size;
3374                         rx_ring->cq_size =
3375                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3376                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3377                         rx_ring->lbq_size =
3378                             rx_ring->lbq_len * sizeof(struct bq_element);
3379                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3380                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3381                         rx_ring->sbq_size =
3382                             rx_ring->sbq_len * sizeof(struct bq_element);
3383                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3384                         rx_ring->type = RX_Q;
3385                 }
3386         }
3387         return 0;
3388 }
3389
3390 static int qlge_open(struct net_device *ndev)
3391 {
3392         int err = 0;
3393         struct ql_adapter *qdev = netdev_priv(ndev);
3394
3395         err = ql_configure_rings(qdev);
3396         if (err)
3397                 return err;
3398
3399         err = ql_get_adapter_resources(qdev);
3400         if (err)
3401                 goto error_up;
3402
3403         err = ql_adapter_up(qdev);
3404         if (err)
3405                 goto error_up;
3406
3407         return err;
3408
3409 error_up:
3410         ql_release_adapter_resources(qdev);
3411         ql_free_ring_cb(qdev);
3412         return err;
3413 }
3414
3415 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3416 {
3417         struct ql_adapter *qdev = netdev_priv(ndev);
3418
3419         if (ndev->mtu == 1500 && new_mtu == 9000) {
3420                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3421         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3422                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3423         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3424                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3425                 return 0;
3426         } else
3427                 return -EINVAL;
3428         ndev->mtu = new_mtu;
3429         return 0;
3430 }
3431
3432 static struct net_device_stats *qlge_get_stats(struct net_device
3433                                                *ndev)
3434 {
3435         struct ql_adapter *qdev = netdev_priv(ndev);
3436         return &qdev->stats;
3437 }
3438
3439 static void qlge_set_multicast_list(struct net_device *ndev)
3440 {
3441         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3442         struct dev_mc_list *mc_ptr;
3443         int i;
3444
3445         spin_lock(&qdev->hw_lock);
3446         /*
3447          * Set or clear promiscuous mode if a
3448          * transition is taking place.
3449          */
3450         if (ndev->flags & IFF_PROMISC) {
3451                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3452                         if (ql_set_routing_reg
3453                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3454                                 QPRINTK(qdev, HW, ERR,
3455                                         "Failed to set promiscous mode.\n");
3456                         } else {
3457                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3458                         }
3459                 }
3460         } else {
3461                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3462                         if (ql_set_routing_reg
3463                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3464                                 QPRINTK(qdev, HW, ERR,
3465                                         "Failed to clear promiscous mode.\n");
3466                         } else {
3467                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3468                         }
3469                 }
3470         }
3471
3472         /*
3473          * Set or clear all multicast mode if a
3474          * transition is taking place.
3475          */
3476         if ((ndev->flags & IFF_ALLMULTI) ||
3477             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3478                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3479                         if (ql_set_routing_reg
3480                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3481                                 QPRINTK(qdev, HW, ERR,
3482                                         "Failed to set all-multi mode.\n");
3483                         } else {
3484                                 set_bit(QL_ALLMULTI, &qdev->flags);
3485                         }
3486                 }
3487         } else {
3488                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3489                         if (ql_set_routing_reg
3490                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3491                                 QPRINTK(qdev, HW, ERR,
3492                                         "Failed to clear all-multi mode.\n");
3493                         } else {
3494                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3495                         }
3496                 }
3497         }
3498
3499         if (ndev->mc_count) {
3500                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3501                      i++, mc_ptr = mc_ptr->next)
3502                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3503                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3504                                 QPRINTK(qdev, HW, ERR,
3505                                         "Failed to loadmulticast address.\n");
3506                                 goto exit;
3507                         }
3508                 if (ql_set_routing_reg
3509                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3510                         QPRINTK(qdev, HW, ERR,
3511                                 "Failed to set multicast match mode.\n");
3512                 } else {
3513                         set_bit(QL_ALLMULTI, &qdev->flags);
3514                 }
3515         }
3516 exit:
3517         spin_unlock(&qdev->hw_lock);
3518 }
3519
3520 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3521 {
3522         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3523         struct sockaddr *addr = p;
3524
3525         if (netif_running(ndev))
3526                 return -EBUSY;
3527
3528         if (!is_valid_ether_addr(addr->sa_data))
3529                 return -EADDRNOTAVAIL;
3530         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3531
3532         spin_lock(&qdev->hw_lock);
