]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/s2io.c
9b9b28e85a7d272dbd690c0744a158bbb05976f0
[linux-2.6-omap-h63xx.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
66 #include <linux/ip.h>
67 #include <linux/tcp.h>
68 #include <net/tcp.h>
69
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/div64.h>
74 #include <asm/irq.h>
75
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
79
80 #define DRV_VERSION "2.0.15.2"
81
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
85
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
88
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
90 {
91         int ret;
92
93         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96         return ret;
97 }
98
99 /*
100  * Cards with following subsystem_id have a link state indication
101  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102  * macro below identifies these cards given the subsystem_id.
103  */
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105         (dev_type == XFRAME_I_DEVICE) ?                 \
106                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC   1
113 #define LOW     2
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115 {
116         mac_info_t *mac_control;
117
118         mac_control = &sp->mac_control;
119         if (rxb_size <= rxd_count[sp->rxd_mode])
120                 return PANIC;
121         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122                 return  LOW;
123         return 0;
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"},
230         {"rmac_ttl_1519_4095_frms"},
231         {"rmac_ttl_4096_8191_frms"},
232         {"rmac_ttl_8192_max_frms"},
233         {"rmac_ttl_gt_max_frms"},
234         {"rmac_osized_alt_frms"},
235         {"rmac_jabber_alt_frms"},
236         {"rmac_gt_max_alt_frms"},
237         {"rmac_vlan_frms"},
238         {"rmac_len_discard"},
239         {"rmac_fcs_discard"},
240         {"rmac_pf_discard"},
241         {"rmac_da_discard"},
242         {"rmac_red_discard"},
243         {"rmac_rts_discard"},
244         {"rmac_ingm_full_discard"},
245         {"link_fault_cnt"},
246         {"\n DRIVER STATISTICS"},
247         {"single_bit_ecc_errs"},
248         {"double_bit_ecc_errs"},
249         {"parity_err_cnt"},
250         {"serious_err_cnt"},
251         {"soft_reset_cnt"},
252         {"fifo_full_cnt"},
253         {"ring_full_cnt"},
254         ("alarm_transceiver_temp_high"),
255         ("alarm_transceiver_temp_low"),
256         ("alarm_laser_bias_current_high"),
257         ("alarm_laser_bias_current_low"),
258         ("alarm_laser_output_power_high"),
259         ("alarm_laser_output_power_low"),
260         ("warn_transceiver_temp_high"),
261         ("warn_transceiver_temp_low"),
262         ("warn_laser_bias_current_high"),
263         ("warn_laser_bias_current_low"),
264         ("warn_laser_output_power_high"),
265         ("warn_laser_output_power_low"),
266         ("lro_aggregated_pkts"),
267         ("lro_flush_both_count"),
268         ("lro_out_of_sequence_pkts"),
269         ("lro_flush_due_to_max_pkts"),
270         ("lro_avg_aggr_pkts"),
271 };
272
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
278
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
280                         init_timer(&timer);                     \
281                         timer.function = handle;                \
282                         timer.data = (unsigned long) arg;       \
283                         mod_timer(&timer, (jiffies + exp))      \
284
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287                                         struct vlan_group *grp)
288 {
289         nic_t *nic = dev->priv;
290         unsigned long flags;
291
292         spin_lock_irqsave(&nic->tx_lock, flags);
293         nic->vlgrp = grp;
294         spin_unlock_irqrestore(&nic->tx_lock, flags);
295 }
296
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 {
300         nic_t *nic = dev->priv;
301         unsigned long flags;
302
303         spin_lock_irqsave(&nic->tx_lock, flags);
304         if (nic->vlgrp)
305                 nic->vlgrp->vlan_devices[vid] = NULL;
306         spin_unlock_irqrestore(&nic->tx_lock, flags);
307 }
308
309 /*
310  * Constants to be programmed into the Xena's registers, to configure
311  * the XAUI.
312  */
313
314 #define END_SIGN        0x0
315 static const u64 herc_act_dtx_cfg[] = {
316         /* Set address */
317         0x8000051536750000ULL, 0x80000515367500E0ULL,
318         /* Write data */
319         0x8000051536750004ULL, 0x80000515367500E4ULL,
320         /* Set address */
321         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322         /* Write data */
323         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324         /* Set address */
325         0x801205150D440000ULL, 0x801205150D4400E0ULL,
326         /* Write data */
327         0x801205150D440004ULL, 0x801205150D4400E4ULL,
328         /* Set address */
329         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330         /* Write data */
331         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332         /* Done */
333         END_SIGN
334 };
335
336 static const u64 xena_dtx_cfg[] = {
337         /* Set address */
338         0x8000051500000000ULL, 0x80000515000000E0ULL,
339         /* Write data */
340         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341         /* Set address */
342         0x8001051500000000ULL, 0x80010515000000E0ULL,
343         /* Write data */
344         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345         /* Set address */
346         0x8002051500000000ULL, 0x80020515000000E0ULL,
347         /* Write data */
348         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349         END_SIGN
350 };
351
352 /*
353  * Constants for Fixing the MacAddress problem seen mostly on
354  * Alpha machines.
355  */
356 static const u64 fix_mac[] = {
357         0x0060000000000000ULL, 0x0060600000000000ULL,
358         0x0040600000000000ULL, 0x0000600000000000ULL,
359         0x0020600000000000ULL, 0x0060600000000000ULL,
360         0x0020600000000000ULL, 0x0060600000000000ULL,
361         0x0020600000000000ULL, 0x0060600000000000ULL,
362         0x0020600000000000ULL, 0x0060600000000000ULL,
363         0x0020600000000000ULL, 0x0060600000000000ULL,
364         0x0020600000000000ULL, 0x0060600000000000ULL,
365         0x0020600000000000ULL, 0x0060600000000000ULL,
366         0x0020600000000000ULL, 0x0060600000000000ULL,
367         0x0020600000000000ULL, 0x0060600000000000ULL,
368         0x0020600000000000ULL, 0x0060600000000000ULL,
369         0x0020600000000000ULL, 0x0000600000000000ULL,
370         0x0040600000000000ULL, 0x0060600000000000ULL,
371         END_SIGN
372 };
373
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
377
378
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
382
383
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401  * aggregation happens until we hit max IP pkt size(64K)
402  */
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 S2IO_PARM_INT(indicate_max_pkts, 0);
405
406 S2IO_PARM_INT(napi, 1);
407 S2IO_PARM_INT(ufo, 0);
408
409 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
410     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
411 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
412     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
413 static unsigned int rts_frm_len[MAX_RX_RINGS] =
414     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415
416 module_param_array(tx_fifo_len, uint, NULL, 0);
417 module_param_array(rx_ring_sz, uint, NULL, 0);
418 module_param_array(rts_frm_len, uint, NULL, 0);
419
420 /*
421  * S2IO device table.
422  * This table lists all the devices that this driver supports.
423  */
424 static struct pci_device_id s2io_tbl[] __devinitdata = {
425         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
426          PCI_ANY_ID, PCI_ANY_ID},
427         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
428          PCI_ANY_ID, PCI_ANY_ID},
429         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
430          PCI_ANY_ID, PCI_ANY_ID},
431         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
432          PCI_ANY_ID, PCI_ANY_ID},
433         {0,}
434 };
435
436 MODULE_DEVICE_TABLE(pci, s2io_tbl);
437
438 static struct pci_driver s2io_driver = {
439       .name = "S2IO",
440       .id_table = s2io_tbl,
441       .probe = s2io_init_nic,
442       .remove = __devexit_p(s2io_rem_nic),
443 };
444
445 /* A simplifier macro used both by init and free shared_mem Fns(). */
446 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
447
448 /**
449  * init_shared_mem - Allocation and Initialization of Memory
450  * @nic: Device private variable.
451  * Description: The function allocates all the memory areas shared
452  * between the NIC and the driver. This includes Tx descriptors,
453  * Rx descriptors and the statistics block.
454  */
455
456 static int init_shared_mem(struct s2io_nic *nic)
457 {
458         u32 size;
459         void *tmp_v_addr, *tmp_v_addr_next;
460         dma_addr_t tmp_p_addr, tmp_p_addr_next;
461         RxD_block_t *pre_rxd_blk = NULL;
462         int i, j, blk_cnt;
463         int lst_size, lst_per_page;
464         struct net_device *dev = nic->dev;
465         unsigned long tmp;
466         buffAdd_t *ba;
467
468         mac_info_t *mac_control;
469         struct config_param *config;
470
471         mac_control = &nic->mac_control;
472         config = &nic->config;
473
474
475         /* Allocation and initialization of TXDLs in FIOFs */
476         size = 0;
477         for (i = 0; i < config->tx_fifo_num; i++) {
478                 size += config->tx_cfg[i].fifo_len;
479         }
480         if (size > MAX_AVAILABLE_TXDS) {
481                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
482                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
483                 return -EINVAL;
484         }
485
486         lst_size = (sizeof(TxD_t) * config->max_txds);
487         lst_per_page = PAGE_SIZE / lst_size;
488
489         for (i = 0; i < config->tx_fifo_num; i++) {
490                 int fifo_len = config->tx_cfg[i].fifo_len;
491                 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
492                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
493                                                           GFP_KERNEL);
494                 if (!mac_control->fifos[i].list_info) {
495                         DBG_PRINT(ERR_DBG,
496                                   "Malloc failed for list_info\n");
497                         return -ENOMEM;
498                 }
499                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
500         }
501         for (i = 0; i < config->tx_fifo_num; i++) {
502                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
503                                                 lst_per_page);
504                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
505                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
506                     config->tx_cfg[i].fifo_len - 1;
507                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
508                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
509                     config->tx_cfg[i].fifo_len - 1;
510                 mac_control->fifos[i].fifo_no = i;
511                 mac_control->fifos[i].nic = nic;
512                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
513
514                 for (j = 0; j < page_num; j++) {
515                         int k = 0;
516                         dma_addr_t tmp_p;
517                         void *tmp_v;
518                         tmp_v = pci_alloc_consistent(nic->pdev,
519                                                      PAGE_SIZE, &tmp_p);
520                         if (!tmp_v) {
521                                 DBG_PRINT(ERR_DBG,
522                                           "pci_alloc_consistent ");
523                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
524                                 return -ENOMEM;
525                         }
526                         /* If we got a zero DMA address(can happen on
527                          * certain platforms like PPC), reallocate.
528                          * Store virtual address of page we don't want,
529                          * to be freed later.
530                          */
531                         if (!tmp_p) {
532                                 mac_control->zerodma_virt_addr = tmp_v;
533                                 DBG_PRINT(INIT_DBG,
534                                 "%s: Zero DMA address for TxDL. ", dev->name);
535                                 DBG_PRINT(INIT_DBG,
536                                 "Virtual address %p\n", tmp_v);
537                                 tmp_v = pci_alloc_consistent(nic->pdev,
538                                                      PAGE_SIZE, &tmp_p);
539                                 if (!tmp_v) {
540                                         DBG_PRINT(ERR_DBG,
541                                           "pci_alloc_consistent ");
542                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
543                                         return -ENOMEM;
544                                 }
545                         }
546                         while (k < lst_per_page) {
547                                 int l = (j * lst_per_page) + k;
548                                 if (l == config->tx_cfg[i].fifo_len)
549                                         break;
550                                 mac_control->fifos[i].list_info[l].list_virt_addr =
551                                     tmp_v + (k * lst_size);
552                                 mac_control->fifos[i].list_info[l].list_phy_addr =
553                                     tmp_p + (k * lst_size);
554                                 k++;
555                         }
556                 }
557         }
558
559         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
560         if (!nic->ufo_in_band_v)
561                 return -ENOMEM;
562
563         /* Allocation and initialization of RXDs in Rings */
564         size = 0;
565         for (i = 0; i < config->rx_ring_num; i++) {
566                 if (config->rx_cfg[i].num_rxd %
567                     (rxd_count[nic->rxd_mode] + 1)) {
568                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
569                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
570                                   i);
571                         DBG_PRINT(ERR_DBG, "RxDs per Block");
572                         return FAILURE;
573                 }
574                 size += config->rx_cfg[i].num_rxd;
575                 mac_control->rings[i].block_count =
576                         config->rx_cfg[i].num_rxd /
577                         (rxd_count[nic->rxd_mode] + 1 );
578                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
579                         mac_control->rings[i].block_count;
580         }
581         if (nic->rxd_mode == RXD_MODE_1)
582                 size = (size * (sizeof(RxD1_t)));
583         else
584                 size = (size * (sizeof(RxD3_t)));
585
586         for (i = 0; i < config->rx_ring_num; i++) {
587                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
588                 mac_control->rings[i].rx_curr_get_info.offset = 0;
589                 mac_control->rings[i].rx_curr_get_info.ring_len =
590                     config->rx_cfg[i].num_rxd - 1;
591                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
592                 mac_control->rings[i].rx_curr_put_info.offset = 0;
593                 mac_control->rings[i].rx_curr_put_info.ring_len =
594                     config->rx_cfg[i].num_rxd - 1;
595                 mac_control->rings[i].nic = nic;
596                 mac_control->rings[i].ring_no = i;
597
598                 blk_cnt = config->rx_cfg[i].num_rxd /
599                                 (rxd_count[nic->rxd_mode] + 1);
600                 /*  Allocating all the Rx blocks */
601                 for (j = 0; j < blk_cnt; j++) {
602                         rx_block_info_t *rx_blocks;
603                         int l;
604
605                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
606                         size = SIZE_OF_BLOCK; //size is always page size
607                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
608                                                           &tmp_p_addr);
609                         if (tmp_v_addr == NULL) {
610                                 /*
611                                  * In case of failure, free_shared_mem()
612                                  * is called, which should free any
613                                  * memory that was alloced till the
614                                  * failure happened.
615                                  */
616                                 rx_blocks->block_virt_addr = tmp_v_addr;
617                                 return -ENOMEM;
618                         }
619                         memset(tmp_v_addr, 0, size);
620                         rx_blocks->block_virt_addr = tmp_v_addr;
621                         rx_blocks->block_dma_addr = tmp_p_addr;
622                         rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
623                                                   rxd_count[nic->rxd_mode],
624                                                   GFP_KERNEL);
625                         if (!rx_blocks->rxds)
626                                 return -ENOMEM;
627                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628                                 rx_blocks->rxds[l].virt_addr =
629                                         rx_blocks->block_virt_addr +
630                                         (rxd_size[nic->rxd_mode] * l);
631                                 rx_blocks->rxds[l].dma_addr =
632                                         rx_blocks->block_dma_addr +
633                                         (rxd_size[nic->rxd_mode] * l);
634                         }
635                 }
636                 /* Interlinking all Rx Blocks */
637                 for (j = 0; j < blk_cnt; j++) {
638                         tmp_v_addr =
639                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
640                         tmp_v_addr_next =
641                                 mac_control->rings[i].rx_blocks[(j + 1) %
642                                               blk_cnt].block_virt_addr;
643                         tmp_p_addr =
644                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
645                         tmp_p_addr_next =
646                                 mac_control->rings[i].rx_blocks[(j + 1) %
647                                               blk_cnt].block_dma_addr;
648
649                         pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
650                         pre_rxd_blk->reserved_2_pNext_RxD_block =
651                             (unsigned long) tmp_v_addr_next;
652                         pre_rxd_blk->pNext_RxD_Blk_physical =
653                             (u64) tmp_p_addr_next;
654                 }
655         }
656         if (nic->rxd_mode >= RXD_MODE_3A) {
657                 /*
658                  * Allocation of Storages for buffer addresses in 2BUFF mode
659                  * and the buffers as well.
660                  */
661                 for (i = 0; i < config->rx_ring_num; i++) {
662                         blk_cnt = config->rx_cfg[i].num_rxd /
663                            (rxd_count[nic->rxd_mode]+ 1);
664                         mac_control->rings[i].ba =
665                                 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
666                                      GFP_KERNEL);
667                         if (!mac_control->rings[i].ba)
668                                 return -ENOMEM;
669                         for (j = 0; j < blk_cnt; j++) {
670                                 int k = 0;
671                                 mac_control->rings[i].ba[j] =
672                                         kmalloc((sizeof(buffAdd_t) *
673                                                 (rxd_count[nic->rxd_mode] + 1)),
674                                                 GFP_KERNEL);
675                                 if (!mac_control->rings[i].ba[j])
676                                         return -ENOMEM;
677                                 while (k != rxd_count[nic->rxd_mode]) {
678                                         ba = &mac_control->rings[i].ba[j][k];
679
680                                         ba->ba_0_org = (void *) kmalloc
681                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
682                                         if (!ba->ba_0_org)
683                                                 return -ENOMEM;
684                                         tmp = (unsigned long)ba->ba_0_org;
685                                         tmp += ALIGN_SIZE;
686                                         tmp &= ~((unsigned long) ALIGN_SIZE);
687                                         ba->ba_0 = (void *) tmp;
688
689                                         ba->ba_1_org = (void *) kmalloc
690                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
691                                         if (!ba->ba_1_org)
692                                                 return -ENOMEM;
693                                         tmp = (unsigned long) ba->ba_1_org;
694                                         tmp += ALIGN_SIZE;
695                                         tmp &= ~((unsigned long) ALIGN_SIZE);
696                                         ba->ba_1 = (void *) tmp;
697                                         k++;
698                                 }
699                         }
700                 }
701         }
702
703         /* Allocation and initialization of Statistics block */
704         size = sizeof(StatInfo_t);
705         mac_control->stats_mem = pci_alloc_consistent
706             (nic->pdev, size, &mac_control->stats_mem_phy);
707
708         if (!mac_control->stats_mem) {
709                 /*
710                  * In case of failure, free_shared_mem() is called, which
711                  * should free any memory that was alloced till the
712                  * failure happened.
713                  */
714                 return -ENOMEM;
715         }
716         mac_control->stats_mem_sz = size;
717
718         tmp_v_addr = mac_control->stats_mem;
719         mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
720         memset(tmp_v_addr, 0, size);
721         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722                   (unsigned long long) tmp_p_addr);
723
724         return SUCCESS;
725 }
726
727 /**
728  * free_shared_mem - Free the allocated Memory
729  * @nic:  Device private variable.
730  * Description: This function is to free all memory locations allocated by
731  * the init_shared_mem() function and return it to the kernel.
732  */
733
734 static void free_shared_mem(struct s2io_nic *nic)
735 {
736         int i, j, blk_cnt, size;
737         void *tmp_v_addr;
738         dma_addr_t tmp_p_addr;
739         mac_info_t *mac_control;
740         struct config_param *config;
741         int lst_size, lst_per_page;
742         struct net_device *dev = nic->dev;
743
744         if (!nic)
745                 return;
746
747         mac_control = &nic->mac_control;
748         config = &nic->config;
749
750         lst_size = (sizeof(TxD_t) * config->max_txds);
751         lst_per_page = PAGE_SIZE / lst_size;
752
753         for (i = 0; i < config->tx_fifo_num; i++) {
754                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
755                                                 lst_per_page);
756                 for (j = 0; j < page_num; j++) {
757                         int mem_blks = (j * lst_per_page);
758                         if (!mac_control->fifos[i].list_info)
759                                 return;
760                         if (!mac_control->fifos[i].list_info[mem_blks].
761                                  list_virt_addr)
762                                 break;
763                         pci_free_consistent(nic->pdev, PAGE_SIZE,
764                                             mac_control->fifos[i].
765                                             list_info[mem_blks].
766                                             list_virt_addr,
767                                             mac_control->fifos[i].
768                                             list_info[mem_blks].
769                                             list_phy_addr);
770                 }
771                 /* If we got a zero DMA address during allocation,
772                  * free the page now
773                  */
774                 if (mac_control->zerodma_virt_addr) {
775                         pci_free_consistent(nic->pdev, PAGE_SIZE,
776                                             mac_control->zerodma_virt_addr,
777                                             (dma_addr_t)0);
778                         DBG_PRINT(INIT_DBG,
779                                 "%s: Freeing TxDL with zero DMA addr. ",
780                                 dev->name);
781                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782                                 mac_control->zerodma_virt_addr);
783                 }
784                 kfree(mac_control->fifos[i].list_info);
785         }
786
787         size = SIZE_OF_BLOCK;
788         for (i = 0; i < config->rx_ring_num; i++) {
789                 blk_cnt = mac_control->rings[i].block_count;
790                 for (j = 0; j < blk_cnt; j++) {
791                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
792                                 block_virt_addr;
793                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
794                                 block_dma_addr;
795                         if (tmp_v_addr == NULL)
796                                 break;
797                         pci_free_consistent(nic->pdev, size,
798                                             tmp_v_addr, tmp_p_addr);
799                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
800                 }
801         }
802
803         if (nic->rxd_mode >= RXD_MODE_3A) {
804                 /* Freeing buffer storage addresses in 2BUFF mode. */
805                 for (i = 0; i < config->rx_ring_num; i++) {
806                         blk_cnt = config->rx_cfg[i].num_rxd /
807                             (rxd_count[nic->rxd_mode] + 1);
808                         for (j = 0; j < blk_cnt; j++) {
809                                 int k = 0;
810                                 if (!mac_control->rings[i].ba[j])
811                                         continue;
812                                 while (k != rxd_count[nic->rxd_mode]) {
813                                         buffAdd_t *ba =
814                                                 &mac_control->rings[i].ba[j][k];
815                                         kfree(ba->ba_0_org);
816                                         kfree(ba->ba_1_org);
817                                         k++;
818                                 }
819                                 kfree(mac_control->rings[i].ba[j]);
820                         }
821                         kfree(mac_control->rings[i].ba);
822                 }
823         }
824
825         if (mac_control->stats_mem) {
826                 pci_free_consistent(nic->pdev,
827                                     mac_control->stats_mem_sz,
828                                     mac_control->stats_mem,
829                                     mac_control->stats_mem_phy);
830         }
831         if (nic->ufo_in_band_v)
832                 kfree(nic->ufo_in_band_v);
833 }
834
835 /**
836  * s2io_verify_pci_mode -
837  */
838
839 static int s2io_verify_pci_mode(nic_t *nic)
840 {
841         XENA_dev_config_t __iomem *bar0 = nic->bar0;
842         register u64 val64 = 0;
843         int     mode;
844
845         val64 = readq(&bar0->pci_mode);
846         mode = (u8)GET_PCI_MODE(val64);
847
848         if ( val64 & PCI_MODE_UNKNOWN_MODE)
849                 return -1;      /* Unknown PCI mode */
850         return mode;
851 }
852
853 #define NEC_VENID   0x1033
854 #define NEC_DEVID   0x0125
855 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
856 {
857         struct pci_dev *tdev = NULL;
858         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
860                         if (tdev->bus == s2io_pdev->bus->parent)
861                                 pci_dev_put(tdev);
862                                 return 1;
863                 }
864         }
865         return 0;
866 }
867
868 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
869 /**
870  * s2io_print_pci_mode -
871  */
872 static int s2io_print_pci_mode(nic_t *nic)
873 {
874         XENA_dev_config_t __iomem *bar0 = nic->bar0;
875         register u64 val64 = 0;
876         int     mode;
877         struct config_param *config = &nic->config;
878
879         val64 = readq(&bar0->pci_mode);
880         mode = (u8)GET_PCI_MODE(val64);
881
882         if ( val64 & PCI_MODE_UNKNOWN_MODE)
883                 return -1;      /* Unknown PCI mode */
884
885         config->bus_speed = bus_speed[mode];
886
887         if (s2io_on_nec_bridge(nic->pdev)) {
888                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
889                                                         nic->dev->name);
890                 return mode;
891         }
892
893         if (val64 & PCI_MODE_32_BITS) {
894                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
895         } else {
896                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
897         }
898
899         switch(mode) {
900                 case PCI_MODE_PCI_33:
901                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
902                         break;
903                 case PCI_MODE_PCI_66:
904                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
905                         break;
906                 case PCI_MODE_PCIX_M1_66:
907                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
908                         break;
909                 case PCI_MODE_PCIX_M1_100:
910                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
911                         break;
912                 case PCI_MODE_PCIX_M1_133:
913                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
914                         break;
915                 case PCI_MODE_PCIX_M2_66:
916                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
917                         break;
918                 case PCI_MODE_PCIX_M2_100:
919                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
920                         break;
921                 case PCI_MODE_PCIX_M2_133:
922                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
923                         break;
924                 default:
925                         return -1;      /* Unsupported bus speed */
926         }
927
928         return mode;
929 }
930
931 /**
932  *  init_nic - Initialization of hardware
933  *  @nic: device peivate variable
934  *  Description: The function sequentially configures every block
935  *  of the H/W from their reset values.
936  *  Return Value:  SUCCESS on success and
937  *  '-1' on failure (endian settings incorrect).
938  */
939
940 static int init_nic(struct s2io_nic *nic)
941 {
942         XENA_dev_config_t __iomem *bar0 = nic->bar0;
943         struct net_device *dev = nic->dev;
944         register u64 val64 = 0;
945         void __iomem *add;
946         u32 time;
947         int i, j;
948         mac_info_t *mac_control;
949         struct config_param *config;
950         int dtx_cnt = 0;
951         unsigned long long mem_share;
952         int mem_size;
953
954         mac_control = &nic->mac_control;
955         config = &nic->config;
956
957         /* to set the swapper controle on the card */
958         if(s2io_set_swapper(nic)) {
959                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
960                 return -1;
961         }
962
963         /*
964          * Herc requires EOI to be removed from reset before XGXS, so..
965          */
966         if (nic->device_type & XFRAME_II_DEVICE) {
967                 val64 = 0xA500000000ULL;
968                 writeq(val64, &bar0->sw_reset);
969                 msleep(500);
970                 val64 = readq(&bar0->sw_reset);
971         }
972
973         /* Remove XGXS from reset state */
974         val64 = 0;
975         writeq(val64, &bar0->sw_reset);
976         msleep(500);
977         val64 = readq(&bar0->sw_reset);
978
979         /*  Enable Receiving broadcasts */
980         add = &bar0->mac_cfg;
981         val64 = readq(&bar0->mac_cfg);
982         val64 |= MAC_RMAC_BCAST_ENABLE;
983         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
984         writel((u32) val64, add);
985         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
986         writel((u32) (val64 >> 32), (add + 4));
987
988         /* Read registers in all blocks */
989         val64 = readq(&bar0->mac_int_mask);
990         val64 = readq(&bar0->mc_int_mask);
991         val64 = readq(&bar0->xgxs_int_mask);
992
993         /*  Set MTU */
994         val64 = dev->mtu;
995         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
996
997         if (nic->device_type & XFRAME_II_DEVICE) {
998                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
999                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1000                                           &bar0->dtx_control, UF);
1001                         if (dtx_cnt & 0x1)
1002                                 msleep(1); /* Necessary!! */
1003                         dtx_cnt++;
1004                 }
1005         } else {
1006                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1007                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1008                                           &bar0->dtx_control, UF);
1009                         val64 = readq(&bar0->dtx_control);
1010                         dtx_cnt++;
1011                 }
1012         }
1013
1014         /*  Tx DMA Initialization */
1015         val64 = 0;
1016         writeq(val64, &bar0->tx_fifo_partition_0);
1017         writeq(val64, &bar0->tx_fifo_partition_1);
1018         writeq(val64, &bar0->tx_fifo_partition_2);
1019         writeq(val64, &bar0->tx_fifo_partition_3);
1020
1021
1022         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1023                 val64 |=
1024                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1025                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1026                                     ((i * 32) + 5), 3);
1027
1028                 if (i == (config->tx_fifo_num - 1)) {
1029                         if (i % 2 == 0)
1030                                 i++;
1031                 }
1032
1033                 switch (i) {
1034                 case 1:
1035                         writeq(val64, &bar0->tx_fifo_partition_0);
1036                         val64 = 0;
1037                         break;
1038                 case 3:
1039                         writeq(val64, &bar0->tx_fifo_partition_1);
1040                         val64 = 0;
1041                         break;
1042                 case 5:
1043                         writeq(val64, &bar0->tx_fifo_partition_2);
1044                         val64 = 0;
1045                         break;
1046                 case 7:
1047                         writeq(val64, &bar0->tx_fifo_partition_3);
1048                         break;
1049                 }
1050         }
1051
1052         /*
1053          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1054          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1055          */
1056         if ((nic->device_type == XFRAME_I_DEVICE) &&
1057                 (get_xena_rev_id(nic->pdev) < 4))
1058                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1059
1060         val64 = readq(&bar0->tx_fifo_partition_0);
1061         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1062                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1063
1064         /*
1065          * Initialization of Tx_PA_CONFIG register to ignore packet
1066          * integrity checking.
1067          */
1068         val64 = readq(&bar0->tx_pa_cfg);
1069         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1070             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1071         writeq(val64, &bar0->tx_pa_cfg);
1072
1073         /* Rx DMA intialization. */
1074         val64 = 0;
1075         for (i = 0; i < config->rx_ring_num; i++) {
1076                 val64 |=
1077                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1078                          3);
1079         }
1080         writeq(val64, &bar0->rx_queue_priority);
1081
1082         /*
1083          * Allocating equal share of memory to all the
1084          * configured Rings.
