]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/s2io.c
Pull release into acpica branch
[linux-2.6-omap-h63xx.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  * rx_ring_num : This can be used to program the number of receive rings used
30  * in the driver.
31  * rx_ring_sz: This defines the number of descriptors each ring can have. This
32  * is also an array of size 8.
33  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
34  *              values are 1, 2 and 3.
35  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
36  * tx_fifo_len: This too is an array of 8. Each element defines the number of
37  * Tx descriptors that can be associated with each corresponding FIFO.
38  ************************************************************************/
39
40 #include <linux/config.h>
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/ioport.h>
45 #include <linux/pci.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/kernel.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/stddef.h>
54 #include <linux/ioctl.h>
55 #include <linux/timex.h>
56 #include <linux/sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/workqueue.h>
59 #include <linux/if_vlan.h>
60
61 #include <asm/system.h>
62 #include <asm/uaccess.h>
63 #include <asm/io.h>
64
65 /* local include */
66 #include "s2io.h"
67 #include "s2io-regs.h"
68
69 #define DRV_VERSION "Version 2.0.9.3"
70
71 /* S2io Driver name & version. */
72 static char s2io_driver_name[] = "Neterion";
73 static char s2io_driver_version[] = DRV_VERSION;
74
75 int rxd_size[4] = {32,48,48,64};
76 int rxd_count[4] = {127,85,85,63};
77
78 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
79 {
80         int ret;
81
82         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
83                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
84
85         return ret;
86 }
87
88 /*
89  * Cards with following subsystem_id have a link state indication
90  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
91  * macro below identifies these cards given the subsystem_id.
92  */
93 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
94         (dev_type == XFRAME_I_DEVICE) ?                 \
95                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
96                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
97
98 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
99                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
100 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
101 #define PANIC   1
102 #define LOW     2
103 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
104 {
105         int level = 0;
106         mac_info_t *mac_control;
107
108         mac_control = &sp->mac_control;
109         if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
110                 level = LOW;
111                 if (rxb_size <= rxd_count[sp->rxd_mode]) {
112                         level = PANIC;
113                 }
114         }
115
116         return level;
117 }
118
119 /* Ethtool related variables and Macros. */
120 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
121         "Register test\t(offline)",
122         "Eeprom test\t(offline)",
123         "Link test\t(online)",
124         "RLDRAM test\t(offline)",
125         "BIST Test\t(offline)"
126 };
127
128 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
129         {"tmac_frms"},
130         {"tmac_data_octets"},
131         {"tmac_drop_frms"},
132         {"tmac_mcst_frms"},
133         {"tmac_bcst_frms"},
134         {"tmac_pause_ctrl_frms"},
135         {"tmac_any_err_frms"},
136         {"tmac_vld_ip_octets"},
137         {"tmac_vld_ip"},
138         {"tmac_drop_ip"},
139         {"tmac_icmp"},
140         {"tmac_rst_tcp"},
141         {"tmac_tcp"},
142         {"tmac_udp"},
143         {"rmac_vld_frms"},
144         {"rmac_data_octets"},
145         {"rmac_fcs_err_frms"},
146         {"rmac_drop_frms"},
147         {"rmac_vld_mcst_frms"},
148         {"rmac_vld_bcst_frms"},
149         {"rmac_in_rng_len_err_frms"},
150         {"rmac_long_frms"},
151         {"rmac_pause_ctrl_frms"},
152         {"rmac_discarded_frms"},
153         {"rmac_usized_frms"},
154         {"rmac_osized_frms"},
155         {"rmac_frag_frms"},
156         {"rmac_jabber_frms"},
157         {"rmac_ip"},
158         {"rmac_ip_octets"},
159         {"rmac_hdr_err_ip"},
160         {"rmac_drop_ip"},
161         {"rmac_icmp"},
162         {"rmac_tcp"},
163         {"rmac_udp"},
164         {"rmac_err_drp_udp"},
165         {"rmac_pause_cnt"},
166         {"rmac_accepted_ip"},
167         {"rmac_err_tcp"},
168         {"\n DRIVER STATISTICS"},
169         {"single_bit_ecc_errs"},
170         {"double_bit_ecc_errs"},
171 };
172
173 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
174 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
175
176 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
177 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
178
179 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
180                         init_timer(&timer);                     \
181                         timer.function = handle;                \
182                         timer.data = (unsigned long) arg;       \
183                         mod_timer(&timer, (jiffies + exp))      \
184
185 /* Add the vlan */
186 static void s2io_vlan_rx_register(struct net_device *dev,
187                                         struct vlan_group *grp)
188 {
189         nic_t *nic = dev->priv;
190         unsigned long flags;
191
192         spin_lock_irqsave(&nic->tx_lock, flags);
193         nic->vlgrp = grp;
194         spin_unlock_irqrestore(&nic->tx_lock, flags);
195 }
196
197 /* Unregister the vlan */
198 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
199 {
200         nic_t *nic = dev->priv;
201         unsigned long flags;
202
203         spin_lock_irqsave(&nic->tx_lock, flags);
204         if (nic->vlgrp)
205                 nic->vlgrp->vlan_devices[vid] = NULL;
206         spin_unlock_irqrestore(&nic->tx_lock, flags);
207 }
208
209 /*
210  * Constants to be programmed into the Xena's registers, to configure
211  * the XAUI.
212  */
213
214 #define SWITCH_SIGN     0xA5A5A5A5A5A5A5A5ULL
215 #define END_SIGN        0x0
216
217 static u64 herc_act_dtx_cfg[] = {
218         /* Set address */
219         0x8000051536750000ULL, 0x80000515367500E0ULL,
220         /* Write data */
221         0x8000051536750004ULL, 0x80000515367500E4ULL,
222         /* Set address */
223         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
224         /* Write data */
225         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
226         /* Set address */
227         0x801205150D440000ULL, 0x801205150D4400E0ULL,
228         /* Write data */
229         0x801205150D440004ULL, 0x801205150D4400E4ULL,
230         /* Set address */
231         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
232         /* Write data */
233         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
234         /* Done */
235         END_SIGN
236 };
237
238 static u64 xena_mdio_cfg[] = {
239         /* Reset PMA PLL */
240         0xC001010000000000ULL, 0xC0010100000000E0ULL,
241         0xC0010100008000E4ULL,
242         /* Remove Reset from PMA PLL */
243         0xC001010000000000ULL, 0xC0010100000000E0ULL,
244         0xC0010100000000E4ULL,
245         END_SIGN
246 };
247
248 static u64 xena_dtx_cfg[] = {
249         0x8000051500000000ULL, 0x80000515000000E0ULL,
250         0x80000515D93500E4ULL, 0x8001051500000000ULL,
251         0x80010515000000E0ULL, 0x80010515001E00E4ULL,
252         0x8002051500000000ULL, 0x80020515000000E0ULL,
253         0x80020515F21000E4ULL,
254         /* Set PADLOOPBACKN */
255         0x8002051500000000ULL, 0x80020515000000E0ULL,
256         0x80020515B20000E4ULL, 0x8003051500000000ULL,
257         0x80030515000000E0ULL, 0x80030515B20000E4ULL,
258         0x8004051500000000ULL, 0x80040515000000E0ULL,
259         0x80040515B20000E4ULL, 0x8005051500000000ULL,
260         0x80050515000000E0ULL, 0x80050515B20000E4ULL,
261         SWITCH_SIGN,
262         /* Remove PADLOOPBACKN */
263         0x8002051500000000ULL, 0x80020515000000E0ULL,
264         0x80020515F20000E4ULL, 0x8003051500000000ULL,
265         0x80030515000000E0ULL, 0x80030515F20000E4ULL,
266         0x8004051500000000ULL, 0x80040515000000E0ULL,
267         0x80040515F20000E4ULL, 0x8005051500000000ULL,
268         0x80050515000000E0ULL, 0x80050515F20000E4ULL,
269         END_SIGN
270 };
271
272 /*
273  * Constants for Fixing the MacAddress problem seen mostly on
274  * Alpha machines.
275  */
276 static u64 fix_mac[] = {
277         0x0060000000000000ULL, 0x0060600000000000ULL,
278         0x0040600000000000ULL, 0x0000600000000000ULL,
279         0x0020600000000000ULL, 0x0060600000000000ULL,
280         0x0020600000000000ULL, 0x0060600000000000ULL,
281         0x0020600000000000ULL, 0x0060600000000000ULL,
282         0x0020600000000000ULL, 0x0060600000000000ULL,
283         0x0020600000000000ULL, 0x0060600000000000ULL,
284         0x0020600000000000ULL, 0x0060600000000000ULL,
285         0x0020600000000000ULL, 0x0060600000000000ULL,
286         0x0020600000000000ULL, 0x0060600000000000ULL,
287         0x0020600000000000ULL, 0x0060600000000000ULL,
288         0x0020600000000000ULL, 0x0060600000000000ULL,
289         0x0020600000000000ULL, 0x0000600000000000ULL,
290         0x0040600000000000ULL, 0x0060600000000000ULL,
291         END_SIGN
292 };
293
294 /* Module Loadable parameters. */
295 static unsigned int tx_fifo_num = 1;
296 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
297     {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
298 static unsigned int rx_ring_num = 1;
299 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
300     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
301 static unsigned int rts_frm_len[MAX_RX_RINGS] =
302     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
303 static unsigned int rx_ring_mode = 1;
304 static unsigned int use_continuous_tx_intrs = 1;
305 static unsigned int rmac_pause_time = 65535;
306 static unsigned int mc_pause_threshold_q0q3 = 187;
307 static unsigned int mc_pause_threshold_q4q7 = 187;
308 static unsigned int shared_splits;
309 static unsigned int tmac_util_period = 5;
310 static unsigned int rmac_util_period = 5;
311 static unsigned int bimodal = 0;
312 static unsigned int l3l4hdr_size = 128;
313 #ifndef CONFIG_S2IO_NAPI
314 static unsigned int indicate_max_pkts;
315 #endif
316 /* Frequency of Rx desc syncs expressed as power of 2 */
317 static unsigned int rxsync_frequency = 3;
318 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
319 static unsigned int intr_type = 0;
320
321 /*
322  * S2IO device table.
323  * This table lists all the devices that this driver supports.
324  */
325 static struct pci_device_id s2io_tbl[] __devinitdata = {
326         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
327          PCI_ANY_ID, PCI_ANY_ID},
328         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
329          PCI_ANY_ID, PCI_ANY_ID},
330         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
331          PCI_ANY_ID, PCI_ANY_ID},
332         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
333          PCI_ANY_ID, PCI_ANY_ID},
334         {0,}
335 };
336
337 MODULE_DEVICE_TABLE(pci, s2io_tbl);
338
339 static struct pci_driver s2io_driver = {
340       .name = "S2IO",
341       .id_table = s2io_tbl,
342       .probe = s2io_init_nic,
343       .remove = __devexit_p(s2io_rem_nic),
344 };
345
346 /* A simplifier macro used both by init and free shared_mem Fns(). */
347 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
348
349 /**
350  * init_shared_mem - Allocation and Initialization of Memory
351  * @nic: Device private variable.
352  * Description: The function allocates all the memory areas shared
353  * between the NIC and the driver. This includes Tx descriptors,
354  * Rx descriptors and the statistics block.
355  */
356
357 static int init_shared_mem(struct s2io_nic *nic)
358 {
359         u32 size;
360         void *tmp_v_addr, *tmp_v_addr_next;
361         dma_addr_t tmp_p_addr, tmp_p_addr_next;
362         RxD_block_t *pre_rxd_blk = NULL;
363         int i, j, blk_cnt, rx_sz, tx_sz;
364         int lst_size, lst_per_page;
365         struct net_device *dev = nic->dev;
366         unsigned long tmp;
367         buffAdd_t *ba;
368
369         mac_info_t *mac_control;
370         struct config_param *config;
371
372         mac_control = &nic->mac_control;
373         config = &nic->config;
374
375
376         /* Allocation and initialization of TXDLs in FIOFs */
377         size = 0;
378         for (i = 0; i < config->tx_fifo_num; i++) {
379                 size += config->tx_cfg[i].fifo_len;
380         }
381         if (size > MAX_AVAILABLE_TXDS) {
382                 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
383                           __FUNCTION__);
384                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
385                 return FAILURE;
386         }
387
388         lst_size = (sizeof(TxD_t) * config->max_txds);
389         tx_sz = lst_size * size;
390         lst_per_page = PAGE_SIZE / lst_size;
391
392         for (i = 0; i < config->tx_fifo_num; i++) {
393                 int fifo_len = config->tx_cfg[i].fifo_len;
394                 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
395                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
396                                                           GFP_KERNEL);
397                 if (!mac_control->fifos[i].list_info) {
398                         DBG_PRINT(ERR_DBG,
399                                   "Malloc failed for list_info\n");
400                         return -ENOMEM;
401                 }
402                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
403         }
404         for (i = 0; i < config->tx_fifo_num; i++) {
405                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
406                                                 lst_per_page);
407                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
408                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
409                     config->tx_cfg[i].fifo_len - 1;
410                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
411                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
412                     config->tx_cfg[i].fifo_len - 1;
413                 mac_control->fifos[i].fifo_no = i;
414                 mac_control->fifos[i].nic = nic;
415                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 1;
416
417                 for (j = 0; j < page_num; j++) {
418                         int k = 0;
419                         dma_addr_t tmp_p;
420                         void *tmp_v;
421                         tmp_v = pci_alloc_consistent(nic->pdev,
422                                                      PAGE_SIZE, &tmp_p);
423                         if (!tmp_v) {
424                                 DBG_PRINT(ERR_DBG,
425                                           "pci_alloc_consistent ");
426                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
427                                 return -ENOMEM;
428                         }
429                         /* If we got a zero DMA address(can happen on
430                          * certain platforms like PPC), reallocate.
431                          * Store virtual address of page we don't want,
432                          * to be freed later.
433                          */
434                         if (!tmp_p) {
435                                 mac_control->zerodma_virt_addr = tmp_v;
436                                 DBG_PRINT(INIT_DBG, 
437                                 "%s: Zero DMA address for TxDL. ", dev->name);
438                                 DBG_PRINT(INIT_DBG, 
439                                 "Virtual address %p\n", tmp_v);
440                                 tmp_v = pci_alloc_consistent(nic->pdev,
441                                                      PAGE_SIZE, &tmp_p);
442                                 if (!tmp_v) {
443                                         DBG_PRINT(ERR_DBG,
444                                           "pci_alloc_consistent ");
445                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
446                                         return -ENOMEM;
447                                 }
448                         }
449                         while (k < lst_per_page) {
450                                 int l = (j * lst_per_page) + k;
451                                 if (l == config->tx_cfg[i].fifo_len)
452                                         break;
453                                 mac_control->fifos[i].list_info[l].list_virt_addr =
454                                     tmp_v + (k * lst_size);
455                                 mac_control->fifos[i].list_info[l].list_phy_addr =
456                                     tmp_p + (k * lst_size);
457                                 k++;
458                         }
459                 }
460         }
461
462         /* Allocation and initialization of RXDs in Rings */
463         size = 0;
464         for (i = 0; i < config->rx_ring_num; i++) {
465                 if (config->rx_cfg[i].num_rxd %
466                     (rxd_count[nic->rxd_mode] + 1)) {
467                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
468                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
469                                   i);
470                         DBG_PRINT(ERR_DBG, "RxDs per Block");
471                         return FAILURE;
472                 }
473                 size += config->rx_cfg[i].num_rxd;
474                 mac_control->rings[i].block_count =
475                         config->rx_cfg[i].num_rxd /
476                         (rxd_count[nic->rxd_mode] + 1 );
477                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
478                         mac_control->rings[i].block_count;
479         }
480         if (nic->rxd_mode == RXD_MODE_1)
481                 size = (size * (sizeof(RxD1_t)));
482         else
483                 size = (size * (sizeof(RxD3_t)));
484         rx_sz = size;
485
486         for (i = 0; i < config->rx_ring_num; i++) {
487                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
488                 mac_control->rings[i].rx_curr_get_info.offset = 0;
489                 mac_control->rings[i].rx_curr_get_info.ring_len =
490                     config->rx_cfg[i].num_rxd - 1;
491                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
492                 mac_control->rings[i].rx_curr_put_info.offset = 0;
493                 mac_control->rings[i].rx_curr_put_info.ring_len =
494                     config->rx_cfg[i].num_rxd - 1;
495                 mac_control->rings[i].nic = nic;
496                 mac_control->rings[i].ring_no = i;
497
498                 blk_cnt = config->rx_cfg[i].num_rxd /
499                                 (rxd_count[nic->rxd_mode] + 1);
500                 /*  Allocating all the Rx blocks */
501                 for (j = 0; j < blk_cnt; j++) {
502                         rx_block_info_t *rx_blocks;
503                         int l;
504
505                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
506                         size = SIZE_OF_BLOCK; //size is always page size
507                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
508                                                           &tmp_p_addr);
509                         if (tmp_v_addr == NULL) {
510                                 /*
511                                  * In case of failure, free_shared_mem()
512                                  * is called, which should free any
513                                  * memory that was alloced till the
514                                  * failure happened.
515                                  */
516                                 rx_blocks->block_virt_addr = tmp_v_addr;
517                                 return -ENOMEM;
518                         }
519                         memset(tmp_v_addr, 0, size);
520                         rx_blocks->block_virt_addr = tmp_v_addr;
521                         rx_blocks->block_dma_addr = tmp_p_addr;
522                         rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
523                                                   rxd_count[nic->rxd_mode],
524                                                   GFP_KERNEL);
525                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
526                                 rx_blocks->rxds[l].virt_addr =
527                                         rx_blocks->block_virt_addr +
528                                         (rxd_size[nic->rxd_mode] * l);
529                                 rx_blocks->rxds[l].dma_addr =
530                                         rx_blocks->block_dma_addr +
531                                         (rxd_size[nic->rxd_mode] * l);
532                         }
533
534                         mac_control->rings[i].rx_blocks[j].block_virt_addr =
535                                 tmp_v_addr;
536                         mac_control->rings[i].rx_blocks[j].block_dma_addr =
537                                 tmp_p_addr;
538                 }
539                 /* Interlinking all Rx Blocks */
540                 for (j = 0; j < blk_cnt; j++) {
541                         tmp_v_addr =
542                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
543                         tmp_v_addr_next =
544                                 mac_control->rings[i].rx_blocks[(j + 1) %
545                                               blk_cnt].block_virt_addr;
546                         tmp_p_addr =
547                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
548                         tmp_p_addr_next =
549                                 mac_control->rings[i].rx_blocks[(j + 1) %
550                                               blk_cnt].block_dma_addr;
551
552                         pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
553                         pre_rxd_blk->reserved_2_pNext_RxD_block =
554                             (unsigned long) tmp_v_addr_next;
555                         pre_rxd_blk->pNext_RxD_Blk_physical =
556                             (u64) tmp_p_addr_next;
557                 }
558         }
559         if (nic->rxd_mode >= RXD_MODE_3A) {
560                 /*
561                  * Allocation of Storages for buffer addresses in 2BUFF mode
562                  * and the buffers as well.
563                  */
564                 for (i = 0; i < config->rx_ring_num; i++) {
565                         blk_cnt = config->rx_cfg[i].num_rxd /
566                            (rxd_count[nic->rxd_mode]+ 1);
567                         mac_control->rings[i].ba =
568                                 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
569                                      GFP_KERNEL);
570                         if (!mac_control->rings[i].ba)
571                                 return -ENOMEM;
572                         for (j = 0; j < blk_cnt; j++) {
573                                 int k = 0;
574                                 mac_control->rings[i].ba[j] =
575                                         kmalloc((sizeof(buffAdd_t) *
576                                                 (rxd_count[nic->rxd_mode] + 1)),
577                                                 GFP_KERNEL);
578                                 if (!mac_control->rings[i].ba[j])
579                                         return -ENOMEM;
580                                 while (k != rxd_count[nic->rxd_mode]) {
581                                         ba = &mac_control->rings[i].ba[j][k];
582
583                                         ba->ba_0_org = (void *) kmalloc
584                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
585                                         if (!ba->ba_0_org)
586                                                 return -ENOMEM;
587                                         tmp = (unsigned long)ba->ba_0_org;
588                                         tmp += ALIGN_SIZE;
589                                         tmp &= ~((unsigned long) ALIGN_SIZE);
590                                         ba->ba_0 = (void *) tmp;
591
592                                         ba->ba_1_org = (void *) kmalloc
593                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
594                                         if (!ba->ba_1_org)
595                                                 return -ENOMEM;
596                                         tmp = (unsigned long) ba->ba_1_org;
597                                         tmp += ALIGN_SIZE;
598                                         tmp &= ~((unsigned long) ALIGN_SIZE);
599                                         ba->ba_1 = (void *) tmp;
600                                         k++;
601                                 }
602                         }
603                 }
604         }
605
606         /* Allocation and initialization of Statistics block */
607         size = sizeof(StatInfo_t);
608         mac_control->stats_mem = pci_alloc_consistent
609             (nic->pdev, size, &mac_control->stats_mem_phy);
610
611         if (!mac_control->stats_mem) {
612                 /*
613                  * In case of failure, free_shared_mem() is called, which
614                  * should free any memory that was alloced till the
615                  * failure happened.
616                  */
617                 return -ENOMEM;
618         }
619         mac_control->stats_mem_sz = size;
620
621         tmp_v_addr = mac_control->stats_mem;
622         mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
623         memset(tmp_v_addr, 0, size);
624         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
625                   (unsigned long long) tmp_p_addr);
626
627         return SUCCESS;
628 }
629
630 /**
631  * free_shared_mem - Free the allocated Memory
632  * @nic:  Device private variable.
633  * Description: This function is to free all memory locations allocated by
634  * the init_shared_mem() function and return it to the kernel.
635  */
636
637 static void free_shared_mem(struct s2io_nic *nic)
638 {
639         int i, j, blk_cnt, size;
640         void *tmp_v_addr;
641         dma_addr_t tmp_p_addr;
642         mac_info_t *mac_control;
643         struct config_param *config;
644         int lst_size, lst_per_page;
645         struct net_device *dev = nic->dev;
646
647         if (!nic)
648                 return;
649
650         mac_control = &nic->mac_control;
651         config = &nic->config;
652
653         lst_size = (sizeof(TxD_t) * config->max_txds);
654         lst_per_page = PAGE_SIZE / lst_size;
655
656         for (i = 0; i < config->tx_fifo_num; i++) {
657                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
658                                                 lst_per_page);
659                 for (j = 0; j < page_num; j++) {
660                         int mem_blks = (j * lst_per_page);
661                         if (!mac_control->fifos[i].list_info)
662                                 return; 
663                         if (!mac_control->fifos[i].list_info[mem_blks].
664                                  list_virt_addr)
665                                 break;
666                         pci_free_consistent(nic->pdev, PAGE_SIZE,
667                                             mac_control->fifos[i].
668                                             list_info[mem_blks].
669                                             list_virt_addr,
670                                             mac_control->fifos[i].
671                                             list_info[mem_blks].
672                                             list_phy_addr);
673                 }
674                 /* If we got a zero DMA address during allocation,
675                  * free the page now
676                  */
677                 if (mac_control->zerodma_virt_addr) {
678                         pci_free_consistent(nic->pdev, PAGE_SIZE,
679                                             mac_control->zerodma_virt_addr,
680                                             (dma_addr_t)0);
681                         DBG_PRINT(INIT_DBG, 
682                                 "%s: Freeing TxDL with zero DMA addr. ",
683                                 dev->name);
684                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
685                                 mac_control->zerodma_virt_addr);
686                 }
687                 kfree(mac_control->fifos[i].list_info);
688         }
689
690         size = SIZE_OF_BLOCK;
691         for (i = 0; i < config->rx_ring_num; i++) {
692                 blk_cnt = mac_control->rings[i].block_count;
693                 for (j = 0; j < blk_cnt; j++) {
694                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
695                                 block_virt_addr;
696                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
697                                 block_dma_addr;
698                         if (tmp_v_addr == NULL)
699                                 break;
700                         pci_free_consistent(nic->pdev, size,
701                                             tmp_v_addr, tmp_p_addr);
702                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
703                 }
704         }
705
706         if (nic->rxd_mode >= RXD_MODE_3A) {
707                 /* Freeing buffer storage addresses in 2BUFF mode. */
708                 for (i = 0; i < config->rx_ring_num; i++) {
709                         blk_cnt = config->rx_cfg[i].num_rxd /
710                             (rxd_count[nic->rxd_mode] + 1);
711                         for (j = 0; j < blk_cnt; j++) {
712                                 int k = 0;
713                                 if (!mac_control->rings[i].ba[j])
714                                         continue;
715                                 while (k != rxd_count[nic->rxd_mode]) {
716                                         buffAdd_t *ba =
717                                                 &mac_control->rings[i].ba[j][k];
718                                         kfree(ba->ba_0_org);
719                                         kfree(ba->ba_1_org);
720                                         k++;
721                                 }
722                                 kfree(mac_control->rings[i].ba[j]);
723                         }
724                         kfree(mac_control->rings[i].ba);
725                 }
726         }
727
728         if (mac_control->stats_mem) {
729                 pci_free_consistent(nic->pdev,
730                                     mac_control->stats_mem_sz,
731                                     mac_control->stats_mem,
732                                     mac_control->stats_mem_phy);
733         }
734 }
735
736 /**
737  * s2io_verify_pci_mode -
738  */
739
740 static int s2io_verify_pci_mode(nic_t *nic)
741 {
742         XENA_dev_config_t __iomem *bar0 = nic->bar0;
743         register u64 val64 = 0;
744         int     mode;
745
746         val64 = readq(&bar0->pci_mode);
747         mode = (u8)GET_PCI_MODE(val64);
748
749         if ( val64 & PCI_MODE_UNKNOWN_MODE)
750                 return -1;      /* Unknown PCI mode */
751         return mode;
752 }
753
754
755 /**
756  * s2io_print_pci_mode -
757  */
758 static int s2io_print_pci_mode(nic_t *nic)
759 {
760         XENA_dev_config_t __iomem *bar0 = nic->bar0;
761         register u64 val64 = 0;
762         int     mode;
763         struct config_param *config = &nic->config;
764
765         val64 = readq(&bar0->pci_mode);
766         mode = (u8)GET_PCI_MODE(val64);
767
768         if ( val64 & PCI_MODE_UNKNOWN_MODE)
769                 return -1;      /* Unknown PCI mode */
770
771         if (val64 & PCI_MODE_32_BITS) {
772                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
773         } else {
774                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
775         }
776
777         switch(mode) {
778                 case PCI_MODE_PCI_33:
779                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
780                         config->bus_speed = 33;
781                         break;
782                 case PCI_MODE_PCI_66:
783                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
784                         config->bus_speed = 133;
785                         break;
786                 case PCI_MODE_PCIX_M1_66:
787                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
788                         config->bus_speed = 133; /* Herc doubles the clock rate */
789                         break;
790                 case PCI_MODE_PCIX_M1_100:
791                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
792                         config->bus_speed = 200;
793                         break;
794                 case PCI_MODE_PCIX_M1_133:
795                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
796                         config->bus_speed = 266;
797                         break;
798                 case PCI_MODE_PCIX_M2_66:
799                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
800                         config->bus_speed = 133;
801                         break;
802                 case PCI_MODE_PCIX_M2_100:
803                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
804                         config->bus_speed = 200;
805                         break;
806                 case PCI_MODE_PCIX_M2_133:
807                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
808                         config->bus_speed = 266;
809                         break;
810                 default:
811                         return -1;      /* Unsupported bus speed */
812         }
813
814         return mode;
815 }
816
817 /**
818  *  init_nic - Initialization of hardware
819  *  @nic: device peivate variable
820  *  Description: The function sequentially configures every block
821  *  of the H/W from their reset values.