3533         if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3534                         MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3535                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3536                 return -1;
3537         }
3538         spin_unlock(&qdev->hw_lock);
3539
3540         return 0;
3541 }
3542
3543 static void qlge_tx_timeout(struct net_device *ndev)
3544 {
3545         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3546         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3547 }
3548
3549 static void ql_asic_reset_work(struct work_struct *work)
3550 {
3551         struct ql_adapter *qdev =
3552             container_of(work, struct ql_adapter, asic_reset_work.work);
3553         ql_cycle_adapter(qdev);
3554 }
3555
3556 static void ql_get_board_info(struct ql_adapter *qdev)
3557 {
3558         qdev->func =
3559             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3560         if (qdev->func) {
3561                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3562                 qdev->port_link_up = STS_PL1;
3563                 qdev->port_init = STS_PI1;
3564                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3565                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3566         } else {
3567                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3568                 qdev->port_link_up = STS_PL0;
3569                 qdev->port_init = STS_PI0;
3570                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3571                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3572         }
3573         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3574 }
3575
3576 static void ql_release_all(struct pci_dev *pdev)
3577 {
3578         struct net_device *ndev = pci_get_drvdata(pdev);
3579         struct ql_adapter *qdev = netdev_priv(ndev);
3580
3581         if (qdev->workqueue) {
3582                 destroy_workqueue(qdev->workqueue);
3583                 qdev->workqueue = NULL;
3584         }
3585         if (qdev->q_workqueue) {
3586                 destroy_workqueue(qdev->q_workqueue);
3587                 qdev->q_workqueue = NULL;
3588         }
3589         if (qdev->reg_base)
3590                 iounmap((void *)qdev->reg_base);
3591         if (qdev->doorbell_area)
3592                 iounmap(qdev->doorbell_area);
3593         pci_release_regions(pdev);
3594         pci_set_drvdata(pdev, NULL);
3595 }
3596
3597 static int __devinit ql_init_device(struct pci_dev *pdev,
3598                                     struct net_device *ndev, int cards_found)
3599 {
3600         struct ql_adapter *qdev = netdev_priv(ndev);
3601         int pos, err = 0;
3602         u16 val16;
3603
3604         memset((void *)qdev, 0, sizeof(qdev));
3605         err = pci_enable_device(pdev);
3606         if (err) {
3607                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3608                 return err;
3609         }
3610
3611         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3612         if (pos <= 0) {
3613                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3614                         "aborting.\n");
3615                 goto err_out;
3616         } else {
3617                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3618                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3619                 val16 |= (PCI_EXP_DEVCTL_CERE |
3620                           PCI_EXP_DEVCTL_NFERE |
3621                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3622                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3623         }
3624
3625         err = pci_request_regions(pdev, DRV_NAME);
3626         if (err) {
3627                 dev_err(&pdev->dev, "PCI region request failed.\n");
3628                 goto err_out;
3629         }
3630
3631         pci_set_master(pdev);
3632         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3633                 set_bit(QL_DMA64, &qdev->flags);
3634                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3635         } else {
3636                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3637                 if (!err)
3638                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3639         }
3640
3641         if (err) {
3642                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3643                 goto err_out;
3644         }
3645
3646         pci_set_drvdata(pdev, ndev);
3647         qdev->reg_base =
3648             ioremap_nocache(pci_resource_start(pdev, 1),
3649                             pci_resource_len(pdev, 1));
3650         if (!qdev->reg_base) {
3651                 dev_err(&pdev->dev, "Register mapping failed.\n");
3652                 err = -ENOMEM;
3653                 goto err_out;
3654         }
3655
3656         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3657         qdev->doorbell_area =
3658             ioremap_nocache(pci_resource_start(pdev, 3),
3659                             pci_resource_len(pdev, 3));
3660         if (!qdev->doorbell_area) {
3661                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3662                 err = -ENOMEM;
3663                 goto err_out;
3664         }
3665
3666         ql_get_board_info(qdev);
3667         qdev->ndev = ndev;
3668         qdev->pdev = pdev;
3669         qdev->msg_enable = netif_msg_init(debug, default_msg);
3670         spin_lock_init(&qdev->hw_lock);
3671         spin_lock_init(&qdev->stats_lock);
3672
3673         /* make sure the EEPROM is good */
3674         err = ql_get_flash_params(qdev);
3675         if (err) {
3676                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3677                 goto err_out;
3678         }
3679
3680         if (!is_valid_ether_addr(qdev->flash.mac_addr))
3681                 goto err_out;
3682
3683         memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3684         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3685
3686         /* Set up the default ring sizes. */
3687         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3688         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3689
3690         /* Set up the coalescing parameters. */
3691         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3692         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3693         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3694         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3695
3696         /*
3697          * Set up the operating parameters.