1085          */
1086         val64 = 0;
1087         if (nic->device_type & XFRAME_II_DEVICE)
1088                 mem_size = 32;
1089         else
1090                 mem_size = 64;
1091
1092         for (i = 0; i < config->rx_ring_num; i++) {
1093                 switch (i) {
1094                 case 0:
1095                         mem_share = (mem_size / config->rx_ring_num +
1096                                      mem_size % config->rx_ring_num);
1097                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1098                         continue;
1099                 case 1:
1100                         mem_share = (mem_size / config->rx_ring_num);
1101                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1102                         continue;
1103                 case 2:
1104                         mem_share = (mem_size / config->rx_ring_num);
1105                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1106                         continue;
1107                 case 3:
1108                         mem_share = (mem_size / config->rx_ring_num);
1109                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1110                         continue;
1111                 case 4:
1112                         mem_share = (mem_size / config->rx_ring_num);
1113                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1114                         continue;
1115                 case 5:
1116                         mem_share = (mem_size / config->rx_ring_num);
1117                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1118                         continue;
1119                 case 6:
1120                         mem_share = (mem_size / config->rx_ring_num);
1121                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1122                         continue;
1123                 case 7:
1124                         mem_share = (mem_size / config->rx_ring_num);
1125                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1126                         continue;
1127                 }
1128         }
1129         writeq(val64, &bar0->rx_queue_cfg);
1130
1131         /*
1132          * Filling Tx round robin registers
1133          * as per the number of FIFOs
1134          */
1135         switch (config->tx_fifo_num) {
1136         case 1:
1137                 val64 = 0x0000000000000000ULL;
1138                 writeq(val64, &bar0->tx_w_round_robin_0);
1139                 writeq(val64, &bar0->tx_w_round_robin_1);
1140                 writeq(val64, &bar0->tx_w_round_robin_2);
1141                 writeq(val64, &bar0->tx_w_round_robin_3);
1142                 writeq(val64, &bar0->tx_w_round_robin_4);
1143                 break;
1144         case 2:
1145                 val64 = 0x0000010000010000ULL;
1146                 writeq(val64, &bar0->tx_w_round_robin_0);
1147                 val64 = 0x0100000100000100ULL;
1148                 writeq(val64, &bar0->tx_w_round_robin_1);
1149                 val64 = 0x0001000001000001ULL;
1150                 writeq(val64, &bar0->tx_w_round_robin_2);
1151                 val64 = 0x0000010000010000ULL;
1152                 writeq(val64, &bar0->tx_w_round_robin_3);
1153                 val64 = 0x0100000000000000ULL;
1154                 writeq(val64, &bar0->tx_w_round_robin_4);
1155                 break;
1156         case 3:
1157                 val64 = 0x0001000102000001ULL;
1158                 writeq(val64, &bar0->tx_w_round_robin_0);
1159                 val64 = 0x0001020000010001ULL;
1160                 writeq(val64, &bar0->tx_w_round_robin_1);
1161                 val64 = 0x0200000100010200ULL;
1162                 writeq(val64, &bar0->tx_w_round_robin_2);
1163                 val64 = 0x0001000102000001ULL;
1164                 writeq(val64, &bar0->tx_w_round_robin_3);
1165                 val64 = 0x0001020000000000ULL;
1166                 writeq(val64, &bar0->tx_w_round_robin_4);
1167                 break;
1168         case 4:
1169                 val64 = 0x0001020300010200ULL;
1170                 writeq(val64, &bar0->tx_w_round_robin_0);
1171                 val64 = 0x0100000102030001ULL;
1172                 writeq(val64, &bar0->tx_w_round_robin_1);
1173                 val64 = 0x0200010000010203ULL;
1174                 writeq(val64, &bar0->tx_w_round_robin_2);
1175                 val64 = 0x0001020001000001ULL;
1176                 writeq(val64, &bar0->tx_w_round_robin_3);
1177                 val64 = 0x0203000100000000ULL;
1178                 writeq(val64, &bar0->tx_w_round_robin_4);
1179                 break;
1180         case 5:
1181                 val64 = 0x0001000203000102ULL;
1182                 writeq(val64, &bar0->tx_w_round_robin_0);
1183                 val64 = 0x0001020001030004ULL;
1184                 writeq(val64, &bar0->tx_w_round_robin_1);
1185                 val64 = 0x0001000203000102ULL;
1186                 writeq(val64, &bar0->tx_w_round_robin_2);
1187                 val64 = 0x0001020001030004ULL;
1188                 writeq(val64, &bar0->tx_w_round_robin_3);
1189                 val64 = 0x0001000000000000ULL;
1190                 writeq(val64, &bar0->tx_w_round_robin_4);
1191                 break;
1192         case 6:
1193                 val64 = 0x0001020304000102ULL;
1194                 writeq(val64, &bar0->tx_w_round_robin_0);
1195                 val64 = 0x0304050001020001ULL;
1196                 writeq(val64, &bar0->tx_w_round_robin_1);
1197                 val64 = 0x0203000100000102ULL;
1198                 writeq(val64, &bar0->tx_w_round_robin_2);
1199                 val64 = 0x0304000102030405ULL;
1200                 writeq(val64, &bar0->tx_w_round_robin_3);
1201                 val64 = 0x0001000200000000ULL;
1202                 writeq(val64, &bar0->tx_w_round_robin_4);
1203                 break;
1204         case 7:
1205                 val64 = 0x0001020001020300ULL;
1206                 writeq(val64, &bar0->tx_w_round_robin_0);
1207                 val64 = 0x0102030400010203ULL;
1208                 writeq(val64, &bar0->tx_w_round_robin_1);
1209                 val64 = 0x0405060001020001ULL;
1210                 writeq(val64, &bar0->tx_w_round_robin_2);
1211                 val64 = 0x0304050000010200ULL;
1212                 writeq(val64, &bar0->tx_w_round_robin_3);
1213                 val64 = 0x0102030000000000ULL;
1214                 writeq(val64, &bar0->tx_w_round_robin_4);
1215                 break;
1216         case 8:
1217                 val64 = 0x0001020300040105ULL;
1218                 writeq(val64, &bar0->tx_w_round_robin_0);
1219                 val64 = 0x0200030106000204ULL;
1220                 writeq(val64, &bar0->tx_w_round_robin_1);
1221                 val64 = 0x0103000502010007ULL;
1222                 writeq(val64, &bar0->tx_w_round_robin_2);
1223                 val64 = 0x0304010002060500ULL;
1224                 writeq(val64, &bar0->tx_w_round_robin_3);
1225                 val64 = 0x0103020400000000ULL;
1226                 writeq(val64, &bar0->tx_w_round_robin_4);
1227                 break;
1228         }
1229
1230         /* Enable all configured Tx FIFO partitions */
1231         val64 = readq(&bar0->tx_fifo_partition_0);
1232         val64 |= (TX_FIFO_PARTITION_EN);
1233         writeq(val64, &bar0->tx_fifo_partition_0);
1234
1235         /* Filling the Rx round robin registers as per the
1236          * number of Rings and steering based on QoS.
1237          */
1238         switch (config->rx_ring_num) {
1239         case 1:
1240                 val64 = 0x8080808080808080ULL;
1241                 writeq(val64, &bar0->rts_qos_steering);
1242                 break;
1243         case 2:
1244                 val64 = 0x0000010000010000ULL;
1245                 writeq(val64, &bar0->rx_w_round_robin_0);
1246                 val64 = 0x0100000100000100ULL;
1247                 writeq(val64, &bar0->rx_w_round_robin_1);
1248                 val64 = 0x0001000001000001ULL;
1249                 writeq(val64, &bar0->rx_w_round_robin_2);
1250                 val64 = 0x0000010000010000ULL;
1251                 writeq(val64, &bar0->rx_w_round_robin_3);
1252                 val64 = 0x0100000000000000ULL;
1253                 writeq(val64, &bar0->rx_w_round_robin_4);
1254
1255                 val64 = 0x8080808040404040ULL;
1256                 writeq(val64, &bar0->rts_qos_steering);
1257                 break;
1258         case 3:
1259                 val64 = 0x0001000102000001ULL;
1260                 writeq(val64, &bar0->rx_w_round_robin_0);
1261                 val64 = 0x0001020000010001ULL;
1262                 writeq(val64, &bar0->rx_w_round_robin_1);
1263                 val64 = 0x0200000100010200ULL;
1264                 writeq(val64, &bar0->rx_w_round_robin_2);
1265                 val64 = 0x0001000102000001ULL;
1266                 writeq(val64, &bar0->rx_w_round_robin_3);
1267                 val64 = 0x0001020000000000ULL;
1268                 writeq(val64, &bar0->rx_w_round_robin_4);
1269
1270                 val64 = 0x8080804040402020ULL;
1271                 writeq(val64, &bar0->rts_qos_steering);
1272                 break;
1273         case 4:
1274                 val64 = 0x0001020300010200ULL;
1275                 writeq(val64, &bar0->rx_w_round_robin_0);
1276                 val64 = 0x0100000102030001ULL;
1277                 writeq(val64, &bar0->rx_w_round_robin_1);
1278                 val64 = 0x0200010000010203ULL;
1279                 writeq(val64, &bar0->rx_w_round_robin_2);
1280                 val64 = 0x0001020001000001ULL;
1281                 writeq(val64, &bar0->rx_w_round_robin_3);
1282                 val64 = 0x0203000100000000ULL;
1283                 writeq(val64, &bar0->rx_w_round_robin_4);
1284
1285                 val64 = 0x8080404020201010ULL;
1286                 writeq(val64, &bar0->rts_qos_steering);
1287                 break;
1288         case 5:
1289                 val64 = 0x0001000203000102ULL;
1290                 writeq(val64, &bar0->rx_w_round_robin_0);
1291                 val64 = 0x0001020001030004ULL;
1292                 writeq(val64, &bar0->rx_w_round_robin_1);
1293                 val64 = 0x0001000203000102ULL;
1294                 writeq(val64, &bar0->rx_w_round_robin_2);
1295                 val64 = 0x0001020001030004ULL;
1296                 writeq(val64, &bar0->rx_w_round_robin_3);
1297                 val64 = 0x0001000000000000ULL;
1298                 writeq(val64, &bar0->rx_w_round_robin_4);
1299
1300                 val64 = 0x8080404020201008ULL;
1301                 writeq(val64, &bar0->rts_qos_steering);
1302                 break;
1303         case 6:
1304                 val64 = 0x0001020304000102ULL;
1305                 writeq(val64, &bar0->rx_w_round_robin_0);
1306                 val64 = 0x0304050001020001ULL;
1307                 writeq(val64, &bar0->rx_w_round_robin_1);
1308                 val64 = 0x0203000100000102ULL;
1309                 writeq(val64, &bar0->rx_w_round_robin_2);
1310                 val64 = 0x0304000102030405ULL;
1311                 writeq(val64, &bar0->rx_w_round_robin_3);
1312                 val64 = 0x0001000200000000ULL;
1313                 writeq(val64, &bar0->rx_w_round_robin_4);
1314
1315                 val64 = 0x8080404020100804ULL;
1316                 writeq(val64, &bar0->rts_qos_steering);
1317                 break;
1318         case 7:
1319                 val64 = 0x0001020001020300ULL;
1320                 writeq(val64, &bar0->rx_w_round_robin_0);
1321                 val64 = 0x0102030400010203ULL;
1322                 writeq(val64, &bar0->rx_w_round_robin_1);
1323                 val64 = 0x0405060001020001ULL;
1324                 writeq(val64, &bar0->rx_w_round_robin_2);
1325                 val64 = 0x0304050000010200ULL;
1326                 writeq(val64, &bar0->rx_w_round_robin_3);
1327                 val64 = 0x0102030000000000ULL;
1328                 writeq(val64, &bar0->rx_w_round_robin_4);
1329
1330                 val64 = 0x8080402010080402ULL;
1331                 writeq(val64, &bar0->rts_qos_steering);
1332                 break;
1333         case 8:
1334                 val64 = 0x0001020300040105ULL;
1335                 writeq(val64, &bar0->rx_w_round_robin_0);
1336                 val64 = 0x0200030106000204ULL;
1337                 writeq(val64, &bar0->rx_w_round_robin_1);
1338                 val64 = 0x0103000502010007ULL;
1339                 writeq(val64, &bar0->rx_w_round_robin_2);
1340                 val64 = 0x0304010002060500ULL;
1341                 writeq(val64, &bar0->rx_w_round_robin_3);
1342                 val64 = 0x0103020400000000ULL;
1343                 writeq(val64, &bar0->rx_w_round_robin_4);
1344
1345                 val64 = 0x8040201008040201ULL;
1346                 writeq(val64, &bar0->rts_qos_steering);
1347                 break;
1348         }
1349
1350         /* UDP Fix */
1351         val64 = 0;
1352         for (i = 0; i < 8; i++)
1353                 writeq(val64, &bar0->rts_frm_len_n[i]);
1354
1355         /* Set the default rts frame length for the rings configured */
1356         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1357         for (i = 0 ; i < config->rx_ring_num ; i++)
1358                 writeq(val64, &bar0->rts_frm_len_n[i]);
1359
1360         /* Set the frame length for the configured rings
1361          * desired by the user
1362          */
1363         for (i = 0; i < config->rx_ring_num; i++) {
1364                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1365                  * specified frame length steering.
1366                  * If the user provides the frame length then program
1367                  * the rts_frm_len register for those values or else
1368                  * leave it as it is.
1369                  */
1370                 if (rts_frm_len[i] != 0) {
1371                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1372                                 &bar0->rts_frm_len_n[i]);
1373                 }
1374         }
1375
1376         /* Program statistics memory */
1377         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1378
1379         if (nic->device_type == XFRAME_II_DEVICE) {
1380                 val64 = STAT_BC(0x320);
1381                 writeq(val64, &bar0->stat_byte_cnt);
1382         }
1383
1384         /*
1385          * Initializing the sampling rate for the device to calculate the
1386          * bandwidth utilization.
1387          */
1388         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1389             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1390         writeq(val64, &bar0->mac_link_util);
1391
1392
1393         /*
1394          * Initializing the Transmit and Receive Traffic Interrupt
1395          * Scheme.
1396          */
1397         /*
1398          * TTI Initialization. Default Tx timer gets us about
1399          * 250 interrupts per sec. Continuous interrupts are enabled
1400          * by default.
1401          */
1402         if (nic->device_type == XFRAME_II_DEVICE) {
1403                 int count = (nic->config.bus_speed * 125)/2;
1404                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1405         } else {
1406
1407                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1408         }
1409         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1410             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1411             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1412                 if (use_continuous_tx_intrs)
1413                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1414         writeq(val64, &bar0->tti_data1_mem);
1415
1416         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1417             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1418             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1419         writeq(val64, &bar0->tti_data2_mem);
1420
1421         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1422         writeq(val64, &bar0->tti_command_mem);
1423
1424         /*
1425          * Once the operation completes, the Strobe bit of the command
1426          * register will be reset. We poll for this particular condition
1427          * We wait for a maximum of 500ms for the operation to complete,
1428          * if it's not complete by then we return error.
1429          */
1430         time = 0;
1431         while (TRUE) {
1432                 val64 = readq(&bar0->tti_command_mem);
1433                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1434                         break;
1435                 }
1436                 if (time > 10) {
1437                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1438                                   dev->name);
1439                         return -1;
1440                 }
1441                 msleep(50);
1442                 time++;
1443         }
1444
1445         if (nic->config.bimodal) {
1446                 int k = 0;
1447                 for (k = 0; k < config->rx_ring_num; k++) {
1448                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1449                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1450                         writeq(val64, &bar0->tti_command_mem);
1451
1452                 /*
1453                  * Once the operation completes, the Strobe bit of the command
1454                  * register will be reset. We poll for this particular condition
1455                  * We wait for a maximum of 500ms for the operation to complete,
1456                  * if it's not complete by then we return error.
1457                 */
1458                         time = 0;
1459                         while (TRUE) {
1460                                 val64 = readq(&bar0->tti_command_mem);
1461                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1462                                         break;
1463                                 }
1464                                 if (time > 10) {
1465                                         DBG_PRINT(ERR_DBG,
1466                                                 "%s: TTI init Failed\n",
1467                                         dev->name);
1468                                         return -1;
1469                                 }
1470                                 time++;
1471                                 msleep(50);
1472                         }
1473                 }
1474         } else {
1475
1476                 /* RTI Initialization */
1477                 if (nic->device_type == XFRAME_II_DEVICE) {
1478                         /*
1479                          * Programmed to generate Apprx 500 Intrs per
1480                          * second
1481                          */
1482                         int count = (nic->config.bus_speed * 125)/4;
1483                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1484                 } else {
1485                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1486                 }
1487                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1488                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1489                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1490
1491                 writeq(val64, &bar0->rti_data1_mem);
1492
1493                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1494                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1495                 if (nic->intr_type == MSI_X)
1496                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1497                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1498                 else
1499                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1500                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1501                 writeq(val64, &bar0->rti_data2_mem);
1502
1503                 for (i = 0; i < config->rx_ring_num; i++) {
1504                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1505                                         | RTI_CMD_MEM_OFFSET(i);
1506                         writeq(val64, &bar0->rti_command_mem);
1507
1508                         /*
1509                          * Once the operation completes, the Strobe bit of the
1510                          * command register will be reset. We poll for this
1511                          * particular condition. We wait for a maximum of 500ms
1512                          * for the operation to complete, if it's not complete
1513                          * by then we return error.
1514                          */
1515                         time = 0;
1516                         while (TRUE) {
1517                                 val64 = readq(&bar0->rti_command_mem);
1518                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1519                                         break;
1520                                 }
1521                                 if (time > 10) {
1522                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1523                                                   dev->name);
1524                                         return -1;
1525                                 }
1526                                 time++;
1527                                 msleep(50);
1528                         }
1529                 }
1530         }
1531
1532         /*
1533          * Initializing proper values as Pause threshold into all
1534          * the 8 Queues on Rx side.
1535          */
1536         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1537         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1538
1539         /* Disable RMAC PAD STRIPPING */
1540         add = &bar0->mac_cfg;
1541         val64 = readq(&bar0->mac_cfg);
1542         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1543         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544         writel((u32) (val64), add);
1545         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546         writel((u32) (val64 >> 32), (add + 4));
1547         val64 = readq(&bar0->mac_cfg);
1548
1549         /* Enable FCS stripping by adapter */
1550         add = &bar0->mac_cfg;
1551         val64 = readq(&bar0->mac_cfg);
1552         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1553         if (nic->device_type == XFRAME_II_DEVICE)
1554                 writeq(val64, &bar0->mac_cfg);
1555         else {
1556                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1557                 writel((u32) (val64), add);
1558                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1559                 writel((u32) (val64 >> 32), (add + 4));
1560         }
1561
1562         /*
1563          * Set the time value to be inserted in the pause frame
1564          * generated by xena.
1565          */
1566         val64 = readq(&bar0->rmac_pause_cfg);
1567         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1568         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1569         writeq(val64, &bar0->rmac_pause_cfg);
1570
1571         /*
1572          * Set the Threshold Limit for Generating the pause frame
1573          * If the amount of data in any Queue exceeds ratio of
1574          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1575          * pause frame is generated
1576          */
1577         val64 = 0;
1578         for (i = 0; i < 4; i++) {
1579                 val64 |=
1580                     (((u64) 0xFF00 | nic->mac_control.
1581                       mc_pause_threshold_q0q3)
1582                      << (i * 2 * 8));
1583         }
1584         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1585
1586         val64 = 0;
1587         for (i = 0; i < 4; i++) {
1588                 val64 |=
1589                     (((u64) 0xFF00 | nic->mac_control.
1590                       mc_pause_threshold_q4q7)
1591                      << (i * 2 * 8));
1592         }
1593         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1594
1595         /*
1596          * TxDMA will stop Read request if the number of read split has
1597          * exceeded the limit pointed by shared_splits
1598          */
1599         val64 = readq(&bar0->pic_control);
1600         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1601         writeq(val64, &bar0->pic_control);
1602
1603         if (nic->config.bus_speed == 266) {
1604                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1605                 writeq(0x0, &bar0->read_retry_delay);
1606                 writeq(0x0, &bar0->write_retry_delay);
1607         }
1608
1609         /*
1610          * Programming the Herc to split every write transaction
1611          * that does not start on an ADB to reduce disconnects.
1612          */
1613         if (nic->device_type == XFRAME_II_DEVICE) {
1614                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1615                         MISC_LINK_STABILITY_PRD(3);
1616                 writeq(val64, &bar0->misc_control);
1617                 val64 = readq(&bar0->pic_control2);
1618                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1619                 writeq(val64, &bar0->pic_control2);
1620         }
1621         if (strstr(nic->product_name, "CX4")) {
1622                 val64 = TMAC_AVG_IPG(0x17);
1623                 writeq(val64, &bar0->tmac_avg_ipg);
1624         }
1625
1626         return SUCCESS;
1627 }
1628 #define LINK_UP_DOWN_INTERRUPT          1
1629 #define MAC_RMAC_ERR_TIMER              2
1630
1631 static int s2io_link_fault_indication(nic_t *nic)
1632 {
1633         if (nic->intr_type != INTA)
1634                 return MAC_RMAC_ERR_TIMER;
1635         if (nic->device_type == XFRAME_II_DEVICE)
1636                 return LINK_UP_DOWN_INTERRUPT;
1637         else
1638                 return MAC_RMAC_ERR_TIMER;
1639 }
1640
1641 /**
1642  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1643  *  @nic: device private variable,
1644  *  @mask: A mask indicating which Intr block must be modified and,
1645  *  @flag: A flag indicating whether to enable or disable the Intrs.
1646  *  Description: This function will either disable or enable the interrupts
1647  *  depending on the flag argument. The mask argument can be used to
1648  *  enable/disable any Intr block.
1649  *  Return Value: NONE.
1650  */
1651
1652 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1653 {
1654         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1655         register u64 val64 = 0, temp64 = 0;
1656
1657         /*  Top level interrupt classification */
1658         /*  PIC Interrupts */
1659         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1660                 /*  Enable PIC Intrs in the general intr mask register */
1661                 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1662                 if (flag == ENABLE_INTRS) {
1663                         temp64 = readq(&bar0->general_int_mask);
1664                         temp64 &= ~((u64) val64);
1665                         writeq(temp64, &bar0->general_int_mask);
1666                         /*
1667                          * If Hercules adapter enable GPIO otherwise
1668                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1669                          * interrupts for now.
1670                          * TODO
1671                          */
1672                         if (s2io_link_fault_indication(nic) ==
1673                                         LINK_UP_DOWN_INTERRUPT ) {
1674                                 temp64 = readq(&bar0->pic_int_mask);
1675                                 temp64 &= ~((u64) PIC_INT_GPIO);
1676                                 writeq(temp64, &bar0->pic_int_mask);
1677                                 temp64 = readq(&bar0->gpio_int_mask);
1678                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1679                                 writeq(temp64, &bar0->gpio_int_mask);
1680                         } else {
1681                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1682                         }
1683                         /*
1684                          * No MSI Support is available presently, so TTI and
1685                          * RTI interrupts are also disabled.
1686                          */
1687                 } else if (flag == DISABLE_INTRS) {
1688                         /*
1689                          * Disable PIC Intrs in the general
1690                          * intr mask register
1691                          */
1692                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1693                         temp64 = readq(&bar0->general_int_mask);
1694                         val64 |= temp64;
1695                         writeq(val64, &bar0->general_int_mask);
1696                 }
1697         }
1698
1699         /*  DMA Interrupts */
1700         /*  Enabling/Disabling Tx DMA interrupts */
1701         if (mask & TX_DMA_INTR) {
1702                 /* Enable TxDMA Intrs in the general intr mask register */
1703                 val64 = TXDMA_INT_M;
1704                 if (flag == ENABLE_INTRS) {
1705                         temp64 = readq(&bar0->general_int_mask);
1706                         temp64 &= ~((u64) val64);
1707                         writeq(temp64, &bar0->general_int_mask);
1708                         /*
1709                          * Keep all interrupts other than PFC interrupt
1710                          * and PCC interrupt disabled in DMA level.
1711                          */
1712                         val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1713                                                       TXDMA_PCC_INT_M);
1714                         writeq(val64, &bar0->txdma_int_mask);
1715                         /*
1716                          * Enable only the MISC error 1 interrupt in PFC block
1717                          */
1718                         val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1719                         writeq(val64, &bar0->pfc_err_mask);
1720                         /*
1721                          * Enable only the FB_ECC error interrupt in PCC block
1722                          */
1723                         val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1724                         writeq(val64, &bar0->pcc_err_mask);
1725                 } else if (flag == DISABLE_INTRS) {
1726                         /*
1727                          * Disable TxDMA Intrs in the general intr mask
1728                          * register
1729                          */
1730                         writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1731                         writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1732                         temp64 = readq(&bar0->general_int_mask);
1733                         val64 |= temp64;
1734                         writeq(val64, &bar0->general_int_mask);
1735                 }
1736         }
1737
1738         /*  Enabling/Disabling Rx DMA interrupts */
1739         if (mask & RX_DMA_INTR) {
1740                 /*  Enable RxDMA Intrs in the general intr mask register */
1741                 val64 = RXDMA_INT_M;
1742                 if (flag == ENABLE_INTRS) {
1743                         temp64 = readq(&bar0->general_int_mask);
1744                         temp64 &= ~((u64) val64);
1745                         writeq(temp64, &bar0->general_int_mask);
1746                         /*
1747                          * All RxDMA block interrupts are disabled for now
1748                          * TODO
1749                          */
1750                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1751                 } else if (flag == DISABLE_INTRS) {
1752                         /*
1753                          * Disable RxDMA Intrs in the general intr mask
1754                          * register
1755                          */
1756                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1757                         temp64 = readq(&bar0->general_int_mask);
1758                         val64 |= temp64;
1759                         writeq(val64, &bar0->general_int_mask);
1760                 }
1761         }
1762
1763         /*  MAC Interrupts */
1764         /*  Enabling/Disabling MAC interrupts */
1765         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1766                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1767                 if (flag == ENABLE_INTRS) {
1768                         temp64 = readq(&bar0->general_int_mask);
1769                         temp64 &= ~((u64) val64);
1770                         writeq(temp64, &bar0->general_int_mask);
1771                         /*
1772                          * All MAC block error interrupts are disabled for now
1773                          * TODO
1774                          */
1775                 } else if (flag == DISABLE_INTRS) {
1776                         /*
1777                          * Disable MAC Intrs in the general intr mask register
1778                          */
1779                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1780                         writeq(DISABLE_ALL_INTRS,
1781                                &bar0->mac_rmac_err_mask);
1782
1783                         temp64 = readq(&bar0->general_int_mask);
1784                         val64 |= temp64;
1785                         writeq(val64, &bar0->general_int_mask);
1786                 }
1787         }
1788
1789         /*  XGXS Interrupts */
1790         if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1791                 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1792                 if (flag == ENABLE_INTRS) {
1793                         temp64 = readq(&bar0->general_int_mask);
1794                         temp64 &= ~((u64) val64);
1795                         writeq(temp64, &bar0->general_int_mask);
1796                         /*
1797                          * All XGXS block error interrupts are disabled for now
1798                          * TODO
1799                          */
1800                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1801                 } else if (flag == DISABLE_INTRS) {
1802                         /*
1803                          * Disable MC Intrs in the general intr mask register
1804                          */
1805                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1806                         temp64 = readq(&bar0->general_int_mask);
1807                         val64 |= temp64;
1808                         writeq(val64, &bar0->general_int_mask);
1809                 }
1810         }
1811
1812         /*  Memory Controller(MC) interrupts */
1813         if (mask & MC_INTR) {
1814                 val64 = MC_INT_M;
1815                 if (flag == ENABLE_INTRS) {
1816                         temp64 = readq(&bar0->general_int_mask);
1817                         temp64 &= ~((u64) val64);
1818                         writeq(temp64, &bar0->general_int_mask);
1819                         /*
1820                          * Enable all MC Intrs.
1821                          */
1822                         writeq(0x0, &bar0->mc_int_mask);
1823                         writeq(0x0, &bar0->mc_err_mask);
1824                 } else if (flag == DISABLE_INTRS) {
1825                         /*
1826                          * Disable MC Intrs in the general intr mask register
1827                          */
1828                         writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1829                         temp64 = readq(&bar0->general_int_mask);
1830                         val64 |= temp64;
1831                         writeq(val64, &bar0->general_int_mask);
1832                 }
1833         }
1834
1835
1836         /*  Tx traffic interrupts */
1837         if (mask & TX_TRAFFIC_INTR) {
1838                 val64 = TXTRAFFIC_INT_M;
1839                 if (flag == ENABLE_INTRS) {
1840                         temp64 = readq(&bar0->general_int_mask);
1841                         temp64 &= ~((u64) val64);
1842                         writeq(temp64, &bar0->general_int_mask);
1843                         /*
1844                          * Enable all the Tx side interrupts
1845                          * writing 0 Enables all 64 TX interrupt levels
1846                          */
1847                         writeq(0x0, &bar0->tx_traffic_mask);
1848                 } else if (flag == DISABLE_INTRS) {
1849                         /*
1850                          * Disable Tx Traffic Intrs in the general intr mask
1851                          * register.
1852                          */
1853                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1854                         temp64 = readq(&bar0->general_int_mask);
1855                         val64 |= temp64;
1856                         writeq(val64, &bar0->general_int_mask);
1857                 }
1858         }
1859
1860         /*  Rx traffic interrupts */
1861         if (mask & RX_TRAFFIC_INTR) {
1862                 val64 = RXTRAFFIC_INT_M;
1863                 if (flag == ENABLE_INTRS) {
1864                         temp64 = readq(&bar0->general_int_mask);
1865                         temp64 &= ~((u64) val64);
1866                         writeq(temp64, &bar0->general_int_mask);
1867                         /* writing 0 Enables all 8 RX interrupt levels */
1868                         writeq(0x0, &bar0->rx_traffic_mask);
1869                 } else if (flag == DISABLE_INTRS) {
1870                         /*
1871                          * Disable Rx Traffic Intrs in the general intr mask
1872                          * register.