822  *  Return Value:  SUCCESS on success and
823  *  '-1' on failure (endian settings incorrect).
824  */
825
826 static int init_nic(struct s2io_nic *nic)
827 {
828         XENA_dev_config_t __iomem *bar0 = nic->bar0;
829         struct net_device *dev = nic->dev;
830         register u64 val64 = 0;
831         void __iomem *add;
832         u32 time;
833         int i, j;
834         mac_info_t *mac_control;
835         struct config_param *config;
836         int mdio_cnt = 0, dtx_cnt = 0;
837         unsigned long long mem_share;
838         int mem_size;
839
840         mac_control = &nic->mac_control;
841         config = &nic->config;
842
843         /* to set the swapper controle on the card */
844         if(s2io_set_swapper(nic)) {
845                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
846                 return -1;
847         }
848
849         /*
850          * Herc requires EOI to be removed from reset before XGXS, so..
851          */
852         if (nic->device_type & XFRAME_II_DEVICE) {
853                 val64 = 0xA500000000ULL;
854                 writeq(val64, &bar0->sw_reset);
855                 msleep(500);
856                 val64 = readq(&bar0->sw_reset);
857         }
858
859         /* Remove XGXS from reset state */
860         val64 = 0;
861         writeq(val64, &bar0->sw_reset);
862         msleep(500);
863         val64 = readq(&bar0->sw_reset);
864
865         /*  Enable Receiving broadcasts */
866         add = &bar0->mac_cfg;
867         val64 = readq(&bar0->mac_cfg);
868         val64 |= MAC_RMAC_BCAST_ENABLE;
869         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
870         writel((u32) val64, add);
871         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
872         writel((u32) (val64 >> 32), (add + 4));
873
874         /* Read registers in all blocks */
875         val64 = readq(&bar0->mac_int_mask);
876         val64 = readq(&bar0->mc_int_mask);
877         val64 = readq(&bar0->xgxs_int_mask);
878
879         /*  Set MTU */
880         val64 = dev->mtu;
881         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
882
883         /*
884          * Configuring the XAUI Interface of Xena.
885          * ***************************************
886          * To Configure the Xena's XAUI, one has to write a series
887          * of 64 bit values into two registers in a particular
888          * sequence. Hence a macro 'SWITCH_SIGN' has been defined
889          * which will be defined in the array of configuration values
890          * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
891          * to switch writing from one regsiter to another. We continue
892          * writing these values until we encounter the 'END_SIGN' macro.
893          * For example, After making a series of 21 writes into
894          * dtx_control register the 'SWITCH_SIGN' appears and hence we
895          * start writing into mdio_control until we encounter END_SIGN.
896          */
897         if (nic->device_type & XFRAME_II_DEVICE) {
898                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
899                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
900                                           &bar0->dtx_control, UF);
901                         if (dtx_cnt & 0x1)
902                                 msleep(1); /* Necessary!! */
903                         dtx_cnt++;
904                 }
905         } else {
906                 while (1) {
907                       dtx_cfg:
908                         while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
909                                 if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
910                                         dtx_cnt++;
911                                         goto mdio_cfg;
912                                 }
913                                 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
914                                                   &bar0->dtx_control, UF);
915                                 val64 = readq(&bar0->dtx_control);
916                                 dtx_cnt++;
917                         }
918                       mdio_cfg:
919                         while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
920                                 if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
921                                         mdio_cnt++;
922                                         goto dtx_cfg;
923                                 }
924                                 SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
925                                                   &bar0->mdio_control, UF);
926                                 val64 = readq(&bar0->mdio_control);
927                                 mdio_cnt++;
928                         }
929                         if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
930                             (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
931                                 break;
932                         } else {
933                                 goto dtx_cfg;
934                         }
935                 }
936         }
937
938         /*  Tx DMA Initialization */
939         val64 = 0;
940         writeq(val64, &bar0->tx_fifo_partition_0);
941         writeq(val64, &bar0->tx_fifo_partition_1);
942         writeq(val64, &bar0->tx_fifo_partition_2);
943         writeq(val64, &bar0->tx_fifo_partition_3);
944
945
946         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
947                 val64 |=
948                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
949                          13) | vBIT(config->tx_cfg[i].fifo_priority,
950                                     ((i * 32) + 5), 3);
951
952                 if (i == (config->tx_fifo_num - 1)) {
953                         if (i % 2 == 0)
954                                 i++;
955                 }
956
957                 switch (i) {
958                 case 1:
959                         writeq(val64, &bar0->tx_fifo_partition_0);
960                         val64 = 0;
961                         break;
962                 case 3:
963                         writeq(val64, &bar0->tx_fifo_partition_1);
964                         val64 = 0;
965                         break;
966                 case 5:
967                         writeq(val64, &bar0->tx_fifo_partition_2);
968                         val64 = 0;
969                         break;
970                 case 7:
971                         writeq(val64, &bar0->tx_fifo_partition_3);
972                         break;
973                 }
974         }
975
976         /* Enable Tx FIFO partition 0. */
977         val64 = readq(&bar0->tx_fifo_partition_0);
978         val64 |= BIT(0);        /* To enable the FIFO partition. */
979         writeq(val64, &bar0->tx_fifo_partition_0);
980
981         /*
982          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
983          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
984          */
985         if ((nic->device_type == XFRAME_I_DEVICE) &&
986                 (get_xena_rev_id(nic->pdev) < 4))
987                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
988
989         val64 = readq(&bar0->tx_fifo_partition_0);
990         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
991                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
992
993         /*
994          * Initialization of Tx_PA_CONFIG register to ignore packet
995          * integrity checking.
996          */
997         val64 = readq(&bar0->tx_pa_cfg);
998         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
999             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1000         writeq(val64, &bar0->tx_pa_cfg);
1001
1002         /* Rx DMA intialization. */
1003         val64 = 0;
1004         for (i = 0; i < config->rx_ring_num; i++) {
1005                 val64 |=
1006                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1007                          3);
1008         }
1009         writeq(val64, &bar0->rx_queue_priority);
1010
1011         /*
1012          * Allocating equal share of memory to all the
1013          * configured Rings.
1014          */
1015         val64 = 0;
1016         if (nic->device_type & XFRAME_II_DEVICE)
1017                 mem_size = 32;
1018         else
1019                 mem_size = 64;
1020
1021         for (i = 0; i < config->rx_ring_num; i++) {
1022                 switch (i) {
1023                 case 0:
1024                         mem_share = (mem_size / config->rx_ring_num +
1025                                      mem_size % config->rx_ring_num);
1026                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1027                         continue;
1028                 case 1:
1029                         mem_share = (mem_size / config->rx_ring_num);
1030                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1031                         continue;
1032                 case 2:
1033                         mem_share = (mem_size / config->rx_ring_num);
1034                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1035                         continue;
1036                 case 3:
1037                         mem_share = (mem_size / config->rx_ring_num);
1038                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1039                         continue;
1040                 case 4:
1041                         mem_share = (mem_size / config->rx_ring_num);
1042                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1043                         continue;
1044                 case 5:
1045                         mem_share = (mem_size / config->rx_ring_num);
1046                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1047                         continue;
1048                 case 6:
1049                         mem_share = (mem_size / config->rx_ring_num);
1050                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1051                         continue;
1052                 case 7:
1053                         mem_share = (mem_size / config->rx_ring_num);
1054                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1055                         continue;
1056                 }
1057         }
1058         writeq(val64, &bar0->rx_queue_cfg);
1059
1060         /*
1061          * Filling Tx round robin registers
1062          * as per the number of FIFOs
1063          */
1064         switch (config->tx_fifo_num) {
1065         case 1:
1066                 val64 = 0x0000000000000000ULL;
1067                 writeq(val64, &bar0->tx_w_round_robin_0);
1068                 writeq(val64, &bar0->tx_w_round_robin_1);
1069                 writeq(val64, &bar0->tx_w_round_robin_2);
1070                 writeq(val64, &bar0->tx_w_round_robin_3);
1071                 writeq(val64, &bar0->tx_w_round_robin_4);
1072                 break;
1073         case 2:
1074                 val64 = 0x0000010000010000ULL;
1075                 writeq(val64, &bar0->tx_w_round_robin_0);
1076                 val64 = 0x0100000100000100ULL;
1077                 writeq(val64, &bar0->tx_w_round_robin_1);
1078                 val64 = 0x0001000001000001ULL;
1079                 writeq(val64, &bar0->tx_w_round_robin_2);
1080                 val64 = 0x0000010000010000ULL;
1081                 writeq(val64, &bar0->tx_w_round_robin_3);
1082                 val64 = 0x0100000000000000ULL;
1083                 writeq(val64, &bar0->tx_w_round_robin_4);
1084                 break;
1085         case 3:
1086                 val64 = 0x0001000102000001ULL;
1087                 writeq(val64, &bar0->tx_w_round_robin_0);
1088                 val64 = 0x0001020000010001ULL;
1089                 writeq(val64, &bar0->tx_w_round_robin_1);
1090                 val64 = 0x0200000100010200ULL;
1091                 writeq(val64, &bar0->tx_w_round_robin_2);
1092                 val64 = 0x0001000102000001ULL;
1093                 writeq(val64, &bar0->tx_w_round_robin_3);
1094                 val64 = 0x0001020000000000ULL;
1095                 writeq(val64, &bar0->tx_w_round_robin_4);
1096                 break;
1097         case 4:
1098                 val64 = 0x0001020300010200ULL;
1099                 writeq(val64, &bar0->tx_w_round_robin_0);
1100                 val64 = 0x0100000102030001ULL;
1101                 writeq(val64, &bar0->tx_w_round_robin_1);
1102                 val64 = 0x0200010000010203ULL;
1103                 writeq(val64, &bar0->tx_w_round_robin_2);
1104                 val64 = 0x0001020001000001ULL;
1105                 writeq(val64, &bar0->tx_w_round_robin_3);
1106                 val64 = 0x0203000100000000ULL;
1107                 writeq(val64, &bar0->tx_w_round_robin_4);
1108                 break;
1109         case 5:
1110                 val64 = 0x0001000203000102ULL;
1111                 writeq(val64, &bar0->tx_w_round_robin_0);
1112                 val64 = 0x0001020001030004ULL;
1113                 writeq(val64, &bar0->tx_w_round_robin_1);
1114                 val64 = 0x0001000203000102ULL;
1115                 writeq(val64, &bar0->tx_w_round_robin_2);
1116                 val64 = 0x0001020001030004ULL;
1117                 writeq(val64, &bar0->tx_w_round_robin_3);
1118                 val64 = 0x0001000000000000ULL;
1119                 writeq(val64, &bar0->tx_w_round_robin_4);
1120                 break;
1121         case 6:
1122                 val64 = 0x0001020304000102ULL;
1123                 writeq(val64, &bar0->tx_w_round_robin_0);
1124                 val64 = 0x0304050001020001ULL;
1125                 writeq(val64, &bar0->tx_w_round_robin_1);
1126                 val64 = 0x0203000100000102ULL;
1127                 writeq(val64, &bar0->tx_w_round_robin_2);
1128                 val64 = 0x0304000102030405ULL;
1129                 writeq(val64, &bar0->tx_w_round_robin_3);
1130                 val64 = 0x0001000200000000ULL;
1131                 writeq(val64, &bar0->tx_w_round_robin_4);
1132                 break;
1133         case 7:
1134                 val64 = 0x0001020001020300ULL;
1135                 writeq(val64, &bar0->tx_w_round_robin_0);
1136                 val64 = 0x0102030400010203ULL;
1137                 writeq(val64, &bar0->tx_w_round_robin_1);
1138                 val64 = 0x0405060001020001ULL;
1139                 writeq(val64, &bar0->tx_w_round_robin_2);
1140                 val64 = 0x0304050000010200ULL;
1141                 writeq(val64, &bar0->tx_w_round_robin_3);
1142                 val64 = 0x0102030000000000ULL;
1143                 writeq(val64, &bar0->tx_w_round_robin_4);
1144                 break;
1145         case 8:
1146                 val64 = 0x0001020300040105ULL;
1147                 writeq(val64, &bar0->tx_w_round_robin_0);
1148                 val64 = 0x0200030106000204ULL;
1149                 writeq(val64, &bar0->tx_w_round_robin_1);
1150                 val64 = 0x0103000502010007ULL;
1151                 writeq(val64, &bar0->tx_w_round_robin_2);
1152                 val64 = 0x0304010002060500ULL;
1153                 writeq(val64, &bar0->tx_w_round_robin_3);
1154                 val64 = 0x0103020400000000ULL;
1155                 writeq(val64, &bar0->tx_w_round_robin_4);
1156                 break;
1157         }
1158
1159         /* Filling the Rx round robin registers as per the
1160          * number of Rings and steering based on QoS.
1161          */
1162         switch (config->rx_ring_num) {
1163         case 1:
1164                 val64 = 0x8080808080808080ULL;
1165                 writeq(val64, &bar0->rts_qos_steering);
1166                 break;
1167         case 2:
1168                 val64 = 0x0000010000010000ULL;
1169                 writeq(val64, &bar0->rx_w_round_robin_0);
1170                 val64 = 0x0100000100000100ULL;
1171                 writeq(val64, &bar0->rx_w_round_robin_1);
1172                 val64 = 0x0001000001000001ULL;
1173                 writeq(val64, &bar0->rx_w_round_robin_2);
1174                 val64 = 0x0000010000010000ULL;
1175                 writeq(val64, &bar0->rx_w_round_robin_3);
1176                 val64 = 0x0100000000000000ULL;
1177                 writeq(val64, &bar0->rx_w_round_robin_4);
1178
1179                 val64 = 0x8080808040404040ULL;
1180                 writeq(val64, &bar0->rts_qos_steering);
1181                 break;
1182         case 3:
1183                 val64 = 0x0001000102000001ULL;
1184                 writeq(val64, &bar0->rx_w_round_robin_0);
1185                 val64 = 0x0001020000010001ULL;
1186                 writeq(val64, &bar0->rx_w_round_robin_1);
1187                 val64 = 0x0200000100010200ULL;
1188                 writeq(val64, &bar0->rx_w_round_robin_2);
1189                 val64 = 0x0001000102000001ULL;
1190                 writeq(val64, &bar0->rx_w_round_robin_3);
1191                 val64 = 0x0001020000000000ULL;
1192                 writeq(val64, &bar0->rx_w_round_robin_4);
1193
1194                 val64 = 0x8080804040402020ULL;
1195                 writeq(val64, &bar0->rts_qos_steering);
1196                 break;
1197         case 4:
1198                 val64 = 0x0001020300010200ULL;
1199                 writeq(val64, &bar0->rx_w_round_robin_0);
1200                 val64 = 0x0100000102030001ULL;
1201                 writeq(val64, &bar0->rx_w_round_robin_1);
1202                 val64 = 0x0200010000010203ULL;
1203                 writeq(val64, &bar0->rx_w_round_robin_2);
1204                 val64 = 0x0001020001000001ULL;  
1205                 writeq(val64, &bar0->rx_w_round_robin_3);
1206                 val64 = 0x0203000100000000ULL;
1207                 writeq(val64, &bar0->rx_w_round_robin_4);
1208
1209                 val64 = 0x8080404020201010ULL;
1210                 writeq(val64, &bar0->rts_qos_steering);
1211                 break;
1212         case 5:
1213                 val64 = 0x0001000203000102ULL;
1214                 writeq(val64, &bar0->rx_w_round_robin_0);
1215                 val64 = 0x0001020001030004ULL;
1216                 writeq(val64, &bar0->rx_w_round_robin_1);
1217                 val64 = 0x0001000203000102ULL;
1218                 writeq(val64, &bar0->rx_w_round_robin_2);
1219                 val64 = 0x0001020001030004ULL;
1220                 writeq(val64, &bar0->rx_w_round_robin_3);
1221                 val64 = 0x0001000000000000ULL;
1222                 writeq(val64, &bar0->rx_w_round_robin_4);
1223
1224                 val64 = 0x8080404020201008ULL;
1225                 writeq(val64, &bar0->rts_qos_steering);
1226                 break;
1227         case 6:
1228                 val64 = 0x0001020304000102ULL;
1229                 writeq(val64, &bar0->rx_w_round_robin_0);
1230                 val64 = 0x0304050001020001ULL;
1231                 writeq(val64, &bar0->rx_w_round_robin_1);
1232                 val64 = 0x0203000100000102ULL;
1233                 writeq(val64, &bar0->rx_w_round_robin_2);
1234                 val64 = 0x0304000102030405ULL;
1235                 writeq(val64, &bar0->rx_w_round_robin_3);
1236                 val64 = 0x0001000200000000ULL;
1237                 writeq(val64, &bar0->rx_w_round_robin_4);
1238
1239                 val64 = 0x8080404020100804ULL;
1240                 writeq(val64, &bar0->rts_qos_steering);
1241                 break;
1242         case 7:
1243                 val64 = 0x0001020001020300ULL;
1244                 writeq(val64, &bar0->rx_w_round_robin_0);
1245                 val64 = 0x0102030400010203ULL;
1246                 writeq(val64, &bar0->rx_w_round_robin_1);
1247                 val64 = 0x0405060001020001ULL;
1248                 writeq(val64, &bar0->rx_w_round_robin_2);
1249                 val64 = 0x0304050000010200ULL;
1250                 writeq(val64, &bar0->rx_w_round_robin_3);
1251                 val64 = 0x0102030000000000ULL;
1252                 writeq(val64, &bar0->rx_w_round_robin_4);
1253
1254                 val64 = 0x8080402010080402ULL;
1255                 writeq(val64, &bar0->rts_qos_steering);
1256                 break;
1257         case 8:
1258                 val64 = 0x0001020300040105ULL;
1259                 writeq(val64, &bar0->rx_w_round_robin_0);
1260                 val64 = 0x0200030106000204ULL;
1261                 writeq(val64, &bar0->rx_w_round_robin_1);
1262                 val64 = 0x0103000502010007ULL;
1263                 writeq(val64, &bar0->rx_w_round_robin_2);
1264                 val64 = 0x0304010002060500ULL;
1265                 writeq(val64, &bar0->rx_w_round_robin_3);
1266                 val64 = 0x0103020400000000ULL;
1267                 writeq(val64, &bar0->rx_w_round_robin_4);
1268
1269                 val64 = 0x8040201008040201ULL;
1270                 writeq(val64, &bar0->rts_qos_steering);
1271                 break;
1272         }
1273
1274         /* UDP Fix */
1275         val64 = 0;
1276         for (i = 0; i < 8; i++)
1277                 writeq(val64, &bar0->rts_frm_len_n[i]);
1278
1279         /* Set the default rts frame length for the rings configured */
1280         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1281         for (i = 0 ; i < config->rx_ring_num ; i++)
1282                 writeq(val64, &bar0->rts_frm_len_n[i]);
1283
1284         /* Set the frame length for the configured rings
1285          * desired by the user
1286          */
1287         for (i = 0; i < config->rx_ring_num; i++) {
1288                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1289                  * specified frame length steering.
1290                  * If the user provides the frame length then program
1291                  * the rts_frm_len register for those values or else
1292                  * leave it as it is.
1293                  */
1294                 if (rts_frm_len[i] != 0) {
1295                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1296                                 &bar0->rts_frm_len_n[i]);
1297                 }
1298         }
1299
1300         /* Program statistics memory */
1301         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1302
1303         if (nic->device_type == XFRAME_II_DEVICE) {
1304                 val64 = STAT_BC(0x320);
1305                 writeq(val64, &bar0->stat_byte_cnt);
1306         }
1307
1308         /*
1309          * Initializing the sampling rate for the device to calculate the
1310          * bandwidth utilization.
1311          */
1312         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1313             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1314         writeq(val64, &bar0->mac_link_util);
1315
1316
1317         /*
1318          * Initializing the Transmit and Receive Traffic Interrupt
1319          * Scheme.
1320          */
1321         /*
1322          * TTI Initialization. Default Tx timer gets us about
1323          * 250 interrupts per sec. Continuous interrupts are enabled
1324          * by default.
1325          */
1326         if (nic->device_type == XFRAME_II_DEVICE) {
1327                 int count = (nic->config.bus_speed * 125)/2;
1328                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1329         } else {
1330
1331                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1332         }
1333         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1334             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1335             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1336                 if (use_continuous_tx_intrs)
1337                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1338         writeq(val64, &bar0->tti_data1_mem);
1339
1340         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1341             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1342             TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1343         writeq(val64, &bar0->tti_data2_mem);
1344
1345         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1346         writeq(val64, &bar0->tti_command_mem);
1347
1348         /*
1349          * Once the operation completes, the Strobe bit of the command
1350          * register will be reset. We poll for this particular condition
1351          * We wait for a maximum of 500ms for the operation to complete,
1352          * if it's not complete by then we return error.
1353          */
1354         time = 0;
1355         while (TRUE) {
1356                 val64 = readq(&bar0->tti_command_mem);
1357                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1358                         break;
1359                 }
1360                 if (time > 10) {
1361                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1362                                   dev->name);
1363                         return -1;
1364                 }
1365                 msleep(50);
1366                 time++;
1367         }
1368
1369         if (nic->config.bimodal) {
1370                 int k = 0;
1371                 for (k = 0; k < config->rx_ring_num; k++) {
1372                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1373                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1374                         writeq(val64, &bar0->tti_command_mem);
1375
1376                 /*
1377                  * Once the operation completes, the Strobe bit of the command
1378                  * register will be reset. We poll for this particular condition
1379                  * We wait for a maximum of 500ms for the operation to complete,
1380                  * if it's not complete by then we return error.
1381                 */
1382                         time = 0;
1383                         while (TRUE) {
1384                                 val64 = readq(&bar0->tti_command_mem);
1385                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1386                                         break;
1387                                 }
1388                                 if (time > 10) {
1389                                         DBG_PRINT(ERR_DBG,
1390                                                 "%s: TTI init Failed\n",
1391                                         dev->name);
1392                                         return -1;
1393                                 }
1394                                 time++;
1395                                 msleep(50);
1396                         }
1397                 }
1398         } else {
1399
1400                 /* RTI Initialization */
1401                 if (nic->device_type == XFRAME_II_DEVICE) {
1402                         /*
1403                          * Programmed to generate Apprx 500 Intrs per
1404                          * second
1405                          */
1406                         int count = (nic->config.bus_speed * 125)/4;
1407                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1408                 } else {
1409                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1410                 }
1411                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1412                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1413                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1414
1415                 writeq(val64, &bar0->rti_data1_mem);
1416
1417                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1418                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1419                 if (nic->intr_type == MSI_X)
1420                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1421                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1422                 else
1423                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1424                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1425                 writeq(val64, &bar0->rti_data2_mem);
1426
1427                 for (i = 0; i < config->rx_ring_num; i++) {
1428                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1429                                         | RTI_CMD_MEM_OFFSET(i);
1430                         writeq(val64, &bar0->rti_command_mem);
1431
1432                         /*
1433                          * Once the operation completes, the Strobe bit of the
1434                          * command register will be reset. We poll for this
1435                          * particular condition. We wait for a maximum of 500ms
1436                          * for the operation to complete, if it's not complete
1437                          * by then we return error.
1438                          */
1439                         time = 0;
1440                         while (TRUE) {
1441                                 val64 = readq(&bar0->rti_command_mem);
1442                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1443                                         break;
1444                                 }
1445                                 if (time > 10) {
1446                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1447                                                   dev->name);
1448                                         return -1;
1449                                 }
1450                                 time++;
1451                                 msleep(50);
1452                         }
1453                 }
1454         }
1455
1456         /*
1457          * Initializing proper values as Pause threshold into all
1458          * the 8 Queues on Rx side.
1459          */
1460         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1461         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1462
1463         /* Disable RMAC PAD STRIPPING */
1464         add = &bar0->mac_cfg;
1465         val64 = readq(&bar0->mac_cfg);
1466         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1467         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1468         writel((u32) (val64), add);
1469         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1470         writel((u32) (val64 >> 32), (add + 4));
1471         val64 = readq(&bar0->mac_cfg);
1472
1473         /*
1474          * Set the time value to be inserted in the pause frame
1475          * generated by xena.
1476          */
1477         val64 = readq(&bar0->rmac_pause_cfg);
1478         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1479         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1480         writeq(val64, &bar0->rmac_pause_cfg);
1481
1482         /*
1483          * Set the Threshold Limit for Generating the pause frame
1484          * If the amount of data in any Queue exceeds ratio of
1485          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1486          * pause frame is generated
1487          */
1488         val64 = 0;
1489         for (i = 0; i < 4; i++) {
1490                 val64 |=
1491                     (((u64) 0xFF00 | nic->mac_control.
1492                       mc_pause_threshold_q0q3)
1493                      << (i * 2 * 8));
1494         }
1495         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1496
1497         val64 = 0;
1498         for (i = 0; i < 4; i++) {
1499                 val64 |=
1500                     (((u64) 0xFF00 | nic->mac_control.
1501                       mc_pause_threshold_q4q7)
1502                      << (i * 2 * 8));
1503         }
1504         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1505
1506         /*
1507          * TxDMA will stop Read request if the number of read split has
1508          * exceeded the limit pointed by shared_splits
1509          */
1510         val64 = readq(&bar0->pic_control);
1511         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1512         writeq(val64, &bar0->pic_control);
1513
1514         /*
1515          * Programming the Herc to split every write transaction
1516          * that does not start on an ADB to reduce disconnects.