3698          */
3699         qdev->rx_csum = 1;
3700
3701         qdev->q_workqueue = create_workqueue(ndev->name);
3702         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3703         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3704         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3705         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3706
3707         if (!cards_found) {
3708                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3709                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3710                          DRV_NAME, DRV_VERSION);
3711         }
3712         return 0;
3713 err_out:
3714         ql_release_all(pdev);
3715         pci_disable_device(pdev);
3716         return err;
3717 }
3718
3719 static int __devinit qlge_probe(struct pci_dev *pdev,
3720                                 const struct pci_device_id *pci_entry)
3721 {
3722         struct net_device *ndev = NULL;
3723         struct ql_adapter *qdev = NULL;
3724         static int cards_found = 0;
3725         int err = 0;
3726
3727         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3728         if (!ndev)
3729                 return -ENOMEM;
3730
3731         err = ql_init_device(pdev, ndev, cards_found);
3732         if (err < 0) {
3733                 free_netdev(ndev);
3734                 return err;
3735         }
3736
3737         qdev = netdev_priv(ndev);
3738         SET_NETDEV_DEV(ndev, &pdev->dev);
3739         ndev->features = (0
3740                           | NETIF_F_IP_CSUM
3741                           | NETIF_F_SG
3742                           | NETIF_F_TSO
3743                           | NETIF_F_TSO6
3744                           | NETIF_F_TSO_ECN
3745                           | NETIF_F_HW_VLAN_TX
3746                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3747
3748         if (test_bit(QL_DMA64, &qdev->flags))
3749                 ndev->features |= NETIF_F_HIGHDMA;
3750
3751         /*
3752          * Set up net_device structure.
3753          */
3754         ndev->tx_queue_len = qdev->tx_ring_size;
3755         ndev->irq = pdev->irq;
3756         ndev->open = qlge_open;
3757         ndev->stop = qlge_close;
3758         ndev->hard_start_xmit = qlge_send;
3759         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3760         ndev->change_mtu = qlge_change_mtu;
3761         ndev->get_stats = qlge_get_stats;
3762         ndev->set_multicast_list = qlge_set_multicast_list;
3763         ndev->set_mac_address = qlge_set_mac_address;
3764         ndev->tx_timeout = qlge_tx_timeout;
3765         ndev->watchdog_timeo = 10 * HZ;
3766         ndev->vlan_rx_register = ql_vlan_rx_register;
3767         ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
3768         ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
3769         err = register_netdev(ndev);
3770         if (err) {
3771                 dev_err(&pdev->dev, "net device registration failed.\n");
3772                 ql_release_all(pdev);
3773                 pci_disable_device(pdev);
3774                 return err;
3775         }
3776         netif_carrier_off(ndev);
3777         netif_stop_queue(ndev);
3778         ql_display_dev_info(ndev);
3779         cards_found++;
3780         return 0;
3781 }
3782
3783 static void __devexit qlge_remove(struct pci_dev *pdev)
3784 {
3785         struct net_device *ndev = pci_get_drvdata(pdev);
3786         unregister_netdev(ndev);
3787         ql_release_all(pdev);
3788         pci_disable_device(pdev);
3789         free_netdev(ndev);
3790 }
3791
3792 /*
3793  * This callback is called by the PCI subsystem whenever
3794  * a PCI bus error is detected.
3795  */
3796 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3797                                                enum pci_channel_state state)
3798 {
3799         struct net_device *ndev = pci_get_drvdata(pdev);
3800         struct ql_adapter *qdev = netdev_priv(ndev);
3801
3802         if (netif_running(ndev))
3803                 ql_adapter_down(qdev);
3804
3805         pci_disable_device(pdev);
3806
3807         /* Request a slot reset. */
3808         return PCI_ERS_RESULT_NEED_RESET;
3809 }
3810
3811 /*
3812  * This callback is called after the PCI buss has been reset.
3813  * Basically, this tries to restart the card from scratch.
3814  * This is a shortened version of the device probe/discovery code,
3815  * it resembles the first-half of the () routine.