1873                          */
1874                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1875                         temp64 = readq(&bar0->general_int_mask);
1876                         val64 |= temp64;
1877                         writeq(val64, &bar0->general_int_mask);
1878                 }
1879         }
1880 }
1881
1882 /**
1883  *  verify_pcc_quiescent- Checks for PCC quiescent state
1884  *  Return: 1 If PCC is quiescence
1885  *          0 If PCC is not quiescence
1886  */
1887 static int verify_pcc_quiescent(nic_t *sp, int flag)
1888 {
1889         int ret = 0, herc;
1890         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1891         u64 val64 = readq(&bar0->adapter_status);
1892         
1893         herc = (sp->device_type == XFRAME_II_DEVICE);
1894
1895         if (flag == FALSE) {
1896                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1897                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1898                                 ret = 1;
1899                 } else {
1900                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1901                                 ret = 1;
1902                 }
1903         } else {
1904                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1905                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1906                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1907                                 ret = 1;
1908                 } else {
1909                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1910                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1911                                 ret = 1;
1912                 }
1913         }
1914
1915         return ret;
1916 }
1917 /**
1918  *  verify_xena_quiescence - Checks whether the H/W is ready
1919  *  Description: Returns whether the H/W is ready to go or not. Depending
1920  *  on whether adapter enable bit was written or not the comparison
1921  *  differs and the calling function passes the input argument flag to
1922  *  indicate this.
1923  *  Return: 1 If xena is quiescence
1924  *          0 If Xena is not quiescence
1925  */
1926
1927 static int verify_xena_quiescence(nic_t *sp)
1928 {
1929         int  mode;
1930         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1931         u64 val64 = readq(&bar0->adapter_status);
1932         mode = s2io_verify_pci_mode(sp);
1933
1934         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1935                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1936                 return 0;
1937         }
1938         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1939         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1940                 return 0;
1941         }
1942         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1943                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1944                 return 0;
1945         }
1946         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1947                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1948                 return 0;
1949         }
1950         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1951                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1952                 return 0;
1953         }
1954         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1955                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1956                 return 0;
1957         }
1958         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1959                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1960                 return 0;
1961         }
1962         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1963                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1964                 return 0;
1965         }
1966
1967         /*
1968          * In PCI 33 mode, the P_PLL is not used, and therefore,
1969          * the the P_PLL_LOCK bit in the adapter_status register will
1970          * not be asserted.
1971          */
1972         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1973                 sp->device_type == XFRAME_II_DEVICE && mode !=
1974                 PCI_MODE_PCI_33) {
1975                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1976                 return 0;
1977         }
1978         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1979                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1980                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1981                 return 0;
1982         }
1983         return 1;
1984 }
1985
1986 /**
1987  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1988  * @sp: Pointer to device specifc structure
1989  * Description :
1990  * New procedure to clear mac address reading  problems on Alpha platforms
1991  *
1992  */
1993
1994 static void fix_mac_address(nic_t * sp)
1995 {
1996         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1997         u64 val64;
1998         int i = 0;
1999
2000         while (fix_mac[i] != END_SIGN) {
2001                 writeq(fix_mac[i++], &bar0->gpio_control);
2002                 udelay(10);
2003                 val64 = readq(&bar0->gpio_control);
2004         }
2005 }
2006
2007 /**
2008  *  start_nic - Turns the device on
2009  *  @nic : device private variable.
2010  *  Description:
2011  *  This function actually turns the device on. Before this  function is
2012  *  called,all Registers are configured from their reset states
2013  *  and shared memory is allocated but the NIC is still quiescent. On
2014  *  calling this function, the device interrupts are cleared and the NIC is
2015  *  literally switched on by writing into the adapter control register.
2016  *  Return Value:
2017  *  SUCCESS on success and -1 on failure.
2018  */
2019
2020 static int start_nic(struct s2io_nic *nic)
2021 {
2022         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2023         struct net_device *dev = nic->dev;
2024         register u64 val64 = 0;
2025         u16 subid, i;
2026         mac_info_t *mac_control;
2027         struct config_param *config;
2028
2029         mac_control = &nic->mac_control;
2030         config = &nic->config;
2031
2032         /*  PRC Initialization and configuration */
2033         for (i = 0; i < config->rx_ring_num; i++) {
2034                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2035                        &bar0->prc_rxd0_n[i]);
2036
2037                 val64 = readq(&bar0->prc_ctrl_n[i]);
2038                 if (nic->config.bimodal)
2039                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2040                 if (nic->rxd_mode == RXD_MODE_1)
2041                         val64 |= PRC_CTRL_RC_ENABLED;
2042                 else
2043                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2044                 if (nic->device_type == XFRAME_II_DEVICE)
2045                         val64 |= PRC_CTRL_GROUP_READS;
2046                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2047                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2048                 writeq(val64, &bar0->prc_ctrl_n[i]);
2049         }
2050
2051         if (nic->rxd_mode == RXD_MODE_3B) {
2052                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2053                 val64 = readq(&bar0->rx_pa_cfg);
2054                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2055                 writeq(val64, &bar0->rx_pa_cfg);
2056         }
2057
2058         /*
2059          * Enabling MC-RLDRAM. After enabling the device, we timeout
2060          * for around 100ms, which is approximately the time required
2061          * for the device to be ready for operation.
2062          */
2063         val64 = readq(&bar0->mc_rldram_mrs);
2064         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2065         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2066         val64 = readq(&bar0->mc_rldram_mrs);
2067
2068         msleep(100);    /* Delay by around 100 ms. */
2069
2070         /* Enabling ECC Protection. */
2071         val64 = readq(&bar0->adapter_control);
2072         val64 &= ~ADAPTER_ECC_EN;
2073         writeq(val64, &bar0->adapter_control);
2074
2075         /*
2076          * Clearing any possible Link state change interrupts that
2077          * could have popped up just before Enabling the card.
2078          */
2079         val64 = readq(&bar0->mac_rmac_err_reg);
2080         if (val64)
2081                 writeq(val64, &bar0->mac_rmac_err_reg);
2082
2083         /*
2084          * Verify if the device is ready to be enabled, if so enable
2085          * it.
2086          */
2087         val64 = readq(&bar0->adapter_status);
2088         if (!verify_xena_quiescence(nic)) {
2089                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2090                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2091                           (unsigned long long) val64);
2092                 return FAILURE;
2093         }
2094
2095         /*
2096          * With some switches, link might be already up at this point.
2097          * Because of this weird behavior, when we enable laser,
2098          * we may not get link. We need to handle this. We cannot
2099          * figure out which switch is misbehaving. So we are forced to
2100          * make a global change.
2101          */
2102
2103         /* Enabling Laser. */
2104         val64 = readq(&bar0->adapter_control);
2105         val64 |= ADAPTER_EOI_TX_ON;
2106         writeq(val64, &bar0->adapter_control);
2107
2108         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2109                 /*
2110                  * Dont see link state interrupts initally on some switches,
2111                  * so directly scheduling the link state task here.
2112                  */
2113                 schedule_work(&nic->set_link_task);
2114         }
2115         /* SXE-002: Initialize link and activity LED */
2116         subid = nic->pdev->subsystem_device;
2117         if (((subid & 0xFF) >= 0x07) &&
2118             (nic->device_type == XFRAME_I_DEVICE)) {
2119                 val64 = readq(&bar0->gpio_control);
2120                 val64 |= 0x0000800000000000ULL;
2121                 writeq(val64, &bar0->gpio_control);
2122                 val64 = 0x0411040400000000ULL;
2123                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2124         }
2125
2126         return SUCCESS;
2127 }
2128 /**
2129  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2130  */
2131 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2132 {
2133         nic_t *nic = fifo_data->nic;
2134         struct sk_buff *skb;
2135         TxD_t *txds;
2136         u16 j, frg_cnt;
2137
2138         txds = txdlp;
2139         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2140                 pci_unmap_single(nic->pdev, (dma_addr_t)
2141                         txds->Buffer_Pointer, sizeof(u64),
2142                         PCI_DMA_TODEVICE);
2143                 txds++;
2144         }
2145
2146         skb = (struct sk_buff *) ((unsigned long)
2147                         txds->Host_Control);
2148         if (!skb) {
2149                 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2150                 return NULL;
2151         }
2152         pci_unmap_single(nic->pdev, (dma_addr_t)
2153                          txds->Buffer_Pointer,
2154                          skb->len - skb->data_len,
2155                          PCI_DMA_TODEVICE);
2156         frg_cnt = skb_shinfo(skb)->nr_frags;
2157         if (frg_cnt) {
2158                 txds++;
2159                 for (j = 0; j < frg_cnt; j++, txds++) {
2160                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2161                         if (!txds->Buffer_Pointer)
2162                                 break;
2163                         pci_unmap_page(nic->pdev, (dma_addr_t)
2164                                         txds->Buffer_Pointer,
2165                                        frag->size, PCI_DMA_TODEVICE);
2166                 }
2167         }
2168         memset(txdlp,0, (sizeof(TxD_t) * fifo_data->max_txds));
2169         return(skb);
2170 }
2171
2172 /**
2173  *  free_tx_buffers - Free all queued Tx buffers
2174  *  @nic : device private variable.
2175  *  Description:
2176  *  Free all queued Tx buffers.
2177  *  Return Value: void
2178 */
2179
2180 static void free_tx_buffers(struct s2io_nic *nic)
2181 {
2182         struct net_device *dev = nic->dev;
2183         struct sk_buff *skb;
2184         TxD_t *txdp;
2185         int i, j;
2186         mac_info_t *mac_control;
2187         struct config_param *config;
2188         int cnt = 0;
2189
2190         mac_control = &nic->mac_control;
2191         config = &nic->config;
2192
2193         for (i = 0; i < config->tx_fifo_num; i++) {
2194                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2195                         txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2196                             list_virt_addr;
2197                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2198                         if (skb) {
2199                                 dev_kfree_skb(skb);
2200                                 cnt++;
2201                         }
2202                 }
2203                 DBG_PRINT(INTR_DBG,
2204                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2205                           dev->name, cnt, i);
2206                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2207                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2208         }
2209 }
2210
2211 /**
2212  *   stop_nic -  To stop the nic
2213  *   @nic ; device private variable.
2214  *   Description:
2215  *   This function does exactly the opposite of what the start_nic()
2216  *   function does. This function is called to stop the device.
2217  *   Return Value:
2218  *   void.
2219  */
2220
2221 static void stop_nic(struct s2io_nic *nic)
2222 {
2223         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2224         register u64 val64 = 0;
2225         u16 interruptible;
2226         mac_info_t *mac_control;
2227         struct config_param *config;
2228
2229         mac_control = &nic->mac_control;
2230         config = &nic->config;
2231
2232         /*  Disable all interrupts */
2233         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2234         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2235         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2236         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2237
2238         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2239         val64 = readq(&bar0->adapter_control);
2240         val64 &= ~(ADAPTER_CNTL_EN);
2241         writeq(val64, &bar0->adapter_control);
2242 }
2243
2244 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2245 {
2246         struct net_device *dev = nic->dev;
2247         struct sk_buff *frag_list;
2248         void *tmp;
2249
2250         /* Buffer-1 receives L3/L4 headers */
2251         ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2252                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2253                         PCI_DMA_FROMDEVICE);
2254
2255         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2256         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2257         if (skb_shinfo(skb)->frag_list == NULL) {
2258                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2259                 return -ENOMEM ;
2260         }
2261         frag_list = skb_shinfo(skb)->frag_list;
2262         skb->truesize += frag_list->truesize;
2263         frag_list->next = NULL;
2264         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2265         frag_list->data = tmp;
2266         frag_list->tail = tmp;
2267
2268         /* Buffer-2 receives L4 data payload */
2269         ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2270                                 frag_list->data, dev->mtu,
2271                                 PCI_DMA_FROMDEVICE);
2272         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2273         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2274
2275         return SUCCESS;
2276 }
2277
2278 /**
2279  *  fill_rx_buffers - Allocates the Rx side skbs
2280  *  @nic:  device private variable
2281  *  @ring_no: ring number
2282  *  Description:
2283  *  The function allocates Rx side skbs and puts the physical
2284  *  address of these buffers into the RxD buffer pointers, so that the NIC
2285  *  can DMA the received frame into these locations.
2286  *  The NIC supports 3 receive modes, viz
2287  *  1. single buffer,
2288  *  2. three buffer and
2289  *  3. Five buffer modes.
2290  *  Each mode defines how many fragments the received frame will be split
2291  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2292  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2293  *  is split into 3 fragments. As of now only single buffer mode is
2294  *  supported.
2295  *   Return Value:
2296  *  SUCCESS on success or an appropriate -ve value on failure.
2297  */
2298
2299 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2300 {
2301         struct net_device *dev = nic->dev;
2302         struct sk_buff *skb;
2303         RxD_t *rxdp;
2304         int off, off1, size, block_no, block_no1;
2305         u32 alloc_tab = 0;
2306         u32 alloc_cnt;
2307         mac_info_t *mac_control;
2308         struct config_param *config;
2309         u64 tmp;
2310         buffAdd_t *ba;
2311         unsigned long flags;
2312         RxD_t *first_rxdp = NULL;
2313
2314         mac_control = &nic->mac_control;
2315         config = &nic->config;
2316         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2317             atomic_read(&nic->rx_bufs_left[ring_no]);
2318
2319         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2320         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2321         while (alloc_tab < alloc_cnt) {
2322                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2323                     block_index;
2324                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2325
2326                 rxdp = mac_control->rings[ring_no].
2327                                 rx_blocks[block_no].rxds[off].virt_addr;
2328
2329                 if ((block_no == block_no1) && (off == off1) &&
2330                                         (rxdp->Host_Control)) {
2331                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2332                                   dev->name);
2333                         DBG_PRINT(INTR_DBG, " info equated\n");
2334                         goto end;
2335                 }
2336                 if (off && (off == rxd_count[nic->rxd_mode])) {
2337                         mac_control->rings[ring_no].rx_curr_put_info.
2338                             block_index++;
2339                         if (mac_control->rings[ring_no].rx_curr_put_info.
2340                             block_index == mac_control->rings[ring_no].
2341                                         block_count)
2342                                 mac_control->rings[ring_no].rx_curr_put_info.
2343                                         block_index = 0;
2344                         block_no = mac_control->rings[ring_no].
2345                                         rx_curr_put_info.block_index;
2346                         if (off == rxd_count[nic->rxd_mode])
2347                                 off = 0;
2348                         mac_control->rings[ring_no].rx_curr_put_info.
2349                                 offset = off;
2350                         rxdp = mac_control->rings[ring_no].
2351                                 rx_blocks[block_no].block_virt_addr;
2352                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2353                                   dev->name, rxdp);
2354                 }
2355                 if(!napi) {
2356                         spin_lock_irqsave(&nic->put_lock, flags);
2357                         mac_control->rings[ring_no].put_pos =
2358                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2359                         spin_unlock_irqrestore(&nic->put_lock, flags);
2360                 } else {
2361                         mac_control->rings[ring_no].put_pos =
2362                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2363                 }
2364                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2365                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2366                                 (rxdp->Control_2 & BIT(0)))) {
2367                         mac_control->rings[ring_no].rx_curr_put_info.
2368                                         offset = off;
2369                         goto end;
2370                 }
2371                 /* calculate size of skb based on ring mode */
2372                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2373                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2374                 if (nic->rxd_mode == RXD_MODE_1)
2375                         size += NET_IP_ALIGN;
2376                 else if (nic->rxd_mode == RXD_MODE_3B)
2377                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2378                 else
2379                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2380
2381                 /* allocate skb */
2382                 skb = dev_alloc_skb(size);
2383                 if(!skb) {
2384                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2385                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2386                         if (first_rxdp) {
2387                                 wmb();
2388                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2389                         }
2390                         return -ENOMEM ;
2391                 }
2392                 if (nic->rxd_mode == RXD_MODE_1) {
2393                         /* 1 buffer mode - normal operation mode */
2394                         memset(rxdp, 0, sizeof(RxD1_t));
2395                         skb_reserve(skb, NET_IP_ALIGN);
2396                         ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2397                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2398                                 PCI_DMA_FROMDEVICE);
2399                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2400
2401                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2402                         /*
2403                          * 2 or 3 buffer mode -
2404                          * Both 2 buffer mode and 3 buffer mode provides 128
2405                          * byte aligned receive buffers.
2406                          *
2407                          * 3 buffer mode provides header separation where in
2408                          * skb->data will have L3/L4 headers where as
2409                          * skb_shinfo(skb)->frag_list will have the L4 data
2410                          * payload
2411                          */
2412
2413                         memset(rxdp, 0, sizeof(RxD3_t));
2414                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2415                         skb_reserve(skb, BUF0_LEN);
2416                         tmp = (u64)(unsigned long) skb->data;
2417                         tmp += ALIGN_SIZE;
2418                         tmp &= ~ALIGN_SIZE;
2419                         skb->data = (void *) (unsigned long)tmp;
2420                         skb->tail = (void *) (unsigned long)tmp;
2421
2422                         if (!(((RxD3_t*)rxdp)->Buffer0_ptr))
2423                                 ((RxD3_t*)rxdp)->Buffer0_ptr =
2424                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2425                                            PCI_DMA_FROMDEVICE);
2426                         else
2427                                 pci_dma_sync_single_for_device(nic->pdev,
2428                                     (dma_addr_t) ((RxD3_t*)rxdp)->Buffer0_ptr,
2429                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2430                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2431                         if (nic->rxd_mode == RXD_MODE_3B) {
2432                                 /* Two buffer mode */
2433
2434                                 /*
2435                                  * Buffer2 will have L3/L4 header plus
2436                                  * L4 payload
2437                                  */
2438                                 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2439                                 (nic->pdev, skb->data, dev->mtu + 4,
2440                                                 PCI_DMA_FROMDEVICE);
2441
2442                                 /* Buffer-1 will be dummy buffer. Not used */
2443                                 if (!(((RxD3_t*)rxdp)->Buffer1_ptr)) {
2444                                         ((RxD3_t*)rxdp)->Buffer1_ptr =
2445                                                 pci_map_single(nic->pdev,
2446                                                 ba->ba_1, BUF1_LEN,
2447                                                 PCI_DMA_FROMDEVICE);
2448                                 }
2449                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2450                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2451                                                                 (dev->mtu + 4);
2452                         } else {
2453                                 /* 3 buffer mode */
2454                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2455                                         dev_kfree_skb_irq(skb);
2456                                         if (first_rxdp) {
2457                                                 wmb();
2458                                                 first_rxdp->Control_1 |=
2459                                                         RXD_OWN_XENA;
2460                                         }
2461                                         return -ENOMEM ;
2462                                 }
2463                         }
2464                         rxdp->Control_2 |= BIT(0);
2465                 }
2466                 rxdp->Host_Control = (unsigned long) (skb);
2467                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2468                         rxdp->Control_1 |= RXD_OWN_XENA;
2469                 off++;
2470                 if (off == (rxd_count[nic->rxd_mode] + 1))
2471                         off = 0;
2472                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2473
2474                 rxdp->Control_2 |= SET_RXD_MARKER;
2475                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2476                         if (first_rxdp) {
2477                                 wmb();
2478                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2479                         }
2480                         first_rxdp = rxdp;
2481                 }
2482                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2483                 alloc_tab++;
2484         }
2485
2486       end:
2487         /* Transfer ownership of first descriptor to adapter just before
2488          * exiting. Before that, use memory barrier so that ownership
2489          * and other fields are seen by adapter correctly.
2490          */
2491         if (first_rxdp) {
2492                 wmb();
2493                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2494         }
2495
2496         return SUCCESS;
2497 }
2498
2499 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2500 {
2501         struct net_device *dev = sp->dev;
2502         int j;
2503         struct sk_buff *skb;
2504         RxD_t *rxdp;
2505         mac_info_t *mac_control;
2506         buffAdd_t *ba;
2507
2508         mac_control = &sp->mac_control;
2509         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2510                 rxdp = mac_control->rings[ring_no].
2511                                 rx_blocks[blk].rxds[j].virt_addr;
2512                 skb = (struct sk_buff *)
2513                         ((unsigned long) rxdp->Host_Control);
2514                 if (!skb) {
2515                         continue;
2516                 }
2517                 if (sp->rxd_mode == RXD_MODE_1) {
2518                         pci_unmap_single(sp->pdev, (dma_addr_t)
2519                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2520                                  dev->mtu +
2521                                  HEADER_ETHERNET_II_802_3_SIZE
2522                                  + HEADER_802_2_SIZE +
2523                                  HEADER_SNAP_SIZE,
2524                                  PCI_DMA_FROMDEVICE);
2525                         memset(rxdp, 0, sizeof(RxD1_t));
2526                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2527                         ba = &mac_control->rings[ring_no].
2528                                 ba[blk][j];
2529                         pci_unmap_single(sp->pdev, (dma_addr_t)
2530                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2531                                  BUF0_LEN,
2532                                  PCI_DMA_FROMDEVICE);
2533                         pci_unmap_single(sp->pdev, (dma_addr_t)
2534                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2535                                  BUF1_LEN,
2536                                  PCI_DMA_FROMDEVICE);
2537                         pci_unmap_single(sp->pdev, (dma_addr_t)
2538                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2539                                  dev->mtu + 4,
2540                                  PCI_DMA_FROMDEVICE);
2541                         memset(rxdp, 0, sizeof(RxD3_t));
2542                 } else {
2543                         pci_unmap_single(sp->pdev, (dma_addr_t)
2544                                 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2545                                 PCI_DMA_FROMDEVICE);
2546                         pci_unmap_single(sp->pdev, (dma_addr_t)
2547                                 ((RxD3_t*)rxdp)->Buffer1_ptr,
2548                                 l3l4hdr_size + 4,
2549                                 PCI_DMA_FROMDEVICE);
2550                         pci_unmap_single(sp->pdev, (dma_addr_t)
2551                                 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2552                                 PCI_DMA_FROMDEVICE);
2553                         memset(rxdp, 0, sizeof(RxD3_t));
2554                 }
2555                 dev_kfree_skb(skb);
2556                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2557         }
2558 }
2559
2560 /**
2561  *  free_rx_buffers - Frees all Rx buffers
2562  *  @sp: device private variable.
2563  *  Description:
2564  *  This function will free all Rx buffers allocated by host.
2565  *  Return Value:
2566  *  NONE.
2567  */
2568
2569 static void free_rx_buffers(struct s2io_nic *sp)
2570 {
2571         struct net_device *dev = sp->dev;
2572         int i, blk = 0, buf_cnt = 0;
2573         mac_info_t *mac_control;
2574         struct config_param *config;
2575
2576         mac_control = &sp->mac_control;
2577         config = &sp->config;
2578
2579         for (i = 0; i < config->rx_ring_num; i++) {
2580                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2581                         free_rxd_blk(sp,i,blk);
2582
2583                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2584                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2585                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2586                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2587                 atomic_set(&sp->rx_bufs_left[i], 0);
2588                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2589                           dev->name, buf_cnt, i);
2590         }
2591 }
2592
2593 /**
2594  * s2io_poll - Rx interrupt handler for NAPI support
2595  * @dev : pointer to the device structure.
2596  * @budget : The number of packets that were budgeted to be processed
2597  * during  one pass through the 'Poll" function.
2598  * Description:
2599  * Comes into picture only if NAPI support has been incorporated. It does
2600  * the same thing that rx_intr_handler does, but not in a interrupt context
2601  * also It will process only a given number of packets.
2602  * Return value:
2603  * 0 on success and 1 if there are No Rx packets to be processed.
2604  */
2605
2606 static int s2io_poll(struct net_device *dev, int *budget)
2607 {
2608         nic_t *nic = dev->priv;
2609         int pkt_cnt = 0, org_pkts_to_process;
2610         mac_info_t *mac_control;
2611         struct config_param *config;
2612         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2613         int i;
2614
2615         atomic_inc(&nic->isr_cnt);
2616         mac_control = &nic->mac_control;
2617         config = &nic->config;
2618
2619         nic->pkts_to_process = *budget;
2620         if (nic->pkts_to_process > dev->quota)
2621                 nic->pkts_to_process = dev->quota;
2622         org_pkts_to_process = nic->pkts_to_process;
2623
2624         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2625         readl(&bar0->rx_traffic_int);
2626
2627         for (i = 0; i < config->rx_ring_num; i++) {
2628                 rx_intr_handler(&mac_control->rings[i]);
2629                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2630                 if (!nic->pkts_to_process) {
2631                         /* Quota for the current iteration has been met */
2632                         goto no_rx;
2633                 }
2634         }
2635         if (!pkt_cnt)
2636                 pkt_cnt = 1;
2637
2638         dev->quota -= pkt_cnt;
2639         *budget -= pkt_cnt;
2640         netif_rx_complete(dev);
2641
2642         for (i = 0; i < config->rx_ring_num; i++) {
2643                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2644                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2645                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2646                         break;
2647                 }
2648         }
2649         /* Re enable the Rx interrupts. */
2650         writeq(0x0, &bar0->rx_traffic_mask);
2651         readl(&bar0->rx_traffic_mask);
2652         atomic_dec(&nic->isr_cnt);
2653         return 0;
2654
2655 no_rx:
2656         dev->quota -= pkt_cnt;
2657         *budget -= pkt_cnt;
2658
2659         for (i = 0; i < config->rx_ring_num; i++) {
2660                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2661                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2662                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2663                         break;
2664                 }
2665         }
2666         atomic_dec(&nic->isr_cnt);
2667         return 1;
2668 }
2669
2670 #ifdef CONFIG_NET_POLL_CONTROLLER
2671 /**
2672  * s2io_netpoll - netpoll event handler entry point
2673  * @dev : pointer to the device structure.
2674  * Description:
2675  *      This function will be called by upper layer to check for events on the
2676  * interface in situations where interrupts are disabled. It is used for
2677  * specific in-kernel networking tasks, such as remote consoles and kernel
2678  * debugging over the network (example netdump in RedHat).
2679  */
2680 static void s2io_netpoll(struct net_device *dev)
2681 {
2682         nic_t *nic = dev->priv;
2683         mac_info_t *mac_control;
2684         struct config_param *config;
2685         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2686         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2687         int i;
2688
2689         disable_irq(dev->irq);
2690
2691         atomic_inc(&nic->isr_cnt);
2692         mac_control = &nic->mac_control;
2693         config = &nic->config;
2694
2695         writeq(val64, &bar0->rx_traffic_int);
2696         writeq(val64, &bar0->tx_traffic_int);
2697
2698         /* we need to free up the transmitted skbufs or else netpoll will
2699          * run out of skbs and will fail and eventually netpoll application such
2700          * as netdump will fail.
2701          */
2702         for (i = 0; i < config->tx_fifo_num; i++)
2703                 tx_intr_handler(&mac_control->fifos[i]);
2704
2705         /* check for received packet and indicate up to network */
2706         for (i = 0; i < config->rx_ring_num; i++)
2707                 rx_intr_handler(&mac_control->rings[i]);
2708
2709         for (i = 0; i < config->rx_ring_num; i++) {
2710                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2711                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2712                         DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2713                         break;
2714                 }
2715         }
2716         atomic_dec(&nic->isr_cnt);
2717         enable_irq(dev->irq);
2718         return;
2719 }
2720 #endif
2721
2722 /**
2723  *  rx_intr_handler - Rx interrupt handler
2724  *  @nic: device private variable.
2725  *  Description:
2726  *  If the interrupt is because of a received frame or if the
2727  *  receive ring contains fresh as yet un-processed frames,this function is
2728  *  called. It picks out the RxD at which place the last Rx processing had
2729  *  stopped and sends the skb to the OSM's Rx handler and then increments
2730  *  the offset.
2731  *  Return Value:
2732  *  NONE.
2733  */
2734 static void rx_intr_handler(ring_info_t *ring_data)
2735 {
2736         nic_t *nic = ring_data->nic;
2737         struct net_device *dev = (struct net_device *) nic->dev;
2738         int get_block, put_block, put_offset;
2739         rx_curr_get_info_t get_info, put_info;
2740         RxD_t *rxdp;
2741         struct sk_buff *skb;
2742         int pkt_cnt = 0;
2743         int i;
2744
2745         spin_lock(&nic->rx_lock);
2746         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2747                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2748                           __FUNCTION__, dev->name);
2749                 spin_unlock(&nic->rx_lock);
2750                 return;
2751         }
2752
2753         get_info = ring_data->rx_curr_get_info;
2754         get_block = get_info.block_index;
2755         put_info = ring_data->rx_curr_put_info;
2756         put_block = put_info.block_index;
2757         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2758         if (!napi) {
2759                 spin_lock(&nic->put_lock);
2760                 put_offset = ring_data->put_pos;
2761                 spin_unlock(&nic->put_lock);
2762         } else
2763                 put_offset = ring_data->put_pos;
2764
2765         while (RXD_IS_UP2DT(rxdp)) {
2766                 /*
2767                  * If your are next to put index then it's
2768                  * FIFO full condition
2769                  */
2770                 if ((get_block == put_block) &&
2771                     (get_info.offset + 1) == put_info.offset) {
2772                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2773                         break;
2774                 }
2775                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2776                 if (skb == NULL) {
2777                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2778                                   dev->name);
2779                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2780                         spin_unlock(&nic->rx_lock);
2781                         return;
2782                 }
2783                 if (nic->rxd_mode == RXD_MODE_1) {
2784                         pci_unmap_single(nic->pdev, (dma_addr_t)
2785                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2786                                  dev->mtu +
2787                                  HEADER_ETHERNET_II_802_3_SIZE +
2788                                  HEADER_802_2_SIZE +
2789                                  HEADER_SNAP_SIZE,
2790                                  PCI_DMA_FROMDEVICE);
2791                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2792                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2793                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2794                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2795                         pci_unmap_single(nic->pdev, (dma_addr_t)
2796                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2797                                  dev->mtu + 4,
2798                                  PCI_DMA_FROMDEVICE);
2799                 } else {
2800                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2801                                          ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2802                                          PCI_DMA_FROMDEVICE);
2803                         pci_unmap_single(nic->pdev, (dma_addr_t)
2804                                          ((RxD3_t*)rxdp)->Buffer1_ptr,
2805                                          l3l4hdr_size + 4,
2806                                          PCI_DMA_FROMDEVICE);
2807                         pci_unmap_single(nic->pdev, (dma_addr_t)
2808                                          ((RxD3_t*)rxdp)->Buffer2_ptr,
2809                                          dev->mtu, PCI_DMA_FROMDEVICE);
2810                 }
2811                 prefetch(skb->data);
2812                 rx_osm_handler(ring_data, rxdp);
2813                 get_info.offset++;
2814                 ring_data->rx_curr_get_info.offset = get_info.offset;
2815                 rxdp = ring_data->rx_blocks[get_block].