1517          */
1518         if (nic->device_type == XFRAME_II_DEVICE) {
1519                 val64 = WREQ_SPLIT_MASK_SET_MASK(255);
1520                 writeq(val64, &bar0->wreq_split_mask);
1521         }
1522
1523         /* Setting Link stability period to 64 ms */ 
1524         if (nic->device_type == XFRAME_II_DEVICE) {
1525                 val64 = MISC_LINK_STABILITY_PRD(3);
1526                 writeq(val64, &bar0->misc_control);
1527         }
1528
1529         return SUCCESS;
1530 }
1531 #define LINK_UP_DOWN_INTERRUPT          1
1532 #define MAC_RMAC_ERR_TIMER              2
1533
1534 static int s2io_link_fault_indication(nic_t *nic)
1535 {
1536         if (nic->intr_type != INTA)
1537                 return MAC_RMAC_ERR_TIMER;
1538         if (nic->device_type == XFRAME_II_DEVICE)
1539                 return LINK_UP_DOWN_INTERRUPT;
1540         else
1541                 return MAC_RMAC_ERR_TIMER;
1542 }
1543
1544 /**
1545  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1546  *  @nic: device private variable,
1547  *  @mask: A mask indicating which Intr block must be modified and,
1548  *  @flag: A flag indicating whether to enable or disable the Intrs.
1549  *  Description: This function will either disable or enable the interrupts
1550  *  depending on the flag argument. The mask argument can be used to
1551  *  enable/disable any Intr block.
1552  *  Return Value: NONE.
1553  */
1554
1555 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1556 {
1557         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1558         register u64 val64 = 0, temp64 = 0;
1559
1560         /*  Top level interrupt classification */
1561         /*  PIC Interrupts */
1562         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1563                 /*  Enable PIC Intrs in the general intr mask register */
1564                 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1565                 if (flag == ENABLE_INTRS) {
1566                         temp64 = readq(&bar0->general_int_mask);
1567                         temp64 &= ~((u64) val64);
1568                         writeq(temp64, &bar0->general_int_mask);
1569                         /*
1570                          * If Hercules adapter enable GPIO otherwise
1571                          * disabled all PCIX, Flash, MDIO, IIC and GPIO
1572                          * interrupts for now.
1573                          * TODO
1574                          */
1575                         if (s2io_link_fault_indication(nic) ==
1576                                         LINK_UP_DOWN_INTERRUPT ) {
1577                                 temp64 = readq(&bar0->pic_int_mask);
1578                                 temp64 &= ~((u64) PIC_INT_GPIO);
1579                                 writeq(temp64, &bar0->pic_int_mask);
1580                                 temp64 = readq(&bar0->gpio_int_mask);
1581                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1582                                 writeq(temp64, &bar0->gpio_int_mask);
1583                         } else {
1584                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1585                         }
1586                         /*
1587                          * No MSI Support is available presently, so TTI and
1588                          * RTI interrupts are also disabled.
1589                          */
1590                 } else if (flag == DISABLE_INTRS) {
1591                         /*
1592                          * Disable PIC Intrs in the general
1593                          * intr mask register
1594                          */
1595                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1596                         temp64 = readq(&bar0->general_int_mask);
1597                         val64 |= temp64;
1598                         writeq(val64, &bar0->general_int_mask);
1599                 }
1600         }
1601
1602         /*  DMA Interrupts */
1603         /*  Enabling/Disabling Tx DMA interrupts */
1604         if (mask & TX_DMA_INTR) {
1605                 /* Enable TxDMA Intrs in the general intr mask register */
1606                 val64 = TXDMA_INT_M;
1607                 if (flag == ENABLE_INTRS) {
1608                         temp64 = readq(&bar0->general_int_mask);
1609                         temp64 &= ~((u64) val64);
1610                         writeq(temp64, &bar0->general_int_mask);
1611                         /*
1612                          * Keep all interrupts other than PFC interrupt
1613                          * and PCC interrupt disabled in DMA level.
1614                          */
1615                         val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1616                                                       TXDMA_PCC_INT_M);
1617                         writeq(val64, &bar0->txdma_int_mask);
1618                         /*
1619                          * Enable only the MISC error 1 interrupt in PFC block
1620                          */
1621                         val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1622                         writeq(val64, &bar0->pfc_err_mask);
1623                         /*
1624                          * Enable only the FB_ECC error interrupt in PCC block
1625                          */
1626                         val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1627                         writeq(val64, &bar0->pcc_err_mask);
1628                 } else if (flag == DISABLE_INTRS) {
1629                         /*
1630                          * Disable TxDMA Intrs in the general intr mask
1631                          * register
1632                          */
1633                         writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1634                         writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1635                         temp64 = readq(&bar0->general_int_mask);
1636                         val64 |= temp64;
1637                         writeq(val64, &bar0->general_int_mask);
1638                 }
1639         }
1640
1641         /*  Enabling/Disabling Rx DMA interrupts */
1642         if (mask & RX_DMA_INTR) {
1643                 /*  Enable RxDMA Intrs in the general intr mask register */
1644                 val64 = RXDMA_INT_M;
1645                 if (flag == ENABLE_INTRS) {
1646                         temp64 = readq(&bar0->general_int_mask);
1647                         temp64 &= ~((u64) val64);
1648                         writeq(temp64, &bar0->general_int_mask);
1649                         /*
1650                          * All RxDMA block interrupts are disabled for now
1651                          * TODO
1652                          */
1653                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1654                 } else if (flag == DISABLE_INTRS) {
1655                         /*
1656                          * Disable RxDMA Intrs in the general intr mask
1657                          * register
1658                          */
1659                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1660                         temp64 = readq(&bar0->general_int_mask);
1661                         val64 |= temp64;
1662                         writeq(val64, &bar0->general_int_mask);
1663                 }
1664         }
1665
1666         /*  MAC Interrupts */
1667         /*  Enabling/Disabling MAC interrupts */
1668         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1669                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1670                 if (flag == ENABLE_INTRS) {
1671                         temp64 = readq(&bar0->general_int_mask);
1672                         temp64 &= ~((u64) val64);
1673                         writeq(temp64, &bar0->general_int_mask);
1674                         /*
1675                          * All MAC block error interrupts are disabled for now
1676                          * TODO
1677                          */
1678                 } else if (flag == DISABLE_INTRS) {
1679                         /*
1680                          * Disable MAC Intrs in the general intr mask register
1681                          */
1682                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1683                         writeq(DISABLE_ALL_INTRS,
1684                                &bar0->mac_rmac_err_mask);
1685
1686                         temp64 = readq(&bar0->general_int_mask);
1687                         val64 |= temp64;
1688                         writeq(val64, &bar0->general_int_mask);
1689                 }
1690         }
1691
1692         /*  XGXS Interrupts */
1693         if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1694                 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1695                 if (flag == ENABLE_INTRS) {
1696                         temp64 = readq(&bar0->general_int_mask);
1697                         temp64 &= ~((u64) val64);
1698                         writeq(temp64, &bar0->general_int_mask);
1699                         /*
1700                          * All XGXS block error interrupts are disabled for now
1701                          * TODO
1702                          */
1703                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1704                 } else if (flag == DISABLE_INTRS) {
1705                         /*
1706                          * Disable MC Intrs in the general intr mask register
1707                          */
1708                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1709                         temp64 = readq(&bar0->general_int_mask);
1710                         val64 |= temp64;
1711                         writeq(val64, &bar0->general_int_mask);
1712                 }
1713         }
1714
1715         /*  Memory Controller(MC) interrupts */
1716         if (mask & MC_INTR) {
1717                 val64 = MC_INT_M;
1718                 if (flag == ENABLE_INTRS) {
1719                         temp64 = readq(&bar0->general_int_mask);
1720                         temp64 &= ~((u64) val64);
1721                         writeq(temp64, &bar0->general_int_mask);
1722                         /*
1723                          * Enable all MC Intrs.
1724                          */
1725                         writeq(0x0, &bar0->mc_int_mask);
1726                         writeq(0x0, &bar0->mc_err_mask);
1727                 } else if (flag == DISABLE_INTRS) {
1728                         /*
1729                          * Disable MC Intrs in the general intr mask register
1730                          */
1731                         writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1732                         temp64 = readq(&bar0->general_int_mask);
1733                         val64 |= temp64;
1734                         writeq(val64, &bar0->general_int_mask);
1735                 }
1736         }
1737
1738
1739         /*  Tx traffic interrupts */
1740         if (mask & TX_TRAFFIC_INTR) {
1741                 val64 = TXTRAFFIC_INT_M;
1742                 if (flag == ENABLE_INTRS) {
1743                         temp64 = readq(&bar0->general_int_mask);
1744                         temp64 &= ~((u64) val64);
1745                         writeq(temp64, &bar0->general_int_mask);
1746                         /*
1747                          * Enable all the Tx side interrupts
1748                          * writing 0 Enables all 64 TX interrupt levels
1749                          */
1750                         writeq(0x0, &bar0->tx_traffic_mask);
1751                 } else if (flag == DISABLE_INTRS) {
1752                         /*
1753                          * Disable Tx Traffic Intrs in the general intr mask
1754                          * register.
1755                          */
1756                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1757                         temp64 = readq(&bar0->general_int_mask);
1758                         val64 |= temp64;
1759                         writeq(val64, &bar0->general_int_mask);
1760                 }
1761         }
1762
1763         /*  Rx traffic interrupts */
1764         if (mask & RX_TRAFFIC_INTR) {
1765                 val64 = RXTRAFFIC_INT_M;
1766                 if (flag == ENABLE_INTRS) {
1767                         temp64 = readq(&bar0->general_int_mask);
1768                         temp64 &= ~((u64) val64);
1769                         writeq(temp64, &bar0->general_int_mask);
1770                         /* writing 0 Enables all 8 RX interrupt levels */
1771                         writeq(0x0, &bar0->rx_traffic_mask);
1772                 } else if (flag == DISABLE_INTRS) {
1773                         /*
1774                          * Disable Rx Traffic Intrs in the general intr mask
1775                          * register.
1776                          */
1777                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1778                         temp64 = readq(&bar0->general_int_mask);
1779                         val64 |= temp64;
1780                         writeq(val64, &bar0->general_int_mask);
1781                 }
1782         }
1783 }
1784
1785 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1786 {
1787         int ret = 0;
1788
1789         if (flag == FALSE) {
1790                 if ((!herc && (rev_id >= 4)) || herc) {
1791                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1792                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1793                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1794                                 ret = 1;
1795                         }
1796                 }else {
1797                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1798                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1799                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1800                                 ret = 1;
1801                         }
1802                 }
1803         } else {
1804                 if ((!herc && (rev_id >= 4)) || herc) {
1805                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1806                              ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1807                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1808                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1809                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1810                                 ret = 1;
1811                         }
1812                 } else {
1813                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1814                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1815                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1816                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1817                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1818                                 ret = 1;
1819                         }
1820                 }
1821         }
1822
1823         return ret;
1824 }
1825 /**
1826  *  verify_xena_quiescence - Checks whether the H/W is ready
1827  *  @val64 :  Value read from adapter status register.
1828  *  @flag : indicates if the adapter enable bit was ever written once
1829  *  before.
1830  *  Description: Returns whether the H/W is ready to go or not. Depending
1831  *  on whether adapter enable bit was written or not the comparison
1832  *  differs and the calling function passes the input argument flag to
1833  *  indicate this.
1834  *  Return: 1 If xena is quiescence
1835  *          0 If Xena is not quiescence
1836  */
1837
1838 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1839 {
1840         int ret = 0, herc;
1841         u64 tmp64 = ~((u64) val64);
1842         int rev_id = get_xena_rev_id(sp->pdev);
1843
1844         herc = (sp->device_type == XFRAME_II_DEVICE);
1845         if (!
1846             (tmp64 &
1847              (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1848               ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1849               ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1850               ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1851               ADAPTER_STATUS_P_PLL_LOCK))) {
1852                 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1853         }
1854
1855         return ret;
1856 }
1857
1858 /**
1859  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1860  * @sp: Pointer to device specifc structure
1861  * Description :
1862  * New procedure to clear mac address reading  problems on Alpha platforms
1863  *
1864  */
1865
1866 static void fix_mac_address(nic_t * sp)
1867 {
1868         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1869         u64 val64;
1870         int i = 0;
1871
1872         while (fix_mac[i] != END_SIGN) {
1873                 writeq(fix_mac[i++], &bar0->gpio_control);
1874                 udelay(10);
1875                 val64 = readq(&bar0->gpio_control);
1876         }
1877 }
1878
1879 /**
1880  *  start_nic - Turns the device on
1881  *  @nic : device private variable.
1882  *  Description:
1883  *  This function actually turns the device on. Before this  function is
1884  *  called,all Registers are configured from their reset states
1885  *  and shared memory is allocated but the NIC is still quiescent. On
1886  *  calling this function, the device interrupts are cleared and the NIC is
1887  *  literally switched on by writing into the adapter control register.
1888  *  Return Value:
1889  *  SUCCESS on success and -1 on failure.
1890  */
1891
1892 static int start_nic(struct s2io_nic *nic)
1893 {
1894         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1895         struct net_device *dev = nic->dev;
1896         register u64 val64 = 0;
1897         u16 interruptible;
1898         u16 subid, i;
1899         mac_info_t *mac_control;
1900         struct config_param *config;
1901
1902         mac_control = &nic->mac_control;
1903         config = &nic->config;
1904
1905         /*  PRC Initialization and configuration */
1906         for (i = 0; i < config->rx_ring_num; i++) {
1907                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1908                        &bar0->prc_rxd0_n[i]);
1909
1910                 val64 = readq(&bar0->prc_ctrl_n[i]);
1911                 if (nic->config.bimodal)
1912                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1913                 if (nic->rxd_mode == RXD_MODE_1)
1914                         val64 |= PRC_CTRL_RC_ENABLED;
1915                 else
1916                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1917                 writeq(val64, &bar0->prc_ctrl_n[i]);
1918         }
1919
1920         if (nic->rxd_mode == RXD_MODE_3B) {
1921                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1922                 val64 = readq(&bar0->rx_pa_cfg);
1923                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1924                 writeq(val64, &bar0->rx_pa_cfg);
1925         }
1926
1927         /*
1928          * Enabling MC-RLDRAM. After enabling the device, we timeout
1929          * for around 100ms, which is approximately the time required
1930          * for the device to be ready for operation.
1931          */
1932         val64 = readq(&bar0->mc_rldram_mrs);
1933         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1934         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1935         val64 = readq(&bar0->mc_rldram_mrs);
1936
1937         msleep(100);    /* Delay by around 100 ms. */
1938
1939         /* Enabling ECC Protection. */
1940         val64 = readq(&bar0->adapter_control);
1941         val64 &= ~ADAPTER_ECC_EN;
1942         writeq(val64, &bar0->adapter_control);
1943
1944         /*
1945          * Clearing any possible Link state change interrupts that
1946          * could have popped up just before Enabling the card.
1947          */
1948         val64 = readq(&bar0->mac_rmac_err_reg);
1949         if (val64)
1950                 writeq(val64, &bar0->mac_rmac_err_reg);
1951
1952         /*
1953          * Verify if the device is ready to be enabled, if so enable
1954          * it.
1955          */
1956         val64 = readq(&bar0->adapter_status);
1957         if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1958                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1959                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1960                           (unsigned long long) val64);
1961                 return FAILURE;
1962         }
1963
1964         /*  Enable select interrupts */
1965         if (nic->intr_type != INTA)
1966                 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
1967         else {
1968                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
1969                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
1970                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1971                 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
1972         }
1973
1974         /*
1975          * With some switches, link might be already up at this point.
1976          * Because of this weird behavior, when we enable laser,
1977          * we may not get link. We need to handle this. We cannot
1978          * figure out which switch is misbehaving. So we are forced to
1979          * make a global change.
1980          */
1981
1982         /* Enabling Laser. */
1983         val64 = readq(&bar0->adapter_control);
1984         val64 |= ADAPTER_EOI_TX_ON;
1985         writeq(val64, &bar0->adapter_control);
1986
1987         /* SXE-002: Initialize link and activity LED */
1988         subid = nic->pdev->subsystem_device;
1989         if (((subid & 0xFF) >= 0x07) &&
1990             (nic->device_type == XFRAME_I_DEVICE)) {
1991                 val64 = readq(&bar0->gpio_control);
1992                 val64 |= 0x0000800000000000ULL;
1993                 writeq(val64, &bar0->gpio_control);
1994                 val64 = 0x0411040400000000ULL;
1995                 writeq(val64, (void __iomem *)bar0 + 0x2700);
1996         }
1997
1998         /*
1999          * Don't see link state interrupts on certain switches, so
2000          * directly scheduling a link state task from here.
2001          */
2002         schedule_work(&nic->set_link_task);
2003
2004         return SUCCESS;
2005 }
2006
2007 /**
2008  *  free_tx_buffers - Free all queued Tx buffers
2009  *  @nic : device private variable.
2010  *  Description:
2011  *  Free all queued Tx buffers.
2012  *  Return Value: void
2013 */
2014
2015 static void free_tx_buffers(struct s2io_nic *nic)
2016 {
2017         struct net_device *dev = nic->dev;
2018         struct sk_buff *skb;
2019         TxD_t *txdp;
2020         int i, j;
2021         mac_info_t *mac_control;
2022         struct config_param *config;
2023         int cnt = 0, frg_cnt;
2024
2025         mac_control = &nic->mac_control;
2026         config = &nic->config;
2027
2028         for (i = 0; i < config->tx_fifo_num; i++) {
2029                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2030                         txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2031                             list_virt_addr;
2032                         skb =
2033                             (struct sk_buff *) ((unsigned long) txdp->
2034                                                 Host_Control);
2035                         if (skb == NULL) {
2036                                 memset(txdp, 0, sizeof(TxD_t) *
2037                                        config->max_txds);
2038                                 continue;
2039                         }
2040                         frg_cnt = skb_shinfo(skb)->nr_frags;
2041                         pci_unmap_single(nic->pdev, (dma_addr_t)
2042                                          txdp->Buffer_Pointer,
2043                                          skb->len - skb->data_len,
2044                                          PCI_DMA_TODEVICE);
2045                         if (frg_cnt) {
2046                                 TxD_t *temp;
2047                                 temp = txdp;
2048                                 txdp++;
2049                                 for (j = 0; j < frg_cnt; j++, txdp++) {
2050                                         skb_frag_t *frag =
2051                                             &skb_shinfo(skb)->frags[j];
2052                                         pci_unmap_page(nic->pdev,
2053                                                        (dma_addr_t)
2054                                                        txdp->
2055                                                        Buffer_Pointer,
2056                                                        frag->size,
2057                                                        PCI_DMA_TODEVICE);
2058                                 }
2059                                 txdp = temp;
2060                         }
2061                         dev_kfree_skb(skb);
2062                         memset(txdp, 0, sizeof(TxD_t) * config->max_txds);
2063                         cnt++;
2064                 }
2065                 DBG_PRINT(INTR_DBG,
2066                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2067                           dev->name, cnt, i);
2068                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2069                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2070         }
2071 }
2072
2073 /**
2074  *   stop_nic -  To stop the nic
2075  *   @nic ; device private variable.
2076  *   Description:
2077  *   This function does exactly the opposite of what the start_nic()
2078  *   function does. This function is called to stop the device.
2079  *   Return Value:
2080  *   void.
2081  */
2082
2083 static void stop_nic(struct s2io_nic *nic)
2084 {
2085         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2086         register u64 val64 = 0;
2087         u16 interruptible, i;
2088         mac_info_t *mac_control;
2089         struct config_param *config;
2090
2091         mac_control = &nic->mac_control;
2092         config = &nic->config;
2093
2094         /*  Disable all interrupts */
2095         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2096         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2097         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2098         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2099
2100         /*  Disable PRCs */
2101         for (i = 0; i < config->rx_ring_num; i++) {
2102                 val64 = readq(&bar0->prc_ctrl_n[i]);
2103                 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2104                 writeq(val64, &bar0->prc_ctrl_n[i]);
2105         }
2106 }
2107
2108 int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2109 {
2110         struct net_device *dev = nic->dev;
2111         struct sk_buff *frag_list;
2112         void *tmp;
2113
2114         /* Buffer-1 receives L3/L4 headers */
2115         ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2116                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2117                         PCI_DMA_FROMDEVICE);
2118
2119         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2120         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2121         if (skb_shinfo(skb)->frag_list == NULL) {
2122                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2123                 return -ENOMEM ;
2124         }
2125         frag_list = skb_shinfo(skb)->frag_list;
2126         frag_list->next = NULL;
2127         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2128         frag_list->data = tmp;
2129         frag_list->tail = tmp;
2130
2131         /* Buffer-2 receives L4 data payload */
2132         ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2133                                 frag_list->data, dev->mtu,
2134                                 PCI_DMA_FROMDEVICE);
2135         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2136         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2137
2138         return SUCCESS;
2139 }
2140
2141 /**
2142  *  fill_rx_buffers - Allocates the Rx side skbs
2143  *  @nic:  device private variable
2144  *  @ring_no: ring number
2145  *  Description:
2146  *  The function allocates Rx side skbs and puts the physical
2147  *  address of these buffers into the RxD buffer pointers, so that the NIC
2148  *  can DMA the received frame into these locations.
2149  *  The NIC supports 3 receive modes, viz
2150  *  1. single buffer,
2151  *  2. three buffer and
2152  *  3. Five buffer modes.
2153  *  Each mode defines how many fragments the received frame will be split
2154  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2155  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2156  *  is split into 3 fragments. As of now only single buffer mode is
2157  *  supported.
2158  *   Return Value:
2159  *  SUCCESS on success or an appropriate -ve value on failure.
2160  */
2161
2162 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2163 {
2164         struct net_device *dev = nic->dev;
2165         struct sk_buff *skb;
2166         RxD_t *rxdp;
2167         int off, off1, size, block_no, block_no1;
2168         u32 alloc_tab = 0;
2169         u32 alloc_cnt;
2170         mac_info_t *mac_control;
2171         struct config_param *config;
2172         u64 tmp;
2173         buffAdd_t *ba;
2174 #ifndef CONFIG_S2IO_NAPI
2175         unsigned long flags;
2176 #endif
2177         RxD_t *first_rxdp = NULL;
2178
2179         mac_control = &nic->mac_control;
2180         config = &nic->config;
2181         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2182             atomic_read(&nic->rx_bufs_left[ring_no]);
2183
2184         while (alloc_tab < alloc_cnt) {
2185                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2186                     block_index;
2187                 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
2188                     block_index;
2189                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2190                 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2191
2192                 rxdp = mac_control->rings[ring_no].
2193                                 rx_blocks[block_no].rxds[off].virt_addr;
2194
2195                 if ((block_no == block_no1) && (off == off1) &&
2196                                         (rxdp->Host_Control)) {
2197                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2198                                   dev->name);
2199                         DBG_PRINT(INTR_DBG, " info equated\n");
2200                         goto end;
2201                 }
2202                 if (off && (off == rxd_count[nic->rxd_mode])) {
2203                         mac_control->rings[ring_no].rx_curr_put_info.
2204                             block_index++;
2205                         if (mac_control->rings[ring_no].rx_curr_put_info.
2206                             block_index == mac_control->rings[ring_no].
2207                                         block_count)
2208                                 mac_control->rings[ring_no].rx_curr_put_info.
2209                                         block_index = 0;
2210                         block_no = mac_control->rings[ring_no].
2211                                         rx_curr_put_info.block_index;
2212                         if (off == rxd_count[nic->rxd_mode])
2213                                 off = 0;
2214                         mac_control->rings[ring_no].rx_curr_put_info.
2215                                 offset = off;
2216                         rxdp = mac_control->rings[ring_no].
2217                                 rx_blocks[block_no].block_virt_addr;
2218                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2219                                   dev->name, rxdp);
2220                 }
2221 #ifndef CONFIG_S2IO_NAPI
2222                 spin_lock_irqsave(&nic->put_lock, flags);
2223                 mac_control->rings[ring_no].put_pos =
2224                     (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2225                 spin_unlock_irqrestore(&nic->put_lock, flags);
2226 #endif
2227                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2228                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2229                                 (rxdp->Control_2 & BIT(0)))) {
2230                         mac_control->rings[ring_no].rx_curr_put_info.
2231                                         offset = off;
2232                         goto end;
2233                 }
2234                 /* calculate size of skb based on ring mode */
2235                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2236                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2237                 if (nic->rxd_mode == RXD_MODE_1)
2238                         size += NET_IP_ALIGN;
2239                 else if (nic->rxd_mode == RXD_MODE_3B)
2240                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2241                 else
2242                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2243
2244                 /* allocate skb */
2245                 skb = dev_alloc_skb(size);
2246                 if(!skb) {
2247                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2248                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2249                         if (first_rxdp) {
2250                                 wmb();
2251                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2252                         }
2253                         return -ENOMEM ;
2254                 }
2255                 if (nic->rxd_mode == RXD_MODE_1) {
2256                         /* 1 buffer mode - normal operation mode */
2257                         memset(rxdp, 0, sizeof(RxD1_t));
2258                         skb_reserve(skb, NET_IP_ALIGN);
2259                         ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2260                             (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
2261                         rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1);
2262                         rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size);
2263
2264                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2265                         /*
2266                          * 2 or 3 buffer mode -
2267                          * Both 2 buffer mode and 3 buffer mode provides 128
2268                          * byte aligned receive buffers.