3816  */
3817 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3818 {
3819         struct net_device *ndev = pci_get_drvdata(pdev);
3820         struct ql_adapter *qdev = netdev_priv(ndev);
3821
3822         if (pci_enable_device(pdev)) {
3823                 QPRINTK(qdev, IFUP, ERR,
3824                         "Cannot re-enable PCI device after reset.\n");
3825                 return PCI_ERS_RESULT_DISCONNECT;
3826         }
3827
3828         pci_set_master(pdev);
3829
3830         netif_carrier_off(ndev);
3831         netif_stop_queue(ndev);
3832         ql_adapter_reset(qdev);
3833
3834         /* Make sure the EEPROM is good */
3835         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3836
3837         if (!is_valid_ether_addr(ndev->perm_addr)) {
3838                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3839                 return PCI_ERS_RESULT_DISCONNECT;
3840         }
3841
3842         return PCI_ERS_RESULT_RECOVERED;
3843 }
3844
3845 static void qlge_io_resume(struct pci_dev *pdev)
3846 {
3847         struct net_device *ndev = pci_get_drvdata(pdev);
3848         struct ql_adapter *qdev = netdev_priv(ndev);
3849
3850         pci_set_master(pdev);
3851
3852         if (netif_running(ndev)) {
3853                 if (ql_adapter_up(qdev)) {
3854                         QPRINTK(qdev, IFUP, ERR,
3855                                 "Device initialization failed after reset.\n");
3856                         return;
3857                 }
3858         }
3859
3860         netif_device_attach(ndev);
3861 }
3862
3863 static struct pci_error_handlers qlge_err_handler = {
3864         .error_detected = qlge_io_error_detected,
3865         .slot_reset = qlge_io_slot_reset,
3866         .resume = qlge_io_resume,
3867 };
3868
3869 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3870 {
3871         struct net_device *ndev = pci_get_drvdata(pdev);
3872         struct ql_adapter *qdev = netdev_priv(ndev);
3873         int err;
3874
3875         netif_device_detach(ndev);
3876
3877         if (netif_running(ndev)) {
3878                 err = ql_adapter_down(qdev);
3879                 if (!err)
3880                         return err;
3881         }
3882
3883         err = pci_save_state(pdev);
3884         if (err)
3885                 return err;
3886
3887         pci_disable_device(pdev);
3888
3889         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3890
3891         return 0;
3892 }
3893
3894 #ifdef CONFIG_PM
3895 static int qlge_resume(struct pci_dev *pdev)
3896 {
3897         struct net_device *ndev = pci_get_drvdata(pdev);
3898         struct ql_adapter *qdev = netdev_priv(ndev);
3899         int err;
3900
3901         pci_set_power_state(pdev, PCI_D0);
3902         pci_restore_state(pdev);
3903         err = pci_enable_device(pdev);
3904         if (err) {
3905                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3906                 return err;
3907         }
3908         pci_set_master(pdev);
3909
3910         pci_enable_wake(pdev, PCI_D3hot, 0);
3911         pci_enable_wake(pdev, PCI_D3cold, 0);
3912
3913         if (netif_running(ndev)) {
3914                 err = ql_adapter_up(qdev);
3915                 if (err)
3916                         return err;
3917         }
3918
3919         netif_device_attach(ndev);
3920
3921         return 0;
3922 }
3923 #endif /* CONFIG_PM */
3924
3925 static void qlge_shutdown(struct pci_dev *pdev)
3926 {
3927         qlge_suspend(pdev, PMSG_SUSPEND);
3928 }
3929
3930 static struct pci_driver qlge_driver = {
3931         .name = DRV_NAME,
3932         .id_table = qlge_pci_tbl,
3933         .probe = qlge_probe,
3934         .remove = __devexit_p(qlge_remove),
3935 #ifdef CONFIG_PM
3936         .suspend = qlge_suspend,
3937         .resume = qlge_resume,
3938 #endif
3939         .shutdown = qlge_shutdown,
3940         .err_handler = &qlge_err_handler
3941 };
3942
3943 static int __init qlge_init_module(void)
3944 {
3945         return pci_register_driver(&qlge_driver);
3946 }
3947
3948 static void __exit qlge_exit(void)
3949 {
3950         pci_unregister_driver(&qlge_driver);
3951 }
3952
3953 module_init(qlge_init_module);
3954 module_exit(qlge_exit);