2816                                 rxds[get_info.offset].virt_addr;
2817                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2818                         get_info.offset = 0;
2819                         ring_data->rx_curr_get_info.offset = get_info.offset;
2820                         get_block++;
2821                         if (get_block == ring_data->block_count)
2822                                 get_block = 0;
2823                         ring_data->rx_curr_get_info.block_index = get_block;
2824                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2825                 }
2826
2827                 nic->pkts_to_process -= 1;
2828                 if ((napi) && (!nic->pkts_to_process))
2829                         break;
2830                 pkt_cnt++;
2831                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2832                         break;
2833         }
2834         if (nic->lro) {
2835                 /* Clear all LRO sessions before exiting */
2836                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2837                         lro_t *lro = &nic->lro0_n[i];
2838                         if (lro->in_use) {
2839                                 update_L3L4_header(nic, lro);
2840                                 queue_rx_frame(lro->parent);
2841                                 clear_lro_session(lro);
2842                         }
2843                 }
2844         }
2845
2846         spin_unlock(&nic->rx_lock);
2847 }
2848
2849 /**
2850  *  tx_intr_handler - Transmit interrupt handler
2851  *  @nic : device private variable
2852  *  Description:
2853  *  If an interrupt was raised to indicate DMA complete of the
2854  *  Tx packet, this function is called. It identifies the last TxD
2855  *  whose buffer was freed and frees all skbs whose data have already
2856  *  DMA'ed into the NICs internal memory.
2857  *  Return Value:
2858  *  NONE
2859  */
2860
2861 static void tx_intr_handler(fifo_info_t *fifo_data)
2862 {
2863         nic_t *nic = fifo_data->nic;
2864         struct net_device *dev = (struct net_device *) nic->dev;
2865         tx_curr_get_info_t get_info, put_info;
2866         struct sk_buff *skb;
2867         TxD_t *txdlp;
2868
2869         get_info = fifo_data->tx_curr_get_info;
2870         put_info = fifo_data->tx_curr_put_info;
2871         txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2872             list_virt_addr;
2873         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2874                (get_info.offset != put_info.offset) &&
2875                (txdlp->Host_Control)) {
2876                 /* Check for TxD errors */
2877                 if (txdlp->Control_1 & TXD_T_CODE) {
2878                         unsigned long long err;
2879                         err = txdlp->Control_1 & TXD_T_CODE;
2880                         if (err & 0x1) {
2881                                 nic->mac_control.stats_info->sw_stat.
2882                                                 parity_err_cnt++;
2883                         }
2884                         if ((err >> 48) == 0xA) {
2885                                 DBG_PRINT(TX_DBG, "TxD returned due \
2886                                                 to loss of link\n");
2887                         }
2888                         else {
2889                                 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2890                         }
2891                 }
2892
2893                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2894                 if (skb == NULL) {
2895                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2896                         __FUNCTION__);
2897                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2898                         return;
2899                 }
2900
2901                 /* Updating the statistics block */
2902                 nic->stats.tx_bytes += skb->len;
2903                 dev_kfree_skb_irq(skb);
2904
2905                 get_info.offset++;
2906                 if (get_info.offset == get_info.fifo_len + 1)
2907                         get_info.offset = 0;
2908                 txdlp = (TxD_t *) fifo_data->list_info
2909                     [get_info.offset].list_virt_addr;
2910                 fifo_data->tx_curr_get_info.offset =
2911                     get_info.offset;
2912         }
2913
2914         spin_lock(&nic->tx_lock);
2915         if (netif_queue_stopped(dev))
2916                 netif_wake_queue(dev);
2917         spin_unlock(&nic->tx_lock);
2918 }
2919
2920 /**
2921  *  s2io_mdio_write - Function to write in to MDIO registers
2922  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2923  *  @addr     : address value
2924  *  @value    : data value
2925  *  @dev      : pointer to net_device structure
2926  *  Description:
2927  *  This function is used to write values to the MDIO registers
2928  *  NONE
2929  */
2930 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2931 {
2932         u64 val64 = 0x0;
2933         nic_t *sp = dev->priv;
2934         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2935
2936         //address transaction
2937         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2938                         | MDIO_MMD_DEV_ADDR(mmd_type)
2939                         | MDIO_MMS_PRT_ADDR(0x0);
2940         writeq(val64, &bar0->mdio_control);
2941         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2942         writeq(val64, &bar0->mdio_control);
2943         udelay(100);
2944
2945         //Data transaction
2946         val64 = 0x0;
2947         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2948                         | MDIO_MMD_DEV_ADDR(mmd_type)
2949                         | MDIO_MMS_PRT_ADDR(0x0)
2950                         | MDIO_MDIO_DATA(value)
2951                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2952         writeq(val64, &bar0->mdio_control);
2953         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2954         writeq(val64, &bar0->mdio_control);
2955         udelay(100);
2956
2957         val64 = 0x0;
2958         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2959         | MDIO_MMD_DEV_ADDR(mmd_type)
2960         | MDIO_MMS_PRT_ADDR(0x0)
2961         | MDIO_OP(MDIO_OP_READ_TRANS);
2962         writeq(val64, &bar0->mdio_control);
2963         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2964         writeq(val64, &bar0->mdio_control);
2965         udelay(100);
2966
2967 }
2968
2969 /**
2970  *  s2io_mdio_read - Function to write in to MDIO registers
2971  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2972  *  @addr     : address value
2973  *  @dev      : pointer to net_device structure
2974  *  Description:
2975  *  This function is used to read values to the MDIO registers
2976  *  NONE
2977  */
2978 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2979 {
2980         u64 val64 = 0x0;
2981         u64 rval64 = 0x0;
2982         nic_t *sp = dev->priv;
2983         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2984
2985         /* address transaction */
2986         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2987                         | MDIO_MMD_DEV_ADDR(mmd_type)
2988                         | MDIO_MMS_PRT_ADDR(0x0);
2989         writeq(val64, &bar0->mdio_control);
2990         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2991         writeq(val64, &bar0->mdio_control);
2992         udelay(100);
2993
2994         /* Data transaction */
2995         val64 = 0x0;
2996         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2997                         | MDIO_MMD_DEV_ADDR(mmd_type)
2998                         | MDIO_MMS_PRT_ADDR(0x0)
2999                         | MDIO_OP(MDIO_OP_READ_TRANS);
3000         writeq(val64, &bar0->mdio_control);
3001         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3002         writeq(val64, &bar0->mdio_control);
3003         udelay(100);
3004
3005         /* Read the value from regs */
3006         rval64 = readq(&bar0->mdio_control);
3007         rval64 = rval64 & 0xFFFF0000;
3008         rval64 = rval64 >> 16;
3009         return rval64;
3010 }
3011 /**
3012  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3013  *  @counter      : couter value to be updated
3014  *  @flag         : flag to indicate the status
3015  *  @type         : counter type
3016  *  Description:
3017  *  This function is to check the status of the xpak counters value
3018  *  NONE
3019  */
3020
3021 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3022 {
3023         u64 mask = 0x3;
3024         u64 val64;
3025         int i;
3026         for(i = 0; i <index; i++)
3027                 mask = mask << 0x2;
3028
3029         if(flag > 0)
3030         {
3031                 *counter = *counter + 1;
3032                 val64 = *regs_stat & mask;
3033                 val64 = val64 >> (index * 0x2);
3034                 val64 = val64 + 1;
3035                 if(val64 == 3)
3036                 {
3037                         switch(type)
3038                         {
3039                         case 1:
3040                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3041                                           "service. Excessive temperatures may "
3042                                           "result in premature transceiver "
3043                                           "failure \n");
3044                         break;
3045                         case 2:
3046                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3047                                           "service Excessive bias currents may "
3048                                           "indicate imminent laser diode "
3049                                           "failure \n");
3050                         break;
3051                         case 3:
3052                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3053                                           "service Excessive laser output "
3054                                           "power may saturate far-end "
3055                                           "receiver\n");
3056                         break;
3057                         default:
3058                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3059                                           "type \n");
3060                         }
3061                         val64 = 0x0;
3062                 }
3063                 val64 = val64 << (index * 0x2);
3064                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3065
3066         } else {
3067                 *regs_stat = *regs_stat & (~mask);
3068         }
3069 }
3070
3071 /**
3072  *  s2io_updt_xpak_counter - Function to update the xpak counters
3073  *  @dev         : pointer to net_device struct
3074  *  Description:
3075  *  This function is to upate the status of the xpak counters value
3076  *  NONE
3077  */
3078 static void s2io_updt_xpak_counter(struct net_device *dev)
3079 {
3080         u16 flag  = 0x0;
3081         u16 type  = 0x0;
3082         u16 val16 = 0x0;
3083         u64 val64 = 0x0;
3084         u64 addr  = 0x0;
3085
3086         nic_t *sp = dev->priv;
3087         StatInfo_t *stat_info = sp->mac_control.stats_info;
3088
3089         /* Check the communication with the MDIO slave */
3090         addr = 0x0000;
3091         val64 = 0x0;
3092         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3093         if((val64 == 0xFFFF) || (val64 == 0x0000))
3094         {
3095                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3096                           "Returned %llx\n", (unsigned long long)val64);
3097                 return;
3098         }
3099
3100         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3101         if(val64 != 0x2040)
3102         {
3103                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3104                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3105                           (unsigned long long)val64);
3106                 return;
3107         }
3108
3109         /* Loading the DOM register to MDIO register */
3110         addr = 0xA100;
3111         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3112         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3113
3114         /* Reading the Alarm flags */
3115         addr = 0xA070;
3116         val64 = 0x0;
3117         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3118
3119         flag = CHECKBIT(val64, 0x7);
3120         type = 1;
3121         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3122                                 &stat_info->xpak_stat.xpak_regs_stat,
3123                                 0x0, flag, type);
3124
3125         if(CHECKBIT(val64, 0x6))
3126                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3127
3128         flag = CHECKBIT(val64, 0x3);
3129         type = 2;
3130         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3131                                 &stat_info->xpak_stat.xpak_regs_stat,
3132                                 0x2, flag, type);
3133
3134         if(CHECKBIT(val64, 0x2))
3135                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3136
3137         flag = CHECKBIT(val64, 0x1);
3138         type = 3;
3139         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3140                                 &stat_info->xpak_stat.xpak_regs_stat,
3141                                 0x4, flag, type);
3142
3143         if(CHECKBIT(val64, 0x0))
3144                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3145
3146         /* Reading the Warning flags */
3147         addr = 0xA074;
3148         val64 = 0x0;
3149         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3150
3151         if(CHECKBIT(val64, 0x7))
3152                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3153
3154         if(CHECKBIT(val64, 0x6))
3155                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3156
3157         if(CHECKBIT(val64, 0x3))
3158                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3159
3160         if(CHECKBIT(val64, 0x2))
3161                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3162
3163         if(CHECKBIT(val64, 0x1))
3164                 stat_info->xpak_stat.warn_laser_output_power_high++;
3165
3166         if(CHECKBIT(val64, 0x0))
3167                 stat_info->xpak_stat.warn_laser_output_power_low++;
3168 }
3169
3170 /**
3171  *  alarm_intr_handler - Alarm Interrrupt handler
3172  *  @nic: device private variable
3173  *  Description: If the interrupt was neither because of Rx packet or Tx
3174  *  complete, this function is called. If the interrupt was to indicate
3175  *  a loss of link, the OSM link status handler is invoked for any other
3176  *  alarm interrupt the block that raised the interrupt is displayed
3177  *  and a H/W reset is issued.
3178  *  Return Value:
3179  *  NONE
3180 */
3181
3182 static void alarm_intr_handler(struct s2io_nic *nic)
3183 {
3184         struct net_device *dev = (struct net_device *) nic->dev;
3185         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3186         register u64 val64 = 0, err_reg = 0;
3187         u64 cnt;
3188         int i;
3189         if (atomic_read(&nic->card_state) == CARD_DOWN)
3190                 return;
3191         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3192         /* Handling the XPAK counters update */
3193         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3194                 /* waiting for an hour */
3195                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3196         } else {
3197                 s2io_updt_xpak_counter(dev);
3198                 /* reset the count to zero */
3199                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3200         }
3201
3202         /* Handling link status change error Intr */
3203         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3204                 err_reg = readq(&bar0->mac_rmac_err_reg);
3205                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3206                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3207                         schedule_work(&nic->set_link_task);
3208                 }
3209         }
3210
3211         /* Handling Ecc errors */
3212         val64 = readq(&bar0->mc_err_reg);
3213         writeq(val64, &bar0->mc_err_reg);
3214         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3215                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3216                         nic->mac_control.stats_info->sw_stat.
3217                                 double_ecc_errs++;
3218                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3219                                   dev->name);
3220                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3221                         if (nic->device_type != XFRAME_II_DEVICE) {
3222                                 /* Reset XframeI only if critical error */
3223                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3224                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3225                                         netif_stop_queue(dev);
3226                                         schedule_work(&nic->rst_timer_task);
3227                                         nic->mac_control.stats_info->sw_stat.
3228                                                         soft_reset_cnt++;
3229                                 }
3230                         }
3231                 } else {
3232                         nic->mac_control.stats_info->sw_stat.
3233                                 single_ecc_errs++;
3234                 }
3235         }
3236
3237         /* In case of a serious error, the device will be Reset. */
3238         val64 = readq(&bar0->serr_source);
3239         if (val64 & SERR_SOURCE_ANY) {
3240                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3241                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3242                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3243                           (unsigned long long)val64);
3244                 netif_stop_queue(dev);
3245                 schedule_work(&nic->rst_timer_task);
3246                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3247         }
3248
3249         /*
3250          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3251          * Error occurs, the adapter will be recycled by disabling the
3252          * adapter enable bit and enabling it again after the device
3253          * becomes Quiescent.
3254          */
3255         val64 = readq(&bar0->pcc_err_reg);
3256         writeq(val64, &bar0->pcc_err_reg);
3257         if (val64 & PCC_FB_ECC_DB_ERR) {
3258                 u64 ac = readq(&bar0->adapter_control);
3259                 ac &= ~(ADAPTER_CNTL_EN);
3260                 writeq(ac, &bar0->adapter_control);
3261                 ac = readq(&bar0->adapter_control);
3262                 schedule_work(&nic->set_link_task);
3263         }
3264         /* Check for data parity error */
3265         val64 = readq(&bar0->pic_int_status);
3266         if (val64 & PIC_INT_GPIO) {
3267                 val64 = readq(&bar0->gpio_int_reg);
3268                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3269                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3270                         schedule_work(&nic->rst_timer_task);
3271                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3272                 }
3273         }
3274
3275         /* Check for ring full counter */
3276         if (nic->device_type & XFRAME_II_DEVICE) {
3277                 val64 = readq(&bar0->ring_bump_counter1);
3278                 for (i=0; i<4; i++) {
3279                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3280                         cnt >>= 64 - ((i+1)*16);
3281                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3282                                 += cnt;
3283                 }
3284
3285                 val64 = readq(&bar0->ring_bump_counter2);
3286                 for (i=0; i<4; i++) {
3287                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3288                         cnt >>= 64 - ((i+1)*16);
3289                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3290                                 += cnt;
3291                 }
3292         }
3293
3294         /* Other type of interrupts are not being handled now,  TODO */
3295 }
3296
3297 /**
3298  *  wait_for_cmd_complete - waits for a command to complete.
3299  *  @sp : private member of the device structure, which is a pointer to the
3300  *  s2io_nic structure.
3301  *  Description: Function that waits for a command to Write into RMAC
3302  *  ADDR DATA registers to be completed and returns either success or
3303  *  error depending on whether the command was complete or not.
3304  *  Return value:
3305  *   SUCCESS on success and FAILURE on failure.
3306  */
3307
3308 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3309 {
3310         int ret = FAILURE, cnt = 0;
3311         u64 val64;
3312
3313         while (TRUE) {
3314                 val64 = readq(addr);
3315                 if (!(val64 & busy_bit)) {
3316                         ret = SUCCESS;
3317                         break;
3318                 }
3319
3320                 if(in_interrupt())
3321                         mdelay(50);
3322                 else
3323                         msleep(50);
3324
3325                 if (cnt++ > 10)
3326                         break;
3327         }
3328         return ret;
3329 }
3330 /*
3331  * check_pci_device_id - Checks if the device id is supported
3332  * @id : device id
3333  * Description: Function to check if the pci device id is supported by driver.
3334  * Return value: Actual device id if supported else PCI_ANY_ID
3335  */
3336 static u16 check_pci_device_id(u16 id)
3337 {
3338         switch (id) {
3339         case PCI_DEVICE_ID_HERC_WIN:
3340         case PCI_DEVICE_ID_HERC_UNI:
3341                 return XFRAME_II_DEVICE;
3342         case PCI_DEVICE_ID_S2IO_UNI:
3343         case PCI_DEVICE_ID_S2IO_WIN:
3344                 return XFRAME_I_DEVICE;
3345         default:
3346                 return PCI_ANY_ID;
3347         }
3348 }
3349
3350 /**
3351  *  s2io_reset - Resets the card.
3352  *  @sp : private member of the device structure.
3353  *  Description: Function to Reset the card. This function then also
3354  *  restores the previously saved PCI configuration space registers as
3355  *  the card reset also resets the configuration space.
3356  *  Return value:
3357  *  void.
3358  */
3359
3360 static void s2io_reset(nic_t * sp)
3361 {
3362         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3363         u64 val64;
3364         u16 subid, pci_cmd;
3365         int i;
3366         u16 val16;
3367         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3368                         __FUNCTION__, sp->dev->name);
3369
3370         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3371         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3372
3373         if (sp->device_type == XFRAME_II_DEVICE) {
3374                 int ret;
3375                 ret = pci_set_power_state(sp->pdev, 3);
3376                 if (!ret)
3377                         ret = pci_set_power_state(sp->pdev, 0);
3378                 else {
3379                         DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3380                                         __FUNCTION__);
3381                         goto old_way;
3382                 }
3383                 msleep(20);
3384                 goto new_way;
3385         }
3386 old_way:
3387         val64 = SW_RESET_ALL;
3388         writeq(val64, &bar0->sw_reset);
3389 new_way:
3390         if (strstr(sp->product_name, "CX4")) {
3391                 msleep(750);
3392         }
3393         msleep(250);
3394         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3395
3396                 /* Restore the PCI state saved during initialization. */
3397                 pci_restore_state(sp->pdev);
3398                 pci_read_config_word(sp->pdev, 0x2, &val16);
3399                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3400                         break;
3401                 msleep(200);
3402         }
3403
3404         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3405                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3406         }
3407
3408         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3409
3410         s2io_init_pci(sp);
3411
3412         /* Set swapper to enable I/O register access */
3413         s2io_set_swapper(sp);
3414
3415         /* Restore the MSIX table entries from local variables */
3416         restore_xmsi_data(sp);
3417
3418         /* Clear certain PCI/PCI-X fields after reset */
3419         if (sp->device_type == XFRAME_II_DEVICE) {
3420                 /* Clear "detected parity error" bit */
3421                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3422
3423                 /* Clearing PCIX Ecc status register */
3424                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3425
3426                 /* Clearing PCI_STATUS error reflected here */
3427                 writeq(BIT(62), &bar0->txpic_int_reg);
3428         }
3429
3430         /* Reset device statistics maintained by OS */
3431         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3432
3433         /* SXE-002: Configure link and activity LED to turn it off */
3434         subid = sp->pdev->subsystem_device;
3435         if (((subid & 0xFF) >= 0x07) &&
3436             (sp->device_type == XFRAME_I_DEVICE)) {
3437                 val64 = readq(&bar0->gpio_control);
3438                 val64 |= 0x0000800000000000ULL;
3439                 writeq(val64, &bar0->gpio_control);
3440                 val64 = 0x0411040400000000ULL;
3441                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3442         }
3443
3444         /*
3445          * Clear spurious ECC interrupts that would have occured on
3446          * XFRAME II cards after reset.
3447          */
3448         if (sp->device_type == XFRAME_II_DEVICE) {
3449                 val64 = readq(&bar0->pcc_err_reg);
3450                 writeq(val64, &bar0->pcc_err_reg);
3451         }
3452
3453         sp->device_enabled_once = FALSE;
3454 }
3455
3456 /**
3457  *  s2io_set_swapper - to set the swapper controle on the card
3458  *  @sp : private member of the device structure,
3459  *  pointer to the s2io_nic structure.
3460  *  Description: Function to set the swapper control on the card
3461  *  correctly depending on the 'endianness' of the system.
3462  *  Return value:
3463  *  SUCCESS on success and FAILURE on failure.
3464  */
3465
3466 static int s2io_set_swapper(nic_t * sp)
3467 {
3468         struct net_device *dev = sp->dev;
3469         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3470         u64 val64, valt, valr;
3471
3472         /*
3473          * Set proper endian settings and verify the same by reading
3474          * the PIF Feed-back register.
3475          */
3476
3477         val64 = readq(&bar0->pif_rd_swapper_fb);
3478         if (val64 != 0x0123456789ABCDEFULL) {
3479                 int i = 0;
3480                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3481                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3482                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3483                                 0};                     /* FE=0, SE=0 */
3484
3485                 while(i<4) {
3486                         writeq(value[i], &bar0->swapper_ctrl);
3487                         val64 = readq(&bar0->pif_rd_swapper_fb);
3488                         if (val64 == 0x0123456789ABCDEFULL)
3489                                 break;
3490                         i++;
3491                 }
3492                 if (i == 4) {
3493                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3494                                 dev->name);
3495                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3496                                 (unsigned long long) val64);
3497                         return FAILURE;
3498                 }
3499                 valr = value[i];
3500         } else {
3501                 valr = readq(&bar0->swapper_ctrl);
3502         }
3503
3504         valt = 0x0123456789ABCDEFULL;
3505         writeq(valt, &bar0->xmsi_address);
3506         val64 = readq(&bar0->xmsi_address);
3507
3508         if(val64 != valt) {
3509                 int i = 0;
3510                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3511                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3512                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3513                                 0};                     /* FE=0, SE=0 */
3514
3515                 while(i<4) {
3516                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3517                         writeq(valt, &bar0->xmsi_address);
3518                         val64 = readq(&bar0->xmsi_address);
3519                         if(val64 == valt)
3520                                 break;
3521                         i++;
3522                 }
3523                 if(i == 4) {
3524                         unsigned long long x = val64;
3525                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3526                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3527                         return FAILURE;
3528                 }
3529         }
3530         val64 = readq(&bar0->swapper_ctrl);
3531         val64 &= 0xFFFF000000000000ULL;
3532
3533 #ifdef  __BIG_ENDIAN
3534         /*
3535          * The device by default set to a big endian format, so a
3536          * big endian driver need not set anything.
3537          */
3538         val64 |= (SWAPPER_CTRL_TXP_FE |
3539                  SWAPPER_CTRL_TXP_SE |
3540                  SWAPPER_CTRL_TXD_R_FE |
3541                  SWAPPER_CTRL_TXD_W_FE |
3542                  SWAPPER_CTRL_TXF_R_FE |
3543                  SWAPPER_CTRL_RXD_R_FE |
3544                  SWAPPER_CTRL_RXD_W_FE |
3545                  SWAPPER_CTRL_RXF_W_FE |
3546                  SWAPPER_CTRL_XMSI_FE |
3547                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3548         if (sp->intr_type == INTA)
3549                 val64 |= SWAPPER_CTRL_XMSI_SE;
3550         writeq(val64, &bar0->swapper_ctrl);
3551 #else
3552         /*
3553          * Initially we enable all bits to make it accessible by the
3554          * driver, then we selectively enable only those bits that
3555          * we want to set.
3556          */
3557         val64 |= (SWAPPER_CTRL_TXP_FE |
3558                  SWAPPER_CTRL_TXP_SE |
3559                  SWAPPER_CTRL_TXD_R_FE |
3560                  SWAPPER_CTRL_TXD_R_SE |
3561                  SWAPPER_CTRL_TXD_W_FE |
3562                  SWAPPER_CTRL_TXD_W_SE |
3563                  SWAPPER_CTRL_TXF_R_FE |
3564                  SWAPPER_CTRL_RXD_R_FE |
3565                  SWAPPER_CTRL_RXD_R_SE |
3566                  SWAPPER_CTRL_RXD_W_FE |
3567                  SWAPPER_CTRL_RXD_W_SE |
3568                  SWAPPER_CTRL_RXF_W_FE |
3569                  SWAPPER_CTRL_XMSI_FE |
3570                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3571         if (sp->intr_type == INTA)
3572                 val64 |= SWAPPER_CTRL_XMSI_SE;
3573         writeq(val64, &bar0->swapper_ctrl);
3574 #endif
3575         val64 = readq(&bar0->swapper_ctrl);
3576
3577         /*
3578          * Verifying if endian settings are accurate by reading a
3579          * feedback register.
3580          */
3581         val64 = readq(&bar0->pif_rd_swapper_fb);
3582         if (val64 != 0x0123456789ABCDEFULL) {
3583                 /* Endian settings are incorrect, calls for another dekko. */
3584                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3585                           dev->name);
3586                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3587                           (unsigned long long) val64);
3588                 return FAILURE;
3589         }
3590
3591         return SUCCESS;
3592 }
3593
3594 static int wait_for_msix_trans(nic_t *nic, int i)
3595 {
3596         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3597         u64 val64;
3598         int ret = 0, cnt = 0;
3599
3600         do {
3601                 val64 = readq(&bar0->xmsi_access);
3602                 if (!(val64 & BIT(15)))
3603                         break;
3604                 mdelay(1);
3605                 cnt++;
3606         } while(cnt < 5);
3607         if (cnt == 5) {
3608                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3609                 ret = 1;
3610         }
3611
3612         return ret;
3613 }
3614
3615 static void restore_xmsi_data(nic_t *nic)
3616 {
3617         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3618         u64 val64;
3619         int i;
3620
3621         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3622                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3623                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3624                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3625                 writeq(val64, &bar0->xmsi_access);
3626                 if (wait_for_msix_trans(nic, i)) {
3627                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3628                         continue;
3629                 }
3630         }
3631 }
3632
3633 static void store_xmsi_data(nic_t *nic)
3634 {
3635         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3636         u64 val64, addr, data;
3637         int i;
3638
3639         /* Store and display */
3640         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3641                 val64 = (BIT(15) | vBIT(i, 26, 6));
3642                 writeq(val64, &bar0->xmsi_access);
3643                 if (wait_for_msix_trans(nic, i)) {
3644                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3645                         continue;
3646                 }
3647                 addr = readq(&bar0->xmsi_address);
3648                 data = readq(&bar0->xmsi_data);
3649                 if (addr && data) {
3650                         nic->msix_info[i].addr = addr;
3651                         nic->msix_info[i].data = data;
3652                 }
3653         }
3654 }
3655
3656 int s2io_enable_msi(nic_t *nic)
3657 {
3658         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3659         u16 msi_ctrl, msg_val;
3660         struct config_param *config = &nic->config;
3661         struct net_device *dev = nic->dev;
3662         u64 val64, tx_mat, rx_mat;
3663         int i, err;
3664
3665         val64 = readq(&bar0->pic_control);
3666         val64 &= ~BIT(1);
3667         writeq(val64, &bar0->pic_control);
3668
3669         err = pci_enable_msi(nic->pdev);
3670         if (err) {
3671                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3672                           nic->dev->name);
3673                 return err;
3674         }
3675
3676         /*
3677          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3678          * for interrupt handling.