2269                          *
2270                          * 3 buffer mode provides header separation where in
2271                          * skb->data will have L3/L4 headers where as
2272                          * skb_shinfo(skb)->frag_list will have the L4 data
2273                          * payload
2274                          */
2275
2276                         memset(rxdp, 0, sizeof(RxD3_t));
2277                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2278                         skb_reserve(skb, BUF0_LEN);
2279                         tmp = (u64)(unsigned long) skb->data;
2280                         tmp += ALIGN_SIZE;
2281                         tmp &= ~ALIGN_SIZE;
2282                         skb->data = (void *) (unsigned long)tmp;
2283                         skb->tail = (void *) (unsigned long)tmp;
2284
2285                         ((RxD3_t*)rxdp)->Buffer0_ptr =
2286                             pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2287                                            PCI_DMA_FROMDEVICE);
2288                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2289                         if (nic->rxd_mode == RXD_MODE_3B) {
2290                                 /* Two buffer mode */
2291
2292                                 /*
2293                                  * Buffer2 will have L3/L4 header plus 
2294                                  * L4 payload
2295                                  */
2296                                 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2297                                 (nic->pdev, skb->data, dev->mtu + 4,
2298                                                 PCI_DMA_FROMDEVICE);
2299
2300                                 /* Buffer-1 will be dummy buffer not used */
2301                                 ((RxD3_t*)rxdp)->Buffer1_ptr =
2302                                 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2303                                         PCI_DMA_FROMDEVICE);
2304                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2305                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2306                                                                 (dev->mtu + 4);
2307                         } else {
2308                                 /* 3 buffer mode */
2309                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2310                                         dev_kfree_skb_irq(skb);
2311                                         if (first_rxdp) {
2312                                                 wmb();
2313                                                 first_rxdp->Control_1 |=
2314                                                         RXD_OWN_XENA;
2315                                         }
2316                                         return -ENOMEM ;
2317                                 }
2318                         }
2319                         rxdp->Control_2 |= BIT(0);
2320                 }
2321                 rxdp->Host_Control = (unsigned long) (skb);
2322                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2323                         rxdp->Control_1 |= RXD_OWN_XENA;
2324                 off++;
2325                 if (off == (rxd_count[nic->rxd_mode] + 1))
2326                         off = 0;
2327                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2328
2329                 rxdp->Control_2 |= SET_RXD_MARKER;
2330                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2331                         if (first_rxdp) {
2332                                 wmb();
2333                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2334                         }
2335                         first_rxdp = rxdp;
2336                 }
2337                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2338                 alloc_tab++;
2339         }
2340
2341       end:
2342         /* Transfer ownership of first descriptor to adapter just before
2343          * exiting. Before that, use memory barrier so that ownership
2344          * and other fields are seen by adapter correctly.
2345          */
2346         if (first_rxdp) {
2347                 wmb();
2348                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2349         }
2350
2351         return SUCCESS;
2352 }
2353
2354 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2355 {
2356         struct net_device *dev = sp->dev;
2357         int j;
2358         struct sk_buff *skb;
2359         RxD_t *rxdp;
2360         mac_info_t *mac_control;
2361         buffAdd_t *ba;
2362
2363         mac_control = &sp->mac_control;
2364         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2365                 rxdp = mac_control->rings[ring_no].
2366                                 rx_blocks[blk].rxds[j].virt_addr;
2367                 skb = (struct sk_buff *)
2368                         ((unsigned long) rxdp->Host_Control);
2369                 if (!skb) {
2370                         continue;
2371                 }
2372                 if (sp->rxd_mode == RXD_MODE_1) {
2373                         pci_unmap_single(sp->pdev, (dma_addr_t)
2374                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2375                                  dev->mtu +
2376                                  HEADER_ETHERNET_II_802_3_SIZE
2377                                  + HEADER_802_2_SIZE +
2378                                  HEADER_SNAP_SIZE,
2379                                  PCI_DMA_FROMDEVICE);
2380                         memset(rxdp, 0, sizeof(RxD1_t));
2381                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2382                         ba = &mac_control->rings[ring_no].
2383                                 ba[blk][j];
2384                         pci_unmap_single(sp->pdev, (dma_addr_t)
2385                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2386                                  BUF0_LEN,
2387                                  PCI_DMA_FROMDEVICE);
2388                         pci_unmap_single(sp->pdev, (dma_addr_t)
2389                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2390                                  BUF1_LEN,
2391                                  PCI_DMA_FROMDEVICE);
2392                         pci_unmap_single(sp->pdev, (dma_addr_t)
2393                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2394                                  dev->mtu + 4,
2395                                  PCI_DMA_FROMDEVICE);
2396                         memset(rxdp, 0, sizeof(RxD3_t));
2397                 } else {
2398                         pci_unmap_single(sp->pdev, (dma_addr_t)
2399                                 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2400                                 PCI_DMA_FROMDEVICE);
2401                         pci_unmap_single(sp->pdev, (dma_addr_t)
2402                                 ((RxD3_t*)rxdp)->Buffer1_ptr, 
2403                                 l3l4hdr_size + 4,
2404                                 PCI_DMA_FROMDEVICE);
2405                         pci_unmap_single(sp->pdev, (dma_addr_t)
2406                                 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2407                                 PCI_DMA_FROMDEVICE);
2408                         memset(rxdp, 0, sizeof(RxD3_t));
2409                 }
2410                 dev_kfree_skb(skb);
2411                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2412         }
2413 }
2414
2415 /**
2416  *  free_rx_buffers - Frees all Rx buffers
2417  *  @sp: device private variable.
2418  *  Description:
2419  *  This function will free all Rx buffers allocated by host.
2420  *  Return Value:
2421  *  NONE.
2422  */
2423
2424 static void free_rx_buffers(struct s2io_nic *sp)
2425 {
2426         struct net_device *dev = sp->dev;
2427         int i, blk = 0, buf_cnt = 0;
2428         mac_info_t *mac_control;
2429         struct config_param *config;
2430
2431         mac_control = &sp->mac_control;
2432         config = &sp->config;
2433
2434         for (i = 0; i < config->rx_ring_num; i++) {
2435                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2436                         free_rxd_blk(sp,i,blk);
2437
2438                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2439                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2440                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2441                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2442                 atomic_set(&sp->rx_bufs_left[i], 0);
2443                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2444                           dev->name, buf_cnt, i);
2445         }
2446 }
2447
2448 /**
2449  * s2io_poll - Rx interrupt handler for NAPI support
2450  * @dev : pointer to the device structure.
2451  * @budget : The number of packets that were budgeted to be processed
2452  * during  one pass through the 'Poll" function.
2453  * Description:
2454  * Comes into picture only if NAPI support has been incorporated. It does
2455  * the same thing that rx_intr_handler does, but not in a interrupt context
2456  * also It will process only a given number of packets.
2457  * Return value:
2458  * 0 on success and 1 if there are No Rx packets to be processed.
2459  */
2460
2461 #if defined(CONFIG_S2IO_NAPI)
2462 static int s2io_poll(struct net_device *dev, int *budget)
2463 {
2464         nic_t *nic = dev->priv;
2465         int pkt_cnt = 0, org_pkts_to_process;
2466         mac_info_t *mac_control;
2467         struct config_param *config;
2468         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2469         u64 val64;
2470         int i;
2471
2472         atomic_inc(&nic->isr_cnt);
2473         mac_control = &nic->mac_control;
2474         config = &nic->config;
2475
2476         nic->pkts_to_process = *budget;
2477         if (nic->pkts_to_process > dev->quota)
2478                 nic->pkts_to_process = dev->quota;
2479         org_pkts_to_process = nic->pkts_to_process;
2480
2481         val64 = readq(&bar0->rx_traffic_int);
2482         writeq(val64, &bar0->rx_traffic_int);
2483
2484         for (i = 0; i < config->rx_ring_num; i++) {
2485                 rx_intr_handler(&mac_control->rings[i]);
2486                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2487                 if (!nic->pkts_to_process) {
2488                         /* Quota for the current iteration has been met */
2489                         goto no_rx;
2490                 }
2491         }
2492         if (!pkt_cnt)
2493                 pkt_cnt = 1;
2494
2495         dev->quota -= pkt_cnt;
2496         *budget -= pkt_cnt;
2497         netif_rx_complete(dev);
2498
2499         for (i = 0; i < config->rx_ring_num; i++) {
2500                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2501                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2502                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2503                         break;
2504                 }
2505         }
2506         /* Re enable the Rx interrupts. */
2507         en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
2508         atomic_dec(&nic->isr_cnt);
2509         return 0;
2510
2511 no_rx:
2512         dev->quota -= pkt_cnt;
2513         *budget -= pkt_cnt;
2514
2515         for (i = 0; i < config->rx_ring_num; i++) {
2516                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2517                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2518                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2519                         break;
2520                 }
2521         }
2522         atomic_dec(&nic->isr_cnt);
2523         return 1;
2524 }
2525 #endif
2526
2527 /**
2528  *  rx_intr_handler - Rx interrupt handler
2529  *  @nic: device private variable.
2530  *  Description:
2531  *  If the interrupt is because of a received frame or if the
2532  *  receive ring contains fresh as yet un-processed frames,this function is
2533  *  called. It picks out the RxD at which place the last Rx processing had
2534  *  stopped and sends the skb to the OSM's Rx handler and then increments
2535  *  the offset.
2536  *  Return Value:
2537  *  NONE.
2538  */
2539 static void rx_intr_handler(ring_info_t *ring_data)
2540 {
2541         nic_t *nic = ring_data->nic;
2542         struct net_device *dev = (struct net_device *) nic->dev;
2543         int get_block, put_block, put_offset;
2544         rx_curr_get_info_t get_info, put_info;
2545         RxD_t *rxdp;
2546         struct sk_buff *skb;
2547 #ifndef CONFIG_S2IO_NAPI
2548         int pkt_cnt = 0;
2549 #endif
2550         spin_lock(&nic->rx_lock);
2551         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2552                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2553                           __FUNCTION__, dev->name);
2554                 spin_unlock(&nic->rx_lock);
2555                 return;
2556         }
2557
2558         get_info = ring_data->rx_curr_get_info;
2559         get_block = get_info.block_index;
2560         put_info = ring_data->rx_curr_put_info;
2561         put_block = put_info.block_index;
2562         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2563 #ifndef CONFIG_S2IO_NAPI
2564         spin_lock(&nic->put_lock);
2565         put_offset = ring_data->put_pos;
2566         spin_unlock(&nic->put_lock);
2567 #else
2568         put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2569                 put_info.offset;
2570 #endif
2571         while (RXD_IS_UP2DT(rxdp)) {
2572                 /* If your are next to put index then it's FIFO full condition */
2573                 if ((get_block == put_block) &&
2574                     (get_info.offset + 1) == put_info.offset) {
2575                         DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2576                         break;
2577                 }
2578                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2579                 if (skb == NULL) {
2580                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2581                                   dev->name);
2582                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2583                         spin_unlock(&nic->rx_lock);
2584                         return;
2585                 }
2586                 if (nic->rxd_mode == RXD_MODE_1) {
2587                         pci_unmap_single(nic->pdev, (dma_addr_t)
2588                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2589                                  dev->mtu +
2590                                  HEADER_ETHERNET_II_802_3_SIZE +
2591                                  HEADER_802_2_SIZE +
2592                                  HEADER_SNAP_SIZE,
2593                                  PCI_DMA_FROMDEVICE);
2594                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2595                         pci_unmap_single(nic->pdev, (dma_addr_t)
2596                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2597                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2598                         pci_unmap_single(nic->pdev, (dma_addr_t)
2599                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2600                                  BUF1_LEN, PCI_DMA_FROMDEVICE);
2601                         pci_unmap_single(nic->pdev, (dma_addr_t)
2602                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2603                                  dev->mtu + 4,
2604                                  PCI_DMA_FROMDEVICE);
2605                 } else {
2606                         pci_unmap_single(nic->pdev, (dma_addr_t)
2607                                          ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2608                                          PCI_DMA_FROMDEVICE);
2609                         pci_unmap_single(nic->pdev, (dma_addr_t)
2610                                          ((RxD3_t*)rxdp)->Buffer1_ptr,
2611                                          l3l4hdr_size + 4,
2612                                          PCI_DMA_FROMDEVICE);
2613                         pci_unmap_single(nic->pdev, (dma_addr_t)
2614                                          ((RxD3_t*)rxdp)->Buffer2_ptr,
2615                                          dev->mtu, PCI_DMA_FROMDEVICE);
2616                 }
2617                 rx_osm_handler(ring_data, rxdp);
2618                 get_info.offset++;
2619                 ring_data->rx_curr_get_info.offset = get_info.offset;
2620                 rxdp = ring_data->rx_blocks[get_block].
2621                                 rxds[get_info.offset].virt_addr;
2622                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2623                         get_info.offset = 0;
2624                         ring_data->rx_curr_get_info.offset = get_info.offset;
2625                         get_block++;
2626                         if (get_block == ring_data->block_count)
2627                                 get_block = 0;
2628                         ring_data->rx_curr_get_info.block_index = get_block;
2629                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2630                 }
2631
2632 #ifdef CONFIG_S2IO_NAPI
2633                 nic->pkts_to_process -= 1;
2634                 if (!nic->pkts_to_process)
2635                         break;
2636 #else
2637                 pkt_cnt++;
2638                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2639                         break;
2640 #endif
2641         }
2642         spin_unlock(&nic->rx_lock);
2643 }
2644
2645 /**
2646  *  tx_intr_handler - Transmit interrupt handler
2647  *  @nic : device private variable
2648  *  Description:
2649  *  If an interrupt was raised to indicate DMA complete of the
2650  *  Tx packet, this function is called. It identifies the last TxD
2651  *  whose buffer was freed and frees all skbs whose data have already
2652  *  DMA'ed into the NICs internal memory.
2653  *  Return Value:
2654  *  NONE
2655  */
2656
2657 static void tx_intr_handler(fifo_info_t *fifo_data)
2658 {
2659         nic_t *nic = fifo_data->nic;
2660         struct net_device *dev = (struct net_device *) nic->dev;
2661         tx_curr_get_info_t get_info, put_info;
2662         struct sk_buff *skb;
2663         TxD_t *txdlp;
2664         u16 j, frg_cnt;
2665
2666         get_info = fifo_data->tx_curr_get_info;
2667         put_info = fifo_data->tx_curr_put_info;
2668         txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2669             list_virt_addr;
2670         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2671                (get_info.offset != put_info.offset) &&
2672                (txdlp->Host_Control)) {
2673                 /* Check for TxD errors */
2674                 if (txdlp->Control_1 & TXD_T_CODE) {
2675                         unsigned long long err;
2676                         err = txdlp->Control_1 & TXD_T_CODE;
2677                         if ((err >> 48) == 0xA) {
2678                                 DBG_PRINT(TX_DBG, "TxD returned due \
2679 to loss of link\n");
2680                         }
2681                         else {
2682                                 DBG_PRINT(ERR_DBG, "***TxD error \
2683 %llx\n", err);
2684                         }
2685                 }
2686
2687                 skb = (struct sk_buff *) ((unsigned long)
2688                                 txdlp->Host_Control);
2689                 if (skb == NULL) {
2690                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2691                         __FUNCTION__);
2692                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2693                         return;
2694                 }
2695
2696                 frg_cnt = skb_shinfo(skb)->nr_frags;
2697                 nic->tx_pkt_count++;
2698
2699                 pci_unmap_single(nic->pdev, (dma_addr_t)
2700                                  txdlp->Buffer_Pointer,
2701                                  skb->len - skb->data_len,
2702                                  PCI_DMA_TODEVICE);
2703                 if (frg_cnt) {
2704                         TxD_t *temp;
2705                         temp = txdlp;
2706                         txdlp++;
2707                         for (j = 0; j < frg_cnt; j++, txdlp++) {
2708                                 skb_frag_t *frag =
2709                                     &skb_shinfo(skb)->frags[j];
2710                                 if (!txdlp->Buffer_Pointer)
2711                                         break;
2712                                 pci_unmap_page(nic->pdev,
2713                                                (dma_addr_t)
2714                                                txdlp->
2715                                                Buffer_Pointer,
2716                                                frag->size,
2717                                                PCI_DMA_TODEVICE);
2718                         }
2719                         txdlp = temp;
2720                 }
2721                 memset(txdlp, 0,
2722                        (sizeof(TxD_t) * fifo_data->max_txds));
2723
2724                 /* Updating the statistics block */
2725                 nic->stats.tx_bytes += skb->len;
2726                 dev_kfree_skb_irq(skb);
2727
2728                 get_info.offset++;
2729                 get_info.offset %= get_info.fifo_len + 1;
2730                 txdlp = (TxD_t *) fifo_data->list_info
2731                     [get_info.offset].list_virt_addr;
2732                 fifo_data->tx_curr_get_info.offset =
2733                     get_info.offset;
2734         }
2735
2736         spin_lock(&nic->tx_lock);
2737         if (netif_queue_stopped(dev))
2738                 netif_wake_queue(dev);
2739         spin_unlock(&nic->tx_lock);
2740 }
2741
2742 /**
2743  *  alarm_intr_handler - Alarm Interrrupt handler
2744  *  @nic: device private variable
2745  *  Description: If the interrupt was neither because of Rx packet or Tx
2746  *  complete, this function is called. If the interrupt was to indicate
2747  *  a loss of link, the OSM link status handler is invoked for any other
2748  *  alarm interrupt the block that raised the interrupt is displayed
2749  *  and a H/W reset is issued.
2750  *  Return Value:
2751  *  NONE
2752 */
2753
2754 static void alarm_intr_handler(struct s2io_nic *nic)
2755 {
2756         struct net_device *dev = (struct net_device *) nic->dev;
2757         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2758         register u64 val64 = 0, err_reg = 0;
2759
2760         /* Handling link status change error Intr */
2761         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2762                 err_reg = readq(&bar0->mac_rmac_err_reg);
2763                 writeq(err_reg, &bar0->mac_rmac_err_reg);
2764                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
2765                         schedule_work(&nic->set_link_task);
2766                 }
2767         }
2768
2769         /* Handling Ecc errors */
2770         val64 = readq(&bar0->mc_err_reg);
2771         writeq(val64, &bar0->mc_err_reg);
2772         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
2773                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
2774                         nic->mac_control.stats_info->sw_stat.
2775                                 double_ecc_errs++;
2776                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
2777                                   dev->name);
2778                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
2779                         if (nic->device_type != XFRAME_II_DEVICE) {
2780                                 /* Reset XframeI only if critical error */
2781                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
2782                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
2783                                         netif_stop_queue(dev);
2784                                         schedule_work(&nic->rst_timer_task);
2785                                 }
2786                         }
2787                 } else {
2788                         nic->mac_control.stats_info->sw_stat.
2789                                 single_ecc_errs++;
2790                 }
2791         }
2792
2793         /* In case of a serious error, the device will be Reset. */
2794         val64 = readq(&bar0->serr_source);
2795         if (val64 & SERR_SOURCE_ANY) {
2796                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
2797                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n", 
2798                           (unsigned long long)val64);
2799                 netif_stop_queue(dev);
2800                 schedule_work(&nic->rst_timer_task);
2801         }
2802
2803         /*
2804          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
2805          * Error occurs, the adapter will be recycled by disabling the
2806          * adapter enable bit and enabling it again after the device
2807          * becomes Quiescent.
2808          */
2809         val64 = readq(&bar0->pcc_err_reg);
2810         writeq(val64, &bar0->pcc_err_reg);
2811         if (val64 & PCC_FB_ECC_DB_ERR) {
2812                 u64 ac = readq(&bar0->adapter_control);
2813                 ac &= ~(ADAPTER_CNTL_EN);
2814                 writeq(ac, &bar0->adapter_control);
2815                 ac = readq(&bar0->adapter_control);
2816                 schedule_work(&nic->set_link_task);
2817         }
2818
2819         /* Other type of interrupts are not being handled now,  TODO */
2820 }
2821
2822 /**
2823  *  wait_for_cmd_complete - waits for a command to complete.
2824  *  @sp : private member of the device structure, which is a pointer to the
2825  *  s2io_nic structure.
2826  *  Description: Function that waits for a command to Write into RMAC
2827  *  ADDR DATA registers to be completed and returns either success or
2828  *  error depending on whether the command was complete or not.
2829  *  Return value:
2830  *   SUCCESS on success and FAILURE on failure.
2831  */
2832
2833 static int wait_for_cmd_complete(nic_t * sp)
2834 {
2835         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2836         int ret = FAILURE, cnt = 0;
2837         u64 val64;
2838
2839         while (TRUE) {
2840                 val64 = readq(&bar0->rmac_addr_cmd_mem);
2841                 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
2842                         ret = SUCCESS;
2843                         break;
2844                 }
2845                 msleep(50);
2846                 if (cnt++ > 10)
2847                         break;
2848         }
2849
2850         return ret;
2851 }
2852
2853 /**
2854  *  s2io_reset - Resets the card.
2855  *  @sp : private member of the device structure.
2856  *  Description: Function to Reset the card. This function then also
2857  *  restores the previously saved PCI configuration space registers as
2858  *  the card reset also resets the configuration space.
2859  *  Return value:
2860  *  void.
2861  */
2862
2863 void s2io_reset(nic_t * sp)
2864 {
2865         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2866         u64 val64;
2867         u16 subid, pci_cmd;
2868
2869         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
2870         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
2871
2872         val64 = SW_RESET_ALL;
2873         writeq(val64, &bar0->sw_reset);
2874
2875         /*
2876          * At this stage, if the PCI write is indeed completed, the
2877          * card is reset and so is the PCI Config space of the device.
2878          * So a read cannot be issued at this stage on any of the
2879          * registers to ensure the write into "sw_reset" register
2880          * has gone through.
2881          * Question: Is there any system call that will explicitly force
2882          * all the write commands still pending on the bus to be pushed
2883          * through?
2884          * As of now I'am just giving a 250ms delay and hoping that the
2885          * PCI write to sw_reset register is done by this time.
2886          */
2887         msleep(250);
2888
2889         /* Restore the PCI state saved during initialization. */
2890         pci_restore_state(sp->pdev);
2891         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
2892                                      pci_cmd);
2893         s2io_init_pci(sp);
2894
2895         msleep(250);
2896
2897         /* Set swapper to enable I/O register access */
2898         s2io_set_swapper(sp);
2899
2900         /* Restore the MSIX table entries from local variables */
2901         restore_xmsi_data(sp);
2902
2903         /* Clear certain PCI/PCI-X fields after reset */
2904         if (sp->device_type == XFRAME_II_DEVICE) {
2905                 /* Clear parity err detect bit */
2906                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
2907
2908                 /* Clearing PCIX Ecc status register */
2909                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
2910
2911                 /* Clearing PCI_STATUS error reflected here */
2912                 writeq(BIT(62), &bar0->txpic_int_reg);
2913         }
2914
2915         /* Reset device statistics maintained by OS */
2916         memset(&sp->stats, 0, sizeof (struct net_device_stats));
2917
2918         /* SXE-002: Configure link and activity LED to turn it off */
2919         subid = sp->pdev->subsystem_device;
2920         if (((subid & 0xFF) >= 0x07) &&
2921             (sp->device_type == XFRAME_I_DEVICE)) {
2922                 val64 = readq(&bar0->gpio_control);
2923                 val64 |= 0x0000800000000000ULL;
2924                 writeq(val64, &bar0->gpio_control);
2925                 val64 = 0x0411040400000000ULL;
2926                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2927         }
2928
2929         /*
2930          * Clear spurious ECC interrupts that would have occured on
2931          * XFRAME II cards after reset.
2932          */
2933         if (sp->device_type == XFRAME_II_DEVICE) {
2934                 val64 = readq(&bar0->pcc_err_reg);
2935                 writeq(val64, &bar0->pcc_err_reg);
2936         }
2937
2938         sp->device_enabled_once = FALSE;
2939 }
2940
2941 /**
2942  *  s2io_set_swapper - to set the swapper controle on the card
2943  *  @sp : private member of the device structure,
2944  *  pointer to the s2io_nic structure.
2945  *  Description: Function to set the swapper control on the card
2946  *  correctly depending on the 'endianness' of the system.
2947  *  Return value:
2948  *  SUCCESS on success and FAILURE on failure.
2949  */
2950
2951 int s2io_set_swapper(nic_t * sp)
2952 {
2953         struct net_device *dev = sp->dev;
2954         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2955         u64 val64, valt, valr;
2956
2957         /*
2958          * Set proper endian settings and verify the same by reading
2959          * the PIF Feed-back register.
2960          */
2961
2962         val64 = readq(&bar0->pif_rd_swapper_fb);
2963         if (val64 != 0x0123456789ABCDEFULL) {
2964                 int i = 0;
2965                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
2966                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
2967                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
2968                                 0};                     /* FE=0, SE=0 */
2969
2970                 while(i<4) {
2971                         writeq(value[i], &bar0->swapper_ctrl);
2972                         val64 = readq(&bar0->pif_rd_swapper_fb);
2973                         if (val64 == 0x0123456789ABCDEFULL)
2974                                 break;
2975                         i++;
2976                 }
2977                 if (i == 4) {
2978                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2979                                 dev->name);
2980                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2981                                 (unsigned long long) val64);
2982                         return FAILURE;
2983                 }
2984                 valr = value[i];
2985         } else {
2986                 valr = readq(&bar0->swapper_ctrl);
2987         }
2988
2989         valt = 0x0123456789ABCDEFULL;
2990         writeq(valt, &bar0->xmsi_address);
2991         val64 = readq(&bar0->xmsi_address);
2992
2993         if(val64 != valt) {
2994                 int i = 0;
2995                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
2996                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
2997                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
2998                                 0};                     /* FE=0, SE=0 */
2999
3000                 while(i<4) {
3001                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3002                         writeq(valt, &bar0->xmsi_address);
3003                         val64 = readq(&bar0->xmsi_address);
3004                         if(val64 == valt)
3005                                 break;
3006                         i++;
3007                 }
3008                 if(i == 4) {
3009                         unsigned long long x = val64;
3010                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3011                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3012                         return FAILURE;
3013                 }
3014         }
3015         val64 = readq(&bar0->swapper_ctrl);
3016         val64 &= 0xFFFF000000000000ULL;
3017
3018 #ifdef  __BIG_ENDIAN
3019         /*
3020          * The device by default set to a big endian format, so a
3021          * big endian driver need not set anything.
3022          */
3023         val64 |= (SWAPPER_CTRL_TXP_FE |
3024                  SWAPPER_CTRL_TXP_SE |
3025                  SWAPPER_CTRL_TXD_R_FE |
3026                  SWAPPER_CTRL_TXD_W_FE |
3027                  SWAPPER_CTRL_TXF_R_FE |
3028                  SWAPPER_CTRL_RXD_R_FE |
3029                  SWAPPER_CTRL_RXD_W_FE |
3030                  SWAPPER_CTRL_RXF_W_FE |
3031                  SWAPPER_CTRL_XMSI_FE |
3032                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3033         if (sp->intr_type == INTA)
3034                 val64 |= SWAPPER_CTRL_XMSI_SE;
3035         writeq(val64, &bar0->swapper_ctrl);
3036 #else
3037         /*
3038          * Initially we enable all bits to make it accessible by the
3039          * driver, then we selectively enable only those bits that
3040          * we want to set.
3041          */
3042         val64 |= (SWAPPER_CTRL_TXP_FE |
3043                  SWAPPER_CTRL_TXP_SE |
3044                  SWAPPER_CTRL_TXD_R_FE |
3045                  SWAPPER_CTRL_TXD_R_SE |
3046                  SWAPPER_CTRL_TXD_W_FE |
3047                  SWAPPER_CTRL_TXD_W_SE |
3048                  SWAPPER_CTRL_TXF_R_FE |
3049                  SWAPPER_CTRL_RXD_R_FE |
3050                  SWAPPER_CTRL_RXD_R_SE |
3051                  SWAPPER_CTRL_RXD_W_FE |
3052                  SWAPPER_CTRL_RXD_W_SE |
3053                  SWAPPER_CTRL_RXF_W_FE |
3054                  SWAPPER_CTRL_XMSI_FE |
3055                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3056         if (sp->intr_type == INTA)
3057                 val64 |= SWAPPER_CTRL_XMSI_SE;
3058         writeq(val64, &bar0->swapper_ctrl);
3059 #endif
3060         val64 = readq(&bar0->swapper_ctrl);
3061
3062         /*
3063          * Verifying if endian settings are accurate by reading a
3064          * feedback register.
3065          */
3066         val64 = readq(&bar0->pif_rd_swapper_fb);
3067         if (val64 != 0x0123456789ABCDEFULL) {
3068                 /* Endian settings are incorrect, calls for another dekko. */
3069                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3070                           dev->name);
3071                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3072                           (unsigned long long) val64);
3073                 return FAILURE;
3074         }
3075
3076         return SUCCESS;
3077 }
3078
3079 static int wait_for_msix_trans(nic_t *nic, int i)
3080 {
3081         XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3082         u64 val64;
3083         int ret = 0, cnt = 0;
3084
3085         do {
3086                 val64 = readq(&bar0->xmsi_access);
3087                 if (!(val64 & BIT(15)))
3088                         break;
3089                 mdelay(1);
3090                 cnt++;
3091         } while(cnt < 5);
3092         if (cnt == 5) {
3093                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3094                 ret = 1;
3095         }
3096
3097         return ret;
3098 }
3099
3100 void restore_xmsi_data(nic_t *nic)
3101 {
3102         XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3103         u64 val64;
3104         int i;
3105
3106         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3107                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3108                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3109                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3110                 writeq(val64, &bar0->xmsi_access);
3111                 if (wait_for_msix_trans(nic, i)) {
3112                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3113                         continue;
3114                 }
3115         }
3116 }
3117
3118 static void store_xmsi_data(nic_t *nic)
3119 {
3120         XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3121         u64 val64, addr, data;
3122         int i;
3123
3124         /* Store and display */
3125         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3126                 val64 = (BIT(15) | vBIT(i, 26, 6));
3127                 writeq(val64, &bar0->xmsi_access);
3128                 if (wait_for_msix_trans(nic, i)) {
3129                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3130                         continue;
3131                 }
3132                 addr = readq(&bar0->xmsi_address);
3133                 data = readq(&bar0->xmsi_data);
3134                 if (addr && data) {
3135                         nic->msix_info[i].addr = addr;
3136                         nic->msix_info[i].data = data;
3137                 }
3138         }
3139 }
3140
3141 int s2io_enable_msi(nic_t *nic)
3142 {
3143         XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3144         u16 msi_ctrl, msg_val;
3145         struct config_param *config = &nic->config;
3146         struct net_device *dev = nic->dev;
3147         u64 val64, tx_mat, rx_mat;
3148         int i, err;
3149
3150         val64 = readq(&bar0->pic_control);
3151         val64 &= ~BIT(1);
3152         writeq(val64, &bar0->pic_control);
3153
3154         err = pci_enable_msi(nic->pdev);
3155         if (err) {
3156                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3157                           nic->dev->name);
3158                 return err;
3159         }
3160
3161         /*
3162          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3163          * for interrupt handling.
3164          */
3165         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3166         msg_val ^= 0x1;
3167         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3168         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3169
3170         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3171         msi_ctrl |= 0x10;
3172         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3173
3174         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3175         tx_mat = readq(&bar0->tx_mat0_n[0]);
3176         for (i=0; i<config->tx_fifo_num; i++) {
3177                 tx_mat |= TX_MAT_SET(i, 1);
3178         }
3179         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3180
3181         rx_mat = readq(&bar0->rx_mat);
3182         for (i=0; i<config->rx_ring_num; i++) {
3183                 rx_mat |= RX_MAT_SET(i, 1);
3184         }
3185         writeq(rx_mat, &bar0->rx_mat);
3186
3187         dev->irq = nic->pdev->irq;
3188         return 0;
3189 }
3190
3191 int s2io_enable_msi_x(nic_t *nic)
3192 {
3193         XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3194         u64 tx_mat, rx_mat;
3195         u16 msi_control; /* Temp variable */
3196         int ret, i, j, msix_indx = 1;
3197
3198         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3199                                GFP_KERNEL);
3200         if (nic->entries == NULL) {
3201                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3202                 return -ENOMEM;
3203         }
3204         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3205
3206         nic->s2io_entries =
3207                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3208                                    GFP_KERNEL);
3209         if (nic->s2io_entries == NULL) {
3210                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3211                 kfree(nic->entries);
3212                 return -ENOMEM;
3213         }
3214         memset(nic->s2io_entries, 0,
3215                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3216
3217         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3218                 nic->entries[i].entry = i;
3219                 nic->s2io_entries[i].entry = i;
3220                 nic->s2io_entries[i].arg = NULL;
3221                 nic->s2io_entries[i].in_use = 0;
3222         }
3223
3224         tx_mat = readq(&bar0->tx_mat0_n[0]);
3225         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3226                 tx_mat |= TX_MAT_SET(i, msix_indx);
3227                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3228                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3229                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3230         }
3231         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3232
3233         if (!nic->config.bimodal) {
3234                 rx_mat = readq(&bar0->rx_mat);
3235                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3236                         rx_mat |= RX_MAT_SET(j, msix_indx);
3237                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3238                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3239                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3240                 }
3241                 writeq(rx_mat, &bar0->rx_mat);
3242         } else {
3243                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3244                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3245                         tx_mat |= TX_MAT_SET(i, msix_indx);
3246                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3247                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3248                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3249                 }
3250                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3251         }
3252
3253         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3254         if (ret) {
3255                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3256                 kfree(nic->entries);
3257                 kfree(nic->s2io_entries);
3258                 nic->entries = NULL;
3259                 nic->s2io_entries = NULL;
3260                 return -ENOMEM;
3261         }
3262
3263         /*
3264          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3265          * in the herc NIC. (Temp change, needs to be removed later)
3266          */
3267         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3268         msi_control |= 0x1; /* Enable MSI */
3269         pci_write_config_word(nic->pdev, 0x42, msi_control);
3270
3271         return 0;
3272 }
3273
3274 /* ********************************************************* *
3275  * Functions defined below concern the OS part of the driver *
3276  * ********************************************************* */
3277
3278 /**
3279  *  s2io_open - open entry point of the driver
3280  *  @dev : pointer to the device structure.
3281  *  Description:
3282  *  This function is the open entry point of the driver. It mainly calls a
3283  *  function to allocate Rx buffers and inserts them into the buffer
3284  *  descriptors and then enables the Rx part of the NIC.
3285  *  Return value:
3286  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3287  *   file on failure.
3288  */
3289
3290 static int s2io_open(struct net_device *dev)
3291 {
3292         nic_t *sp = dev->priv;
3293         int err = 0;
3294         int i;
3295         u16 msi_control; /* Temp variable */
3296
3297         /*
3298          * Make sure you have link off by default every time
3299          * Nic is initialized
3300          */
3301         netif_carrier_off(dev);
3302         sp->last_link_state = 0;
3303
3304         /* Initialize H/W and enable interrupts */
3305         if (s2io_card_up(sp)) {
3306                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3307                           dev->name);
3308                 err = -ENODEV;
3309                 goto hw_init_failed;
3310         }
3311
3312         /* Store the values of the MSIX table in the nic_t structure */
3313         store_xmsi_data(sp);
3314
3315         /* After proper initialization of H/W, register ISR */
3316         if (sp->intr_type == MSI) {
3317                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle, 
3318                         SA_SHIRQ, sp->name, dev);
3319                 if (err) {
3320                         DBG_PRINT(ERR_DBG, "%s: MSI registration \
3321 failed\n", dev->name);
3322                         goto isr_registration_failed;
3323                 }
3324         }
3325         if (sp->intr_type == MSI_X) {
3326                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3327                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3328                                 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3329                                         dev->name, i);
3330                                 err = request_irq(sp->entries[i].vector,
3331                                           s2io_msix_fifo_handle, 0, sp->desc1,
3332                                           sp->s2io_entries[i].arg);
3333                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1, 
3334                                                         sp->msix_info[i].addr);
3335                         } else {
3336                                 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3337                                         dev->name, i);
3338                                 err = request_irq(sp->entries[i].vector,
3339                                           s2io_msix_ring_handle, 0, sp->desc2,
3340                                           sp->s2io_entries[i].arg);
3341                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2, 
3342                                                         sp->msix_info[i].addr);
3343                         }
3344                         if (err) {
3345                                 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3346 failed\n", dev->name, i);
3347                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3348                                 goto isr_registration_failed;
3349                         }
3350                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3351                 }
3352         }
3353         if (sp->intr_type == INTA) {
3354                 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3355                                 sp->name, dev);
3356                 if (err) {
3357                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3358                                   dev->name);
3359                         goto isr_registration_failed;
3360                 }
3361         }
3362
3363         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3364                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3365                 err = -ENODEV;
3366                 goto setting_mac_address_failed;
3367         }
3368
3369         netif_start_queue(dev);
3370         return 0;
3371
3372 setting_mac_address_failed:
3373         if (sp->intr_type != MSI_X)
3374                 free_irq(sp->pdev->irq, dev);
3375 isr_registration_failed:
3376         del_timer_sync(&sp->alarm_timer);
3377         if (sp->intr_type == MSI_X) {
3378                 if (sp->device_type == XFRAME_II_DEVICE) {
3379                         for (i=1; (sp->s2io_entries[i].in_use == 
3380                                 MSIX_REGISTERED_SUCCESS); i++) {
3381                                 int vector = sp->entries[i].vector;
3382                                 void *arg = sp->s2io_entries[i].arg;
3383
3384                                 free_irq(vector, arg);
3385                         }
3386                         pci_disable_msix(sp->pdev);
3387
3388                         /* Temp */
3389                         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3390                         msi_control &= 0xFFFE; /* Disable MSI */
3391                         pci_write_config_word(sp->pdev, 0x42, msi_control);
3392                 }
3393         }
3394         else if (sp->intr_type == MSI)
3395                 pci_disable_msi(sp->pdev);
3396         s2io_reset(sp);
3397 hw_init_failed:
3398         if (sp->intr_type == MSI_X) {
3399                 if (sp->entries)
3400                         kfree(sp->entries);
3401                 if (sp->s2io_entries)
3402                         kfree(sp->s2io_entries);
3403         }
3404         return err;
3405 }
3406
3407 /**
3408  *  s2io_close -close entry point of the driver
3409  *  @dev : device pointer.
3410  *  Description:
3411  *  This is the stop entry point of the driver. It needs to undo exactly
3412  *  whatever was done by the open entry point,thus it's usually referred to
3413  *  as the close function.Among other things this function mainly stops the
3414  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3415  *  Return value:
3416  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3417  *  file on failure.
3418  */
3419
3420 static int s2io_close(struct net_device *dev)
3421 {
3422         nic_t *sp = dev->priv;
3423         int i;
3424         u16 msi_control;
3425
3426         flush_scheduled_work();
3427         netif_stop_queue(dev);
3428         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3429         s2io_card_down(sp);
3430
3431         if (sp->intr_type == MSI_X) {
3432                 if (sp->device_type == XFRAME_II_DEVICE) {
3433                         for (i=1; (sp->s2io_entries[i].in_use == 
3434                                         MSIX_REGISTERED_SUCCESS); i++) {
3435                                 int vector = sp->entries[i].vector;
3436                                 void *arg = sp->s2io_entries[i].arg;
3437
3438                                 free_irq(vector, arg);
3439                         }
3440                         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3441                         msi_control &= 0xFFFE; /* Disable MSI */
3442                         pci_write_config_word(sp->pdev, 0x42, msi_control);
3443
3444                         pci_disable_msix(sp->pdev);
3445                 }
3446         }
3447         else {
3448                 free_irq(sp->pdev->irq, dev);
3449                 if (sp->intr_type == MSI)
3450                         pci_disable_msi(sp->pdev);
3451         }       
3452         sp->device_close_flag = TRUE;   /* Device is shut down. */
3453         return 0;
3454 }
3455
3456 /**
3457  *  s2io_xmit - Tx entry point of te driver
3458  *  @skb : the socket buffer containing the Tx data.
3459  *  @dev : device pointer.
3460  *  Description :
3461  *  This function is the Tx entry point of the driver. S2IO NIC supports
3462  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3463  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3464  *  not be upadted.
3465  *  Return value:
3466  *  0 on success & 1 on failure.
3467  */
3468
3469 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3470 {
3471         nic_t *sp = dev->priv;
3472         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3473         register u64 val64;
3474         TxD_t *txdp;
3475         TxFIFO_element_t __iomem *tx_fifo;
3476         unsigned long flags;
3477 #ifdef NETIF_F_TSO
3478         int mss;
3479 #endif
3480         u16 vlan_tag = 0;
3481         int vlan_priority = 0;
3482         mac_info_t *mac_control;
3483         struct config_param *config;
3484
3485         mac_control = &sp->mac_control;
3486         config = &sp->config;
3487
3488         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3489         spin_lock_irqsave(&sp->tx_lock, flags);
3490         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3491                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3492                           dev->name);
3493                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3494                 dev_kfree_skb(skb);
3495                 return 0;
3496         }
3497
3498         queue = 0;
3499
3500         /* Get Fifo number to Transmit based on vlan priority */
3501         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3502                 vlan_tag = vlan_tx_tag_get(skb);
3503                 vlan_priority = vlan_tag >> 13;
3504                 queue = config->fifo_mapping[vlan_priority];
3505         }
3506
3507         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3508         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3509         txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3510                 list_virt_addr;
3511
3512         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3513         /* Avoid "put" pointer going beyond "get" pointer */
3514         if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
3515                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3516                 netif_stop_queue(dev);
3517                 dev_kfree_skb(skb);
3518                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3519                 return 0;
3520         }
3521
3522         /* A buffer with no data will be dropped */
3523         if (!skb->len) {
3524                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3525                 dev_kfree_skb(skb);
3526                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3527                 return 0;
3528         }
3529
3530 #ifdef NETIF_F_TSO
3531         mss = skb_shinfo(skb)->tso_size;
3532         if (mss) {
3533                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3534                 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3535         }
3536 #endif
3537
3538         frg_cnt = skb_shinfo(skb)->nr_frags;
3539         frg_len = skb->len - skb->data_len;
3540
3541         txdp->Buffer_Pointer = pci_map_single
3542             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3543         txdp->Host_Control = (unsigned long) skb;
3544         if (skb->ip_summed == CHECKSUM_HW) {
3545                 txdp->Control_2 |=
3546                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3547                      TXD_TX_CKO_UDP_EN);
3548         }
3549
3550         txdp->Control_2 |= config->tx_intr_type;
3551
3552         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3553                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3554                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3555         }
3556
3557         txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
3558                             TXD_GATHER_CODE_FIRST);
3559         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3560
3561         /* For fragmented SKB. */
3562         for (i = 0; i < frg_cnt; i++) {
3563                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3564                 /* A '0' length fragment will be ignored */
3565                 if (!frag->size)
3566                         continue;
3567                 txdp++;
3568                 txdp->Buffer_Pointer = (u64) pci_map_page
3569                     (sp->pdev, frag->page, frag->page_offset,
3570                      frag->size, PCI_DMA_TODEVICE);
3571                 txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
3572         }
3573         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3574
3575         tx_fifo = mac_control->tx_FIFO_start[queue];
3576         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3577         writeq(val64, &tx_fifo->TxDL_Pointer);
3578
3579         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3580                  TX_FIFO_LAST_LIST);
3581
3582 #ifdef NETIF_F_TSO
3583         if (mss)
3584                 val64 |= TX_FIFO_SPECIAL_FUNC;
3585 #endif
3586         writeq(val64, &tx_fifo->List_Control);
3587
3588         mmiowb();
3589
3590         put_off++;
3591         put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3592         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3593
3594         /* Avoid "put" pointer going beyond "get" pointer */
3595         if (((put_off + 1) % queue_len) == get_off) {
3596                 DBG_PRINT(TX_DBG,
3597                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3598                           put_off, get_off);
3599                 netif_stop_queue(dev);
3600         }
3601
3602         dev->trans_start = jiffies;
3603         spin_unlock_irqrestore(&sp->tx_lock, flags);
3604
3605         return 0;
3606 }
3607
3608 static void
3609 s2io_alarm_handle(unsigned long data)
3610 {
3611         nic_t *sp = (nic_t *)data;
3612
3613         alarm_intr_handler(sp);
3614         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3615 }
3616
3617 static irqreturn_t
3618 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
3619 {
3620         struct net_device *dev = (struct net_device *) dev_id;
3621         nic_t *sp = dev->priv;
3622         int i;
3623         int ret;
3624         mac_info_t *mac_control;
3625         struct config_param *config;
3626
3627         atomic_inc(&sp->isr_cnt);
3628         mac_control = &sp->mac_control;
3629         config = &sp->config;
3630         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3631
3632         /* If Intr is because of Rx Traffic */
3633         for (i = 0; i < config->rx_ring_num; i++)
3634                 rx_intr_handler(&mac_control->rings[i]);
3635
3636         /* If Intr is because of Tx Traffic */
3637         for (i = 0; i < config->tx_fifo_num; i++)
3638                 tx_intr_handler(&mac_control->fifos[i]);
3639
3640         /*
3641          * If the Rx buffer count is below the panic threshold then
3642          * reallocate the buffers from the interrupt handler itself,
3643          * else schedule a tasklet to reallocate the buffers.
3644          */
3645         for (i = 0; i < config->rx_ring_num; i++) {
3646                 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3647                 int level = rx_buffer_level(sp, rxb_size, i);
3648
3649                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3650                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3651                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
3652                         if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3653                                 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3654                                           dev->name);
3655                                 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3656                                 clear_bit(0, (&sp->tasklet_status));
3657                                 atomic_dec(&sp->isr_cnt);
3658                                 return IRQ_HANDLED;
3659                         }
3660                         clear_bit(0, (&sp->tasklet_status));
3661                 } else if (level == LOW) {
3662                         tasklet_schedule(&sp->task);
3663                 }
3664         }
3665
3666         atomic_dec(&sp->isr_cnt);
3667         return IRQ_HANDLED;
3668 }
3669
3670 static irqreturn_t
3671 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
3672 {
3673         ring_info_t *ring = (ring_info_t *)dev_id;
3674         nic_t *sp = ring->nic;
3675         int rxb_size, level, rng_n;
3676
3677         atomic_inc(&sp->isr_cnt);
3678         rx_intr_handler(ring);
3679
3680         rng_n = ring->ring_no;
3681         rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3682         level = rx_buffer_level(sp, rxb_size, rng_n);
3683
3684         if ((level == PANIC) && (!TASKLET_IN_USE)) {
3685                 int ret;
3686                 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3687                 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3688                 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3689                         DBG_PRINT(ERR_DBG, "Out of memory in %s",
3690                                   __FUNCTION__);
3691                         clear_bit(0, (&sp->tasklet_status));
3692                         return IRQ_HANDLED;
3693                 }
3694                 clear_bit(0, (&sp->tasklet_status));
3695         } else if (level == LOW) {
3696                 tasklet_schedule(&sp->task);
3697         }
3698         atomic_dec(&sp->isr_cnt);
3699
3700         return IRQ_HANDLED;
3701 }
3702
3703 static irqreturn_t
3704 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
3705 {
3706         fifo_info_t *fifo = (fifo_info_t *)dev_id;
3707         nic_t *sp = fifo->nic;
3708
3709         atomic_inc(&sp->isr_cnt);
3710         tx_intr_handler(fifo);
3711         atomic_dec(&sp->isr_cnt);
3712         return IRQ_HANDLED;
3713 }
3714
3715 static void s2io_txpic_intr_handle(nic_t *sp)
3716 {
3717         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3718         u64 val64;
3719
3720         val64 = readq(&bar0->pic_int_status);
3721         if (val64 & PIC_INT_GPIO) {
3722                 val64 = readq(&bar0->gpio_int_reg);
3723                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
3724                     (val64 & GPIO_INT_REG_LINK_UP)) {
3725                         val64 |=  GPIO_INT_REG_LINK_DOWN;
3726                         val64 |= GPIO_INT_REG_LINK_UP;
3727                         writeq(val64, &bar0->gpio_int_reg);
3728                         goto masking;
3729                 }
3730
3731                 if (((sp->last_link_state == LINK_UP) &&
3732                         (val64 & GPIO_INT_REG_LINK_DOWN)) ||
3733                 ((sp->last_link_state == LINK_DOWN) &&
3734                 (val64 & GPIO_INT_REG_LINK_UP))) {
3735                         val64 = readq(&bar0->gpio_int_mask);
3736                         val64 |=  GPIO_INT_MASK_LINK_DOWN;
3737                         val64 |= GPIO_INT_MASK_LINK_UP;
3738                         writeq(val64, &bar0->gpio_int_mask);
3739                         s2io_set_link((unsigned long)sp);
3740                 }
3741 masking:
3742                 if (sp->last_link_state == LINK_UP) {
3743                         /*enable down interrupt */
3744                         val64 = readq(&bar0->gpio_int_mask);
3745                         /* unmasks link down intr */
3746                         val64 &=  ~GPIO_INT_MASK_LINK_DOWN;
3747                         /* masks link up intr */
3748                         val64 |= GPIO_INT_MASK_LINK_UP;
3749                         writeq(val64, &bar0->gpio_int_mask);
3750                 } else {
3751                         /*enable UP Interrupt */
3752                         val64 = readq(&bar0->gpio_int_mask);
3753                         /* unmasks link up interrupt */
3754                         val64 &= ~GPIO_INT_MASK_LINK_UP;
3755                         /* masks link down interrupt */
3756                         val64 |=  GPIO_INT_MASK_LINK_DOWN;
3757                         writeq(val64, &bar0->gpio_int_mask);
3758                 }
3759         }
3760 }
3761
3762 /**
3763  *  s2io_isr - ISR handler of the device .
3764  *  @irq: the irq of the device.
3765  *  @dev_id: a void pointer to the dev structure of the NIC.
3766  *  @pt_regs: pointer to the registers pushed on the stack.
3767  *  Description:  This function is the ISR handler of the device. It
3768  *  identifies the reason for the interrupt and calls the relevant
3769  *  service routines. As a contongency measure, this ISR allocates the
3770  *  recv buffers, if their numbers are below the panic value which is
3771  *  presently set to 25% of the original number of rcv buffers allocated.
3772  *  Return value:
3773  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
3774  *   IRQ_NONE: will be returned if interrupt is not from our device
3775  */
3776 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3777 {
3778         struct net_device *dev = (struct net_device *) dev_id;
3779         nic_t *sp = dev->priv;
3780         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3781         int i;
3782         u64 reason = 0, val64;
3783         mac_info_t *mac_control;
3784         struct config_param *config;
3785
3786         atomic_inc(&sp->isr_cnt);
3787         mac_control = &sp->mac_control;
3788         config = &sp->config;
3789
3790         /*
3791          * Identify the cause for interrupt and call the appropriate
3792          * interrupt handler. Causes for the interrupt could be;
3793          * 1. Rx of packet.
3794          * 2. Tx complete.
3795          * 3. Link down.
3796          * 4. Error in any functional blocks of the NIC.
3797          */
3798         reason = readq(&bar0->general_int_status);
3799
3800         if (!reason) {
3801                 /* The interrupt was not raised by Xena. */
3802                 atomic_dec(&sp->isr_cnt);
3803                 return IRQ_NONE;
3804         }
3805
3806 #ifdef CONFIG_S2IO_NAPI
3807         if (reason & GEN_INTR_RXTRAFFIC) {
3808                 if (netif_rx_schedule_prep(dev)) {
3809                         en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
3810                                               DISABLE_INTRS);
3811                         __netif_rx_schedule(dev);
3812                 }
3813         }
3814 #else
3815         /* If Intr is because of Rx Traffic */
3816         if (reason & GEN_INTR_RXTRAFFIC) {
3817                 /*
3818                  * rx_traffic_int reg is an R1 register, writing all 1's
3819                  * will ensure that the actual interrupt causing bit get's
3820                  * cleared and hence a read can be avoided.
3821                  */
3822                 val64 = 0xFFFFFFFFFFFFFFFFULL;
3823                 writeq(val64, &bar0->rx_traffic_int);
3824                 for (i = 0; i < config->rx_ring_num; i++) {
3825                         rx_intr_handler(&mac_control->rings[i]);
3826                 }
3827         }
3828 #endif
3829
3830         /* If Intr is because of Tx Traffic */
3831         if (reason & GEN_INTR_TXTRAFFIC) {
3832                 /*
3833                  * tx_traffic_int reg is an R1 register, writing all 1's
3834                  * will ensure that the actual interrupt causing bit get's
3835                  * cleared and hence a read can be avoided.
3836                  */
3837                 val64 = 0xFFFFFFFFFFFFFFFFULL;
3838                 writeq(val64, &bar0->tx_traffic_int);
3839
3840                 for (i = 0; i < config->tx_fifo_num; i++)
3841                         tx_intr_handler(&mac_control->fifos[i]);
3842         }
3843
3844         if (reason & GEN_INTR_TXPIC)
3845                 s2io_txpic_intr_handle(sp);
3846         /*
3847          * If the Rx buffer count is below the panic threshold then
3848          * reallocate the buffers from the interrupt handler itself,
3849          * else schedule a tasklet to reallocate the buffers.