3679          */
3680         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3681         msg_val ^= 0x1;
3682         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3683         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3684
3685         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3686         msi_ctrl |= 0x10;
3687         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3688
3689         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3690         tx_mat = readq(&bar0->tx_mat0_n[0]);
3691         for (i=0; i<config->tx_fifo_num; i++) {
3692                 tx_mat |= TX_MAT_SET(i, 1);
3693         }
3694         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3695
3696         rx_mat = readq(&bar0->rx_mat);
3697         for (i=0; i<config->rx_ring_num; i++) {
3698                 rx_mat |= RX_MAT_SET(i, 1);
3699         }
3700         writeq(rx_mat, &bar0->rx_mat);
3701
3702         dev->irq = nic->pdev->irq;
3703         return 0;
3704 }
3705
3706 static int s2io_enable_msi_x(nic_t *nic)
3707 {
3708         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3709         u64 tx_mat, rx_mat;
3710         u16 msi_control; /* Temp variable */
3711         int ret, i, j, msix_indx = 1;
3712
3713         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3714                                GFP_KERNEL);
3715         if (nic->entries == NULL) {
3716                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3717                 return -ENOMEM;
3718         }
3719         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3720
3721         nic->s2io_entries =
3722                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3723                                    GFP_KERNEL);
3724         if (nic->s2io_entries == NULL) {
3725                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3726                 kfree(nic->entries);
3727                 return -ENOMEM;
3728         }
3729         memset(nic->s2io_entries, 0,
3730                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3731
3732         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3733                 nic->entries[i].entry = i;
3734                 nic->s2io_entries[i].entry = i;
3735                 nic->s2io_entries[i].arg = NULL;
3736                 nic->s2io_entries[i].in_use = 0;
3737         }
3738
3739         tx_mat = readq(&bar0->tx_mat0_n[0]);
3740         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3741                 tx_mat |= TX_MAT_SET(i, msix_indx);
3742                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3743                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3744                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3745         }
3746         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3747
3748         if (!nic->config.bimodal) {
3749                 rx_mat = readq(&bar0->rx_mat);
3750                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3751                         rx_mat |= RX_MAT_SET(j, msix_indx);
3752                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3753                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3754                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3755                 }
3756                 writeq(rx_mat, &bar0->rx_mat);
3757         } else {
3758                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3759                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3760                         tx_mat |= TX_MAT_SET(i, msix_indx);
3761                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3762                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3763                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3764                 }
3765                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3766         }
3767
3768         nic->avail_msix_vectors = 0;
3769         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3770         /* We fail init if error or we get less vectors than min required */
3771         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3772                 nic->avail_msix_vectors = ret;
3773                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3774         }
3775         if (ret) {
3776                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3777                 kfree(nic->entries);
3778                 kfree(nic->s2io_entries);
3779                 nic->entries = NULL;
3780                 nic->s2io_entries = NULL;
3781                 nic->avail_msix_vectors = 0;
3782                 return -ENOMEM;
3783         }
3784         if (!nic->avail_msix_vectors)
3785                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3786
3787         /*
3788          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3789          * in the herc NIC. (Temp change, needs to be removed later)
3790          */
3791         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3792         msi_control |= 0x1; /* Enable MSI */
3793         pci_write_config_word(nic->pdev, 0x42, msi_control);
3794
3795         return 0;
3796 }
3797
3798 /* ********************************************************* *
3799  * Functions defined below concern the OS part of the driver *
3800  * ********************************************************* */
3801
3802 /**
3803  *  s2io_open - open entry point of the driver
3804  *  @dev : pointer to the device structure.
3805  *  Description:
3806  *  This function is the open entry point of the driver. It mainly calls a
3807  *  function to allocate Rx buffers and inserts them into the buffer
3808  *  descriptors and then enables the Rx part of the NIC.
3809  *  Return value:
3810  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3811  *   file on failure.
3812  */
3813
3814 static int s2io_open(struct net_device *dev)
3815 {
3816         nic_t *sp = dev->priv;
3817         int err = 0;
3818
3819         /*
3820          * Make sure you have link off by default every time
3821          * Nic is initialized
3822          */
3823         netif_carrier_off(dev);
3824         sp->last_link_state = 0;
3825
3826         /* Initialize H/W and enable interrupts */
3827         err = s2io_card_up(sp);
3828         if (err) {
3829                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3830                           dev->name);
3831                 goto hw_init_failed;
3832         }
3833
3834         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3835                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3836                 s2io_card_down(sp);
3837                 err = -ENODEV;
3838                 goto hw_init_failed;
3839         }
3840
3841         netif_start_queue(dev);
3842         return 0;
3843
3844 hw_init_failed:
3845         if (sp->intr_type == MSI_X) {
3846                 if (sp->entries)
3847                         kfree(sp->entries);
3848                 if (sp->s2io_entries)
3849                         kfree(sp->s2io_entries);
3850         }
3851         return err;
3852 }
3853
3854 /**
3855  *  s2io_close -close entry point of the driver
3856  *  @dev : device pointer.
3857  *  Description:
3858  *  This is the stop entry point of the driver. It needs to undo exactly
3859  *  whatever was done by the open entry point,thus it's usually referred to
3860  *  as the close function.Among other things this function mainly stops the
3861  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3862  *  Return value:
3863  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3864  *  file on failure.
3865  */
3866
3867 static int s2io_close(struct net_device *dev)
3868 {
3869         nic_t *sp = dev->priv;
3870
3871         flush_scheduled_work();
3872         netif_stop_queue(dev);
3873         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3874         s2io_card_down(sp);
3875
3876         sp->device_close_flag = TRUE;   /* Device is shut down. */
3877         return 0;
3878 }
3879
3880 /**
3881  *  s2io_xmit - Tx entry point of te driver
3882  *  @skb : the socket buffer containing the Tx data.
3883  *  @dev : device pointer.
3884  *  Description :
3885  *  This function is the Tx entry point of the driver. S2IO NIC supports
3886  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3887  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3888  *  not be upadted.
3889  *  Return value:
3890  *  0 on success & 1 on failure.
3891  */
3892
3893 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3894 {
3895         nic_t *sp = dev->priv;
3896         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3897         register u64 val64;
3898         TxD_t *txdp;
3899         TxFIFO_element_t __iomem *tx_fifo;
3900         unsigned long flags;
3901         u16 vlan_tag = 0;
3902         int vlan_priority = 0;
3903         mac_info_t *mac_control;
3904         struct config_param *config;
3905         int offload_type;
3906
3907         mac_control = &sp->mac_control;
3908         config = &sp->config;
3909
3910         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3911         spin_lock_irqsave(&sp->tx_lock, flags);
3912         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3913                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3914                           dev->name);
3915                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3916                 dev_kfree_skb(skb);
3917                 return 0;
3918         }
3919
3920         queue = 0;
3921
3922         /* Get Fifo number to Transmit based on vlan priority */
3923         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3924                 vlan_tag = vlan_tx_tag_get(skb);
3925                 vlan_priority = vlan_tag >> 13;
3926                 queue = config->fifo_mapping[vlan_priority];
3927         }
3928
3929         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3930         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3931         txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3932                 list_virt_addr;
3933
3934         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3935         /* Avoid "put" pointer going beyond "get" pointer */
3936         if (txdp->Host_Control ||
3937                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3938                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3939                 netif_stop_queue(dev);
3940                 dev_kfree_skb(skb);
3941                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3942                 return 0;
3943         }
3944
3945         /* A buffer with no data will be dropped */
3946         if (!skb->len) {
3947                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3948                 dev_kfree_skb(skb);
3949                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3950                 return 0;
3951         }
3952
3953         offload_type = s2io_offload_type(skb);
3954         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3955                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3956                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3957         }
3958         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3959                 txdp->Control_2 |=
3960                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3961                      TXD_TX_CKO_UDP_EN);
3962         }
3963         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3964         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3965         txdp->Control_2 |= config->tx_intr_type;
3966
3967         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3968                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3969                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3970         }
3971
3972         frg_len = skb->len - skb->data_len;
3973         if (offload_type == SKB_GSO_UDP) {
3974                 int ufo_size;
3975
3976                 ufo_size = s2io_udp_mss(skb);
3977                 ufo_size &= ~7;
3978                 txdp->Control_1 |= TXD_UFO_EN;
3979                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3980                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3981 #ifdef __BIG_ENDIAN
3982                 sp->ufo_in_band_v[put_off] =
3983                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3984 #else
3985                 sp->ufo_in_band_v[put_off] =
3986                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3987 #endif
3988                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3989                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3990                                         sp->ufo_in_band_v,
3991                                         sizeof(u64), PCI_DMA_TODEVICE);
3992                 txdp++;
3993         }
3994
3995         txdp->Buffer_Pointer = pci_map_single
3996             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3997         txdp->Host_Control = (unsigned long) skb;
3998         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3999         if (offload_type == SKB_GSO_UDP)
4000                 txdp->Control_1 |= TXD_UFO_EN;
4001
4002         frg_cnt = skb_shinfo(skb)->nr_frags;
4003         /* For fragmented SKB. */
4004         for (i = 0; i < frg_cnt; i++) {
4005                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4006                 /* A '0' length fragment will be ignored */
4007                 if (!frag->size)
4008                         continue;
4009                 txdp++;
4010                 txdp->Buffer_Pointer = (u64) pci_map_page
4011                     (sp->pdev, frag->page, frag->page_offset,
4012                      frag->size, PCI_DMA_TODEVICE);
4013                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4014                 if (offload_type == SKB_GSO_UDP)
4015                         txdp->Control_1 |= TXD_UFO_EN;
4016         }
4017         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4018
4019         if (offload_type == SKB_GSO_UDP)
4020                 frg_cnt++; /* as Txd0 was used for inband header */
4021
4022         tx_fifo = mac_control->tx_FIFO_start[queue];
4023         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4024         writeq(val64, &tx_fifo->TxDL_Pointer);
4025
4026         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4027                  TX_FIFO_LAST_LIST);
4028         if (offload_type)
4029                 val64 |= TX_FIFO_SPECIAL_FUNC;
4030
4031         writeq(val64, &tx_fifo->List_Control);
4032
4033         mmiowb();
4034
4035         put_off++;
4036         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4037                 put_off = 0;
4038         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4039
4040         /* Avoid "put" pointer going beyond "get" pointer */
4041         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4042                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4043                 DBG_PRINT(TX_DBG,
4044                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4045                           put_off, get_off);
4046                 netif_stop_queue(dev);
4047         }
4048
4049         dev->trans_start = jiffies;
4050         spin_unlock_irqrestore(&sp->tx_lock, flags);
4051
4052         return 0;
4053 }
4054
4055 static void
4056 s2io_alarm_handle(unsigned long data)
4057 {
4058         nic_t *sp = (nic_t *)data;
4059
4060         alarm_intr_handler(sp);
4061         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4062 }
4063
4064 static int s2io_chk_rx_buffers(nic_t *sp, int rng_n)
4065 {
4066         int rxb_size, level;
4067
4068         if (!sp->lro) {
4069                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4070                 level = rx_buffer_level(sp, rxb_size, rng_n);
4071
4072                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4073                         int ret;
4074                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4075                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4076                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4077                                 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4078                                           __FUNCTION__);
4079                                 clear_bit(0, (&sp->tasklet_status));
4080                                 return -1;
4081                         }
4082                         clear_bit(0, (&sp->tasklet_status));
4083                 } else if (level == LOW)
4084                         tasklet_schedule(&sp->task);
4085
4086         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4087                         DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
4088                         DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4089         }
4090         return 0;
4091 }
4092
4093 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4094 {
4095         struct net_device *dev = (struct net_device *) dev_id;
4096         nic_t *sp = dev->priv;
4097         int i;
4098         mac_info_t *mac_control;
4099         struct config_param *config;
4100
4101         atomic_inc(&sp->isr_cnt);
4102         mac_control = &sp->mac_control;
4103         config = &sp->config;
4104         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4105
4106         /* If Intr is because of Rx Traffic */
4107         for (i = 0; i < config->rx_ring_num; i++)
4108                 rx_intr_handler(&mac_control->rings[i]);
4109
4110         /* If Intr is because of Tx Traffic */
4111         for (i = 0; i < config->tx_fifo_num; i++)
4112                 tx_intr_handler(&mac_control->fifos[i]);
4113
4114         /*
4115          * If the Rx buffer count is below the panic threshold then
4116          * reallocate the buffers from the interrupt handler itself,
4117          * else schedule a tasklet to reallocate the buffers.
4118          */
4119         for (i = 0; i < config->rx_ring_num; i++)
4120                 s2io_chk_rx_buffers(sp, i);
4121
4122         atomic_dec(&sp->isr_cnt);
4123         return IRQ_HANDLED;
4124 }
4125
4126 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4127 {
4128         ring_info_t *ring = (ring_info_t *)dev_id;
4129         nic_t *sp = ring->nic;
4130
4131         atomic_inc(&sp->isr_cnt);
4132
4133         rx_intr_handler(ring);
4134         s2io_chk_rx_buffers(sp, ring->ring_no);
4135
4136         atomic_dec(&sp->isr_cnt);
4137         return IRQ_HANDLED;
4138 }
4139
4140 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4141 {
4142         fifo_info_t *fifo = (fifo_info_t *)dev_id;
4143         nic_t *sp = fifo->nic;
4144
4145         atomic_inc(&sp->isr_cnt);
4146         tx_intr_handler(fifo);
4147         atomic_dec(&sp->isr_cnt);
4148         return IRQ_HANDLED;
4149 }
4150 static void s2io_txpic_intr_handle(nic_t *sp)
4151 {
4152         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4153         u64 val64;
4154
4155         val64 = readq(&bar0->pic_int_status);
4156         if (val64 & PIC_INT_GPIO) {
4157                 val64 = readq(&bar0->gpio_int_reg);
4158                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4159                     (val64 & GPIO_INT_REG_LINK_UP)) {
4160                         /*
4161                          * This is unstable state so clear both up/down
4162                          * interrupt and adapter to re-evaluate the link state.
4163                          */
4164                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4165                         val64 |= GPIO_INT_REG_LINK_UP;
4166                         writeq(val64, &bar0->gpio_int_reg);
4167                         val64 = readq(&bar0->gpio_int_mask);
4168                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4169                                    GPIO_INT_MASK_LINK_DOWN);
4170                         writeq(val64, &bar0->gpio_int_mask);
4171                 }
4172                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4173                         val64 = readq(&bar0->adapter_status);
4174                                 /* Enable Adapter */
4175                         val64 = readq(&bar0->adapter_control);
4176                         val64 |= ADAPTER_CNTL_EN;
4177                         writeq(val64, &bar0->adapter_control);
4178                         val64 |= ADAPTER_LED_ON;
4179                         writeq(val64, &bar0->adapter_control);
4180                         if (!sp->device_enabled_once)
4181                                 sp->device_enabled_once = 1;
4182
4183                         s2io_link(sp, LINK_UP);
4184                         /*
4185                          * unmask link down interrupt and mask link-up
4186                          * intr
4187                          */
4188                         val64 = readq(&bar0->gpio_int_mask);
4189                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4190                         val64 |= GPIO_INT_MASK_LINK_UP;
4191                         writeq(val64, &bar0->gpio_int_mask);
4192
4193                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4194                         val64 = readq(&bar0->adapter_status);
4195                         s2io_link(sp, LINK_DOWN);
4196                         /* Link is down so unmaks link up interrupt */
4197                         val64 = readq(&bar0->gpio_int_mask);
4198                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4199                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4200                         writeq(val64, &bar0->gpio_int_mask);
4201                 }
4202         }
4203         val64 = readq(&bar0->gpio_int_mask);
4204 }
4205
4206 /**
4207  *  s2io_isr - ISR handler of the device .
4208  *  @irq: the irq of the device.
4209  *  @dev_id: a void pointer to the dev structure of the NIC.
4210  *  Description:  This function is the ISR handler of the device. It
4211  *  identifies the reason for the interrupt and calls the relevant
4212  *  service routines. As a contongency measure, this ISR allocates the
4213  *  recv buffers, if their numbers are below the panic value which is
4214  *  presently set to 25% of the original number of rcv buffers allocated.
4215  *  Return value:
4216  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4217  *   IRQ_NONE: will be returned if interrupt is not from our device
4218  */
4219 static irqreturn_t s2io_isr(int irq, void *dev_id)
4220 {
4221         struct net_device *dev = (struct net_device *) dev_id;
4222         nic_t *sp = dev->priv;
4223         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4224         int i;
4225         u64 reason = 0;
4226         mac_info_t *mac_control;
4227         struct config_param *config;
4228
4229         atomic_inc(&sp->isr_cnt);
4230         mac_control = &sp->mac_control;
4231         config = &sp->config;
4232
4233         /*
4234          * Identify the cause for interrupt and call the appropriate
4235          * interrupt handler. Causes for the interrupt could be;
4236          * 1. Rx of packet.
4237          * 2. Tx complete.
4238          * 3. Link down.
4239          * 4. Error in any functional blocks of the NIC.
4240          */
4241         reason = readq(&bar0->general_int_status);
4242
4243         if (!reason) {
4244                 /* The interrupt was not raised by us. */
4245                 atomic_dec(&sp->isr_cnt);
4246                 return IRQ_NONE;
4247         }
4248         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4249                 /* Disable device and get out */
4250                 atomic_dec(&sp->isr_cnt);
4251                 return IRQ_NONE;
4252         }
4253
4254         if (napi) {
4255                 if (reason & GEN_INTR_RXTRAFFIC) {
4256                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4257                                 __netif_rx_schedule(dev);
4258                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4259                         }
4260                         else
4261                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4262                 }
4263         } else {
4264                 /*
4265                  * Rx handler is called by default, without checking for the
4266                  * cause of interrupt.
4267                  * rx_traffic_int reg is an R1 register, writing all 1's
4268                  * will ensure that the actual interrupt causing bit get's
4269                  * cleared and hence a read can be avoided.
4270                  */
4271                 if (reason & GEN_INTR_RXTRAFFIC)
4272                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4273
4274                 for (i = 0; i < config->rx_ring_num; i++) {
4275                         rx_intr_handler(&mac_control->rings[i]);
4276                 }
4277         }
4278
4279         /*
4280          * tx_traffic_int reg is an R1 register, writing all 1's
4281          * will ensure that the actual interrupt causing bit get's
4282          * cleared and hence a read can be avoided.
4283          */
4284         if (reason & GEN_INTR_TXTRAFFIC)
4285                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4286
4287         for (i = 0; i < config->tx_fifo_num; i++)
4288                 tx_intr_handler(&mac_control->fifos[i]);
4289
4290         if (reason & GEN_INTR_TXPIC)
4291                 s2io_txpic_intr_handle(sp);
4292         /*
4293          * If the Rx buffer count is below the panic threshold then
4294          * reallocate the buffers from the interrupt handler itself,
4295          * else schedule a tasklet to reallocate the buffers.
4296          */
4297         if (!napi) {
4298                 for (i = 0; i < config->rx_ring_num; i++)
4299                         s2io_chk_rx_buffers(sp, i);
4300         }
4301
4302         writeq(0, &bar0->general_int_mask);
4303         readl(&bar0->general_int_status);
4304
4305         atomic_dec(&sp->isr_cnt);
4306         return IRQ_HANDLED;
4307 }
4308
4309 /**
4310  * s2io_updt_stats -
4311  */
4312 static void s2io_updt_stats(nic_t *sp)
4313 {
4314         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4315         u64 val64;
4316         int cnt = 0;
4317
4318         if (atomic_read(&sp->card_state) == CARD_UP) {
4319                 /* Apprx 30us on a 133 MHz bus */
4320                 val64 = SET_UPDT_CLICKS(10) |
4321                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4322                 writeq(val64, &bar0->stat_cfg);
4323                 do {
4324                         udelay(100);
4325                         val64 = readq(&bar0->stat_cfg);
4326                         if (!(val64 & BIT(0)))
4327                                 break;
4328                         cnt++;
4329                         if (cnt == 5)
4330                                 break; /* Updt failed */
4331                 } while(1);
4332         } else {
4333                 memset(sp->mac_control.stats_info, 0, sizeof(StatInfo_t));
4334         }
4335 }
4336
4337 /**
4338  *  s2io_get_stats - Updates the device statistics structure.
4339  *  @dev : pointer to the device structure.
4340  *  Description:
4341  *  This function updates the device statistics structure in the s2io_nic
4342  *  structure and returns a pointer to the same.
4343  *  Return value:
4344  *  pointer to the updated net_device_stats structure.
4345  */
4346
4347 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4348 {
4349         nic_t *sp = dev->priv;
4350         mac_info_t *mac_control;
4351         struct config_param *config;
4352
4353
4354         mac_control = &sp->mac_control;
4355         config = &sp->config;
4356
4357         /* Configure Stats for immediate updt */
4358         s2io_updt_stats(sp);
4359
4360         sp->stats.tx_packets =
4361                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4362         sp->stats.tx_errors =
4363                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4364         sp->stats.rx_errors =
4365                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4366         sp->stats.multicast =
4367                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4368         sp->stats.rx_length_errors =
4369                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4370
4371         return (&sp->stats);
4372 }
4373
4374 /**
4375  *  s2io_set_multicast - entry point for multicast address enable/disable.
4376  *  @dev : pointer to the device structure
4377  *  Description:
4378  *  This function is a driver entry point which gets called by the kernel
4379  *  whenever multicast addresses must be enabled/disabled. This also gets
4380  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4381  *  determine, if multicast address must be enabled or if promiscuous mode
4382  *  is to be disabled etc.
4383  *  Return value:
4384  *  void.
4385  */
4386
4387 static void s2io_set_multicast(struct net_device *dev)
4388 {
4389         int i, j, prev_cnt;
4390         struct dev_mc_list *mclist;
4391         nic_t *sp = dev->priv;
4392         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4393         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4394             0xfeffffffffffULL;
4395         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4396         void __iomem *add;
4397
4398         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4399                 /*  Enable all Multicast addresses */
4400                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4401                        &bar0->rmac_addr_data0_mem);
4402                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4403                        &bar0->rmac_addr_data1_mem);
4404                 val64 = RMAC_ADDR_CMD_MEM_WE |
4405                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4406                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4407                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4408                 /* Wait till command completes */
4409                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4410                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4411
4412                 sp->m_cast_flg = 1;
4413                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4414         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4415                 /*  Disable all Multicast addresses */
4416                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4417                        &bar0->rmac_addr_data0_mem);
4418                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4419                        &bar0->rmac_addr_data1_mem);
4420                 val64 = RMAC_ADDR_CMD_MEM_WE |
4421                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4422                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4423                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4424                 /* Wait till command completes */
4425                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4426                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4427
4428                 sp->m_cast_flg = 0;
4429                 sp->all_multi_pos = 0;
4430         }
4431
4432         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4433                 /*  Put the NIC into promiscuous mode */
4434                 add = &bar0->mac_cfg;
4435                 val64 = readq(&bar0->mac_cfg);
4436                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4437
4438                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4439                 writel((u32) val64, add);
4440                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4441                 writel((u32) (val64 >> 32), (add + 4));
4442
4443                 val64 = readq(&bar0->mac_cfg);
4444                 sp->promisc_flg = 1;
4445                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4446                           dev->name);
4447         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4448                 /*  Remove the NIC from promiscuous mode */
4449                 add = &bar0->mac_cfg;
4450                 val64 = readq(&bar0->mac_cfg);
4451                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4452
4453                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4454                 writel((u32) val64, add);
4455                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4456                 writel((u32) (val64 >> 32), (add + 4));
4457
4458                 val64 = readq(&bar0->mac_cfg);
4459                 sp->promisc_flg = 0;
4460                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4461                           dev->name);
4462         }
4463
4464         /*  Update individual M_CAST address list */
4465         if ((!sp->m_cast_flg) && dev->mc_count) {
4466                 if (dev->mc_count >
4467                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4468                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4469                                   dev->name);
4470                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4471                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4472                         return;
4473                 }
4474
4475                 prev_cnt = sp->mc_addr_count;
4476                 sp->mc_addr_count = dev->mc_count;
4477
4478                 /* Clear out the previous list of Mc in the H/W. */
4479                 for (i = 0; i < prev_cnt; i++) {
4480                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4481                                &bar0->rmac_addr_data0_mem);
4482                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4483                                 &bar0->rmac_addr_data1_mem);
4484                         val64 = RMAC_ADDR_CMD_MEM_WE |
4485                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4486                             RMAC_ADDR_CMD_MEM_OFFSET
4487                             (MAC_MC_ADDR_START_OFFSET + i);
4488                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4489
4490                         /* Wait for command completes */
4491                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4492                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4493                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4494                                           dev->name);
4495                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4496                                 return;
4497                         }
4498                 }
4499
4500                 /* Create the new Rx filter list and update the same in H/W. */
4501                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4502                      i++, mclist = mclist->next) {
4503                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4504                                ETH_ALEN);
4505                         mac_addr = 0;
4506                         for (j = 0; j < ETH_ALEN; j++) {
4507                                 mac_addr |= mclist->dmi_addr[j];
4508                                 mac_addr <<= 8;
4509                         }
4510                         mac_addr >>= 8;
4511                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4512                                &bar0->rmac_addr_data0_mem);
4513                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4514                                 &bar0->rmac_addr_data1_mem);
4515                         val64 = RMAC_ADDR_CMD_MEM_WE |
4516                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4517                             RMAC_ADDR_CMD_MEM_OFFSET
4518                             (i + MAC_MC_ADDR_START_OFFSET);
4519                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4520
4521                         /* Wait for command completes */
4522                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4523                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4524                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4525                                           dev->name);
4526                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4527                                 return;
4528                         }
4529                 }
4530         }
4531 }
4532
4533 /**
4534  *  s2io_set_mac_addr - Programs the Xframe mac address
4535  *  @dev : pointer to the device structure.
4536  *  @addr: a uchar pointer to the new mac address which is to be set.
4537  *  Description : This procedure will program the Xframe to receive
4538  *  frames with new Mac Address
4539  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4540  *  as defined in errno.h file on failure.
4541  */
4542
4543 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4544 {
4545         nic_t *sp = dev->priv;
4546         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4547         register u64 val64, mac_addr = 0;
4548         int i;
4549
4550         /*
4551          * Set the new MAC address as the new unicast filter and reflect this
4552          * change on the device address registered with the OS. It will be
4553          * at offset 0.
4554          */
4555         for (i = 0; i < ETH_ALEN; i++) {
4556                 mac_addr <<= 8;
4557                 mac_addr |= addr[i];
4558         }
4559
4560         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4561                &bar0->rmac_addr_data0_mem);
4562
4563         val64 =
4564             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4565             RMAC_ADDR_CMD_MEM_OFFSET(0);
4566         writeq(val64, &bar0->rmac_addr_cmd_mem);
4567         /* Wait till command completes */
4568         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4569                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4570                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4571                 return FAILURE;
4572         }
4573
4574         return SUCCESS;
4575 }
4576
4577 /**
4578  * s2io_ethtool_sset - Sets different link parameters.
4579  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4580  * @info: pointer to the structure with parameters given by ethtool to set
4581  * link information.
4582  * Description:
4583  * The function sets different link parameters provided by the user onto
4584  * the NIC.
4585  * Return value:
4586  * 0 on success.
4587 */
4588
4589 static int s2io_ethtool_sset(struct net_device *dev,
4590                              struct ethtool_cmd *info)
4591 {
4592         nic_t *sp = dev->priv;
4593         if ((info->autoneg == AUTONEG_ENABLE) ||
4594             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4595                 return -EINVAL;
4596         else {
4597                 s2io_close(sp->dev);
4598                 s2io_open(sp->dev);
4599         }
4600
4601         return 0;
4602 }
4603
4604 /**
4605  * s2io_ethtol_gset - Return link specific information.
4606  * @sp : private member of the device structure, pointer to the
4607  *      s2io_nic structure.
4608  * @info : pointer to the structure with parameters given by ethtool
4609  * to return link information.
4610  * Description:
4611  * Returns link specific information like speed, duplex etc.. to ethtool.
4612  * Return value :
4613  * return 0 on success.
4614  */
4615
4616 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4617 {
4618         nic_t *sp = dev->priv;
4619         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4620         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4621         info->port = PORT_FIBRE;
4622         /* info->transceiver?? TODO */
4623
4624         if (netif_carrier_ok(sp->dev)) {
4625                 info->speed = 10000;
4626                 info->duplex = DUPLEX_FULL;
4627         } else {
4628                 info->speed = -1;
4629                 info->duplex = -1;
4630         }
4631
4632         info->autoneg = AUTONEG_DISABLE;
4633         return 0;
4634 }
4635
4636 /**
4637  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4638  * @sp : private member of the device structure, which is a pointer to the
4639  * s2io_nic structure.
4640  * @info : pointer to the structure with parameters given by ethtool to
4641  * return driver information.
4642  * Description:
4643  * Returns driver specefic information like name, version etc.. to ethtool.
4644  * Return value:
4645  *  void
4646  */
4647
4648 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4649                                   struct ethtool_drvinfo *info)
4650 {
4651         nic_t *sp = dev->priv;
4652
4653         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4654         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4655         strncpy(info->fw_version, "", sizeof(info->fw_version));
4656         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4657         info->regdump_len = XENA_REG_SPACE;
4658         info->eedump_len = XENA_EEPROM_SPACE;
4659         info->testinfo_len = S2IO_TEST_LEN;
4660         info->n_stats = S2IO_STAT_LEN;
4661 }
4662
4663 /**
4664  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4665  *  @sp: private member of the device structure, which is a pointer to the
4666  *  s2io_nic structure.
4667  *  @regs : pointer to the structure with parameters given by ethtool for
4668  *  dumping the registers.
4669  *  @reg_space: The input argumnet into which all the registers are dumped.
4670  *  Description:
4671  *  Dumps the entire register space of xFrame NIC into the user given
4672  *  buffer area.
4673  * Return value :
4674  * void .
4675 */
4676
4677 static void s2io_ethtool_gregs(struct net_device *dev,
4678                                struct ethtool_regs *regs, void *space)
4679 {
4680         int i;
4681         u64 reg;
4682         u8 *reg_space = (u8 *) space;
4683         nic_t *sp = dev->priv;
4684
4685         regs->len = XENA_REG_SPACE;
4686         regs->version = sp->pdev->subsystem_device;
4687
4688         for (i = 0; i < regs->len; i += 8) {
4689                 reg = readq(sp->bar0 + i);
4690                 memcpy((reg_space + i), &reg, 8);
4691         }
4692 }
4693
4694 /**
4695  *  s2io_phy_id  - timer function that alternates adapter LED.
4696  *  @data : address of the private member of the device structure, which
4697  *  is a pointer to the s2io_nic structure, provided as an u32.
4698  * Description: This is actually the timer function that alternates the
4699  * adapter LED bit of the adapter control bit to set/reset every time on
4700  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4701  *  once every second.