3850          */
3851 #ifndef CONFIG_S2IO_NAPI
3852         for (i = 0; i < config->rx_ring_num; i++) {
3853                 int ret;
3854                 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3855                 int level = rx_buffer_level(sp, rxb_size, i);
3856
3857                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3858                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3859                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
3860                         if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3861                                 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3862                                           dev->name);
3863                                 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3864                                 clear_bit(0, (&sp->tasklet_status));
3865                                 atomic_dec(&sp->isr_cnt);
3866                                 return IRQ_HANDLED;
3867                         }
3868                         clear_bit(0, (&sp->tasklet_status));
3869                 } else if (level == LOW) {
3870                         tasklet_schedule(&sp->task);
3871                 }
3872         }
3873 #endif
3874
3875         atomic_dec(&sp->isr_cnt);
3876         return IRQ_HANDLED;
3877 }
3878
3879 /**
3880  * s2io_updt_stats -
3881  */
3882 static void s2io_updt_stats(nic_t *sp)
3883 {
3884         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3885         u64 val64;
3886         int cnt = 0;
3887
3888         if (atomic_read(&sp->card_state) == CARD_UP) {
3889                 /* Apprx 30us on a 133 MHz bus */
3890                 val64 = SET_UPDT_CLICKS(10) |
3891                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
3892                 writeq(val64, &bar0->stat_cfg);
3893                 do {
3894                         udelay(100);
3895                         val64 = readq(&bar0->stat_cfg);
3896                         if (!(val64 & BIT(0)))
3897                                 break;
3898                         cnt++;
3899                         if (cnt == 5)
3900                                 break; /* Updt failed */
3901                 } while(1);
3902         }
3903 }
3904
3905 /**
3906  *  s2io_get_stats - Updates the device statistics structure.
3907  *  @dev : pointer to the device structure.
3908  *  Description:
3909  *  This function updates the device statistics structure in the s2io_nic
3910  *  structure and returns a pointer to the same.
3911  *  Return value:
3912  *  pointer to the updated net_device_stats structure.
3913  */
3914
3915 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
3916 {
3917         nic_t *sp = dev->priv;
3918         mac_info_t *mac_control;
3919         struct config_param *config;
3920
3921
3922         mac_control = &sp->mac_control;
3923         config = &sp->config;
3924
3925         /* Configure Stats for immediate updt */
3926         s2io_updt_stats(sp);
3927
3928         sp->stats.tx_packets =
3929                 le32_to_cpu(mac_control->stats_info->tmac_frms);
3930         sp->stats.tx_errors =
3931                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
3932         sp->stats.rx_errors =
3933                 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
3934         sp->stats.multicast =
3935                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
3936         sp->stats.rx_length_errors =
3937                 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
3938
3939         return (&sp->stats);
3940 }
3941
3942 /**
3943  *  s2io_set_multicast - entry point for multicast address enable/disable.
3944  *  @dev : pointer to the device structure
3945  *  Description:
3946  *  This function is a driver entry point which gets called by the kernel
3947  *  whenever multicast addresses must be enabled/disabled. This also gets
3948  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
3949  *  determine, if multicast address must be enabled or if promiscuous mode
3950  *  is to be disabled etc.
3951  *  Return value:
3952  *  void.
3953  */
3954
3955 static void s2io_set_multicast(struct net_device *dev)
3956 {
3957         int i, j, prev_cnt;
3958         struct dev_mc_list *mclist;
3959         nic_t *sp = dev->priv;
3960         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3961         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
3962             0xfeffffffffffULL;
3963         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
3964         void __iomem *add;
3965
3966         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
3967                 /*  Enable all Multicast addresses */
3968                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
3969                        &bar0->rmac_addr_data0_mem);
3970                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
3971                        &bar0->rmac_addr_data1_mem);
3972                 val64 = RMAC_ADDR_CMD_MEM_WE |
3973                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3974                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
3975                 writeq(val64, &bar0->rmac_addr_cmd_mem);
3976                 /* Wait till command completes */
3977                 wait_for_cmd_complete(sp);
3978
3979                 sp->m_cast_flg = 1;
3980                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
3981         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
3982                 /*  Disable all Multicast addresses */
3983                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3984                        &bar0->rmac_addr_data0_mem);
3985                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
3986                        &bar0->rmac_addr_data1_mem);
3987                 val64 = RMAC_ADDR_CMD_MEM_WE |
3988                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3989                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
3990                 writeq(val64, &bar0->rmac_addr_cmd_mem);
3991                 /* Wait till command completes */
3992                 wait_for_cmd_complete(sp);
3993
3994                 sp->m_cast_flg = 0;
3995                 sp->all_multi_pos = 0;
3996         }
3997
3998         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
3999                 /*  Put the NIC into promiscuous mode */
4000                 add = &bar0->mac_cfg;
4001                 val64 = readq(&bar0->mac_cfg);
4002                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4003
4004                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4005                 writel((u32) val64, add);
4006                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4007                 writel((u32) (val64 >> 32), (add + 4));
4008
4009                 val64 = readq(&bar0->mac_cfg);
4010                 sp->promisc_flg = 1;
4011                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4012                           dev->name);
4013         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4014                 /*  Remove the NIC from promiscuous mode */
4015                 add = &bar0->mac_cfg;
4016                 val64 = readq(&bar0->mac_cfg);
4017                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4018
4019                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4020                 writel((u32) val64, add);
4021                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4022                 writel((u32) (val64 >> 32), (add + 4));
4023
4024                 val64 = readq(&bar0->mac_cfg);
4025                 sp->promisc_flg = 0;
4026                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4027                           dev->name);
4028         }
4029
4030         /*  Update individual M_CAST address list */
4031         if ((!sp->m_cast_flg) && dev->mc_count) {
4032                 if (dev->mc_count >
4033                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4034                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4035                                   dev->name);
4036                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4037                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4038                         return;
4039                 }
4040
4041                 prev_cnt = sp->mc_addr_count;
4042                 sp->mc_addr_count = dev->mc_count;
4043
4044                 /* Clear out the previous list of Mc in the H/W. */
4045                 for (i = 0; i < prev_cnt; i++) {
4046                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4047                                &bar0->rmac_addr_data0_mem);
4048                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4049                                 &bar0->rmac_addr_data1_mem);
4050                         val64 = RMAC_ADDR_CMD_MEM_WE |
4051                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4052                             RMAC_ADDR_CMD_MEM_OFFSET
4053                             (MAC_MC_ADDR_START_OFFSET + i);
4054                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4055
4056                         /* Wait for command completes */
4057                         if (wait_for_cmd_complete(sp)) {
4058                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4059                                           dev->name);
4060                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4061                                 return;
4062                         }
4063                 }
4064
4065                 /* Create the new Rx filter list and update the same in H/W. */
4066                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4067                      i++, mclist = mclist->next) {
4068                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4069                                ETH_ALEN);
4070                         for (j = 0; j < ETH_ALEN; j++) {
4071                                 mac_addr |= mclist->dmi_addr[j];
4072                                 mac_addr <<= 8;
4073                         }
4074                         mac_addr >>= 8;
4075                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4076                                &bar0->rmac_addr_data0_mem);
4077                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4078                                 &bar0->rmac_addr_data1_mem);
4079                         val64 = RMAC_ADDR_CMD_MEM_WE |
4080                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4081                             RMAC_ADDR_CMD_MEM_OFFSET
4082                             (i + MAC_MC_ADDR_START_OFFSET);
4083                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4084
4085                         /* Wait for command completes */
4086                         if (wait_for_cmd_complete(sp)) {
4087                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4088                                           dev->name);
4089                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4090                                 return;
4091                         }
4092                 }
4093         }
4094 }
4095
4096 /**
4097  *  s2io_set_mac_addr - Programs the Xframe mac address
4098  *  @dev : pointer to the device structure.
4099  *  @addr: a uchar pointer to the new mac address which is to be set.
4100  *  Description : This procedure will program the Xframe to receive
4101  *  frames with new Mac Address
4102  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4103  *  as defined in errno.h file on failure.
4104  */
4105
4106 int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4107 {
4108         nic_t *sp = dev->priv;
4109         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4110         register u64 val64, mac_addr = 0;
4111         int i;
4112
4113         /*
4114          * Set the new MAC address as the new unicast filter and reflect this
4115          * change on the device address registered with the OS. It will be
4116          * at offset 0.
4117          */
4118         for (i = 0; i < ETH_ALEN; i++) {
4119                 mac_addr <<= 8;
4120                 mac_addr |= addr[i];
4121         }
4122
4123         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4124                &bar0->rmac_addr_data0_mem);
4125
4126         val64 =
4127             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4128             RMAC_ADDR_CMD_MEM_OFFSET(0);
4129         writeq(val64, &bar0->rmac_addr_cmd_mem);
4130         /* Wait till command completes */
4131         if (wait_for_cmd_complete(sp)) {
4132                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4133                 return FAILURE;
4134         }
4135
4136         return SUCCESS;
4137 }
4138
4139 /**
4140  * s2io_ethtool_sset - Sets different link parameters.
4141  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4142  * @info: pointer to the structure with parameters given by ethtool to set
4143  * link information.
4144  * Description:
4145  * The function sets different link parameters provided by the user onto
4146  * the NIC.
4147  * Return value:
4148  * 0 on success.
4149 */
4150
4151 static int s2io_ethtool_sset(struct net_device *dev,
4152                              struct ethtool_cmd *info)
4153 {
4154         nic_t *sp = dev->priv;
4155         if ((info->autoneg == AUTONEG_ENABLE) ||
4156             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4157                 return -EINVAL;
4158         else {
4159                 s2io_close(sp->dev);
4160                 s2io_open(sp->dev);
4161         }
4162
4163         return 0;
4164 }
4165
4166 /**
4167  * s2io_ethtol_gset - Return link specific information.
4168  * @sp : private member of the device structure, pointer to the
4169  *      s2io_nic structure.
4170  * @info : pointer to the structure with parameters given by ethtool
4171  * to return link information.
4172  * Description:
4173  * Returns link specific information like speed, duplex etc.. to ethtool.
4174  * Return value :
4175  * return 0 on success.
4176  */
4177
4178 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4179 {
4180         nic_t *sp = dev->priv;
4181         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4182         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4183         info->port = PORT_FIBRE;
4184         /* info->transceiver?? TODO */
4185
4186         if (netif_carrier_ok(sp->dev)) {
4187                 info->speed = 10000;
4188                 info->duplex = DUPLEX_FULL;
4189         } else {
4190                 info->speed = -1;
4191                 info->duplex = -1;
4192         }
4193
4194         info->autoneg = AUTONEG_DISABLE;
4195         return 0;
4196 }
4197
4198 /**
4199  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4200  * @sp : private member of the device structure, which is a pointer to the
4201  * s2io_nic structure.
4202  * @info : pointer to the structure with parameters given by ethtool to
4203  * return driver information.
4204  * Description:
4205  * Returns driver specefic information like name, version etc.. to ethtool.
4206  * Return value:
4207  *  void
4208  */
4209
4210 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4211                                   struct ethtool_drvinfo *info)
4212 {
4213         nic_t *sp = dev->priv;
4214
4215         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4216         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4217         strncpy(info->fw_version, "", sizeof(info->fw_version));
4218         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4219         info->regdump_len = XENA_REG_SPACE;
4220         info->eedump_len = XENA_EEPROM_SPACE;
4221         info->testinfo_len = S2IO_TEST_LEN;
4222         info->n_stats = S2IO_STAT_LEN;
4223 }
4224
4225 /**
4226  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4227  *  @sp: private member of the device structure, which is a pointer to the
4228  *  s2io_nic structure.
4229  *  @regs : pointer to the structure with parameters given by ethtool for
4230  *  dumping the registers.
4231  *  @reg_space: The input argumnet into which all the registers are dumped.
4232  *  Description:
4233  *  Dumps the entire register space of xFrame NIC into the user given
4234  *  buffer area.
4235  * Return value :
4236  * void .
4237 */
4238
4239 static void s2io_ethtool_gregs(struct net_device *dev,
4240                                struct ethtool_regs *regs, void *space)
4241 {
4242         int i;
4243         u64 reg;
4244         u8 *reg_space = (u8 *) space;
4245         nic_t *sp = dev->priv;
4246
4247         regs->len = XENA_REG_SPACE;
4248         regs->version = sp->pdev->subsystem_device;
4249
4250         for (i = 0; i < regs->len; i += 8) {
4251                 reg = readq(sp->bar0 + i);
4252                 memcpy((reg_space + i), &reg, 8);
4253         }
4254 }
4255
4256 /**
4257  *  s2io_phy_id  - timer function that alternates adapter LED.
4258  *  @data : address of the private member of the device structure, which
4259  *  is a pointer to the s2io_nic structure, provided as an u32.
4260  * Description: This is actually the timer function that alternates the
4261  * adapter LED bit of the adapter control bit to set/reset every time on
4262  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4263  *  once every second.
4264 */
4265 static void s2io_phy_id(unsigned long data)
4266 {
4267         nic_t *sp = (nic_t *) data;
4268         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4269         u64 val64 = 0;
4270         u16 subid;
4271
4272         subid = sp->pdev->subsystem_device;
4273         if ((sp->device_type == XFRAME_II_DEVICE) ||
4274                    ((subid & 0xFF) >= 0x07)) {
4275                 val64 = readq(&bar0->gpio_control);
4276                 val64 ^= GPIO_CTRL_GPIO_0;
4277                 writeq(val64, &bar0->gpio_control);
4278         } else {
4279                 val64 = readq(&bar0->adapter_control);
4280                 val64 ^= ADAPTER_LED_ON;
4281                 writeq(val64, &bar0->adapter_control);
4282         }
4283
4284         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4285 }
4286
4287 /**
4288  * s2io_ethtool_idnic - To physically identify the nic on the system.
4289  * @sp : private member of the device structure, which is a pointer to the
4290  * s2io_nic structure.
4291  * @id : pointer to the structure with identification parameters given by
4292  * ethtool.
4293  * Description: Used to physically identify the NIC on the system.
4294  * The Link LED will blink for a time specified by the user for
4295  * identification.
4296  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4297  * identification is possible only if it's link is up.
4298  * Return value:
4299  * int , returns 0 on success
4300  */
4301
4302 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4303 {
4304         u64 val64 = 0, last_gpio_ctrl_val;
4305         nic_t *sp = dev->priv;
4306         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4307         u16 subid;
4308
4309         subid = sp->pdev->subsystem_device;
4310         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4311         if ((sp->device_type == XFRAME_I_DEVICE) &&
4312                 ((subid & 0xFF) < 0x07)) {
4313                 val64 = readq(&bar0->adapter_control);
4314                 if (!(val64 & ADAPTER_CNTL_EN)) {
4315                         printk(KERN_ERR
4316                                "Adapter Link down, cannot blink LED\n");
4317                         return -EFAULT;
4318                 }
4319         }
4320         if (sp->id_timer.function == NULL) {
4321                 init_timer(&sp->id_timer);
4322                 sp->id_timer.function = s2io_phy_id;
4323                 sp->id_timer.data = (unsigned long) sp;
4324         }
4325         mod_timer(&sp->id_timer, jiffies);
4326         if (data)
4327                 msleep_interruptible(data * HZ);
4328         else
4329                 msleep_interruptible(MAX_FLICKER_TIME);
4330         del_timer_sync(&sp->id_timer);
4331
4332         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4333                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4334                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4335         }
4336
4337         return 0;
4338 }
4339
4340 /**
4341  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4342  * @sp : private member of the device structure, which is a pointer to the
4343  *      s2io_nic structure.
4344  * @ep : pointer to the structure with pause parameters given by ethtool.
4345  * Description:
4346  * Returns the Pause frame generation and reception capability of the NIC.
4347  * Return value:
4348  *  void
4349  */
4350 static void s2io_ethtool_getpause_data(struct net_device *dev,
4351                                        struct ethtool_pauseparam *ep)
4352 {
4353         u64 val64;
4354         nic_t *sp = dev->priv;
4355         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4356
4357         val64 = readq(&bar0->rmac_pause_cfg);
4358         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4359                 ep->tx_pause = TRUE;
4360         if (val64 & RMAC_PAUSE_RX_ENABLE)
4361                 ep->rx_pause = TRUE;
4362         ep->autoneg = FALSE;
4363 }
4364
4365 /**
4366  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4367  * @sp : private member of the device structure, which is a pointer to the
4368  *      s2io_nic structure.
4369  * @ep : pointer to the structure with pause parameters given by ethtool.
4370  * Description:
4371  * It can be used to set or reset Pause frame generation or reception
4372  * support of the NIC.
4373  * Return value:
4374  * int, returns 0 on Success
4375  */
4376
4377 static int s2io_ethtool_setpause_data(struct net_device *dev,
4378                                struct ethtool_pauseparam *ep)
4379 {
4380         u64 val64;
4381         nic_t *sp = dev->priv;
4382         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4383
4384         val64 = readq(&bar0->rmac_pause_cfg);
4385         if (ep->tx_pause)
4386                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4387         else
4388                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4389         if (ep->rx_pause)
4390                 val64 |= RMAC_PAUSE_RX_ENABLE;
4391         else
4392                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4393         writeq(val64, &bar0->rmac_pause_cfg);
4394         return 0;
4395 }
4396
4397 /**
4398  * read_eeprom - reads 4 bytes of data from user given offset.
4399  * @sp : private member of the device structure, which is a pointer to the
4400  *      s2io_nic structure.
4401  * @off : offset at which the data must be written
4402  * @data : Its an output parameter where the data read at the given
4403  *      offset is stored.
4404  * Description:
4405  * Will read 4 bytes of data from the user given offset and return the
4406  * read data.
4407  * NOTE: Will allow to read only part of the EEPROM visible through the
4408  *   I2C bus.
4409  * Return value:
4410  *  -1 on failure and 0 on success.
4411  */
4412
4413 #define S2IO_DEV_ID             5
4414 static int read_eeprom(nic_t * sp, int off, u64 * data)
4415 {
4416         int ret = -1;
4417         u32 exit_cnt = 0;
4418         u64 val64;
4419         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4420
4421         if (sp->device_type == XFRAME_I_DEVICE) {
4422                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4423                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4424                     I2C_CONTROL_CNTL_START;
4425                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4426
4427                 while (exit_cnt < 5) {
4428                         val64 = readq(&bar0->i2c_control);
4429                         if (I2C_CONTROL_CNTL_END(val64)) {
4430                                 *data = I2C_CONTROL_GET_DATA(val64);
4431                                 ret = 0;
4432                                 break;
4433                         }
4434                         msleep(50);
4435                         exit_cnt++;
4436                 }
4437         }
4438
4439         if (sp->device_type == XFRAME_II_DEVICE) {
4440                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4441                         SPI_CONTROL_BYTECNT(0x3) | 
4442                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4443                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4444                 val64 |= SPI_CONTROL_REQ;
4445                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4446                 while (exit_cnt < 5) {
4447                         val64 = readq(&bar0->spi_control);
4448                         if (val64 & SPI_CONTROL_NACK) {
4449                                 ret = 1;
4450                                 break;
4451                         } else if (val64 & SPI_CONTROL_DONE) {
4452                                 *data = readq(&bar0->spi_data);
4453                                 *data &= 0xffffff;
4454                                 ret = 0;
4455                                 break;
4456                         }
4457                         msleep(50);
4458                         exit_cnt++;
4459                 }
4460         }
4461         return ret;
4462 }
4463
4464 /**
4465  *  write_eeprom - actually writes the relevant part of the data value.
4466  *  @sp : private member of the device structure, which is a pointer to the
4467  *       s2io_nic structure.
4468  *  @off : offset at which the data must be written
4469  *  @data : The data that is to be written
4470  *  @cnt : Number of bytes of the data that are actually to be written into
4471  *  the Eeprom. (max of 3)
4472  * Description:
4473  *  Actually writes the relevant part of the data value into the Eeprom
4474  *  through the I2C bus.
4475  * Return value:
4476  *  0 on success, -1 on failure.
4477  */
4478
4479 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4480 {
4481         int exit_cnt = 0, ret = -1;
4482         u64 val64;
4483         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4484
4485         if (sp->device_type == XFRAME_I_DEVICE) {
4486                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4487                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4488                     I2C_CONTROL_CNTL_START;
4489                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4490
4491                 while (exit_cnt < 5) {
4492                         val64 = readq(&bar0->i2c_control);
4493                         if (I2C_CONTROL_CNTL_END(val64)) {
4494                                 if (!(val64 & I2C_CONTROL_NACK))
4495                                         ret = 0;
4496                                 break;
4497                         }
4498                         msleep(50);
4499                         exit_cnt++;
4500                 }
4501         }
4502
4503         if (sp->device_type == XFRAME_II_DEVICE) {
4504                 int write_cnt = (cnt == 8) ? 0 : cnt;
4505                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4506
4507                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4508                         SPI_CONTROL_BYTECNT(write_cnt) | 
4509                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4510                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4511                 val64 |= SPI_CONTROL_REQ;
4512                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4513                 while (exit_cnt < 5) {
4514                         val64 = readq(&bar0->spi_control);
4515                         if (val64 & SPI_CONTROL_NACK) {
4516                                 ret = 1;
4517                                 break;
4518                         } else if (val64 & SPI_CONTROL_DONE) {
4519                                 ret = 0;
4520                                 break;
4521                         }
4522                         msleep(50);
4523                         exit_cnt++;
4524                 }
4525         }
4526         return ret;
4527 }
4528
4529 /**
4530  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
4531  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
4532  *  @eeprom : pointer to the user level structure provided by ethtool,
4533  *  containing all relevant information.
4534  *  @data_buf : user defined value to be written into Eeprom.
4535  *  Description: Reads the values stored in the Eeprom at given offset
4536  *  for a given length. Stores these values int the input argument data
4537  *  buffer 'data_buf' and returns these to the caller (ethtool.)
4538  *  Return value:
4539  *  int  0 on success
4540  */
4541
4542 static int s2io_ethtool_geeprom(struct net_device *dev,
4543                          struct ethtool_eeprom *eeprom, u8 * data_buf)
4544 {
4545         u32 i, valid;
4546         u64 data;
4547         nic_t *sp = dev->priv;
4548
4549         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4550
4551         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4552                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4553
4554         for (i = 0; i < eeprom->len; i += 4) {
4555                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4556                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4557                         return -EFAULT;
4558                 }
4559                 valid = INV(data);
4560                 memcpy((data_buf + i), &valid, 4);
4561         }
4562         return 0;
4563 }
4564
4565 /**
4566  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4567  *  @sp : private member of the device structure, which is a pointer to the
4568  *  s2io_nic structure.
4569  *  @eeprom : pointer to the user level structure provided by ethtool,
4570  *  containing all relevant information.
4571  *  @data_buf ; user defined value to be written into Eeprom.
4572  *  Description:
4573  *  Tries to write the user provided value in the Eeprom, at the offset
4574  *  given by the user.
4575  *  Return value:
4576  *  0 on success, -EFAULT on failure.
4577  */
4578
4579 static int s2io_ethtool_seeprom(struct net_device *dev,
4580                                 struct ethtool_eeprom *eeprom,
4581                                 u8 * data_buf)
4582 {
4583         int len = eeprom->len, cnt = 0;
4584         u64 valid = 0, data;
4585         nic_t *sp = dev->priv;
4586
4587         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4588                 DBG_PRINT(ERR_DBG,
4589                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4590                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4591                           eeprom->magic);
4592                 return -EFAULT;
4593         }
4594
4595         while (len) {
4596                 data = (u32) data_buf[cnt] & 0x000000FF;
4597                 if (data) {
4598                         valid = (u32) (data << 24);
4599                 } else
4600                         valid = data;
4601
4602                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4603                         DBG_PRINT(ERR_DBG,
4604                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4605                         DBG_PRINT(ERR_DBG,
4606                                   "write into the specified offset\n");
4607                         return -EFAULT;
4608                 }
4609                 cnt++;
4610                 len--;
4611         }
4612
4613         return 0;
4614 }
4615
4616 /**
4617  * s2io_register_test - reads and writes into all clock domains.
4618  * @sp : private member of the device structure, which is a pointer to the
4619  * s2io_nic structure.
4620  * @data : variable that returns the result of each of the test conducted b
4621  * by the driver.
4622  * Description:
4623  * Read and write into all clock domains. The NIC has 3 clock domains,
4624  * see that registers in all the three regions are accessible.
4625  * Return value:
4626  * 0 on success.
4627  */
4628
4629 static int s2io_register_test(nic_t * sp, uint64_t * data)
4630 {
4631         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4632         u64 val64 = 0, exp_val;
4633         int fail = 0;
4634
4635         val64 = readq(&bar0->pif_rd_swapper_fb);
4636         if (val64 != 0x123456789abcdefULL) {
4637                 fail = 1;
4638                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
4639         }
4640
4641         val64 = readq(&bar0->rmac_pause_cfg);
4642         if (val64 != 0xc000ffff00000000ULL) {
4643                 fail = 1;
4644                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
4645         }
4646
4647         val64 = readq(&bar0->rx_queue_cfg);
4648         if (sp->device_type == XFRAME_II_DEVICE)
4649                 exp_val = 0x0404040404040404ULL;
4650         else
4651                 exp_val = 0x0808080808080808ULL;
4652         if (val64 != exp_val) {
4653                 fail = 1;
4654                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
4655         }
4656
4657         val64 = readq(&bar0->xgxs_efifo_cfg);
4658         if (val64 != 0x000000001923141EULL) {
4659                 fail = 1;
4660                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
4661         }
4662
4663         val64 = 0x5A5A5A5A5A5A5A5AULL;
4664         writeq(val64, &bar0->xmsi_data);
4665         val64 = readq(&bar0->xmsi_data);
4666         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
4667                 fail = 1;
4668                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
4669         }
4670
4671         val64 = 0xA5A5A5A5A5A5A5A5ULL;
4672         writeq(val64, &bar0->xmsi_data);
4673         val64 = readq(&bar0->xmsi_data);
4674         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
4675                 fail = 1;
4676                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
4677         }
4678
4679         *data = fail;
4680         return fail;
4681 }
4682
4683 /**
4684  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
4685  * @sp : private member of the device structure, which is a pointer to the
4686  * s2io_nic structure.
4687  * @data:variable that returns the result of each of the test conducted by
4688  * the driver.
4689  * Description:
4690  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
4691  * register.
4692  * Return value:
4693  * 0 on success.
4694  */
4695
4696 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
4697 {
4698         int fail = 0;
4699         u64 ret_data, org_4F0, org_7F0;
4700         u8 saved_4F0 = 0, saved_7F0 = 0;
4701         struct net_device *dev = sp->dev;
4702
4703         /* Test Write Error at offset 0 */
4704         /* Note that SPI interface allows write access to all areas
4705          * of EEPROM. Hence doing all negative testing only for Xframe I.