4702 */
4703 static void s2io_phy_id(unsigned long data)
4704 {
4705         nic_t *sp = (nic_t *) data;
4706         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4707         u64 val64 = 0;
4708         u16 subid;
4709
4710         subid = sp->pdev->subsystem_device;
4711         if ((sp->device_type == XFRAME_II_DEVICE) ||
4712                    ((subid & 0xFF) >= 0x07)) {
4713                 val64 = readq(&bar0->gpio_control);
4714                 val64 ^= GPIO_CTRL_GPIO_0;
4715                 writeq(val64, &bar0->gpio_control);
4716         } else {
4717                 val64 = readq(&bar0->adapter_control);
4718                 val64 ^= ADAPTER_LED_ON;
4719                 writeq(val64, &bar0->adapter_control);
4720         }
4721
4722         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4723 }
4724
4725 /**
4726  * s2io_ethtool_idnic - To physically identify the nic on the system.
4727  * @sp : private member of the device structure, which is a pointer to the
4728  * s2io_nic structure.
4729  * @id : pointer to the structure with identification parameters given by
4730  * ethtool.
4731  * Description: Used to physically identify the NIC on the system.
4732  * The Link LED will blink for a time specified by the user for
4733  * identification.
4734  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4735  * identification is possible only if it's link is up.
4736  * Return value:
4737  * int , returns 0 on success
4738  */
4739
4740 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4741 {
4742         u64 val64 = 0, last_gpio_ctrl_val;
4743         nic_t *sp = dev->priv;
4744         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4745         u16 subid;
4746
4747         subid = sp->pdev->subsystem_device;
4748         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4749         if ((sp->device_type == XFRAME_I_DEVICE) &&
4750                 ((subid & 0xFF) < 0x07)) {
4751                 val64 = readq(&bar0->adapter_control);
4752                 if (!(val64 & ADAPTER_CNTL_EN)) {
4753                         printk(KERN_ERR
4754                                "Adapter Link down, cannot blink LED\n");
4755                         return -EFAULT;
4756                 }
4757         }
4758         if (sp->id_timer.function == NULL) {
4759                 init_timer(&sp->id_timer);
4760                 sp->id_timer.function = s2io_phy_id;
4761                 sp->id_timer.data = (unsigned long) sp;
4762         }
4763         mod_timer(&sp->id_timer, jiffies);
4764         if (data)
4765                 msleep_interruptible(data * HZ);
4766         else
4767                 msleep_interruptible(MAX_FLICKER_TIME);
4768         del_timer_sync(&sp->id_timer);
4769
4770         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4771                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4772                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4773         }
4774
4775         return 0;
4776 }
4777
4778 /**
4779  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4780  * @sp : private member of the device structure, which is a pointer to the
4781  *      s2io_nic structure.
4782  * @ep : pointer to the structure with pause parameters given by ethtool.
4783  * Description:
4784  * Returns the Pause frame generation and reception capability of the NIC.
4785  * Return value:
4786  *  void
4787  */
4788 static void s2io_ethtool_getpause_data(struct net_device *dev,
4789                                        struct ethtool_pauseparam *ep)
4790 {
4791         u64 val64;
4792         nic_t *sp = dev->priv;
4793         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4794
4795         val64 = readq(&bar0->rmac_pause_cfg);
4796         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4797                 ep->tx_pause = TRUE;
4798         if (val64 & RMAC_PAUSE_RX_ENABLE)
4799                 ep->rx_pause = TRUE;
4800         ep->autoneg = FALSE;
4801 }
4802
4803 /**
4804  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4805  * @sp : private member of the device structure, which is a pointer to the
4806  *      s2io_nic structure.
4807  * @ep : pointer to the structure with pause parameters given by ethtool.
4808  * Description:
4809  * It can be used to set or reset Pause frame generation or reception
4810  * support of the NIC.
4811  * Return value:
4812  * int, returns 0 on Success
4813  */
4814
4815 static int s2io_ethtool_setpause_data(struct net_device *dev,
4816                                struct ethtool_pauseparam *ep)
4817 {
4818         u64 val64;
4819         nic_t *sp = dev->priv;
4820         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4821
4822         val64 = readq(&bar0->rmac_pause_cfg);
4823         if (ep->tx_pause)
4824                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4825         else
4826                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4827         if (ep->rx_pause)
4828                 val64 |= RMAC_PAUSE_RX_ENABLE;
4829         else
4830                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4831         writeq(val64, &bar0->rmac_pause_cfg);
4832         return 0;
4833 }
4834
4835 /**
4836  * read_eeprom - reads 4 bytes of data from user given offset.
4837  * @sp : private member of the device structure, which is a pointer to the
4838  *      s2io_nic structure.
4839  * @off : offset at which the data must be written
4840  * @data : Its an output parameter where the data read at the given
4841  *      offset is stored.
4842  * Description:
4843  * Will read 4 bytes of data from the user given offset and return the
4844  * read data.
4845  * NOTE: Will allow to read only part of the EEPROM visible through the
4846  *   I2C bus.
4847  * Return value:
4848  *  -1 on failure and 0 on success.
4849  */
4850
4851 #define S2IO_DEV_ID             5
4852 static int read_eeprom(nic_t * sp, int off, u64 * data)
4853 {
4854         int ret = -1;
4855         u32 exit_cnt = 0;
4856         u64 val64;
4857         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4858
4859         if (sp->device_type == XFRAME_I_DEVICE) {
4860                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4861                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4862                     I2C_CONTROL_CNTL_START;
4863                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4864
4865                 while (exit_cnt < 5) {
4866                         val64 = readq(&bar0->i2c_control);
4867                         if (I2C_CONTROL_CNTL_END(val64)) {
4868                                 *data = I2C_CONTROL_GET_DATA(val64);
4869                                 ret = 0;
4870                                 break;
4871                         }
4872                         msleep(50);
4873                         exit_cnt++;
4874                 }
4875         }
4876
4877         if (sp->device_type == XFRAME_II_DEVICE) {
4878                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4879                         SPI_CONTROL_BYTECNT(0x3) |
4880                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4881                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4882                 val64 |= SPI_CONTROL_REQ;
4883                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4884                 while (exit_cnt < 5) {
4885                         val64 = readq(&bar0->spi_control);
4886                         if (val64 & SPI_CONTROL_NACK) {
4887                                 ret = 1;
4888                                 break;
4889                         } else if (val64 & SPI_CONTROL_DONE) {
4890                                 *data = readq(&bar0->spi_data);
4891                                 *data &= 0xffffff;
4892                                 ret = 0;
4893                                 break;
4894                         }
4895                         msleep(50);
4896                         exit_cnt++;
4897                 }
4898         }
4899         return ret;
4900 }
4901
4902 /**
4903  *  write_eeprom - actually writes the relevant part of the data value.
4904  *  @sp : private member of the device structure, which is a pointer to the
4905  *       s2io_nic structure.
4906  *  @off : offset at which the data must be written
4907  *  @data : The data that is to be written
4908  *  @cnt : Number of bytes of the data that are actually to be written into
4909  *  the Eeprom. (max of 3)
4910  * Description:
4911  *  Actually writes the relevant part of the data value into the Eeprom
4912  *  through the I2C bus.
4913  * Return value:
4914  *  0 on success, -1 on failure.
4915  */
4916
4917 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4918 {
4919         int exit_cnt = 0, ret = -1;
4920         u64 val64;
4921         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4922
4923         if (sp->device_type == XFRAME_I_DEVICE) {
4924                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4925                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4926                     I2C_CONTROL_CNTL_START;
4927                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4928
4929                 while (exit_cnt < 5) {
4930                         val64 = readq(&bar0->i2c_control);
4931                         if (I2C_CONTROL_CNTL_END(val64)) {
4932                                 if (!(val64 & I2C_CONTROL_NACK))
4933                                         ret = 0;
4934                                 break;
4935                         }
4936                         msleep(50);
4937                         exit_cnt++;
4938                 }
4939         }
4940
4941         if (sp->device_type == XFRAME_II_DEVICE) {
4942                 int write_cnt = (cnt == 8) ? 0 : cnt;
4943                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4944
4945                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4946                         SPI_CONTROL_BYTECNT(write_cnt) |
4947                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4948                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4949                 val64 |= SPI_CONTROL_REQ;
4950                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4951                 while (exit_cnt < 5) {
4952                         val64 = readq(&bar0->spi_control);
4953                         if (val64 & SPI_CONTROL_NACK) {
4954                                 ret = 1;
4955                                 break;
4956                         } else if (val64 & SPI_CONTROL_DONE) {
4957                                 ret = 0;
4958                                 break;
4959                         }
4960                         msleep(50);
4961                         exit_cnt++;
4962                 }
4963         }
4964         return ret;
4965 }
4966 static void s2io_vpd_read(nic_t *nic)
4967 {
4968         u8 *vpd_data;
4969         u8 data;
4970         int i=0, cnt, fail = 0;
4971         int vpd_addr = 0x80;
4972
4973         if (nic->device_type == XFRAME_II_DEVICE) {
4974                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4975                 vpd_addr = 0x80;
4976         }
4977         else {
4978                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4979                 vpd_addr = 0x50;
4980         }
4981         strcpy(nic->serial_num, "NOT AVAILABLE");
4982
4983         vpd_data = kmalloc(256, GFP_KERNEL);
4984         if (!vpd_data)
4985                 return;
4986
4987         for (i = 0; i < 256; i +=4 ) {
4988                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4989                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
4990                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4991                 for (cnt = 0; cnt <5; cnt++) {
4992                         msleep(2);
4993                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4994                         if (data == 0x80)
4995                                 break;
4996                 }
4997                 if (cnt >= 5) {
4998                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4999                         fail = 1;
5000                         break;
5001                 }
5002                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5003                                       (u32 *)&vpd_data[i]);
5004         }
5005
5006         if(!fail) {
5007                 /* read serial number of adapter */
5008                 for (cnt = 0; cnt < 256; cnt++) {
5009                 if ((vpd_data[cnt] == 'S') &&
5010                         (vpd_data[cnt+1] == 'N') &&
5011                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5012                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5013                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5014                                         vpd_data[cnt+2]);
5015                                 break;
5016                         }
5017                 }
5018         }
5019
5020         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5021                 memset(nic->product_name, 0, vpd_data[1]);
5022                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5023         }
5024         kfree(vpd_data);
5025 }
5026
5027 /**
5028  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5029  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5030  *  @eeprom : pointer to the user level structure provided by ethtool,
5031  *  containing all relevant information.
5032  *  @data_buf : user defined value to be written into Eeprom.
5033  *  Description: Reads the values stored in the Eeprom at given offset
5034  *  for a given length. Stores these values int the input argument data
5035  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5036  *  Return value:
5037  *  int  0 on success
5038  */
5039
5040 static int s2io_ethtool_geeprom(struct net_device *dev,
5041                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5042 {
5043         u32 i, valid;
5044         u64 data;
5045         nic_t *sp = dev->priv;
5046
5047         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5048
5049         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5050                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5051
5052         for (i = 0; i < eeprom->len; i += 4) {
5053                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5054                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5055                         return -EFAULT;
5056                 }
5057                 valid = INV(data);
5058                 memcpy((data_buf + i), &valid, 4);
5059         }
5060         return 0;
5061 }
5062
5063 /**
5064  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5065  *  @sp : private member of the device structure, which is a pointer to the
5066  *  s2io_nic structure.
5067  *  @eeprom : pointer to the user level structure provided by ethtool,
5068  *  containing all relevant information.
5069  *  @data_buf ; user defined value to be written into Eeprom.
5070  *  Description:
5071  *  Tries to write the user provided value in the Eeprom, at the offset
5072  *  given by the user.
5073  *  Return value:
5074  *  0 on success, -EFAULT on failure.
5075  */
5076
5077 static int s2io_ethtool_seeprom(struct net_device *dev,
5078                                 struct ethtool_eeprom *eeprom,
5079                                 u8 * data_buf)
5080 {
5081         int len = eeprom->len, cnt = 0;
5082         u64 valid = 0, data;
5083         nic_t *sp = dev->priv;
5084
5085         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5086                 DBG_PRINT(ERR_DBG,
5087                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5088                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5089                           eeprom->magic);
5090                 return -EFAULT;
5091         }
5092
5093         while (len) {
5094                 data = (u32) data_buf[cnt] & 0x000000FF;
5095                 if (data) {
5096                         valid = (u32) (data << 24);
5097                 } else
5098                         valid = data;
5099
5100                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5101                         DBG_PRINT(ERR_DBG,
5102                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5103                         DBG_PRINT(ERR_DBG,
5104                                   "write into the specified offset\n");
5105                         return -EFAULT;
5106                 }
5107                 cnt++;
5108                 len--;
5109         }
5110
5111         return 0;
5112 }
5113
5114 /**
5115  * s2io_register_test - reads and writes into all clock domains.
5116  * @sp : private member of the device structure, which is a pointer to the
5117  * s2io_nic structure.
5118  * @data : variable that returns the result of each of the test conducted b
5119  * by the driver.
5120  * Description:
5121  * Read and write into all clock domains. The NIC has 3 clock domains,
5122  * see that registers in all the three regions are accessible.
5123  * Return value:
5124  * 0 on success.
5125  */
5126
5127 static int s2io_register_test(nic_t * sp, uint64_t * data)
5128 {
5129         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5130         u64 val64 = 0, exp_val;
5131         int fail = 0;
5132
5133         val64 = readq(&bar0->pif_rd_swapper_fb);
5134         if (val64 != 0x123456789abcdefULL) {
5135                 fail = 1;
5136                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5137         }
5138
5139         val64 = readq(&bar0->rmac_pause_cfg);
5140         if (val64 != 0xc000ffff00000000ULL) {
5141                 fail = 1;
5142                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5143         }
5144
5145         val64 = readq(&bar0->rx_queue_cfg);
5146         if (sp->device_type == XFRAME_II_DEVICE)
5147                 exp_val = 0x0404040404040404ULL;
5148         else
5149                 exp_val = 0x0808080808080808ULL;
5150         if (val64 != exp_val) {
5151                 fail = 1;
5152                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5153         }
5154
5155         val64 = readq(&bar0->xgxs_efifo_cfg);
5156         if (val64 != 0x000000001923141EULL) {
5157                 fail = 1;
5158                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5159         }
5160
5161         val64 = 0x5A5A5A5A5A5A5A5AULL;
5162         writeq(val64, &bar0->xmsi_data);
5163         val64 = readq(&bar0->xmsi_data);
5164         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5165                 fail = 1;
5166                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5167         }
5168
5169         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5170         writeq(val64, &bar0->xmsi_data);
5171         val64 = readq(&bar0->xmsi_data);
5172         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5173                 fail = 1;
5174                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5175         }
5176
5177         *data = fail;
5178         return fail;
5179 }
5180
5181 /**
5182  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5183  * @sp : private member of the device structure, which is a pointer to the
5184  * s2io_nic structure.
5185  * @data:variable that returns the result of each of the test conducted by
5186  * the driver.
5187  * Description:
5188  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5189  * register.
5190  * Return value:
5191  * 0 on success.
5192  */
5193
5194 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5195 {
5196         int fail = 0;
5197         u64 ret_data, org_4F0, org_7F0;
5198         u8 saved_4F0 = 0, saved_7F0 = 0;
5199         struct net_device *dev = sp->dev;
5200
5201         /* Test Write Error at offset 0 */
5202         /* Note that SPI interface allows write access to all areas
5203          * of EEPROM. Hence doing all negative testing only for Xframe I.
5204          */
5205         if (sp->device_type == XFRAME_I_DEVICE)
5206                 if (!write_eeprom(sp, 0, 0, 3))
5207                         fail = 1;
5208
5209         /* Save current values at offsets 0x4F0 and 0x7F0 */
5210         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5211                 saved_4F0 = 1;
5212         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5213                 saved_7F0 = 1;
5214
5215         /* Test Write at offset 4f0 */
5216         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5217                 fail = 1;
5218         if (read_eeprom(sp, 0x4F0, &ret_data))
5219                 fail = 1;
5220
5221         if (ret_data != 0x012345) {
5222                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5223                         "Data written %llx Data read %llx\n",
5224                         dev->name, (unsigned long long)0x12345,
5225                         (unsigned long long)ret_data);
5226                 fail = 1;
5227         }
5228
5229         /* Reset the EEPROM data go FFFF */
5230         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5231
5232         /* Test Write Request Error at offset 0x7c */
5233         if (sp->device_type == XFRAME_I_DEVICE)
5234                 if (!write_eeprom(sp, 0x07C, 0, 3))
5235                         fail = 1;
5236
5237         /* Test Write Request at offset 0x7f0 */
5238         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5239                 fail = 1;
5240         if (read_eeprom(sp, 0x7F0, &ret_data))
5241                 fail = 1;
5242
5243         if (ret_data != 0x012345) {
5244                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5245                         "Data written %llx Data read %llx\n",
5246                         dev->name, (unsigned long long)0x12345,
5247                         (unsigned long long)ret_data);
5248                 fail = 1;
5249         }
5250
5251         /* Reset the EEPROM data go FFFF */
5252         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5253
5254         if (sp->device_type == XFRAME_I_DEVICE) {
5255                 /* Test Write Error at offset 0x80 */
5256                 if (!write_eeprom(sp, 0x080, 0, 3))
5257                         fail = 1;
5258
5259                 /* Test Write Error at offset 0xfc */
5260                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5261                         fail = 1;
5262
5263                 /* Test Write Error at offset 0x100 */
5264                 if (!write_eeprom(sp, 0x100, 0, 3))
5265                         fail = 1;
5266
5267                 /* Test Write Error at offset 4ec */
5268                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5269                         fail = 1;
5270         }
5271
5272         /* Restore values at offsets 0x4F0 and 0x7F0 */
5273         if (saved_4F0)
5274                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5275         if (saved_7F0)
5276                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5277
5278         *data = fail;
5279         return fail;
5280 }
5281
5282 /**
5283  * s2io_bist_test - invokes the MemBist test of the card .
5284  * @sp : private member of the device structure, which is a pointer to the
5285  * s2io_nic structure.
5286  * @data:variable that returns the result of each of the test conducted by
5287  * the driver.
5288  * Description:
5289  * This invokes the MemBist test of the card. We give around
5290  * 2 secs time for the Test to complete. If it's still not complete
5291  * within this peiod, we consider that the test failed.
5292  * Return value:
5293  * 0 on success and -1 on failure.
5294  */
5295
5296 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5297 {
5298         u8 bist = 0;
5299         int cnt = 0, ret = -1;
5300
5301         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5302         bist |= PCI_BIST_START;
5303         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5304
5305         while (cnt < 20) {
5306                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5307                 if (!(bist & PCI_BIST_START)) {
5308                         *data = (bist & PCI_BIST_CODE_MASK);
5309                         ret = 0;
5310                         break;
5311                 }
5312                 msleep(100);
5313                 cnt++;
5314         }
5315
5316         return ret;
5317 }
5318
5319 /**
5320  * s2io-link_test - verifies the link state of the nic
5321  * @sp ; private member of the device structure, which is a pointer to the
5322  * s2io_nic structure.
5323  * @data: variable that returns the result of each of the test conducted by
5324  * the driver.
5325  * Description:
5326  * The function verifies the link state of the NIC and updates the input
5327  * argument 'data' appropriately.
5328  * Return value:
5329  * 0 on success.
5330  */
5331
5332 static int s2io_link_test(nic_t * sp, uint64_t * data)
5333 {
5334         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5335         u64 val64;
5336
5337         val64 = readq(&bar0->adapter_status);
5338         if(!(LINK_IS_UP(val64)))
5339                 *data = 1;
5340         else
5341                 *data = 0;
5342
5343         return *data;
5344 }
5345
5346 /**
5347  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5348  * @sp - private member of the device structure, which is a pointer to the
5349  * s2io_nic structure.
5350  * @data - variable that returns the result of each of the test
5351  * conducted by the driver.
5352  * Description:
5353  *  This is one of the offline test that tests the read and write
5354  *  access to the RldRam chip on the NIC.
5355  * Return value:
5356  *  0 on success.
5357  */
5358
5359 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5360 {
5361         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5362         u64 val64;
5363         int cnt, iteration = 0, test_fail = 0;
5364
5365         val64 = readq(&bar0->adapter_control);
5366         val64 &= ~ADAPTER_ECC_EN;
5367         writeq(val64, &bar0->adapter_control);
5368
5369         val64 = readq(&bar0->mc_rldram_test_ctrl);
5370         val64 |= MC_RLDRAM_TEST_MODE;
5371         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5372
5373         val64 = readq(&bar0->mc_rldram_mrs);
5374         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5375         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5376
5377         val64 |= MC_RLDRAM_MRS_ENABLE;
5378         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5379
5380         while (iteration < 2) {
5381                 val64 = 0x55555555aaaa0000ULL;
5382                 if (iteration == 1) {
5383                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5384                 }
5385                 writeq(val64, &bar0->mc_rldram_test_d0);
5386
5387                 val64 = 0xaaaa5a5555550000ULL;
5388                 if (iteration == 1) {
5389                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5390                 }
5391                 writeq(val64, &bar0->mc_rldram_test_d1);
5392
5393                 val64 = 0x55aaaaaaaa5a0000ULL;
5394                 if (iteration == 1) {
5395                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5396                 }
5397                 writeq(val64, &bar0->mc_rldram_test_d2);
5398
5399                 val64 = (u64) (0x0000003ffffe0100ULL);
5400                 writeq(val64, &bar0->mc_rldram_test_add);
5401
5402                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5403                         MC_RLDRAM_TEST_GO;
5404                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5405
5406                 for (cnt = 0; cnt < 5; cnt++) {
5407                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5408                         if (val64 & MC_RLDRAM_TEST_DONE)
5409                                 break;
5410                         msleep(200);
5411                 }
5412
5413                 if (cnt == 5)
5414                         break;
5415
5416                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5417                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5418
5419                 for (cnt = 0; cnt < 5; cnt++) {
5420                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5421                         if (val64 & MC_RLDRAM_TEST_DONE)
5422                                 break;
5423                         msleep(500);
5424                 }
5425
5426                 if (cnt == 5)
5427                         break;
5428
5429                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5430                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5431                         test_fail = 1;
5432
5433                 iteration++;
5434         }
5435
5436         *data = test_fail;
5437
5438         /* Bring the adapter out of test mode */
5439         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5440
5441         return test_fail;
5442 }
5443
5444 /**
5445  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5446  *  @sp : private member of the device structure, which is a pointer to the
5447  *  s2io_nic structure.
5448  *  @ethtest : pointer to a ethtool command specific structure that will be
5449  *  returned to the user.
5450  *  @data : variable that returns the result of each of the test
5451  * conducted by the driver.
5452  * Description:
5453  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5454  *  the health of the card.
5455  * Return value:
5456  *  void
5457  */
5458
5459 static void s2io_ethtool_test(struct net_device *dev,
5460                               struct ethtool_test *ethtest,
5461                               uint64_t * data)
5462 {
5463         nic_t *sp = dev->priv;
5464         int orig_state = netif_running(sp->dev);
5465
5466         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5467                 /* Offline Tests. */
5468                 if (orig_state)
5469                         s2io_close(sp->dev);
5470
5471                 if (s2io_register_test(sp, &data[0]))
5472                         ethtest->flags |= ETH_TEST_FL_FAILED;
5473
5474                 s2io_reset(sp);
5475
5476                 if (s2io_rldram_test(sp, &data[3]))
5477                         ethtest->flags |= ETH_TEST_FL_FAILED;
5478
5479                 s2io_reset(sp);
5480
5481                 if (s2io_eeprom_test(sp, &data[1]))
5482                         ethtest->flags |= ETH_TEST_FL_FAILED;
5483
5484                 if (s2io_bist_test(sp, &data[4]))
5485                         ethtest->flags |= ETH_TEST_FL_FAILED;
5486
5487                 if (orig_state)
5488                         s2io_open(sp->dev);
5489
5490                 data[2] = 0;
5491         } else {
5492                 /* Online Tests. */
5493                 if (!orig_state) {
5494                         DBG_PRINT(ERR_DBG,
5495                                   "%s: is not up, cannot run test\n",
5496                                   dev->name);
5497                         data[0] = -1;
5498                         data[1] = -1;
5499                         data[2] = -1;
5500                         data[3] = -1;
5501                         data[4] = -1;
5502                 }
5503
5504                 if (s2io_link_test(sp, &data[2]))
5505                         ethtest->flags |= ETH_TEST_FL_FAILED;
5506
5507                 data[0] = 0;
5508                 data[1] = 0;
5509                 data[3] = 0;
5510                 data[4] = 0;
5511         }
5512 }
5513
5514 static void s2io_get_ethtool_stats(struct net_device *dev,
5515                                    struct ethtool_stats *estats,
5516                                    u64 * tmp_stats)
5517 {
5518         int i = 0;
5519         nic_t *sp = dev->priv;
5520         StatInfo_t *stat_info = sp->mac_control.stats_info;
5521
5522         s2io_updt_stats(sp);
5523         tmp_stats[i++] =
5524                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5525                 le32_to_cpu(stat_info->tmac_frms);
5526         tmp_stats[i++] =
5527                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5528                 le32_to_cpu(stat_info->tmac_data_octets);
5529         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5530         tmp_stats[i++] =
5531                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5532                 le32_to_cpu(stat_info->tmac_mcst_frms);
5533         tmp_stats[i++] =
5534                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5535                 le32_to_cpu(stat_info->tmac_bcst_frms);
5536         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5537         tmp_stats[i++] =
5538                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5539                 le32_to_cpu(stat_info->tmac_ttl_octets);
5540         tmp_stats[i++] =
5541                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5542                 le32_to_cpu(stat_info->tmac_ucst_frms);
5543         tmp_stats[i++] =
5544                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5545                 le32_to_cpu(stat_info->tmac_nucst_frms);
5546         tmp_stats[i++] =
5547                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5548                 le32_to_cpu(stat_info->tmac_any_err_frms);
5549         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5550         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5551         tmp_stats[i++] =
5552                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5553                 le32_to_cpu(stat_info->tmac_vld_ip);
5554         tmp_stats[i++] =
5555                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5556                 le32_to_cpu(stat_info->tmac_drop_ip);
5557         tmp_stats[i++] =
5558                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5559                 le32_to_cpu(stat_info->tmac_icmp);
5560         tmp_stats[i++] =
5561                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5562                 le32_to_cpu(stat_info->tmac_rst_tcp);
5563         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5564         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5565                 le32_to_cpu(stat_info->tmac_udp);
5566         tmp_stats[i++] =
5567                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5568                 le32_to_cpu(stat_info->rmac_vld_frms);
5569         tmp_stats[i++] =
5570                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5571                 le32_to_cpu(stat_info->rmac_data_octets);
5572         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5573         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5574         tmp_stats[i++] =
5575                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5576                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5577         tmp_stats[i++] =
5578                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5579                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5580         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5581         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5582         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5583         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5584         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5585         tmp_stats[i++] =
5586                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5587                 le32_to_cpu(stat_info->rmac_ttl_octets);
5588         tmp_stats[i++] =
5589                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5590                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5591         tmp_stats[i++] =
5592                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5593                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5594         tmp_stats[i++] =
5595                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5596                 le32_to_cpu(stat_info->rmac_discarded_frms);
5597         tmp_stats[i++] =
5598                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5599                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5600         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5601         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5602         tmp_stats[i++] =
5603                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5604                 le32_to_cpu(stat_info->rmac_usized_frms);
5605         tmp_stats[i++] =
5606                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5607                 le32_to_cpu(stat_info->rmac_osized_frms);
5608         tmp_stats[i++] =
5609                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5610                 le32_to_cpu(stat_info->rmac_frag_frms);
5611         tmp_stats[i++] =
5612                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5613                 le32_to_cpu(stat_info->rmac_jabber_frms);
5614         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5615         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5616         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5617         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5618         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5619         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5620         tmp_stats[i++] =
5621                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5622                 le32_to_cpu(stat_info->rmac_ip);
5623         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5624         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5625         tmp_stats[i++] =
5626                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5627                 le32_to_cpu(stat_info->rmac_drop_ip);
5628         tmp_stats[i++] =
5629                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5630                 le32_to_cpu(stat_info->rmac_icmp);
5631         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5632         tmp_stats[i++] =
5633                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5634                 le32_to_cpu(stat_info->rmac_udp);
5635         tmp_stats[i++] =
5636                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5637                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5638         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5639         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5640         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5641         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5642         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5643         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5644         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5645         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5646         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5647         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5648         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5649         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5650         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5651         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5652         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5653         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5654         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5655         tmp_stats[i++] =
5656                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5657                 le32_to_cpu(stat_info->rmac_pause_cnt);
5658         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5659         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5660         tmp_stats[i++] =
5661                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5662                 le32_to_cpu(stat_info->rmac_accepted_ip);
5663         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5664         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5665         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5666         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5667         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5668         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5669         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5670         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5671         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5672         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5673         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5674         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5675         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5676         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5677         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5678         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5679         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5680         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5681         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5682         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5683         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5684         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5685         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5686         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5687         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5688         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5689         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5690         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5691         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5692         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5693         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5694         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5695         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5696         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5697         tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5698         tmp_stats[i++] = 0;
5699         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5700         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5701         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5702         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5703         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5704         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5705         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5706         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5707         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5708         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5709         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5710         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5711         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5712         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5713         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5714         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5715         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5716         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5717         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5718         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5719         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5720         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5721         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5722         if (stat_info->sw_stat.num_aggregations) {
5723                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5724                 int count = 0;
5725                 /*
5726                  * Since 64-bit divide does not work on all platforms,
5727                  * do repeated subtraction.
5728                  */
5729                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5730                         tmp -= stat_info->sw_stat.num_aggregations;
5731                         count++;
5732                 }
5733                 tmp_stats[i++] = count;
5734         }
5735         else
5736                 tmp_stats[i++] = 0;
5737 }
5738
5739 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5740 {
5741         return (XENA_REG_SPACE);
5742 }
5743
5744
5745 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5746 {
5747         nic_t *sp = dev->priv;
5748
5749         return (sp->rx_csum);
5750 }
5751
5752 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5753 {
5754         nic_t *sp = dev->priv;
5755
5756         if (data)
5757                 sp->rx_csum = 1;
5758         else
5759                 sp->rx_csum = 0;
5760
5761         return 0;
5762 }
5763
5764 static int s2io_get_eeprom_len(struct net_device *dev)
5765 {
5766         return (XENA_EEPROM_SPACE);
5767 }
5768
5769 static int s2io_ethtool_self_test_count(struct net_device *dev)
5770 {
5771         return (S2IO_TEST_LEN);
5772 }
5773
5774 static void s2io_ethtool_get_strings(struct net_device *dev,
5775                                      u32 stringset, u8 * data)
5776 {
5777         switch (stringset) {
5778         case ETH_SS_TEST:
5779                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5780                 break;
5781         case ETH_SS_STATS:
5782                 memcpy(data, &ethtool_stats_keys,
5783                        sizeof(ethtool_stats_keys));
5784         }
5785 }
5786 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5787 {
5788         return (S2IO_STAT_LEN);
5789 }
5790
5791 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5792 {
5793         if (data)
5794                 dev->features |= NETIF_F_IP_CSUM;
5795         else
5796                 dev->features &= ~NETIF_F_IP_CSUM;
5797
5798         return 0;
5799 }
5800
5801 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5802 {
5803         return (dev->features & NETIF_F_TSO) != 0;
5804 }
5805 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5806 {
5807         if (data)
5808                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5809         else
5810                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5811
5812         return 0;
5813 }
5814
5815 static const struct ethtool_ops netdev_ethtool_ops = {
5816         .get_settings = s2io_ethtool_gset,
5817         .set_settings = s2io_ethtool_sset,
5818         .get_drvinfo = s2io_ethtool_gdrvinfo,
5819         .get_regs_len = s2io_ethtool_get_regs_len,
5820         .get_regs = s2io_ethtool_gregs,
5821         .get_link = ethtool_op_get_link,
5822         .get_eeprom_len = s2io_get_eeprom_len,
5823         .get_eeprom = s2io_ethtool_geeprom,
5824         .set_eeprom = s2io_ethtool_seeprom,
5825         .get_pauseparam = s2io_ethtool_getpause_data,
5826         .set_pauseparam = s2io_ethtool_setpause_data,
5827         .get_rx_csum = s2io_ethtool_get_rx_csum,
5828         .set_rx_csum = s2io_ethtool_set_rx_csum,
5829         .get_tx_csum = ethtool_op_get_tx_csum,
5830         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5831         .get_sg = ethtool_op_get_sg,
5832         .set_sg = ethtool_op_set_sg,
5833         .get_tso = s2io_ethtool_op_get_tso,
5834         .set_tso = s2io_ethtool_op_set_tso,
5835         .get_ufo = ethtool_op_get_ufo,
5836         .set_ufo = ethtool_op_set_ufo,
5837         .self_test_count = s2io_ethtool_self_test_count,
5838         .self_test = s2io_ethtool_test,
5839         .get_strings = s2io_ethtool_get_strings,
5840         .phys_id = s2io_ethtool_idnic,
5841         .get_stats_count = s2io_ethtool_get_stats_count,
5842         .get_ethtool_stats = s2io_get_ethtool_stats
5843 };
5844
5845 /**
5846  *  s2io_ioctl - Entry point for the Ioctl
5847  *  @dev :  Device pointer.
5848  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5849  *  a proprietary structure used to pass information to the driver.
5850  *  @cmd :  This is used to distinguish between the different commands that
5851  *  can be passed to the IOCTL functions.
5852  *  Description:
5853  *  Currently there are no special functionality supported in IOCTL, hence
5854  *  function always return EOPNOTSUPPORTED
5855  */
5856
5857 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5858 {
5859         return -EOPNOTSUPP;
5860 }
5861
5862 /**
5863  *  s2io_change_mtu - entry point to change MTU size for the device.
5864  *   @dev : device pointer.
5865  *   @new_mtu : the new MTU size for the device.
5866  *   Description: A driver entry point to change MTU size for the device.
5867  *   Before changing the MTU the device must be stopped.
5868  *  Return value:
5869  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5870  *   file on failure.
5871  */
5872
5873 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5874 {
5875         nic_t *sp = dev->priv;
5876
5877         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5878                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5879                           dev->name);
5880                 return -EPERM;
5881         }
5882
5883         dev->mtu = new_mtu;
5884         if (netif_running(dev)) {
5885                 s2io_card_down(sp);
5886                 netif_stop_queue(dev);
5887                 if (s2io_card_up(sp)) {
5888                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5889                                   __FUNCTION__);
5890                 }
5891                 if (netif_queue_stopped(dev))
5892                         netif_wake_queue(dev);
5893         } else { /* Device is down */
5894                 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5895                 u64 val64 = new_mtu;
5896
5897                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5898         }
5899
5900         return 0;
5901 }
5902
5903 /**
5904  *  s2io_tasklet - Bottom half of the ISR.
5905  *  @dev_adr : address of the device structure in dma_addr_t format.
5906  *  Description:
5907  *  This is the tasklet or the bottom half of the ISR. This is
5908  *  an extension of the ISR which is scheduled by the scheduler to be run
5909  *  when the load on the CPU is low. All low priority tasks of the ISR can
5910  *  be pushed into the tasklet. For now the tasklet is used only to
5911  *  replenish the Rx buffers in the Rx buffer descriptors.
5912  *  Return value:
5913  *  void.
5914  */
5915
5916 static void s2io_tasklet(unsigned long dev_addr)
5917 {
5918         struct net_device *dev = (struct net_device *) dev_addr;
5919         nic_t *sp = dev->priv;
5920         int i, ret;
5921         mac_info_t *mac_control;
5922         struct config_param *config;
5923
5924         mac_control = &sp->mac_control;
5925         config = &sp->config;
5926
5927         if (!TASKLET_IN_USE) {
5928                 for (i = 0; i < config->rx_ring_num; i++) {
5929                         ret = fill_rx_buffers(sp, i);
5930                         if (ret == -ENOMEM) {
5931                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
5932                                           dev->name);
5933                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5934                                 break;
5935                         } else if (ret == -EFILL) {
5936                                 DBG_PRINT(ERR_DBG,
5937                                           "%s: Rx Ring %d is full\n",
5938                                           dev->name, i);
5939                                 break;
5940                         }
5941                 }
5942                 clear_bit(0, (&sp->tasklet_status));
5943         }
5944 }
5945
5946 /**
5947  * s2io_set_link - Set the LInk status
5948  * @data: long pointer to device private structue
5949  * Description: Sets the link status for the adapter
5950  */
5951
5952 static void s2io_set_link(struct work_struct *work)
5953 {
5954         nic_t *nic = container_of(work, nic_t, set_link_task);
5955         struct net_device *dev = nic->dev;
5956         XENA_dev_config_t __iomem *bar0 = nic->bar0;
5957         register u64 val64;
5958         u16 subid;
5959
5960         if (test_and_set_bit(0, &(nic->link_state))) {
5961                 /* The card is being reset, no point doing anything */
5962                 return;
5963         }
5964
5965         subid = nic->pdev->subsystem_device;
5966         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5967                 /*
5968                  * Allow a small delay for the NICs self initiated
5969                  * cleanup to complete.
5970                  */
5971                 msleep(100);
5972         }
5973
5974         val64 = readq(&bar0->adapter_status);
5975         if (LINK_IS_UP(val64)) {
5976                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5977                         if (verify_xena_quiescence(nic)) {
5978                                 val64 = readq(&bar0->adapter_control);
5979                                 val64 |= ADAPTER_CNTL_EN;
5980                                 writeq(val64, &bar0->adapter_control);
5981                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5982                                         nic->device_type, subid)) {
5983                                         val64 = readq(&bar0->gpio_control);
5984                                         val64 |= GPIO_CTRL_GPIO_0;
5985                                         writeq(val64, &bar0->gpio_control);
5986                                         val64 = readq(&bar0->gpio_control);
5987                                 } else {
5988                                         val64 |= ADAPTER_LED_ON;
5989                                         writeq(val64, &bar0->adapter_control);
5990                                 }
5991                                 nic->device_enabled_once = TRUE;
5992                         } else {
5993                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5994                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5995                                 netif_stop_queue(dev);
5996                         }
5997                 }
5998                 val64 = readq(&bar0->adapter_status);
5999                 if (!LINK_IS_UP(val64)) {
6000                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
6001                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
6002                         DBG_PRINT(ERR_DBG, "device \n");
6003                 } else
6004                         s2io_link(nic, LINK_UP);
6005         } else {
6006                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6007                                                       subid)) {
6008                         val64 = readq(&bar0->gpio_control);
6009                         val64 &= ~GPIO_CTRL_GPIO_0;
6010                         writeq(val64, &bar0->gpio_control);
6011                         val64 = readq(&bar0->gpio_control);
6012                 }
6013                 s2io_link(nic, LINK_DOWN);
6014         }
6015         clear_bit(0, &(nic->link_state));
6016 }
6017
6018 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
6019                            struct sk_buff **skb, u64 *temp0, u64 *temp1,
6020                            u64 *temp2, int size)
6021 {
6022         struct net_device *dev = sp->dev;
6023         struct sk_buff *frag_list;
6024
6025         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6026                 /* allocate skb */
6027                 if (*skb) {
6028                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6029                         /*
6030                          * As Rx frame are not going to be processed,
6031                          * using same mapped address for the Rxd
6032                          * buffer pointer
6033                          */
6034                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
6035                 } else {
6036                         *skb = dev_alloc_skb(size);
6037                         if (!(*skb)) {
6038                                 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
6039                                 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
6040                                 return -ENOMEM ;
6041                         }
6042                         /* storing the mapped addr in a temp variable
6043                          * such it will be used for next rxd whose
6044                          * Host Control is NULL
6045                          */
6046                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
6047                                 pci_map_single( sp->pdev, (*skb)->data,
6048                                         size - NET_IP_ALIGN,
6049                                         PCI_DMA_FROMDEVICE);
6050                         rxdp->Host_Control = (unsigned long) (*skb);
6051                 }
6052         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6053                 /* Two buffer Mode */
6054                 if (*skb) {
6055                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6056                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6057                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6058                 } else {
6059                         *skb = dev_alloc_skb(size);
6060                         if (!(*skb)) {
6061                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6062                                         dev->name);
6063                                 return -ENOMEM;
6064                         }
6065                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6066                                 pci_map_single(sp->pdev, (*skb)->data,
6067                                                dev->mtu + 4,
6068                                                PCI_DMA_FROMDEVICE);
6069                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6070                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6071                                                 PCI_DMA_FROMDEVICE);
6072                         rxdp->Host_Control = (unsigned long) (*skb);
6073
6074                         /* Buffer-1 will be dummy buffer not used */
6075                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6076                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6077                                                PCI_DMA_FROMDEVICE);
6078                 }
6079         } else if ((rxdp->Host_Control == 0)) {
6080                 /* Three buffer mode */
6081                 if (*skb) {
6082                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6083                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6084                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6085                 } else {
6086                         *skb = dev_alloc_skb(size);
6087                         if (!(*skb)) {
6088                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6089                                           dev->name);
6090                                 return -ENOMEM;
6091                         }
6092                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6093                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6094                                                PCI_DMA_FROMDEVICE);
6095                         /* Buffer-1 receives L3/L4 headers */
6096                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6097                                 pci_map_single( sp->pdev, (*skb)->data,
6098                                                 l3l4hdr_size + 4,
6099                                                 PCI_DMA_FROMDEVICE);
6100                         /*
6101                          * skb_shinfo(skb)->frag_list will have L4
6102                          * data payload
6103                          */
6104                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6105                                                                    ALIGN_SIZE);
6106                         if (skb_shinfo(*skb)->frag_list == NULL) {
6107                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6108                                           failed\n ", dev->name);
6109                                 return -ENOMEM ;
6110                         }
6111                         frag_list = skb_shinfo(*skb)->frag_list;
6112                         frag_list->next = NULL;
6113                         /*
6114                          * Buffer-2 receives L4 data payload
6115                          */
6116                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6117                                 pci_map_single( sp->pdev, frag_list->data,
6118                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6119                 }
6120         }
6121         return 0;
6122 }
6123 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6124 {
6125         struct net_device *dev = sp->dev;
6126         if (sp->rxd_mode == RXD_MODE_1) {
6127                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6128         } else if (sp->rxd_mode == RXD_MODE_3B) {
6129                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6130                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6131                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6132         } else {
6133                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6134                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6135                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6136         }
6137 }
6138
6139 static  int rxd_owner_bit_reset(nic_t *sp)
6140 {
6141         int i, j, k, blk_cnt = 0, size;
6142         mac_info_t * mac_control = &sp->mac_control;
6143         struct config_param *config = &sp->config;
6144         struct net_device *dev = sp->dev;
6145         RxD_t *rxdp = NULL;
6146         struct sk_buff *skb = NULL;
6147         buffAdd_t *ba = NULL;
6148         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6149
6150         /* Calculate the size based on ring mode */
6151         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6152                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6153         if (sp->rxd_mode == RXD_MODE_1)
6154                 size += NET_IP_ALIGN;
6155         else if (sp->rxd_mode == RXD_MODE_3B)
6156                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6157         else
6158                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6159
6160         for (i = 0; i < config->rx_ring_num; i++) {
6161                 blk_cnt = config->rx_cfg[i].num_rxd /
6162                         (rxd_count[sp->rxd_mode] +1);
6163
6164                 for (j = 0; j < blk_cnt; j++) {
6165                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6166                                 rxdp = mac_control->rings[i].
6167                                         rx_blocks[j].rxds[k].virt_addr;
6168                                 if(sp->rxd_mode >= RXD_MODE_3A)
6169                                         ba = &mac_control->rings[i].ba[j][k];
6170                                 set_rxd_buffer_pointer(sp, rxdp, ba,
6171                                                        &skb,(u64 *)&temp0_64,
6172                                                        (u64 *)&temp1_64,
6173                                                        (u64 *)&temp2_64, size);
6174
6175                                 set_rxd_buffer_size(sp, rxdp, size);
6176                                 wmb();
6177                                 /* flip the Ownership bit to Hardware */
6178                                 rxdp->Control_1 |= RXD_OWN_XENA;
6179                         }
6180                 }
6181         }
6182         return 0;
6183
6184 }
6185
6186 static int s2io_add_isr(nic_t * sp)
6187 {
6188         int ret = 0;
6189         struct net_device *dev = sp->dev;
6190         int err = 0;
6191
6192         if (sp->intr_type == MSI)
6193                 ret = s2io_enable_msi(sp);
6194         else if (sp->intr_type == MSI_X)
6195                 ret = s2io_enable_msi_x(sp);
6196         if (ret) {
6197                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6198                 sp->intr_type = INTA;
6199         }
6200
6201         /* Store the values of the MSIX table in the nic_t structure */
6202         store_xmsi_data(sp);
6203
6204         /* After proper initialization of H/W, register ISR */
6205         if (sp->intr_type == MSI) {
6206                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6207                         IRQF_SHARED, sp->name, dev);
6208                 if (err) {
6209                         pci_disable_msi(sp->pdev);
6210                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6211                                   dev->name);
6212                         return -1;
6213                 }
6214         }
6215         if (sp->intr_type == MSI_X) {
6216                 int i;
6217
6218                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6219                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6220                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6221                                         dev->name, i);
6222                                 err = request_irq(sp->entries[i].vector,
6223                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6224                                                   sp->s2io_entries[i].arg);
6225                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6226                                 (unsigned long long)sp->msix_info[i].addr);
6227                         } else {
6228                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6229                                         dev->name, i);
6230                                 err = request_irq(sp->entries[i].vector,
6231                                           s2io_msix_ring_handle, 0, sp->desc[i],
6232                                                   sp->s2io_entries[i].arg);
6233                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6234                                 (unsigned long long)sp->msix_info[i].addr);
6235                         }
6236                         if (err) {
6237                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6238                                           "failed\n", dev->name, i);
6239                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6240                                 return -1;
6241                         }
6242                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6243                 }
6244         }
6245         if (sp->intr_type == INTA) {
6246                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6247                                 sp->name, dev);
6248                 if (err) {
6249                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6250                                   dev->name);
6251                         return -1;
6252                 }
6253         }
6254         return 0;
6255 }
6256 static void s2io_rem_isr(nic_t * sp)
6257 {
6258         int cnt = 0;
6259         struct net_device *dev = sp->dev;
6260
6261         if (sp->intr_type == MSI_X) {
6262                 int i;
6263                 u16 msi_control;
6264
6265                 for (i=1; (sp->s2io_entries[i].in_use ==
6266                         MSIX_REGISTERED_SUCCESS); i++) {
6267                         int vector = sp->entries[i].vector;
6268                         void *arg = sp->s2io_entries[i].arg;
6269
6270                         free_irq(vector, arg);
6271                 }
6272                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6273                 msi_control &= 0xFFFE; /* Disable MSI */
6274                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6275
6276                 pci_disable_msix(sp->pdev);
6277         } else {
6278                 free_irq(sp->pdev->irq, dev);
6279                 if (sp->intr_type == MSI) {
6280                         u16 val;
6281
6282                         pci_disable_msi(sp->pdev);
6283                         pci_read_config_word(sp->pdev, 0x4c, &val);
6284                         val ^= 0x1;
6285                         pci_write_config_word(sp->pdev, 0x4c, val);
6286                 }
6287         }
6288         /* Waiting till all Interrupt handlers are complete */
6289         cnt = 0;
6290         do {
6291                 msleep(10);
6292                 if (!atomic_read(&sp->isr_cnt))
6293                         break;
6294                 cnt++;
6295         } while(cnt < 5);
6296 }
6297
6298 static void s2io_card_down(nic_t * sp)
6299 {
6300         int cnt = 0;
6301         XENA_dev_config_t __iomem *bar0 = sp->bar0;
6302         unsigned long flags;
6303         register u64 val64 = 0;
6304
6305         del_timer_sync(&sp->alarm_timer);
6306         /* If s2io_set_link task is executing, wait till it completes. */
6307         while (test_and_set_bit(0, &(sp->link_state))) {
6308                 msleep(50);
6309         }
6310         atomic_set(&sp->card_state, CARD_DOWN);
6311
6312         /* disable Tx and Rx traffic on the NIC */
6313         stop_nic(sp);
6314
6315         s2io_rem_isr(sp);
6316
6317         /* Kill tasklet. */
6318         tasklet_kill(&sp->task);
6319
6320         /* Check if the device is Quiescent and then Reset the NIC */
6321         do {
6322                 /* As per the HW requirement we need to replenish the
6323                  * receive buffer to avoid the ring bump. Since there is
6324                  * no intention of processing the Rx frame at this pointwe are
6325                  * just settting the ownership bit of rxd in Each Rx
6326                  * ring to HW and set the appropriate buffer size
6327                  * based on the ring mode
6328                  */
6329                 rxd_owner_bit_reset(sp);
6330
6331                 val64 = readq(&bar0->adapter_status);
6332                 if (verify_xena_quiescence(sp)) {
6333                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6334                         break;
6335                 }
6336
6337                 msleep(50);
6338                 cnt++;
6339                 if (cnt == 10) {
6340                         DBG_PRINT(ERR_DBG,
6341                                   "s2io_close:Device not Quiescent ");
6342                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6343                                   (unsigned long long) val64);
6344                         break;
6345                 }
6346         } while (1);
6347         s2io_reset(sp);
6348
6349         spin_lock_irqsave(&sp->tx_lock, flags);
6350         /* Free all Tx buffers */
6351         free_tx_buffers(sp);
6352         spin_unlock_irqrestore(&sp->tx_lock, flags);
6353
6354         /* Free all Rx buffers */
6355         spin_lock_irqsave(&sp->rx_lock, flags);
6356         free_rx_buffers(sp);
6357         spin_unlock_irqrestore(&sp->rx_lock, flags);
6358
6359         clear_bit(0, &(sp->link_state));
6360 }
6361
6362 static int s2io_card_up(nic_t * sp)
6363 {
6364         int i, ret = 0;
6365         mac_info_t *mac_control;
6366         struct config_param *config;
6367         struct net_device *dev = (struct net_device *) sp->dev;
6368         u16 interruptible;
6369
6370         /* Initialize the H/W I/O registers */
6371         if (init_nic(sp) != 0) {
6372                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6373                           dev->name);
6374                 s2io_reset(sp);
6375                 return -ENODEV;
6376         }
6377
6378         /*
6379          * Initializing the Rx buffers. For now we are considering only 1
6380          * Rx ring and initializing buffers into 30 Rx blocks
6381          */
6382         mac_control = &sp->mac_control;
6383         config = &sp->config;
6384
6385         for (i = 0; i < config->rx_ring_num; i++) {
6386                 if ((ret = fill_rx_buffers(sp, i))) {
6387                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6388                                   dev->name);
6389                         s2io_reset(sp);
6390                         free_rx_buffers(sp);
6391                         return -ENOMEM;
6392                 }
6393                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6394                           atomic_read(&sp->rx_bufs_left[i]));
6395         }
6396         /* Maintain the state prior to the open */
6397         if (sp->promisc_flg)
6398                 sp->promisc_flg = 0;
6399         if (sp->m_cast_flg) {
6400                 sp->m_cast_flg = 0;
6401                 sp->all_multi_pos= 0;
6402         }
6403
6404         /* Setting its receive mode */
6405         s2io_set_multicast(dev);
6406
6407         if (sp->lro) {
6408                 /* Initialize max aggregatable pkts per session based on MTU */
6409                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6410                 /* Check if we can use(if specified) user provided value */
6411                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6412                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6413         }
6414
6415         /* Enable Rx Traffic and interrupts on the NIC */
6416         if (start_nic(sp)) {
6417                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6418                 s2io_reset(sp);
6419                 free_rx_buffers(sp);
6420                 return -ENODEV;
6421         }
6422
6423         /* Add interrupt service routine */
6424         if (s2io_add_isr(sp) != 0) {
6425                 if (sp->intr_type == MSI_X)
6426                         s2io_rem_isr(sp);
6427                 s2io_reset(sp);
6428                 free_rx_buffers(sp);
6429                 return -ENODEV;
6430         }
6431
6432         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6433
6434         /* Enable tasklet for the device */
6435         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6436
6437         /*  Enable select interrupts */
6438         if (sp->intr_type != INTA)
6439                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6440         else {
6441                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6442                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6443                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6444                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6445         }
6446
6447
6448         atomic_set(&sp->card_state, CARD_UP);
6449         return 0;
6450 }
6451
6452 /**
6453  * s2io_restart_nic - Resets the NIC.
6454  * @data : long pointer to the device private structure
6455  * Description:
6456  * This function is scheduled to be run by the s2io_tx_watchdog
6457  * function after 0.5 secs to reset the NIC. The idea is to reduce
6458  * the run time of the watch dog routine which is run holding a
6459  * spin lock.
6460  */
6461
6462 static void s2io_restart_nic(struct work_struct *work)
6463 {
6464         nic_t *sp = container_of(work, nic_t, rst_timer_task);
6465         struct net_device *dev = sp->dev;
6466
6467         s2io_card_down(sp);
6468         if (s2io_card_up(sp)) {
6469                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6470                           dev->name);
6471         }
6472         netif_wake_queue(dev);
6473         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6474                   dev->name);
6475
6476 }
6477
6478 /**
6479  *  s2io_tx_watchdog - Watchdog for transmit side.
6480  *  @dev : Pointer to net device structure
6481  *  Description:
6482  *  This function is triggered if the Tx Queue is stopped
6483  *  for a pre-defined amount of time when the Interface is still up.
6484  *  If the Interface is jammed in such a situation, the hardware is
6485  *  reset (by s2io_close) and restarted again (by s2io_open) to
6486  *  overcome any problem that might have been caused in the hardware.
6487  *  Return value:
6488  *  void
6489  */
6490
6491 static void s2io_tx_watchdog(struct net_device *dev)
6492 {
6493         nic_t *sp = dev->priv;
6494
6495         if (netif_carrier_ok(dev)) {
6496                 schedule_work(&sp->rst_timer_task);
6497                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6498         }
6499 }
6500
6501 /**
6502  *   rx_osm_handler - To perform some OS related operations on SKB.
6503  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6504  *   @skb : the socket buffer pointer.
6505  *   @len : length of the packet
6506  *   @cksum : FCS checksum of the frame.
6507  *   @ring_no : the ring from which this RxD was extracted.
6508  *   Description:
6509  *   This function is called by the Rx interrupt serivce routine to perform
6510  *   some OS related operations on the SKB before passing it to the upper
6511  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6512  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6513  *   to the upper layer. If the checksum is wrong, it increments the Rx
6514  *   packet error count, frees the SKB and returns error.
6515  *   Return value:
6516  *   SUCCESS on success and -1 on failure.
6517  */
6518 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6519 {
6520         nic_t *sp = ring_data->nic;
6521         struct net_device *dev = (struct net_device *) sp->dev;
6522         struct sk_buff *skb = (struct sk_buff *)
6523                 ((unsigned long) rxdp->Host_Control);
6524         int ring_no = ring_data->ring_no;
6525         u16 l3_csum, l4_csum;
6526         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6527         lro_t *lro;
6528
6529         skb->dev = dev;
6530
6531         if (err) {
6532                 /* Check for parity error */
6533                 if (err & 0x1) {
6534                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6535                 }
6536
6537                 /*
6538                 * Drop the packet if bad transfer code. Exception being
6539                 * 0x5, which could be due to unsupported IPv6 extension header.
6540                 * In this case, we let stack handle the packet.
6541                 * Note that in this case, since checksum will be incorrect,
6542                 * stack will validate the same.
6543                 */
6544                 if (err && ((err >> 48) != 0x5)) {
6545                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6546                                 dev->name, err);
6547                         sp->stats.rx_crc_errors++;
6548                         dev_kfree_skb(skb);
6549                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6550                         rxdp->Host_Control = 0;
6551                         return 0;
6552                 }
6553         }
6554
6555         /* Updating statistics */
6556         rxdp->Host_Control = 0;
6557         sp->rx_pkt_count++;
6558         sp->stats.rx_packets++;
6559         if (sp->rxd_mode == RXD_MODE_1) {
6560                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6561
6562                 sp->stats.rx_bytes += len;
6563                 skb_put(skb, len);
6564
6565         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6566                 int get_block = ring_data->rx_curr_get_info.block_index;
6567                 int get_off = ring_data->rx_curr_get_info.offset;
6568                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6569                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6570                 unsigned char *buff = skb_push(skb, buf0_len);
6571
6572                 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6573                 sp->stats.rx_bytes += buf0_len + buf2_len;
6574                 memcpy(buff, ba->ba_0, buf0_len);
6575
6576                 if (sp->rxd_mode == RXD_MODE_3A) {
6577                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6578
6579                         skb_put(skb, buf1_len);
6580                         skb->len += buf2_len;
6581                         skb->data_len += buf2_len;
6582                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6583                         sp->stats.rx_bytes += buf1_len;
6584
6585                 } else
6586                         skb_put(skb, buf2_len);
6587         }
6588
6589         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6590             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6591             (sp->rx_csum)) {
6592                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6593                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6594                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6595                         /*
6596                          * NIC verifies if the Checksum of the received
6597                          * frame is Ok or not and accordingly returns
6598                          * a flag in the RxD.
6599                          */
6600                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6601                         if (sp->lro) {
6602                                 u32 tcp_len;
6603                                 u8 *tcp;
6604                                 int ret = 0;
6605
6606                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6607                                                 &tcp_len, &lro, rxdp, sp);
6608                                 switch (ret) {
6609                                         case 3: /* Begin anew */
6610                                                 lro->parent = skb;
6611                                                 goto aggregate;
6612                                         case 1: /* Aggregate */
6613                                         {
6614                                                 lro_append_pkt(sp, lro,
6615                                                         skb, tcp_len);
6616                                                 goto aggregate;
6617                                         }
6618                                         case 4: /* Flush session */
6619                                         {
6620                                                 lro_append_pkt(sp, lro,
6621                                                         skb, tcp_len);
6622                                                 queue_rx_frame(lro->parent);
6623                                                 clear_lro_session(lro);
6624                                                 sp->mac_control.stats_info->
6625                                                     sw_stat.flush_max_pkts++;
6626                                                 goto aggregate;
6627                                         }
6628                                         case 2: /* Flush both */
6629                                                 lro->parent->data_len =
6630                                                         lro->frags_len;
6631                                                 sp->mac_control.stats_info->
6632                                                      sw_stat.sending_both++;
6633                                                 queue_rx_frame(lro->parent);
6634                                                 clear_lro_session(lro);
6635                                                 goto send_up;
6636                                         case 0: /* sessions exceeded */
6637                                         case -1: /* non-TCP or not
6638                                                   * L2 aggregatable
6639                                                   */
6640                                         case 5: /*
6641                                                  * First pkt in session not
6642                                                  * L3/L4 aggregatable
6643                                                  */
6644                                                 break;
6645                                         default:
6646                                                 DBG_PRINT(ERR_DBG,
6647                                                         "%s: Samadhana!!\n",
6648                                                          __FUNCTION__);
6649                                                 BUG();
6650                                 }
6651                         }
6652                 } else {
6653                         /*
6654                          * Packet with erroneous checksum, let the
6655                          * upper layers deal with it.