4706          */
4707         if (sp->device_type == XFRAME_I_DEVICE)
4708                 if (!write_eeprom(sp, 0, 0, 3))
4709                         fail = 1;
4710
4711         /* Save current values at offsets 0x4F0 and 0x7F0 */
4712         if (!read_eeprom(sp, 0x4F0, &org_4F0))
4713                 saved_4F0 = 1;
4714         if (!read_eeprom(sp, 0x7F0, &org_7F0))
4715                 saved_7F0 = 1;
4716
4717         /* Test Write at offset 4f0 */
4718         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
4719                 fail = 1;
4720         if (read_eeprom(sp, 0x4F0, &ret_data))
4721                 fail = 1;
4722
4723         if (ret_data != 0x012345) {
4724                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data); 
4725                 fail = 1;
4726         }
4727
4728         /* Reset the EEPROM data go FFFF */
4729         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
4730
4731         /* Test Write Request Error at offset 0x7c */
4732         if (sp->device_type == XFRAME_I_DEVICE)
4733                 if (!write_eeprom(sp, 0x07C, 0, 3))
4734                         fail = 1;
4735
4736         /* Test Write Request at offset 0x7f0 */
4737         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
4738                 fail = 1;
4739         if (read_eeprom(sp, 0x7F0, &ret_data))
4740                 fail = 1;
4741
4742         if (ret_data != 0x012345) {
4743                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data); 
4744                 fail = 1;
4745         }
4746
4747         /* Reset the EEPROM data go FFFF */
4748         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
4749
4750         if (sp->device_type == XFRAME_I_DEVICE) {
4751                 /* Test Write Error at offset 0x80 */
4752                 if (!write_eeprom(sp, 0x080, 0, 3))
4753                         fail = 1;
4754
4755                 /* Test Write Error at offset 0xfc */
4756                 if (!write_eeprom(sp, 0x0FC, 0, 3))
4757                         fail = 1;
4758
4759                 /* Test Write Error at offset 0x100 */
4760                 if (!write_eeprom(sp, 0x100, 0, 3))
4761                         fail = 1;
4762
4763                 /* Test Write Error at offset 4ec */
4764                 if (!write_eeprom(sp, 0x4EC, 0, 3))
4765                         fail = 1;
4766         }
4767
4768         /* Restore values at offsets 0x4F0 and 0x7F0 */
4769         if (saved_4F0)
4770                 write_eeprom(sp, 0x4F0, org_4F0, 3);
4771         if (saved_7F0)
4772                 write_eeprom(sp, 0x7F0, org_7F0, 3);
4773
4774         *data = fail;
4775         return fail;
4776 }
4777
4778 /**
4779  * s2io_bist_test - invokes the MemBist test of the card .
4780  * @sp : private member of the device structure, which is a pointer to the
4781  * s2io_nic structure.
4782  * @data:variable that returns the result of each of the test conducted by
4783  * the driver.
4784  * Description:
4785  * This invokes the MemBist test of the card. We give around
4786  * 2 secs time for the Test to complete. If it's still not complete
4787  * within this peiod, we consider that the test failed.
4788  * Return value:
4789  * 0 on success and -1 on failure.
4790  */
4791
4792 static int s2io_bist_test(nic_t * sp, uint64_t * data)
4793 {
4794         u8 bist = 0;
4795         int cnt = 0, ret = -1;
4796
4797         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4798         bist |= PCI_BIST_START;
4799         pci_write_config_word(sp->pdev, PCI_BIST, bist);
4800
4801         while (cnt < 20) {
4802                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4803                 if (!(bist & PCI_BIST_START)) {
4804                         *data = (bist & PCI_BIST_CODE_MASK);
4805                         ret = 0;
4806                         break;
4807                 }
4808                 msleep(100);
4809                 cnt++;
4810         }
4811
4812         return ret;
4813 }
4814
4815 /**
4816  * s2io-link_test - verifies the link state of the nic
4817  * @sp ; private member of the device structure, which is a pointer to the
4818  * s2io_nic structure.
4819  * @data: variable that returns the result of each of the test conducted by
4820  * the driver.
4821  * Description:
4822  * The function verifies the link state of the NIC and updates the input
4823  * argument 'data' appropriately.
4824  * Return value:
4825  * 0 on success.
4826  */
4827
4828 static int s2io_link_test(nic_t * sp, uint64_t * data)
4829 {
4830         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4831         u64 val64;
4832
4833         val64 = readq(&bar0->adapter_status);
4834         if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
4835                 *data = 1;
4836
4837         return 0;
4838 }
4839
4840 /**
4841  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
4842  * @sp - private member of the device structure, which is a pointer to the
4843  * s2io_nic structure.
4844  * @data - variable that returns the result of each of the test
4845  * conducted by the driver.
4846  * Description:
4847  *  This is one of the offline test that tests the read and write
4848  *  access to the RldRam chip on the NIC.
4849  * Return value:
4850  *  0 on success.
4851  */
4852
4853 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
4854 {
4855         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4856         u64 val64;
4857         int cnt, iteration = 0, test_fail = 0;
4858
4859         val64 = readq(&bar0->adapter_control);
4860         val64 &= ~ADAPTER_ECC_EN;
4861         writeq(val64, &bar0->adapter_control);
4862
4863         val64 = readq(&bar0->mc_rldram_test_ctrl);
4864         val64 |= MC_RLDRAM_TEST_MODE;
4865         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4866
4867         val64 = readq(&bar0->mc_rldram_mrs);
4868         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
4869         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4870
4871         val64 |= MC_RLDRAM_MRS_ENABLE;
4872         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4873
4874         while (iteration < 2) {
4875                 val64 = 0x55555555aaaa0000ULL;
4876                 if (iteration == 1) {
4877                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
4878                 }
4879                 writeq(val64, &bar0->mc_rldram_test_d0);
4880
4881                 val64 = 0xaaaa5a5555550000ULL;
4882                 if (iteration == 1) {
4883                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
4884                 }
4885                 writeq(val64, &bar0->mc_rldram_test_d1);
4886
4887                 val64 = 0x55aaaaaaaa5a0000ULL;
4888                 if (iteration == 1) {
4889                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
4890                 }
4891                 writeq(val64, &bar0->mc_rldram_test_d2);
4892
4893                 val64 = (u64) (0x0000003ffffe0100ULL);
4894                 writeq(val64, &bar0->mc_rldram_test_add);
4895
4896                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
4897                         MC_RLDRAM_TEST_GO;
4898                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4899
4900                 for (cnt = 0; cnt < 5; cnt++) {
4901                         val64 = readq(&bar0->mc_rldram_test_ctrl);
4902                         if (val64 & MC_RLDRAM_TEST_DONE)
4903                                 break;
4904                         msleep(200);
4905                 }
4906
4907                 if (cnt == 5)
4908                         break;
4909
4910                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
4911                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4912
4913                 for (cnt = 0; cnt < 5; cnt++) {
4914                         val64 = readq(&bar0->mc_rldram_test_ctrl);
4915                         if (val64 & MC_RLDRAM_TEST_DONE)
4916                                 break;
4917                         msleep(500);
4918                 }
4919
4920                 if (cnt == 5)
4921                         break;
4922
4923                 val64 = readq(&bar0->mc_rldram_test_ctrl);
4924                 if (!(val64 & MC_RLDRAM_TEST_PASS))
4925                         test_fail = 1;
4926
4927                 iteration++;
4928         }
4929
4930         *data = test_fail;
4931
4932         /* Bring the adapter out of test mode */
4933         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
4934
4935         return test_fail;
4936 }
4937
4938 /**
4939  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
4940  *  @sp : private member of the device structure, which is a pointer to the
4941  *  s2io_nic structure.
4942  *  @ethtest : pointer to a ethtool command specific structure that will be
4943  *  returned to the user.
4944  *  @data : variable that returns the result of each of the test
4945  * conducted by the driver.
4946  * Description:
4947  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
4948  *  the health of the card.
4949  * Return value:
4950  *  void
4951  */
4952
4953 static void s2io_ethtool_test(struct net_device *dev,
4954                               struct ethtool_test *ethtest,
4955                               uint64_t * data)
4956 {
4957         nic_t *sp = dev->priv;
4958         int orig_state = netif_running(sp->dev);
4959
4960         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
4961                 /* Offline Tests. */
4962                 if (orig_state)
4963                         s2io_close(sp->dev);
4964
4965                 if (s2io_register_test(sp, &data[0]))
4966                         ethtest->flags |= ETH_TEST_FL_FAILED;
4967
4968                 s2io_reset(sp);
4969
4970                 if (s2io_rldram_test(sp, &data[3]))
4971                         ethtest->flags |= ETH_TEST_FL_FAILED;
4972
4973                 s2io_reset(sp);
4974
4975                 if (s2io_eeprom_test(sp, &data[1]))
4976                         ethtest->flags |= ETH_TEST_FL_FAILED;
4977
4978                 if (s2io_bist_test(sp, &data[4]))
4979                         ethtest->flags |= ETH_TEST_FL_FAILED;
4980
4981                 if (orig_state)
4982                         s2io_open(sp->dev);
4983
4984                 data[2] = 0;
4985         } else {
4986                 /* Online Tests. */
4987                 if (!orig_state) {
4988                         DBG_PRINT(ERR_DBG,
4989                                   "%s: is not up, cannot run test\n",
4990                                   dev->name);
4991                         data[0] = -1;
4992                         data[1] = -1;
4993                         data[2] = -1;
4994                         data[3] = -1;
4995                         data[4] = -1;
4996                 }
4997
4998                 if (s2io_link_test(sp, &data[2]))
4999                         ethtest->flags |= ETH_TEST_FL_FAILED;
5000
5001                 data[0] = 0;
5002                 data[1] = 0;
5003                 data[3] = 0;
5004                 data[4] = 0;
5005         }
5006 }
5007
5008 static void s2io_get_ethtool_stats(struct net_device *dev,
5009                                    struct ethtool_stats *estats,
5010                                    u64 * tmp_stats)
5011 {
5012         int i = 0;
5013         nic_t *sp = dev->priv;
5014         StatInfo_t *stat_info = sp->mac_control.stats_info;
5015
5016         s2io_updt_stats(sp);
5017         tmp_stats[i++] =
5018                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5019                 le32_to_cpu(stat_info->tmac_frms);
5020         tmp_stats[i++] =
5021                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5022                 le32_to_cpu(stat_info->tmac_data_octets);
5023         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5024         tmp_stats[i++] =
5025                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5026                 le32_to_cpu(stat_info->tmac_mcst_frms);
5027         tmp_stats[i++] =
5028                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5029                 le32_to_cpu(stat_info->tmac_bcst_frms);
5030         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5031         tmp_stats[i++] =
5032                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5033                 le32_to_cpu(stat_info->tmac_any_err_frms);
5034         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5035         tmp_stats[i++] =
5036                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5037                 le32_to_cpu(stat_info->tmac_vld_ip);
5038         tmp_stats[i++] =
5039                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5040                 le32_to_cpu(stat_info->tmac_drop_ip);
5041         tmp_stats[i++] =
5042                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5043                 le32_to_cpu(stat_info->tmac_icmp);
5044         tmp_stats[i++] =
5045                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5046                 le32_to_cpu(stat_info->tmac_rst_tcp);
5047         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5048         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5049                 le32_to_cpu(stat_info->tmac_udp);
5050         tmp_stats[i++] =
5051                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5052                 le32_to_cpu(stat_info->rmac_vld_frms);
5053         tmp_stats[i++] =
5054                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5055                 le32_to_cpu(stat_info->rmac_data_octets);
5056         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5057         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5058         tmp_stats[i++] =
5059                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5060                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5061         tmp_stats[i++] =
5062                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5063                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5064         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5065         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5066         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5067         tmp_stats[i++] =
5068                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5069                 le32_to_cpu(stat_info->rmac_discarded_frms);
5070         tmp_stats[i++] =
5071                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5072                 le32_to_cpu(stat_info->rmac_usized_frms);
5073         tmp_stats[i++] =
5074                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5075                 le32_to_cpu(stat_info->rmac_osized_frms);
5076         tmp_stats[i++] =
5077                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5078                 le32_to_cpu(stat_info->rmac_frag_frms);
5079         tmp_stats[i++] =
5080                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5081                 le32_to_cpu(stat_info->rmac_jabber_frms);
5082         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5083                 le32_to_cpu(stat_info->rmac_ip);
5084         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5085         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5086         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5087                 le32_to_cpu(stat_info->rmac_drop_ip);
5088         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5089                 le32_to_cpu(stat_info->rmac_icmp);
5090         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5091         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5092                 le32_to_cpu(stat_info->rmac_udp);
5093         tmp_stats[i++] =
5094                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5095                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5096         tmp_stats[i++] =
5097                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5098                 le32_to_cpu(stat_info->rmac_pause_cnt);
5099         tmp_stats[i++] =
5100                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5101                 le32_to_cpu(stat_info->rmac_accepted_ip);
5102         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5103         tmp_stats[i++] = 0;
5104         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5105         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5106 }
5107
5108 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5109 {
5110         return (XENA_REG_SPACE);
5111 }
5112
5113
5114 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5115 {
5116         nic_t *sp = dev->priv;
5117
5118         return (sp->rx_csum);
5119 }
5120
5121 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5122 {
5123         nic_t *sp = dev->priv;
5124
5125         if (data)
5126                 sp->rx_csum = 1;
5127         else
5128                 sp->rx_csum = 0;
5129
5130         return 0;
5131 }
5132
5133 static int s2io_get_eeprom_len(struct net_device *dev)
5134 {
5135         return (XENA_EEPROM_SPACE);
5136 }
5137
5138 static int s2io_ethtool_self_test_count(struct net_device *dev)
5139 {
5140         return (S2IO_TEST_LEN);
5141 }
5142
5143 static void s2io_ethtool_get_strings(struct net_device *dev,
5144                                      u32 stringset, u8 * data)
5145 {
5146         switch (stringset) {
5147         case ETH_SS_TEST:
5148                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5149                 break;
5150         case ETH_SS_STATS:
5151                 memcpy(data, &ethtool_stats_keys,
5152                        sizeof(ethtool_stats_keys));
5153         }
5154 }
5155 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5156 {
5157         return (S2IO_STAT_LEN);
5158 }
5159
5160 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5161 {
5162         if (data)
5163                 dev->features |= NETIF_F_IP_CSUM;
5164         else
5165                 dev->features &= ~NETIF_F_IP_CSUM;
5166
5167         return 0;
5168 }
5169
5170
5171 static struct ethtool_ops netdev_ethtool_ops = {
5172         .get_settings = s2io_ethtool_gset,
5173         .set_settings = s2io_ethtool_sset,
5174         .get_drvinfo = s2io_ethtool_gdrvinfo,
5175         .get_regs_len = s2io_ethtool_get_regs_len,
5176         .get_regs = s2io_ethtool_gregs,
5177         .get_link = ethtool_op_get_link,
5178         .get_eeprom_len = s2io_get_eeprom_len,
5179         .get_eeprom = s2io_ethtool_geeprom,
5180         .set_eeprom = s2io_ethtool_seeprom,
5181         .get_pauseparam = s2io_ethtool_getpause_data,
5182         .set_pauseparam = s2io_ethtool_setpause_data,
5183         .get_rx_csum = s2io_ethtool_get_rx_csum,
5184         .set_rx_csum = s2io_ethtool_set_rx_csum,
5185         .get_tx_csum = ethtool_op_get_tx_csum,
5186         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5187         .get_sg = ethtool_op_get_sg,
5188         .set_sg = ethtool_op_set_sg,
5189 #ifdef NETIF_F_TSO
5190         .get_tso = ethtool_op_get_tso,
5191         .set_tso = ethtool_op_set_tso,
5192 #endif
5193         .self_test_count = s2io_ethtool_self_test_count,
5194         .self_test = s2io_ethtool_test,
5195         .get_strings = s2io_ethtool_get_strings,
5196         .phys_id = s2io_ethtool_idnic,
5197         .get_stats_count = s2io_ethtool_get_stats_count,
5198         .get_ethtool_stats = s2io_get_ethtool_stats
5199 };
5200
5201 /**
5202  *  s2io_ioctl - Entry point for the Ioctl
5203  *  @dev :  Device pointer.
5204  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5205  *  a proprietary structure used to pass information to the driver.
5206  *  @cmd :  This is used to distinguish between the different commands that
5207  *  can be passed to the IOCTL functions.
5208  *  Description:
5209  *  Currently there are no special functionality supported in IOCTL, hence
5210  *  function always return EOPNOTSUPPORTED
5211  */
5212
5213 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5214 {
5215         return -EOPNOTSUPP;
5216 }
5217
5218 /**
5219  *  s2io_change_mtu - entry point to change MTU size for the device.
5220  *   @dev : device pointer.
5221  *   @new_mtu : the new MTU size for the device.
5222  *   Description: A driver entry point to change MTU size for the device.
5223  *   Before changing the MTU the device must be stopped.
5224  *  Return value:
5225  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5226  *   file on failure.
5227  */
5228
5229 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5230 {
5231         nic_t *sp = dev->priv;
5232
5233         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5234                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5235                           dev->name);
5236                 return -EPERM;
5237         }
5238
5239         dev->mtu = new_mtu;
5240         if (netif_running(dev)) {
5241                 s2io_card_down(sp);
5242                 netif_stop_queue(dev);
5243                 if (s2io_card_up(sp)) {
5244                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5245                                   __FUNCTION__);
5246                 }
5247                 if (netif_queue_stopped(dev))
5248                         netif_wake_queue(dev);
5249         } else { /* Device is down */
5250                 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5251                 u64 val64 = new_mtu;
5252
5253                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5254         }
5255
5256         return 0;
5257 }
5258
5259 /**
5260  *  s2io_tasklet - Bottom half of the ISR.
5261  *  @dev_adr : address of the device structure in dma_addr_t format.
5262  *  Description:
5263  *  This is the tasklet or the bottom half of the ISR. This is
5264  *  an extension of the ISR which is scheduled by the scheduler to be run
5265  *  when the load on the CPU is low. All low priority tasks of the ISR can
5266  *  be pushed into the tasklet. For now the tasklet is used only to
5267  *  replenish the Rx buffers in the Rx buffer descriptors.
5268  *  Return value:
5269  *  void.
5270  */
5271
5272 static void s2io_tasklet(unsigned long dev_addr)
5273 {
5274         struct net_device *dev = (struct net_device *) dev_addr;
5275         nic_t *sp = dev->priv;
5276         int i, ret;
5277         mac_info_t *mac_control;
5278         struct config_param *config;
5279
5280         mac_control = &sp->mac_control;
5281         config = &sp->config;
5282
5283         if (!TASKLET_IN_USE) {
5284                 for (i = 0; i < config->rx_ring_num; i++) {
5285                         ret = fill_rx_buffers(sp, i);
5286                         if (ret == -ENOMEM) {
5287                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
5288                                           dev->name);
5289                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5290                                 break;
5291                         } else if (ret == -EFILL) {
5292                                 DBG_PRINT(ERR_DBG,
5293                                           "%s: Rx Ring %d is full\n",
5294                                           dev->name, i);
5295                                 break;
5296                         }
5297                 }
5298                 clear_bit(0, (&sp->tasklet_status));
5299         }
5300 }
5301
5302 /**
5303  * s2io_set_link - Set the LInk status
5304  * @data: long pointer to device private structue
5305  * Description: Sets the link status for the adapter
5306  */
5307
5308 static void s2io_set_link(unsigned long data)
5309 {
5310         nic_t *nic = (nic_t *) data;
5311         struct net_device *dev = nic->dev;
5312         XENA_dev_config_t __iomem *bar0 = nic->bar0;
5313         register u64 val64;
5314         u16 subid;
5315
5316         if (test_and_set_bit(0, &(nic->link_state))) {
5317                 /* The card is being reset, no point doing anything */
5318                 return;
5319         }
5320
5321         subid = nic->pdev->subsystem_device;
5322         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5323                 /*
5324                  * Allow a small delay for the NICs self initiated
5325                  * cleanup to complete.
5326                  */
5327                 msleep(100);
5328         }
5329
5330         val64 = readq(&bar0->adapter_status);
5331         if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5332                 if (LINK_IS_UP(val64)) {
5333                         val64 = readq(&bar0->adapter_control);
5334                         val64 |= ADAPTER_CNTL_EN;
5335                         writeq(val64, &bar0->adapter_control);
5336                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5337                                                              subid)) {
5338                                 val64 = readq(&bar0->gpio_control);
5339                                 val64 |= GPIO_CTRL_GPIO_0;
5340                                 writeq(val64, &bar0->gpio_control);
5341                                 val64 = readq(&bar0->gpio_control);
5342                         } else {
5343                                 val64 |= ADAPTER_LED_ON;
5344                                 writeq(val64, &bar0->adapter_control);
5345                         }
5346                         if (s2io_link_fault_indication(nic) ==
5347                                                 MAC_RMAC_ERR_TIMER) {
5348                                 val64 = readq(&bar0->adapter_status);
5349                                 if (!LINK_IS_UP(val64)) {
5350                                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
5351                                         DBG_PRINT(ERR_DBG, " Link down");
5352                                         DBG_PRINT(ERR_DBG, "after ");
5353                                         DBG_PRINT(ERR_DBG, "enabling ");
5354                                         DBG_PRINT(ERR_DBG, "device \n");
5355                                 }
5356                         }
5357                         if (nic->device_enabled_once == FALSE) {
5358                                 nic->device_enabled_once = TRUE;
5359                         }
5360                         s2io_link(nic, LINK_UP);
5361                 } else {
5362                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5363                                                               subid)) {
5364                                 val64 = readq(&bar0->gpio_control);
5365                                 val64 &= ~GPIO_CTRL_GPIO_0;
5366                                 writeq(val64, &bar0->gpio_control);
5367                                 val64 = readq(&bar0->gpio_control);
5368                         }
5369                         s2io_link(nic, LINK_DOWN);
5370                 }
5371         } else {                /* NIC is not Quiescent. */
5372                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5373                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5374                 netif_stop_queue(dev);
5375         }
5376         clear_bit(0, &(nic->link_state));
5377 }
5378
5379 static void s2io_card_down(nic_t * sp)
5380 {
5381         int cnt = 0;
5382         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5383         unsigned long flags;
5384         register u64 val64 = 0;
5385
5386         del_timer_sync(&sp->alarm_timer);
5387         /* If s2io_set_link task is executing, wait till it completes. */
5388         while (test_and_set_bit(0, &(sp->link_state))) {
5389                 msleep(50);
5390         }
5391         atomic_set(&sp->card_state, CARD_DOWN);
5392
5393         /* disable Tx and Rx traffic on the NIC */
5394         stop_nic(sp);
5395
5396         /* Kill tasklet. */
5397         tasklet_kill(&sp->task);
5398
5399         /* Check if the device is Quiescent and then Reset the NIC */
5400         do {
5401                 val64 = readq(&bar0->adapter_status);
5402                 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
5403                         break;
5404                 }
5405
5406                 msleep(50);
5407                 cnt++;
5408                 if (cnt == 10) {
5409                         DBG_PRINT(ERR_DBG,
5410                                   "s2io_close:Device not Quiescent ");
5411                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
5412                                   (unsigned long long) val64);
5413                         break;
5414                 }
5415         } while (1);
5416         s2io_reset(sp);
5417
5418         /* Waiting till all Interrupt handlers are complete */
5419         cnt = 0;
5420         do {
5421                 msleep(10);
5422                 if (!atomic_read(&sp->isr_cnt))
5423                         break;
5424                 cnt++;
5425         } while(cnt < 5);
5426
5427         spin_lock_irqsave(&sp->tx_lock, flags);
5428         /* Free all Tx buffers */
5429         free_tx_buffers(sp);
5430         spin_unlock_irqrestore(&sp->tx_lock, flags);
5431
5432         /* Free all Rx buffers */
5433         spin_lock_irqsave(&sp->rx_lock, flags);
5434         free_rx_buffers(sp);
5435         spin_unlock_irqrestore(&sp->rx_lock, flags);
5436
5437         clear_bit(0, &(sp->link_state));
5438 }
5439
5440 static int s2io_card_up(nic_t * sp)
5441 {
5442         int i, ret = 0;
5443         mac_info_t *mac_control;
5444         struct config_param *config;
5445         struct net_device *dev = (struct net_device *) sp->dev;
5446
5447         /* Initialize the H/W I/O registers */
5448         if (init_nic(sp) != 0) {
5449                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
5450                           dev->name);
5451                 return -ENODEV;
5452         }
5453
5454         if (sp->intr_type == MSI)
5455                 ret = s2io_enable_msi(sp);
5456         else if (sp->intr_type == MSI_X)
5457                 ret = s2io_enable_msi_x(sp);
5458         if (ret) {
5459                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
5460                 sp->intr_type = INTA;
5461         }
5462
5463         /*
5464          * Initializing the Rx buffers. For now we are considering only 1
5465          * Rx ring and initializing buffers into 30 Rx blocks
5466          */
5467         mac_control = &sp->mac_control;
5468         config = &sp->config;
5469
5470         for (i = 0; i < config->rx_ring_num; i++) {
5471                 if ((ret = fill_rx_buffers(sp, i))) {
5472                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
5473                                   dev->name);
5474                         s2io_reset(sp);
5475                         free_rx_buffers(sp);
5476                         return -ENOMEM;
5477                 }
5478                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
5479                           atomic_read(&sp->rx_bufs_left[i]));
5480         }
5481
5482         /* Setting its receive mode */
5483         s2io_set_multicast(dev);
5484
5485         /* Enable tasklet for the device */
5486         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
5487
5488         /* Enable Rx Traffic and interrupts on the NIC */
5489         if (start_nic(sp)) {
5490                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
5491                 tasklet_kill(&sp->task);
5492                 s2io_reset(sp);
5493                 free_irq(dev->irq, dev);
5494                 free_rx_buffers(sp);
5495                 return -ENODEV;
5496         }
5497
5498         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
5499
5500         atomic_set(&sp->card_state, CARD_UP);
5501         return 0;
5502 }
5503
5504 /**
5505  * s2io_restart_nic - Resets the NIC.
5506  * @data : long pointer to the device private structure
5507  * Description:
5508  * This function is scheduled to be run by the s2io_tx_watchdog
5509  * function after 0.5 secs to reset the NIC. The idea is to reduce
5510  * the run time of the watch dog routine which is run holding a
5511  * spin lock.
5512  */
5513
5514 static void s2io_restart_nic(unsigned long data)
5515 {
5516         struct net_device *dev = (struct net_device *) data;
5517         nic_t *sp = dev->priv;
5518
5519         s2io_card_down(sp);
5520         if (s2io_card_up(sp)) {
5521                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5522                           dev->name);
5523         }
5524         netif_wake_queue(dev);
5525         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
5526                   dev->name);
5527
5528 }
5529
5530 /**
5531  *  s2io_tx_watchdog - Watchdog for transmit side.