6656                          */
6657                         skb->ip_summed = CHECKSUM_NONE;
6658                 }
6659         } else {
6660                 skb->ip_summed = CHECKSUM_NONE;
6661         }
6662
6663         if (!sp->lro) {
6664                 skb->protocol = eth_type_trans(skb, dev);
6665                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6666                         /* Queueing the vlan frame to the upper layer */
6667                         if (napi)
6668                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6669                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6670                         else
6671                                 vlan_hwaccel_rx(skb, sp->vlgrp,
6672                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6673                 } else {
6674                         if (napi)
6675                                 netif_receive_skb(skb);
6676                         else
6677                                 netif_rx(skb);
6678                 }
6679         } else {
6680 send_up:
6681                 queue_rx_frame(skb);
6682         }
6683         dev->last_rx = jiffies;
6684 aggregate:
6685         atomic_dec(&sp->rx_bufs_left[ring_no]);
6686         return SUCCESS;
6687 }
6688
6689 /**
6690  *  s2io_link - stops/starts the Tx queue.
6691  *  @sp : private member of the device structure, which is a pointer to the
6692  *  s2io_nic structure.
6693  *  @link : inidicates whether link is UP/DOWN.
6694  *  Description:
6695  *  This function stops/starts the Tx queue depending on whether the link
6696  *  status of the NIC is is down or up. This is called by the Alarm
6697  *  interrupt handler whenever a link change interrupt comes up.
6698  *  Return value:
6699  *  void.
6700  */
6701
6702 static void s2io_link(nic_t * sp, int link)
6703 {
6704         struct net_device *dev = (struct net_device *) sp->dev;
6705
6706         if (link != sp->last_link_state) {
6707                 if (link == LINK_DOWN) {
6708                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6709                         netif_carrier_off(dev);
6710                 } else {
6711                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6712                         netif_carrier_on(dev);
6713                 }
6714         }
6715         sp->last_link_state = link;
6716 }
6717
6718 /**
6719  *  get_xena_rev_id - to identify revision ID of xena.
6720  *  @pdev : PCI Dev structure
6721  *  Description:
6722  *  Function to identify the Revision ID of xena.
6723  *  Return value:
6724  *  returns the revision ID of the device.
6725  */
6726
6727 static int get_xena_rev_id(struct pci_dev *pdev)
6728 {
6729         u8 id = 0;
6730         int ret;
6731         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6732         return id;
6733 }
6734
6735 /**
6736  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6737  *  @sp : private member of the device structure, which is a pointer to the
6738  *  s2io_nic structure.
6739  *  Description:
6740  *  This function initializes a few of the PCI and PCI-X configuration registers
6741  *  with recommended values.
6742  *  Return value:
6743  *  void
6744  */
6745
6746 static void s2io_init_pci(nic_t * sp)
6747 {
6748         u16 pci_cmd = 0, pcix_cmd = 0;
6749
6750         /* Enable Data Parity Error Recovery in PCI-X command register. */
6751         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6752                              &(pcix_cmd));
6753         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6754                               (pcix_cmd | 1));
6755         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6756                              &(pcix_cmd));
6757
6758         /* Set the PErr Response bit in PCI command register. */
6759         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6760         pci_write_config_word(sp->pdev, PCI_COMMAND,
6761                               (pci_cmd | PCI_COMMAND_PARITY));
6762         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6763 }
6764
6765 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6766 {
6767         if ( tx_fifo_num > 8) {
6768                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6769                          "supported\n");
6770                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6771                 tx_fifo_num = 8;
6772         }
6773         if ( rx_ring_num > 8) {
6774                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6775                          "supported\n");
6776                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6777                 rx_ring_num = 8;
6778         }
6779         if (*dev_intr_type != INTA)
6780                 napi = 0;
6781
6782 #ifndef CONFIG_PCI_MSI
6783         if (*dev_intr_type != INTA) {
6784                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6785                           "MSI/MSI-X. Defaulting to INTA\n");
6786                 *dev_intr_type = INTA;
6787         }
6788 #else
6789         if (*dev_intr_type > MSI_X) {
6790                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6791                           "Defaulting to INTA\n");
6792                 *dev_intr_type = INTA;
6793         }
6794 #endif
6795         if ((*dev_intr_type == MSI_X) &&
6796                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6797                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6798                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6799                                         "Defaulting to INTA\n");
6800                 *dev_intr_type = INTA;
6801         }
6802         if ( (rx_ring_num > 1) && (*dev_intr_type != INTA) )
6803                 napi = 0;
6804         if (rx_ring_mode > 3) {
6805                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6806                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6807                 rx_ring_mode = 3;
6808         }
6809         return SUCCESS;
6810 }
6811
6812 /**
6813  *  s2io_init_nic - Initialization of the adapter .
6814  *  @pdev : structure containing the PCI related information of the device.
6815  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6816  *  Description:
6817  *  The function initializes an adapter identified by the pci_dec structure.
6818  *  All OS related initialization including memory and device structure and
6819  *  initlaization of the device private variable is done. Also the swapper
6820  *  control register is initialized to enable read and write into the I/O
6821  *  registers of the device.
6822  *  Return value:
6823  *  returns 0 on success and negative on failure.
6824  */
6825
6826 static int __devinit
6827 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6828 {
6829         nic_t *sp;
6830         struct net_device *dev;
6831         int i, j, ret;
6832         int dma_flag = FALSE;
6833         u32 mac_up, mac_down;
6834         u64 val64 = 0, tmp64 = 0;
6835         XENA_dev_config_t __iomem *bar0 = NULL;
6836         u16 subid;
6837         mac_info_t *mac_control;
6838         struct config_param *config;
6839         int mode;
6840         u8 dev_intr_type = intr_type;
6841
6842         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6843                 return ret;
6844
6845         if ((ret = pci_enable_device(pdev))) {
6846                 DBG_PRINT(ERR_DBG,
6847                           "s2io_init_nic: pci_enable_device failed\n");
6848                 return ret;
6849         }
6850
6851         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6852                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6853                 dma_flag = TRUE;
6854                 if (pci_set_consistent_dma_mask
6855                     (pdev, DMA_64BIT_MASK)) {
6856                         DBG_PRINT(ERR_DBG,
6857                                   "Unable to obtain 64bit DMA for \
6858                                         consistent allocations\n");
6859                         pci_disable_device(pdev);
6860                         return -ENOMEM;
6861                 }
6862         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6863                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6864         } else {
6865                 pci_disable_device(pdev);
6866                 return -ENOMEM;
6867         }
6868         if (dev_intr_type != MSI_X) {
6869                 if (pci_request_regions(pdev, s2io_driver_name)) {
6870                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6871                         pci_disable_device(pdev);
6872                         return -ENODEV;
6873                 }
6874         }
6875         else {
6876                 if (!(request_mem_region(pci_resource_start(pdev, 0),
6877                          pci_resource_len(pdev, 0), s2io_driver_name))) {
6878                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6879                         pci_disable_device(pdev);
6880                         return -ENODEV;
6881                 }
6882                 if (!(request_mem_region(pci_resource_start(pdev, 2),
6883                          pci_resource_len(pdev, 2), s2io_driver_name))) {
6884                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6885                         release_mem_region(pci_resource_start(pdev, 0),
6886                                    pci_resource_len(pdev, 0));
6887                         pci_disable_device(pdev);
6888                         return -ENODEV;
6889                 }
6890         }
6891
6892         dev = alloc_etherdev(sizeof(nic_t));
6893         if (dev == NULL) {
6894                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6895                 pci_disable_device(pdev);
6896                 pci_release_regions(pdev);
6897                 return -ENODEV;
6898         }
6899
6900         pci_set_master(pdev);
6901         pci_set_drvdata(pdev, dev);
6902         SET_MODULE_OWNER(dev);
6903         SET_NETDEV_DEV(dev, &pdev->dev);
6904
6905         /*  Private member variable initialized to s2io NIC structure */
6906         sp = dev->priv;
6907         memset(sp, 0, sizeof(nic_t));
6908         sp->dev = dev;
6909         sp->pdev = pdev;
6910         sp->high_dma_flag = dma_flag;
6911         sp->device_enabled_once = FALSE;
6912         if (rx_ring_mode == 1)
6913                 sp->rxd_mode = RXD_MODE_1;
6914         if (rx_ring_mode == 2)
6915                 sp->rxd_mode = RXD_MODE_3B;
6916         if (rx_ring_mode == 3)
6917                 sp->rxd_mode = RXD_MODE_3A;
6918
6919         sp->intr_type = dev_intr_type;
6920
6921         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6922                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6923                 sp->device_type = XFRAME_II_DEVICE;
6924         else
6925                 sp->device_type = XFRAME_I_DEVICE;
6926
6927         sp->lro = lro;
6928
6929         /* Initialize some PCI/PCI-X fields of the NIC. */
6930         s2io_init_pci(sp);
6931
6932         /*
6933          * Setting the device configuration parameters.
6934          * Most of these parameters can be specified by the user during
6935          * module insertion as they are module loadable parameters. If
6936          * these parameters are not not specified during load time, they
6937          * are initialized with default values.
6938          */
6939         mac_control = &sp->mac_control;
6940         config = &sp->config;
6941
6942         /* Tx side parameters. */
6943         config->tx_fifo_num = tx_fifo_num;
6944         for (i = 0; i < MAX_TX_FIFOS; i++) {
6945                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6946                 config->tx_cfg[i].fifo_priority = i;
6947         }
6948
6949         /* mapping the QoS priority to the configured fifos */
6950         for (i = 0; i < MAX_TX_FIFOS; i++)
6951                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6952
6953         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6954         for (i = 0; i < config->tx_fifo_num; i++) {
6955                 config->tx_cfg[i].f_no_snoop =
6956                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6957                 if (config->tx_cfg[i].fifo_len < 65) {
6958                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6959                         break;
6960                 }
6961         }
6962         /* + 2 because one Txd for skb->data and one Txd for UFO */
6963         config->max_txds = MAX_SKB_FRAGS + 2;
6964
6965         /* Rx side parameters. */
6966         config->rx_ring_num = rx_ring_num;
6967         for (i = 0; i < MAX_RX_RINGS; i++) {
6968                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6969                     (rxd_count[sp->rxd_mode] + 1);
6970                 config->rx_cfg[i].ring_priority = i;
6971         }
6972
6973         for (i = 0; i < rx_ring_num; i++) {
6974                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6975                 config->rx_cfg[i].f_no_snoop =
6976                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6977         }
6978
6979         /*  Setting Mac Control parameters */
6980         mac_control->rmac_pause_time = rmac_pause_time;
6981         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6982         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6983
6984
6985         /* Initialize Ring buffer parameters. */
6986         for (i = 0; i < config->rx_ring_num; i++)
6987                 atomic_set(&sp->rx_bufs_left[i], 0);
6988
6989         /* Initialize the number of ISRs currently running */
6990         atomic_set(&sp->isr_cnt, 0);
6991
6992         /*  initialize the shared memory used by the NIC and the host */
6993         if (init_shared_mem(sp)) {
6994                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6995                           dev->name);
6996                 ret = -ENOMEM;
6997                 goto mem_alloc_failed;
6998         }
6999
7000         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7001                                      pci_resource_len(pdev, 0));
7002         if (!sp->bar0) {
7003                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7004                           dev->name);
7005                 ret = -ENOMEM;
7006                 goto bar0_remap_failed;
7007         }
7008
7009         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7010                                      pci_resource_len(pdev, 2));
7011         if (!sp->bar1) {
7012                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7013                           dev->name);
7014                 ret = -ENOMEM;
7015                 goto bar1_remap_failed;
7016         }
7017
7018         dev->irq = pdev->irq;
7019         dev->base_addr = (unsigned long) sp->bar0;
7020
7021         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7022         for (j = 0; j < MAX_TX_FIFOS; j++) {
7023                 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
7024                     (sp->bar1 + (j * 0x00020000));
7025         }
7026
7027         /*  Driver entry points */
7028         dev->open = &s2io_open;
7029         dev->stop = &s2io_close;
7030         dev->hard_start_xmit = &s2io_xmit;
7031         dev->get_stats = &s2io_get_stats;
7032         dev->set_multicast_list = &s2io_set_multicast;
7033         dev->do_ioctl = &s2io_ioctl;
7034         dev->change_mtu = &s2io_change_mtu;
7035         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7036         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7037         dev->vlan_rx_register = s2io_vlan_rx_register;
7038         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7039
7040         /*
7041          * will use eth_mac_addr() for  dev->set_mac_address
7042          * mac address will be set every time dev->open() is called
7043          */
7044         dev->poll = s2io_poll;
7045         dev->weight = 32;
7046
7047 #ifdef CONFIG_NET_POLL_CONTROLLER
7048         dev->poll_controller = s2io_netpoll;
7049 #endif
7050
7051         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7052         if (sp->high_dma_flag == TRUE)
7053                 dev->features |= NETIF_F_HIGHDMA;
7054         dev->features |= NETIF_F_TSO;
7055         dev->features |= NETIF_F_TSO6;
7056         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7057                 dev->features |= NETIF_F_UFO;
7058                 dev->features |= NETIF_F_HW_CSUM;
7059         }
7060
7061         dev->tx_timeout = &s2io_tx_watchdog;
7062         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7063         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7064         INIT_WORK(&sp->set_link_task, s2io_set_link);
7065
7066         pci_save_state(sp->pdev);
7067
7068         /* Setting swapper control on the NIC, for proper reset operation */
7069         if (s2io_set_swapper(sp)) {
7070                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7071                           dev->name);
7072                 ret = -EAGAIN;
7073                 goto set_swap_failed;
7074         }
7075
7076         /* Verify if the Herc works on the slot its placed into */
7077         if (sp->device_type & XFRAME_II_DEVICE) {
7078                 mode = s2io_verify_pci_mode(sp);
7079                 if (mode < 0) {
7080                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7081                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7082                         ret = -EBADSLT;
7083                         goto set_swap_failed;
7084                 }
7085         }
7086
7087         /* Not needed for Herc */
7088         if (sp->device_type & XFRAME_I_DEVICE) {
7089                 /*
7090                  * Fix for all "FFs" MAC address problems observed on
7091                  * Alpha platforms
7092                  */
7093                 fix_mac_address(sp);
7094                 s2io_reset(sp);
7095         }
7096
7097         /*
7098          * MAC address initialization.
7099          * For now only one mac address will be read and used.
7100          */
7101         bar0 = sp->bar0;
7102         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7103             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7104         writeq(val64, &bar0->rmac_addr_cmd_mem);
7105         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7106                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7107         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7108         mac_down = (u32) tmp64;
7109         mac_up = (u32) (tmp64 >> 32);
7110
7111         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7112
7113         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7114         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7115         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7116         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7117         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7118         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7119
7120         /*  Set the factory defined MAC address initially   */
7121         dev->addr_len = ETH_ALEN;
7122         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7123
7124         /* reset Nic and bring it to known state */
7125         s2io_reset(sp);
7126
7127         /*
7128          * Initialize the tasklet status and link state flags
7129          * and the card state parameter
7130          */
7131         atomic_set(&(sp->card_state), 0);
7132         sp->tasklet_status = 0;
7133         sp->link_state = 0;
7134
7135         /* Initialize spinlocks */
7136         spin_lock_init(&sp->tx_lock);
7137
7138         if (!napi)
7139                 spin_lock_init(&sp->put_lock);
7140         spin_lock_init(&sp->rx_lock);
7141
7142         /*
7143          * SXE-002: Configure link and activity LED to init state
7144          * on driver load.
7145          */
7146         subid = sp->pdev->subsystem_device;
7147         if ((subid & 0xFF) >= 0x07) {
7148                 val64 = readq(&bar0->gpio_control);
7149                 val64 |= 0x0000800000000000ULL;
7150                 writeq(val64, &bar0->gpio_control);
7151                 val64 = 0x0411040400000000ULL;
7152                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7153                 val64 = readq(&bar0->gpio_control);
7154         }
7155
7156         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7157
7158         if (register_netdev(dev)) {
7159                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7160                 ret = -ENODEV;
7161                 goto register_failed;
7162         }
7163         s2io_vpd_read(sp);
7164         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7165         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7166                   sp->product_name, get_xena_rev_id(sp->pdev));
7167         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7168                   s2io_driver_version);
7169         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7170                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7171                           sp->def_mac_addr[0].mac_addr[0],
7172                           sp->def_mac_addr[0].mac_addr[1],
7173                           sp->def_mac_addr[0].mac_addr[2],
7174                           sp->def_mac_addr[0].mac_addr[3],
7175                           sp->def_mac_addr[0].mac_addr[4],
7176                           sp->def_mac_addr[0].mac_addr[5]);
7177         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7178         if (sp->device_type & XFRAME_II_DEVICE) {
7179                 mode = s2io_print_pci_mode(sp);
7180                 if (mode < 0) {
7181                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7182                         ret = -EBADSLT;
7183                         unregister_netdev(dev);
7184                         goto set_swap_failed;
7185                 }
7186         }
7187         switch(sp->rxd_mode) {
7188                 case RXD_MODE_1:
7189                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7190                                                 dev->name);
7191                     break;
7192                 case RXD_MODE_3B:
7193                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7194                                                 dev->name);
7195                     break;
7196                 case RXD_MODE_3A:
7197                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7198                                                 dev->name);
7199                     break;
7200         }
7201
7202         if (napi)
7203                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7204         switch(sp->intr_type) {
7205                 case INTA:
7206                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7207                     break;
7208                 case MSI:
7209                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7210                     break;
7211                 case MSI_X:
7212                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7213                     break;
7214         }
7215         if (sp->lro)
7216                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7217                           dev->name);
7218         if (ufo)
7219                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7220                                         " enabled\n", dev->name);
7221         /* Initialize device name */
7222         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7223
7224         /* Initialize bimodal Interrupts */
7225         sp->config.bimodal = bimodal;
7226         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7227                 sp->config.bimodal = 0;
7228                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7229                         dev->name);
7230         }
7231
7232         /*
7233          * Make Link state as off at this point, when the Link change
7234          * interrupt comes the state will be automatically changed to
7235          * the right state.
7236          */
7237         netif_carrier_off(dev);
7238
7239         return 0;
7240
7241       register_failed:
7242       set_swap_failed:
7243         iounmap(sp->bar1);
7244       bar1_remap_failed:
7245         iounmap(sp->bar0);
7246       bar0_remap_failed:
7247       mem_alloc_failed:
7248         free_shared_mem(sp);
7249         pci_disable_device(pdev);
7250         if (dev_intr_type != MSI_X)
7251                 pci_release_regions(pdev);
7252         else {
7253                 release_mem_region(pci_resource_start(pdev, 0),
7254                         pci_resource_len(pdev, 0));
7255                 release_mem_region(pci_resource_start(pdev, 2),
7256                         pci_resource_len(pdev, 2));
7257         }
7258         pci_set_drvdata(pdev, NULL);
7259         free_netdev(dev);
7260
7261         return ret;
7262 }
7263
7264 /**
7265  * s2io_rem_nic - Free the PCI device
7266  * @pdev: structure containing the PCI related information of the device.
7267  * Description: This function is called by the Pci subsystem to release a
7268  * PCI device and free up all resource held up by the device. This could
7269  * be in response to a Hot plug event or when the driver is to be removed
7270  * from memory.
7271  */
7272
7273 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7274 {
7275         struct net_device *dev =
7276             (struct net_device *) pci_get_drvdata(pdev);
7277         nic_t *sp;
7278
7279         if (dev == NULL) {
7280                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7281                 return;
7282         }
7283
7284         sp = dev->priv;
7285         unregister_netdev(dev);
7286
7287         free_shared_mem(sp);
7288         iounmap(sp->bar0);
7289         iounmap(sp->bar1);
7290         if (sp->intr_type != MSI_X)
7291                 pci_release_regions(pdev);
7292         else {
7293                 release_mem_region(pci_resource_start(pdev, 0),
7294                         pci_resource_len(pdev, 0));
7295                 release_mem_region(pci_resource_start(pdev, 2),
7296                         pci_resource_len(pdev, 2));
7297         }
7298         pci_set_drvdata(pdev, NULL);
7299         free_netdev(dev);
7300         pci_disable_device(pdev);
7301 }
7302
7303 /**
7304  * s2io_starter - Entry point for the driver
7305  * Description: This function is the entry point for the driver. It verifies
7306  * the module loadable parameters and initializes PCI configuration space.
7307  */
7308
7309 int __init s2io_starter(void)
7310 {
7311         return pci_register_driver(&s2io_driver);
7312 }
7313
7314 /**
7315  * s2io_closer - Cleanup routine for the driver
7316  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7317  */
7318
7319 static __exit void s2io_closer(void)
7320 {
7321         pci_unregister_driver(&s2io_driver);
7322         DBG_PRINT(INIT_DBG, "cleanup done\n");
7323 }
7324
7325 module_init(s2io_starter);
7326 module_exit(s2io_closer);
7327
7328 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7329                 struct tcphdr **tcp, RxD_t *rxdp)
7330 {
7331         int ip_off;
7332         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7333
7334         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7335                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7336                           __FUNCTION__);
7337                 return -1;
7338         }
7339
7340         /* TODO:
7341          * By default the VLAN field in the MAC is stripped by the card, if this
7342          * feature is turned off in rx_pa_cfg register, then the ip_off field
7343          * has to be shifted by a further 2 bytes
7344          */
7345         switch (l2_type) {
7346                 case 0: /* DIX type */
7347                 case 4: /* DIX type with VLAN */
7348                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7349                         break;
7350                 /* LLC, SNAP etc are considered non-mergeable */
7351                 default:
7352                         return -1;
7353         }
7354
7355         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7356         ip_len = (u8)((*ip)->ihl);
7357         ip_len <<= 2;
7358         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7359
7360         return 0;
7361 }
7362
7363 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7364                                   struct tcphdr *tcp)
7365 {
7366         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7367         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7368            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7369                 return -1;
7370         return 0;
7371 }
7372
7373 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7374 {
7375         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7376 }
7377
7378 static void initiate_new_session(lro_t *lro, u8 *l2h,
7379                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7380 {
7381         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7382         lro->l2h = l2h;
7383         lro->iph = ip;
7384         lro->tcph = tcp;
7385         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7386         lro->tcp_ack = ntohl(tcp->ack_seq);
7387         lro->sg_num = 1;
7388         lro->total_len = ntohs(ip->tot_len);
7389         lro->frags_len = 0;
7390         /*
7391          * check if we saw TCP timestamp. Other consistency checks have
7392          * already been done.
7393          */
7394         if (tcp->doff == 8) {
7395                 u32 *ptr;
7396                 ptr = (u32 *)(tcp+1);
7397                 lro->saw_ts = 1;
7398                 lro->cur_tsval = *(ptr+1);
7399                 lro->cur_tsecr = *(ptr+2);
7400         }
7401         lro->in_use = 1;
7402 }
7403
7404 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7405 {
7406         struct iphdr *ip = lro->iph;
7407         struct tcphdr *tcp = lro->tcph;
7408         u16 nchk;
7409         StatInfo_t *statinfo = sp->mac_control.stats_info;
7410         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7411
7412         /* Update L3 header */
7413         ip->tot_len = htons(lro->total_len);
7414         ip->check = 0;
7415         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7416         ip->check = nchk;
7417
7418         /* Update L4 header */
7419         tcp->ack_seq = lro->tcp_ack;
7420         tcp->window = lro->window;
7421
7422         /* Update tsecr field if this session has timestamps enabled */
7423         if (lro->saw_ts) {
7424                 u32 *ptr = (u32 *)(tcp + 1);
7425                 *(ptr+2) = lro->cur_tsecr;
7426         }
7427
7428         /* Update counters required for calculation of
7429          * average no. of packets aggregated.
7430          */
7431         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7432         statinfo->sw_stat.num_aggregations++;
7433 }
7434
7435 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7436                 struct tcphdr *tcp, u32 l4_pyld)
7437 {
7438         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7439         lro->total_len += l4_pyld;
7440         lro->frags_len += l4_pyld;
7441         lro->tcp_next_seq += l4_pyld;
7442         lro->sg_num++;
7443
7444         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7445         lro->tcp_ack = tcp->ack_seq;
7446         lro->window = tcp->window;
7447
7448         if (lro->saw_ts) {
7449                 u32 *ptr;
7450                 /* Update tsecr and tsval from this packet */
7451                 ptr = (u32 *) (tcp + 1);
7452                 lro->cur_tsval = *(ptr + 1);
7453                 lro->cur_tsecr = *(ptr + 2);
7454         }
7455 }
7456
7457 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7458                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7459 {
7460         u8 *ptr;
7461
7462         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7463
7464         if (!tcp_pyld_len) {
7465                 /* Runt frame or a pure ack */
7466                 return -1;
7467         }
7468
7469         if (ip->ihl != 5) /* IP has options */
7470                 return -1;
7471
7472         /* If we see CE codepoint in IP header, packet is not mergeable */
7473         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7474                 return -1;
7475
7476         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7477         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7478                                     tcp->ece || tcp->cwr || !tcp->ack) {
7479                 /*
7480                  * Currently recognize only the ack control word and
7481                  * any other control field being set would result in
7482                  * flushing the LRO session
7483                  */
7484                 return -1;
7485         }
7486
7487         /*
7488          * Allow only one TCP timestamp option. Don't aggregate if
7489          * any other options are detected.
7490          */
7491         if (tcp->doff != 5 && tcp->doff != 8)
7492                 return -1;
7493
7494         if (tcp->doff == 8) {
7495                 ptr = (u8 *)(tcp + 1);
7496                 while (*ptr == TCPOPT_NOP)
7497                         ptr++;
7498                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7499                         return -1;
7500
7501                 /* Ensure timestamp value increases monotonically */
7502                 if (l_lro)
7503                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7504                                 return -1;
7505
7506                 /* timestamp echo reply should be non-zero */
7507                 if (*((u32 *)(ptr+6)) == 0)
7508                         return -1;
7509         }
7510
7511         return 0;
7512 }
7513
7514 static int
7515 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7516                       RxD_t *rxdp, nic_t *sp)
7517 {
7518         struct iphdr *ip;
7519         struct tcphdr *tcph;
7520         int ret = 0, i;
7521
7522         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7523                                          rxdp))) {
7524                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7525                           ip->saddr, ip->daddr);
7526         } else {
7527                 return ret;
7528         }
7529
7530         tcph = (struct tcphdr *)*tcp;
7531         *tcp_len = get_l4_pyld_length(ip, tcph);
7532         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7533                 lro_t *l_lro = &sp->lro0_n[i];
7534                 if (l_lro->in_use) {
7535                         if (check_for_socket_match(l_lro, ip, tcph))
7536                                 continue;
7537                         /* Sock pair matched */
7538                         *lro = l_lro;
7539
7540                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7541                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7542                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7543                                           (*lro)->tcp_next_seq,
7544                                           ntohl(tcph->seq));
7545
7546                                 sp->mac_control.stats_info->
7547                                    sw_stat.outof_sequence_pkts++;
7548                                 ret = 2;
7549                                 break;
7550                         }
7551
7552                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7553                                 ret = 1; /* Aggregate */
7554                         else
7555                                 ret = 2; /* Flush both */
7556                         break;
7557                 }
7558         }
7559
7560         if (ret == 0) {
7561                 /* Before searching for available LRO objects,
7562                  * check if the pkt is L3/L4 aggregatable. If not
7563                  * don't create new LRO session. Just send this
7564                  * packet up.
7565                  */
7566                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7567                         return 5;
7568                 }
7569
7570                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7571                         lro_t *l_lro = &sp->lro0_n[i];
7572                         if (!(l_lro->in_use)) {
7573                                 *lro = l_lro;
7574                                 ret = 3; /* Begin anew */
7575                                 break;
7576                         }
7577                 }
7578         }
7579
7580         if (ret == 0) { /* sessions exceeded */
7581                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7582                           __FUNCTION__);
7583                 *lro = NULL;
7584                 return ret;
7585         }
7586
7587         switch (ret) {
7588                 case 3:
7589                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7590                         break;
7591                 case 2:
7592                         update_L3L4_header(sp, *lro);
7593                         break;
7594                 case 1:
7595                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7596                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7597                                 update_L3L4_header(sp, *lro);
7598                                 ret = 4; /* Flush the LRO */
7599                         }
7600                         break;
7601                 default:
7602                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7603                                 __FUNCTION__);
7604                         break;
7605         }
7606
7607         return ret;
7608 }
7609
7610 static void clear_lro_session(lro_t *lro)
7611 {
7612         static u16 lro_struct_size = sizeof(lro_t);
7613
7614         memset(lro, 0, lro_struct_size);
7615 }
7616
7617 static void queue_rx_frame(struct sk_buff *skb)
7618 {
7619         struct net_device *dev = skb->dev;
7620
7621         skb->protocol = eth_type_trans(skb, dev);
7622         if (napi)
7623                 netif_receive_skb(skb);
7624         else
7625                 netif_rx(skb);
7626 }
7627
7628 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7629                            u32 tcp_len)
7630 {
7631         struct sk_buff *first = lro->parent;
7632
7633         first->len += tcp_len;
7634         first->data_len = lro->frags_len;
7635         skb_pull(skb, (skb->len - tcp_len));
7636         if (skb_shinfo(first)->frag_list)
7637                 lro->last_frag->next = skb;
7638         else
7639                 skb_shinfo(first)->frag_list = skb;
7640         first->truesize += skb->truesize;
7641         lro->last_frag = skb;
7642         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7643         return;
7644 }