5532  *  @dev : Pointer to net device structure
5533  *  Description:
5534  *  This function is triggered if the Tx Queue is stopped
5535  *  for a pre-defined amount of time when the Interface is still up.
5536  *  If the Interface is jammed in such a situation, the hardware is
5537  *  reset (by s2io_close) and restarted again (by s2io_open) to
5538  *  overcome any problem that might have been caused in the hardware.
5539  *  Return value:
5540  *  void
5541  */
5542
5543 static void s2io_tx_watchdog(struct net_device *dev)
5544 {
5545         nic_t *sp = dev->priv;
5546
5547         if (netif_carrier_ok(dev)) {
5548                 schedule_work(&sp->rst_timer_task);
5549         }
5550 }
5551
5552 /**
5553  *   rx_osm_handler - To perform some OS related operations on SKB.
5554  *   @sp: private member of the device structure,pointer to s2io_nic structure.
5555  *   @skb : the socket buffer pointer.
5556  *   @len : length of the packet
5557  *   @cksum : FCS checksum of the frame.
5558  *   @ring_no : the ring from which this RxD was extracted.
5559  *   Description:
5560  *   This function is called by the Tx interrupt serivce routine to perform
5561  *   some OS related operations on the SKB before passing it to the upper
5562  *   layers. It mainly checks if the checksum is OK, if so adds it to the
5563  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
5564  *   to the upper layer. If the checksum is wrong, it increments the Rx
5565  *   packet error count, frees the SKB and returns error.
5566  *   Return value:
5567  *   SUCCESS on success and -1 on failure.
5568  */
5569 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
5570 {
5571         nic_t *sp = ring_data->nic;
5572         struct net_device *dev = (struct net_device *) sp->dev;
5573         struct sk_buff *skb = (struct sk_buff *)
5574                 ((unsigned long) rxdp->Host_Control);
5575         int ring_no = ring_data->ring_no;
5576         u16 l3_csum, l4_csum;
5577
5578         skb->dev = dev;
5579         if (rxdp->Control_1 & RXD_T_CODE) {
5580                 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
5581                 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
5582                           dev->name, err);
5583                 dev_kfree_skb(skb);
5584                 sp->stats.rx_crc_errors++;
5585                 atomic_dec(&sp->rx_bufs_left[ring_no]);
5586                 rxdp->Host_Control = 0;
5587                 return 0;
5588         }
5589
5590         /* Updating statistics */
5591         rxdp->Host_Control = 0;
5592         sp->rx_pkt_count++;
5593         sp->stats.rx_packets++;
5594         if (sp->rxd_mode == RXD_MODE_1) {
5595                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
5596
5597                 sp->stats.rx_bytes += len;
5598                 skb_put(skb, len);
5599
5600         } else if (sp->rxd_mode >= RXD_MODE_3A) {
5601                 int get_block = ring_data->rx_curr_get_info.block_index;
5602                 int get_off = ring_data->rx_curr_get_info.offset;
5603                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
5604                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
5605                 unsigned char *buff = skb_push(skb, buf0_len);
5606
5607                 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
5608                 sp->stats.rx_bytes += buf0_len + buf2_len;
5609                 memcpy(buff, ba->ba_0, buf0_len);
5610
5611                 if (sp->rxd_mode == RXD_MODE_3A) {
5612                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
5613
5614                         skb_put(skb, buf1_len);
5615                         skb->len += buf2_len;
5616                         skb->data_len += buf2_len;
5617                         skb->truesize += buf2_len;
5618                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
5619                         sp->stats.rx_bytes += buf1_len;
5620
5621                 } else
5622                         skb_put(skb, buf2_len);
5623         }
5624
5625         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
5626             (sp->rx_csum)) {
5627                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
5628                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
5629                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
5630                         /*
5631                          * NIC verifies if the Checksum of the received
5632                          * frame is Ok or not and accordingly returns
5633                          * a flag in the RxD.
5634                          */
5635                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5636                 } else {
5637                         /*
5638                          * Packet with erroneous checksum, let the
5639                          * upper layers deal with it.
5640                          */
5641                         skb->ip_summed = CHECKSUM_NONE;
5642                 }
5643         } else {
5644                 skb->ip_summed = CHECKSUM_NONE;
5645         }
5646
5647         skb->protocol = eth_type_trans(skb, dev);
5648 #ifdef CONFIG_S2IO_NAPI
5649         if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5650                 /* Queueing the vlan frame to the upper layer */
5651                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
5652                         RXD_GET_VLAN_TAG(rxdp->Control_2));
5653         } else {
5654                 netif_receive_skb(skb);
5655         }
5656 #else
5657         if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5658                 /* Queueing the vlan frame to the upper layer */
5659                 vlan_hwaccel_rx(skb, sp->vlgrp,
5660                         RXD_GET_VLAN_TAG(rxdp->Control_2));
5661         } else {
5662                 netif_rx(skb);
5663         }
5664 #endif
5665         dev->last_rx = jiffies;
5666         atomic_dec(&sp->rx_bufs_left[ring_no]);
5667         return SUCCESS;
5668 }
5669
5670 /**
5671  *  s2io_link - stops/starts the Tx queue.
5672  *  @sp : private member of the device structure, which is a pointer to the
5673  *  s2io_nic structure.
5674  *  @link : inidicates whether link is UP/DOWN.
5675  *  Description:
5676  *  This function stops/starts the Tx queue depending on whether the link
5677  *  status of the NIC is is down or up. This is called by the Alarm
5678  *  interrupt handler whenever a link change interrupt comes up.
5679  *  Return value:
5680  *  void.
5681  */
5682
5683 void s2io_link(nic_t * sp, int link)
5684 {
5685         struct net_device *dev = (struct net_device *) sp->dev;
5686
5687         if (link != sp->last_link_state) {
5688                 if (link == LINK_DOWN) {
5689                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
5690                         netif_carrier_off(dev);
5691                 } else {
5692                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
5693                         netif_carrier_on(dev);
5694                 }
5695         }
5696         sp->last_link_state = link;
5697 }
5698
5699 /**
5700  *  get_xena_rev_id - to identify revision ID of xena.
5701  *  @pdev : PCI Dev structure
5702  *  Description:
5703  *  Function to identify the Revision ID of xena.
5704  *  Return value:
5705  *  returns the revision ID of the device.
5706  */
5707
5708 int get_xena_rev_id(struct pci_dev *pdev)
5709 {
5710         u8 id = 0;
5711         int ret;
5712         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
5713         return id;
5714 }
5715
5716 /**
5717  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
5718  *  @sp : private member of the device structure, which is a pointer to the
5719  *  s2io_nic structure.
5720  *  Description:
5721  *  This function initializes a few of the PCI and PCI-X configuration registers
5722  *  with recommended values.
5723  *  Return value:
5724  *  void
5725  */
5726
5727 static void s2io_init_pci(nic_t * sp)
5728 {
5729         u16 pci_cmd = 0, pcix_cmd = 0;
5730
5731         /* Enable Data Parity Error Recovery in PCI-X command register. */
5732         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5733                              &(pcix_cmd));
5734         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5735                               (pcix_cmd | 1));
5736         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5737                              &(pcix_cmd));
5738
5739         /* Set the PErr Response bit in PCI command register. */
5740         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5741         pci_write_config_word(sp->pdev, PCI_COMMAND,
5742                               (pci_cmd | PCI_COMMAND_PARITY));
5743         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5744
5745         /* Forcibly disabling relaxed ordering capability of the card. */
5746         pcix_cmd &= 0xfffd;
5747         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5748                               pcix_cmd);
5749         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5750                              &(pcix_cmd));
5751 }
5752
5753 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
5754 MODULE_LICENSE("GPL");
5755 MODULE_VERSION(DRV_VERSION);
5756
5757 module_param(tx_fifo_num, int, 0);
5758 module_param(rx_ring_num, int, 0);
5759 module_param(rx_ring_mode, int, 0);
5760 module_param_array(tx_fifo_len, uint, NULL, 0);
5761 module_param_array(rx_ring_sz, uint, NULL, 0);
5762 module_param_array(rts_frm_len, uint, NULL, 0);
5763 module_param(use_continuous_tx_intrs, int, 1);
5764 module_param(rmac_pause_time, int, 0);
5765 module_param(mc_pause_threshold_q0q3, int, 0);
5766 module_param(mc_pause_threshold_q4q7, int, 0);
5767 module_param(shared_splits, int, 0);
5768 module_param(tmac_util_period, int, 0);
5769 module_param(rmac_util_period, int, 0);
5770 module_param(bimodal, bool, 0);
5771 module_param(l3l4hdr_size, int , 0);
5772 #ifndef CONFIG_S2IO_NAPI
5773 module_param(indicate_max_pkts, int, 0);
5774 #endif
5775 module_param(rxsync_frequency, int, 0);
5776 module_param(intr_type, int, 0);
5777
5778 /**
5779  *  s2io_init_nic - Initialization of the adapter .
5780  *  @pdev : structure containing the PCI related information of the device.
5781  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
5782  *  Description:
5783  *  The function initializes an adapter identified by the pci_dec structure.
5784  *  All OS related initialization including memory and device structure and
5785  *  initlaization of the device private variable is done. Also the swapper
5786  *  control register is initialized to enable read and write into the I/O
5787  *  registers of the device.
5788  *  Return value:
5789  *  returns 0 on success and negative on failure.
5790  */
5791
5792 static int __devinit
5793 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
5794 {
5795         nic_t *sp;
5796         struct net_device *dev;
5797         int i, j, ret;
5798         int dma_flag = FALSE;
5799         u32 mac_up, mac_down;
5800         u64 val64 = 0, tmp64 = 0;
5801         XENA_dev_config_t __iomem *bar0 = NULL;
5802         u16 subid;
5803         mac_info_t *mac_control;
5804         struct config_param *config;
5805         int mode;
5806         u8 dev_intr_type = intr_type;
5807
5808 #ifdef CONFIG_S2IO_NAPI
5809         if (dev_intr_type != INTA) {
5810                 DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
5811 is enabled. Defaulting to INTA\n");
5812                 dev_intr_type = INTA;
5813         }
5814         else
5815                 DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
5816 #endif
5817
5818         if ((ret = pci_enable_device(pdev))) {
5819                 DBG_PRINT(ERR_DBG,
5820                           "s2io_init_nic: pci_enable_device failed\n");
5821                 return ret;
5822         }
5823
5824         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5825                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
5826                 dma_flag = TRUE;
5827                 if (pci_set_consistent_dma_mask
5828                     (pdev, DMA_64BIT_MASK)) {
5829                         DBG_PRINT(ERR_DBG,
5830                                   "Unable to obtain 64bit DMA for \
5831                                         consistent allocations\n");
5832                         pci_disable_device(pdev);
5833                         return -ENOMEM;
5834                 }
5835         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
5836                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
5837         } else {
5838                 pci_disable_device(pdev);
5839                 return -ENOMEM;
5840         }
5841
5842         if ((dev_intr_type == MSI_X) && 
5843                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
5844                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
5845                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
5846 Defaulting to INTA\n");
5847                 dev_intr_type = INTA;
5848         }
5849         if (dev_intr_type != MSI_X) {
5850                 if (pci_request_regions(pdev, s2io_driver_name)) {
5851                         DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
5852                             pci_disable_device(pdev);
5853                         return -ENODEV;
5854                 }
5855         }
5856         else {
5857                 if (!(request_mem_region(pci_resource_start(pdev, 0),
5858                          pci_resource_len(pdev, 0), s2io_driver_name))) {
5859                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
5860                         pci_disable_device(pdev);
5861                         return -ENODEV;
5862                 }
5863                 if (!(request_mem_region(pci_resource_start(pdev, 2),
5864                          pci_resource_len(pdev, 2), s2io_driver_name))) {
5865                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
5866                         release_mem_region(pci_resource_start(pdev, 0),
5867                                    pci_resource_len(pdev, 0));
5868                         pci_disable_device(pdev);
5869                         return -ENODEV;
5870                 }
5871         }
5872
5873         dev = alloc_etherdev(sizeof(nic_t));
5874         if (dev == NULL) {
5875                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
5876                 pci_disable_device(pdev);
5877                 pci_release_regions(pdev);
5878                 return -ENODEV;
5879         }
5880
5881         pci_set_master(pdev);
5882         pci_set_drvdata(pdev, dev);
5883         SET_MODULE_OWNER(dev);
5884         SET_NETDEV_DEV(dev, &pdev->dev);
5885
5886         /*  Private member variable initialized to s2io NIC structure */
5887         sp = dev->priv;
5888         memset(sp, 0, sizeof(nic_t));
5889         sp->dev = dev;
5890         sp->pdev = pdev;
5891         sp->high_dma_flag = dma_flag;
5892         sp->device_enabled_once = FALSE;
5893         if (rx_ring_mode == 1)
5894                 sp->rxd_mode = RXD_MODE_1;
5895         if (rx_ring_mode == 2)
5896                 sp->rxd_mode = RXD_MODE_3B;
5897         if (rx_ring_mode == 3)
5898                 sp->rxd_mode = RXD_MODE_3A;
5899
5900         sp->intr_type = dev_intr_type;
5901
5902         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
5903                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
5904                 sp->device_type = XFRAME_II_DEVICE;
5905         else
5906                 sp->device_type = XFRAME_I_DEVICE;
5907
5908                 
5909         /* Initialize some PCI/PCI-X fields of the NIC. */
5910         s2io_init_pci(sp);
5911
5912         /*
5913          * Setting the device configuration parameters.
5914          * Most of these parameters can be specified by the user during
5915          * module insertion as they are module loadable parameters. If
5916          * these parameters are not not specified during load time, they
5917          * are initialized with default values.
5918          */
5919         mac_control = &sp->mac_control;
5920         config = &sp->config;
5921
5922         /* Tx side parameters. */
5923         if (tx_fifo_len[0] == 0)
5924                 tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
5925         config->tx_fifo_num = tx_fifo_num;
5926         for (i = 0; i < MAX_TX_FIFOS; i++) {
5927                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
5928                 config->tx_cfg[i].fifo_priority = i;
5929         }
5930
5931         /* mapping the QoS priority to the configured fifos */
5932         for (i = 0; i < MAX_TX_FIFOS; i++)
5933                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
5934
5935         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
5936         for (i = 0; i < config->tx_fifo_num; i++) {
5937                 config->tx_cfg[i].f_no_snoop =
5938                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
5939                 if (config->tx_cfg[i].fifo_len < 65) {
5940                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
5941                         break;
5942                 }
5943         }
5944         config->max_txds = MAX_SKB_FRAGS + 1;
5945
5946         /* Rx side parameters. */
5947         if (rx_ring_sz[0] == 0)
5948                 rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
5949         config->rx_ring_num = rx_ring_num;
5950         for (i = 0; i < MAX_RX_RINGS; i++) {
5951                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
5952                     (rxd_count[sp->rxd_mode] + 1);
5953                 config->rx_cfg[i].ring_priority = i;
5954         }
5955
5956         for (i = 0; i < rx_ring_num; i++) {
5957                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
5958                 config->rx_cfg[i].f_no_snoop =
5959                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
5960         }
5961
5962         /*  Setting Mac Control parameters */
5963         mac_control->rmac_pause_time = rmac_pause_time;
5964         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
5965         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
5966
5967
5968         /* Initialize Ring buffer parameters. */
5969         for (i = 0; i < config->rx_ring_num; i++)
5970                 atomic_set(&sp->rx_bufs_left[i], 0);
5971
5972         /* Initialize the number of ISRs currently running */
5973         atomic_set(&sp->isr_cnt, 0);
5974
5975         /*  initialize the shared memory used by the NIC and the host */
5976         if (init_shared_mem(sp)) {
5977                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
5978                           __FUNCTION__);
5979                 ret = -ENOMEM;
5980                 goto mem_alloc_failed;
5981         }
5982
5983         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
5984                                      pci_resource_len(pdev, 0));
5985         if (!sp->bar0) {
5986                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
5987                           dev->name);
5988                 ret = -ENOMEM;
5989                 goto bar0_remap_failed;
5990         }
5991
5992         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
5993                                      pci_resource_len(pdev, 2));
5994         if (!sp->bar1) {
5995                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
5996                           dev->name);
5997                 ret = -ENOMEM;
5998                 goto bar1_remap_failed;
5999         }
6000
6001         dev->irq = pdev->irq;
6002         dev->base_addr = (unsigned long) sp->bar0;
6003
6004         /* Initializing the BAR1 address as the start of the FIFO pointer. */
6005         for (j = 0; j < MAX_TX_FIFOS; j++) {
6006                 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6007                     (sp->bar1 + (j * 0x00020000));
6008         }
6009
6010         /*  Driver entry points */
6011         dev->open = &s2io_open;
6012         dev->stop = &s2io_close;
6013         dev->hard_start_xmit = &s2io_xmit;
6014         dev->get_stats = &s2io_get_stats;
6015         dev->set_multicast_list = &s2io_set_multicast;
6016         dev->do_ioctl = &s2io_ioctl;
6017         dev->change_mtu = &s2io_change_mtu;
6018         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6019         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6020         dev->vlan_rx_register = s2io_vlan_rx_register;
6021         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6022
6023         /*
6024          * will use eth_mac_addr() for  dev->set_mac_address
6025          * mac address will be set every time dev->open() is called
6026          */
6027 #if defined(CONFIG_S2IO_NAPI)
6028         dev->poll = s2io_poll;
6029         dev->weight = 32;
6030 #endif
6031
6032         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6033         if (sp->high_dma_flag == TRUE)
6034                 dev->features |= NETIF_F_HIGHDMA;
6035 #ifdef NETIF_F_TSO
6036         dev->features |= NETIF_F_TSO;
6037 #endif
6038
6039         dev->tx_timeout = &s2io_tx_watchdog;
6040         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6041         INIT_WORK(&sp->rst_timer_task,
6042                   (void (*)(void *)) s2io_restart_nic, dev);
6043         INIT_WORK(&sp->set_link_task,
6044                   (void (*)(void *)) s2io_set_link, sp);
6045
6046         pci_save_state(sp->pdev);
6047
6048         /* Setting swapper control on the NIC, for proper reset operation */
6049         if (s2io_set_swapper(sp)) {
6050                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6051                           dev->name);
6052                 ret = -EAGAIN;
6053                 goto set_swap_failed;
6054         }
6055
6056         /* Verify if the Herc works on the slot its placed into */
6057         if (sp->device_type & XFRAME_II_DEVICE) {
6058                 mode = s2io_verify_pci_mode(sp);
6059                 if (mode < 0) {
6060                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6061                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6062                         ret = -EBADSLT;
6063                         goto set_swap_failed;
6064                 }
6065         }
6066
6067         /* Not needed for Herc */
6068         if (sp->device_type & XFRAME_I_DEVICE) {
6069                 /*
6070                  * Fix for all "FFs" MAC address problems observed on
6071                  * Alpha platforms
6072                  */
6073                 fix_mac_address(sp);
6074                 s2io_reset(sp);
6075         }
6076
6077         /*
6078          * MAC address initialization.
6079          * For now only one mac address will be read and used.
6080          */
6081         bar0 = sp->bar0;
6082         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6083             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6084         writeq(val64, &bar0->rmac_addr_cmd_mem);
6085         wait_for_cmd_complete(sp);
6086
6087         tmp64 = readq(&bar0->rmac_addr_data0_mem);
6088         mac_down = (u32) tmp64;
6089         mac_up = (u32) (tmp64 >> 32);
6090
6091         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
6092
6093         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
6094         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
6095         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
6096         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
6097         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
6098         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
6099
6100         /*  Set the factory defined MAC address initially   */
6101         dev->addr_len = ETH_ALEN;
6102         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
6103
6104         /*
6105          * Initialize the tasklet status and link state flags
6106          * and the card state parameter
6107          */
6108         atomic_set(&(sp->card_state), 0);
6109         sp->tasklet_status = 0;
6110         sp->link_state = 0;
6111
6112         /* Initialize spinlocks */
6113         spin_lock_init(&sp->tx_lock);
6114 #ifndef CONFIG_S2IO_NAPI
6115         spin_lock_init(&sp->put_lock);
6116 #endif
6117         spin_lock_init(&sp->rx_lock);
6118
6119         /*
6120          * SXE-002: Configure link and activity LED to init state
6121          * on driver load.
6122          */
6123         subid = sp->pdev->subsystem_device;
6124         if ((subid & 0xFF) >= 0x07) {
6125                 val64 = readq(&bar0->gpio_control);
6126                 val64 |= 0x0000800000000000ULL;
6127                 writeq(val64, &bar0->gpio_control);
6128                 val64 = 0x0411040400000000ULL;
6129                 writeq(val64, (void __iomem *) bar0 + 0x2700);
6130                 val64 = readq(&bar0->gpio_control);
6131         }
6132
6133         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
6134
6135         if (register_netdev(dev)) {
6136                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
6137                 ret = -ENODEV;
6138                 goto register_failed;
6139         }
6140
6141         if (sp->device_type & XFRAME_II_DEVICE) {
6142                 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
6143                           dev->name);
6144                 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6145                                 get_xena_rev_id(sp->pdev),
6146                                 s2io_driver_version);
6147                 switch(sp->intr_type) {
6148                         case INTA:
6149                                 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6150                                 break;
6151                         case MSI:
6152                                 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6153                                 break;
6154                         case MSI_X:
6155                                 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6156                                 break;
6157                 }
6158
6159                 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6160                 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6161                           sp->def_mac_addr[0].mac_addr[0],
6162                           sp->def_mac_addr[0].mac_addr[1],
6163                           sp->def_mac_addr[0].mac_addr[2],
6164                           sp->def_mac_addr[0].mac_addr[3],
6165                           sp->def_mac_addr[0].mac_addr[4],
6166                           sp->def_mac_addr[0].mac_addr[5]);
6167                 mode = s2io_print_pci_mode(sp);
6168                 if (mode < 0) {
6169                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
6170                         ret = -EBADSLT;
6171                         goto set_swap_failed;
6172                 }
6173         } else {
6174                 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
6175                           dev->name);
6176                 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6177                                         get_xena_rev_id(sp->pdev),
6178                                         s2io_driver_version);
6179                 switch(sp->intr_type) {
6180                         case INTA:
6181                                 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6182                                 break;
6183                         case MSI:
6184                                 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6185                                 break;
6186                         case MSI_X:
6187                                 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6188                                 break;
6189                 }
6190                 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6191                 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6192                           sp->def_mac_addr[0].mac_addr[0],
6193                           sp->def_mac_addr[0].mac_addr[1],
6194                           sp->def_mac_addr[0].mac_addr[2],
6195                           sp->def_mac_addr[0].mac_addr[3],
6196                           sp->def_mac_addr[0].mac_addr[4],
6197                           sp->def_mac_addr[0].mac_addr[5]);
6198         }
6199         if (sp->rxd_mode == RXD_MODE_3B)
6200                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been "
6201                           "enabled\n",dev->name);
6202         if (sp->rxd_mode == RXD_MODE_3A)
6203                 DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been "
6204                           "enabled\n",dev->name);
6205
6206         /* Initialize device name */
6207         strcpy(sp->name, dev->name);
6208         if (sp->device_type & XFRAME_II_DEVICE)
6209                 strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
6210         else
6211                 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
6212
6213         /* Initialize bimodal Interrupts */
6214         sp->config.bimodal = bimodal;
6215         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
6216                 sp->config.bimodal = 0;
6217                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
6218                         dev->name);
6219         }
6220
6221         /*
6222          * Make Link state as off at this point, when the Link change
6223          * interrupt comes the state will be automatically changed to
6224          * the right state.
6225          */
6226         netif_carrier_off(dev);
6227
6228         return 0;
6229
6230       register_failed:
6231       set_swap_failed:
6232         iounmap(sp->bar1);
6233       bar1_remap_failed:
6234         iounmap(sp->bar0);
6235       bar0_remap_failed:
6236       mem_alloc_failed:
6237         free_shared_mem(sp);
6238         pci_disable_device(pdev);
6239         if (dev_intr_type != MSI_X)
6240                 pci_release_regions(pdev);
6241         else {
6242                 release_mem_region(pci_resource_start(pdev, 0),
6243                         pci_resource_len(pdev, 0));
6244                 release_mem_region(pci_resource_start(pdev, 2),
6245                         pci_resource_len(pdev, 2));
6246         }
6247         pci_set_drvdata(pdev, NULL);
6248         free_netdev(dev);
6249
6250         return ret;
6251 }
6252
6253 /**
6254  * s2io_rem_nic - Free the PCI device
6255  * @pdev: structure containing the PCI related information of the device.
6256  * Description: This function is called by the Pci subsystem to release a
6257  * PCI device and free up all resource held up by the device. This could
6258  * be in response to a Hot plug event or when the driver is to be removed
6259  * from memory.
6260  */
6261
6262 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
6263 {
6264         struct net_device *dev =
6265             (struct net_device *) pci_get_drvdata(pdev);
6266         nic_t *sp;
6267
6268         if (dev == NULL) {
6269                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
6270                 return;
6271         }
6272
6273         sp = dev->priv;
6274         unregister_netdev(dev);
6275
6276         free_shared_mem(sp);
6277         iounmap(sp->bar0);
6278         iounmap(sp->bar1);
6279         pci_disable_device(pdev);
6280         if (sp->intr_type != MSI_X)
6281                 pci_release_regions(pdev);
6282         else {
6283                 release_mem_region(pci_resource_start(pdev, 0),
6284                         pci_resource_len(pdev, 0));
6285                 release_mem_region(pci_resource_start(pdev, 2),
6286                         pci_resource_len(pdev, 2));
6287         }
6288         pci_set_drvdata(pdev, NULL);
6289         free_netdev(dev);
6290 }
6291
6292 /**
6293  * s2io_starter - Entry point for the driver
6294  * Description: This function is the entry point for the driver. It verifies
6295  * the module loadable parameters and initializes PCI configuration space.
6296  */
6297
6298 int __init s2io_starter(void)
6299 {
6300         return pci_module_init(&s2io_driver);
6301 }
6302
6303 /**
6304  * s2io_closer - Cleanup routine for the driver
6305  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
6306  */
6307
6308 void s2io_closer(void)
6309 {
6310         pci_unregister_driver(&s2io_driver);
6311         DBG_PRINT(INIT_DBG, "cleanup done\n");
6312 }
6313
6314 module_init(s2io_starter);
6315 module_exit(s2io_closer);